JP2006234376A - Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor - Google Patents

Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor Download PDF

Info

Publication number
JP2006234376A
JP2006234376A JP2006044094A JP2006044094A JP2006234376A JP 2006234376 A JP2006234376 A JP 2006234376A JP 2006044094 A JP2006044094 A JP 2006044094A JP 2006044094 A JP2006044094 A JP 2006044094A JP 2006234376 A JP2006234376 A JP 2006234376A
Authority
JP
Japan
Prior art keywords
cooling
heat
heating
working fluid
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044094A
Other languages
Japanese (ja)
Inventor
Hyun-Kyu Son
ヒュン−キュ ソン,
Hyukku-San Han
ヒュック−サン ハン,
Jon-San Han
ジョン−サン ハン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNE KK
Original Assignee
CNE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNE KK filed Critical CNE KK
Publication of JP2006234376A publication Critical patent/JP2006234376A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/02Arrangements or adaptations of tanks for water supply for domestic or like local water supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating and cooling system allowing simultaneous operations for heating and cooling, using a geothermal source, capable of carrying out simultaneously or separately the cooling operation and the heating operation. <P>SOLUTION: A heating and cooling working fluid flowing in a cooling pipe 130 connected respectively to an evaporator 110 of a heat pump 100 and a condenser 120 and flowing in a heating pipe 140 is heat-exchanged with a working fluid in the heat pump 100 to be transmitted simultaneously to a cooling heat exchanger 152 and a heating heat exchanger 154 respectively, and a desired space is cooled or heated thereby. Of course, the cooling operation by the cooling and heating working fluid flowing in the cooling pipe 130 and the heating operation by the cooling and heating working fluid flowing in heating pipe 140 are selectively carried out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地熱を利用した冷暖房システム及びその制御方法に関し、より詳しくは、冷房運転と暖房運転とを同時にあるいは別々に行い得る冷暖房同時運転が可能な地熱を利用した冷暖房システム及びその制御方法に関する。   The present invention relates to a cooling / heating system using geothermal heat and a control method thereof, and more particularly to a cooling / heating system using geothermal heat capable of simultaneous cooling / heating operation capable of performing cooling operation and heating operation simultaneously or separately and a control method thereof. .

一般に、ヒートポンプは、蒸発器、圧縮機、凝縮器及び膨張弁がサイクルを構成し、その作動流体が液化と気化を繰り返しながら、冷暖房のための空間に設けられたファンコイルユニットの内部を流動する、さらに他の作動流体で熱を伝達することにより、冷暖房が行われるようにしていた。   In general, in the heat pump, an evaporator, a compressor, a condenser, and an expansion valve constitute a cycle, and the working fluid flows through a fan coil unit provided in a space for cooling and heating while repeating liquefaction and vaporization. In addition, cooling and heating are performed by transferring heat with another working fluid.

このようなヒートポンプは、生活排水の廃熱を熱源として使用する廃熱利用システム、または地中に埋設された地熱交換パイプを使用して冷暖房を行うようになっている地熱利用システムの主要な構成要素として使用される。   Such a heat pump is a main component of a waste heat utilization system that uses waste heat from domestic wastewater as a heat source, or a geothermal utilization system that uses a geothermal exchange pipe embedded in the ground to perform cooling and heating. Used as an element.

一般に、廃熱利用システムでは、風呂屋などから排水される生活排水の廃熱をヒートポンプの蒸発器の熱源として使用し、この熱を利用してヒートポンプの凝縮器で温水を生産する。   Generally, in a waste heat utilization system, waste heat from domestic wastewater discharged from a bathhouse or the like is used as a heat source for an evaporator of a heat pump, and hot water is produced by a heat pump condenser using this heat.

そして、地熱利用システムは、暖房時には地熱交換パイプから伝達される地熱をヒートポンプの蒸発器の熱源として使用し、この熱を利用してヒートポンプの凝縮器で温水を生産する。冷房時にはヒートポンプで発生する凝縮器の排熱を地熱交換パイプを通じて排出する。   And a geothermal utilization system uses the geothermal heat transmitted from a geothermal exchange pipe at the time of heating as a heat source of the evaporator of a heat pump, and produces warm water with a condenser of a heat pump using this heat. During cooling, exhaust heat from the condenser generated by the heat pump is discharged through a geothermal exchange pipe.

しかし、前記廃熱利用システムにおいては、熱源である生活排水の温度が低い場合に備えて、別の補助ボイラーをさらに設けなければならないという問題点があり、また前記地熱利用システムにおいては、冷房時にヒートポンプの凝縮器で発生する排熱の過多で地熱交換パイプの数が多くなったり、これを収容するための冷却塔をさらに設けなければならないという問題点があった。   However, in the waste heat utilization system, there is a problem that another auxiliary boiler must be provided in preparation for the case where the temperature of domestic wastewater, which is a heat source, is low. There is a problem that the number of geothermal exchange pipes is increased due to excessive waste heat generated in the condenser of the heat pump, and a cooling tower for accommodating this must be further provided.

このような問題点を解決するために、大韓民国実用新案登録第339349号には、ヒートポンプを地熱交換パイプ側とファンコイルユニット側とにそれぞれ取り付けて冷房運転と暖房運転とをそれぞれ別に行い、別の冷温水蓄熱槽をヒートポンプとファンコイルユニットとの間に置き、安い深夜電力を利用して冷暖房を行うようにした技術が開示されている(特許文献1参照)。   In order to solve such problems, Korean Utility Model Registration No. 339349 has a heat pump attached to each of the geothermal exchange pipe side and the fan coil unit side to perform cooling operation and heating operation separately. A technology has been disclosed in which a cold / hot water heat storage tank is placed between a heat pump and a fan coil unit, and air conditioning is performed using cheap midnight power (see Patent Document 1).

しかし、前記したような従来の技術においては、次のような問題点があった。   However, the conventional techniques as described above have the following problems.

前記大韓民国実用新案登録第339349号は、冷房と暖房とを同時に行うことができない。すなわち、冷房運転または暖房運転を選択的に行わなければならない。よって、アイスリンクのように、冷暖房運転が同時に行われなければならない場合には、冷房のためのシステムと暖房のためのシステムとを別に設ける必要があった。これは、結局、冷暖房のためのシステムの設置コストが高くなるという問題を招いていた。   The Korean Utility Model Registration No. 339349 cannot perform cooling and heating at the same time. That is, the cooling operation or the heating operation must be selectively performed. Therefore, when the cooling / heating operation has to be performed at the same time as in an ice rink, it is necessary to separately provide a cooling system and a heating system. This eventually led to a problem that the installation cost of the system for air conditioning became high.

そして、従来の技術においては、冷房運転時または暖房運転時に発生する廃熱が再生されず、殆ど捨てられていた。よって、冷暖房システムのエネルギー使用効率が相対的に低下するという問題点もあった。   In the prior art, the waste heat generated during the cooling operation or the heating operation is not regenerated and is almost discarded. Therefore, there also exists a problem that the energy use efficiency of an air conditioning system falls relatively.

また、従来の技術においては、ヒートポンプの動作に必要な地熱交換部が冷暖房システムの最高効率になるように設計されており、地熱交換部の設置に多くの空間を必要とするという問題があった。
大韓民国実用新案登録第339349号明細書
Moreover, in the conventional technology, the geothermal heat exchange part necessary for the operation of the heat pump is designed to have the highest efficiency of the air conditioning system, and there is a problem that a large amount of space is required for installing the geothermal heat exchange part. .
Korean Utility Model Registration No. 339349 Specification

本発明は、上記問題点に鑑みなされたものであり、一つのシステムを利用して冷房運転と暖房運転とを同時に行うことができる冷暖房システム及びその制御方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a cooling / heating system and a control method thereof capable of simultaneously performing a cooling operation and a heating operation using one system.

また、本発明は、氷蓄熱槽を備えた冷暖房システム及びその制御方法を提供することを他の目的とする。   Another object of the present invention is to provide a cooling / heating system including an ice heat storage tank and a control method thereof.

また、本発明は、ヒートポンプと熱交換が行われる地熱交換部を小型化できる冷暖房システム及びその制御方法を提供することをさらに他の目的とする。   Another object of the present invention is to provide a cooling / heating system and a control method thereof that can reduce the size of a geothermal exchanging section that exchanges heat with a heat pump.

上記の目的を達成するため、本発明による冷暖房システムは、作動流体の熱交換が行われる蒸発器と凝縮器とを含むヒートポンプと、前記ヒートポンプの蒸発器と連結され、前記ヒートポンプの作動流体と前記蒸発器で熱交換を行う冷暖房作動流体が内部を流動する冷房パイプと、前記ヒートポンプの凝縮器と連結され、前記ヒートポンプの作動流体と前記凝縮器で熱交換を行う冷暖房作動流体が内部を流動する暖房パイプと、前記冷房パイプと連結されると共に冷暖房作動流体が伝達されることで所定の空間を冷房する冷房用熱交換器と、前記暖房パイプと連結されると共に冷暖房作動流体が伝達されることで所定の空間を暖房する暖房用熱交換器とを含む冷暖房用熱交換部と、前記ヒートポンプの蒸発器及び凝縮器のそれぞれと連結され、前記ヒートポンプの作動流体と前記蒸発器または凝縮器で熱交換を行う地熱作動流体が内部を流動する地熱パイプと、前記地熱パイプと連結されると共に地熱作動流体が伝達されることで地球との熱交換を行う地熱交換部とを備えることを特徴とする。   In order to achieve the above object, an air conditioning system according to the present invention is connected to a heat pump including an evaporator and a condenser in which heat exchange of working fluid is performed, and to the evaporator of the heat pump, and the working fluid of the heat pump and the A cooling / heating working fluid that exchanges heat with the evaporator is connected to a cooling pipe that flows inside, and a condenser of the heat pump, and a cooling / heating working fluid that exchanges heat between the working fluid of the heat pump and the condenser flows inside. It is connected to the heating pipe, the cooling pipe and the cooling / heating working fluid is transmitted to cool the predetermined space, and is connected to the heating pipe and the cooling / heating working fluid is transmitted. And a heat exchanger for heating and cooling including a heat exchanger for heating a predetermined space, and an evaporator and a condenser of the heat pump. The geothermal working fluid that exchanges heat with the working fluid of the heat pump and the evaporator or condenser flows in the interior, and the geothermal working fluid is transmitted to the geothermal pipe and the heat from the earth is transmitted. And a geothermal exchanging section for exchanging.

また、前記冷房パイプ内部を流動する冷暖房作動流体と熱交換して熱を貯蔵する媒体を有する氷蓄熱槽が、前記冷房パイプにさらに設けられることを特徴とする。   The cooling pipe may further include an ice heat storage tank having a medium for storing heat by exchanging heat with a cooling / heating working fluid flowing inside the cooling pipe.

また、前記ヒートポンプから冷暖房用熱交換部に冷暖房作動流体を伝達する冷房パイプが前記氷蓄熱槽を貫通するように設けられ、前記冷房パイプには、前記氷蓄熱槽をバイパスして冷暖房作動流体が流動するようにバイパスパイプがさらに備えられると共に、第1及び第2の切換弁が備えられ、氷蓄熱槽の動作の有無により冷暖房作動流体の流動を制御することを特徴とする。   In addition, a cooling pipe for transmitting a cooling / heating working fluid from the heat pump to the cooling / heating heat exchanger is provided so as to penetrate the ice storage tank, and the cooling / heating working fluid bypasses the ice storage tank and receives the cooling / heating working fluid. A bypass pipe is further provided to flow, and first and second switching valves are provided to control the flow of the cooling / heating working fluid depending on whether or not the ice heat storage tank is in operation.

また、前記ヒートポンプと地熱交換部との間を連結する前記地熱パイプには、補助熱交換部がさらに備えられ、該補助熱交換部は、前記地熱交換部に伝達される地熱作動流体の熱を外部に排出することを特徴とする。   The geothermal pipe connecting the heat pump and the geothermal heat exchanging unit further includes an auxiliary heat exchanging unit, and the auxiliary heat exchanging unit heats the geothermal working fluid transmitted to the geothermal heat exchanging unit. It is characterized by discharging outside.

また、前記冷房パイプ、暖房パイプ及び地熱パイプには、それぞれ循環ポンプが設けられ、前記循環ポンプは、それぞれ選択的に組み合わされて動作することで、前記各パイプ内部で作動流体が流動するようにすることを特徴とする。   The cooling pipe, the heating pipe, and the geothermal pipe are each provided with a circulation pump, and the circulation pumps are selectively combined to operate so that the working fluid flows inside the pipes. It is characterized by doing.

また、本発明による冷暖房システムは、ヒートポンプの作動流体と蒸発器で熱交換し、且つ冷暖房用熱交換部とヒートポンプの蒸発器とを連結する冷房用パイプ内部を流動する冷暖房作動流体、またはヒートポンプの作動流体と凝縮器で熱交換し、且つ冷暖房用熱交換部とヒートポンプの凝縮器とを連結する暖房用パイプ内部を流動する冷暖房作動流体と、ヒートポンプの蒸発器及び凝縮器内を流動する作動流体とが熱交換すると共に、前記ヒートポンプの作動流体と前記蒸発器または凝縮器でそれぞれ熱交換し、且つ地熱交換部と前記ヒートポンプの蒸発器及び凝縮器とをそれぞれ連結する地熱パイプ内部を流動する地熱作動流体と、前記冷暖房作動流体とが熱交換することで冷暖房運転が行われる冷暖房システムにおいて、前記暖房パイプ内部を流れる冷暖房作動流体とヒートポンプの作動流体とが熱交換して暖房運転されると同時に、前記冷房パイプ内部を流れる冷暖房作動流体とヒートポンプの作動流体とが熱交換して冷房運転されることを可能とするのを特徴とする。   In addition, the cooling / heating system according to the present invention exchanges heat between the working fluid of the heat pump and the evaporator, and connects the cooling / heating heat exchanger and the evaporator of the heat pump. Heating / cooling working fluid that exchanges heat between the working fluid and the condenser and flows inside the heating pipe that connects the heat exchange unit for air conditioning and the heat pump condenser, and working fluid that flows inside the evaporator and condenser of the heat pump Heat exchange with the working fluid of the heat pump and the evaporator or condenser, and the geothermal heat flowing inside the geothermal pipe connecting the geothermal exchanging part and the evaporator and condenser of the heat pump, respectively. In an air conditioning system in which an air conditioning operation is performed by exchanging heat between the working fluid and the air conditioning heating fluid, the heating pipe The heating / cooling working fluid flowing inside and the heat pump working fluid are heat-operated for heating operation, and at the same time, the cooling / heating working fluid flowing inside the cooling pipe and the heat pump working fluid are heat-exchanged for cooling operation. It is possible to make it possible.

また、前記暖房運転が行われると同時に、冷房パイプに設けられた氷蓄熱槽の媒体に前記冷房パイプ内部を流動する冷暖房作動流体の熱が伝達されて蓄積されるようにすることを特徴とする。   Further, at the same time as the heating operation is performed, heat of the cooling / heating working fluid flowing in the cooling pipe is transmitted to and accumulated in a medium of an ice heat storage tank provided in the cooling pipe. .

また、前記氷蓄熱槽に蓄積された熱を利用して冷房を行うにあたって、前記冷暖房用熱交換部とヒートポンプとの間を連結する冷房パイプ内部を流動する冷暖房作動流体は、前記ヒートポンプの内部を熱交換無しに通過することを特徴とする。   In addition, when performing cooling using the heat accumulated in the ice heat storage tank, the cooling / heating working fluid flowing inside the cooling pipe that connects between the heat exchange unit for cooling and heating and the heat pump is disposed inside the heat pump. It is characterized by passing without heat exchange.

このような構成の本発明による冷暖房システム及びその制御方法によれば、冷房運転と暖房運転とを同時に、または別々に行うことができ、様々な冷暖房環境に対応することが可能となり、特に、冷房運転に必要なエネルギー消費を最小化し、地熱交換部を小型化して全システムの設置に必要な空間を最小化することができる。   According to the cooling / heating system and the control method thereof according to the present invention having such a configuration, the cooling operation and the heating operation can be performed simultaneously or separately, and it is possible to cope with various cooling / heating environments. Energy consumption required for operation can be minimized, and the space required for installation of the entire system can be minimized by downsizing the geothermal heat exchanger.

本発明のような冷暖房同時運転が可能な地熱を利用した冷暖房システム及びその制御方法によれば、先ず、本発明では、一つのシステムを利用して冷房運転と暖房運転とを選択的、または同時に行うことができる。よって、様々な冷暖房環境に一つのシステムを利用して対処することが可能となるという効果がある。   According to the cooling and heating system using geothermal heat capable of simultaneous cooling and heating as in the present invention and the control method thereof, first, in the present invention, the cooling operation and the heating operation are selectively or simultaneously performed using one system. It can be carried out. Therefore, there is an effect that it is possible to cope with various air conditioning environments using one system.

そして、本発明では、氷蓄熱槽を設け、暖房運転時の廃熱を冷房運転に使用するすることで、冷房運転に必要なエネルギー消費を最小化し、暖房運転と冷房運転との必要容量が異なる場合に効率よく対処できるという効果がある。   In the present invention, an ice heat storage tank is provided, and the waste heat during the heating operation is used for the cooling operation, thereby minimizing the energy consumption necessary for the cooling operation, and the required capacities of the heating operation and the cooling operation are different. In this case, it is possible to deal with the situation efficiently.

また、本発明では、ヒートポンプと地熱交換部との間で流動する作動流体の熱を外部に排出するための補助熱交換部を使用することで、地熱交換部の容量を相対的に減らすことが可能となる。   Moreover, in this invention, the capacity | capacitance of a geothermal heat exchange part can be reduced relatively by using the auxiliary heat exchange part for discharging | emitting the heat | fever of the working fluid which flows between a heat pump and a geothermal heat exchange part outside. It becomes possible.

以下、本発明の好ましい実施の形態を、添付図面に基づいて詳しく説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による冷暖房同時運転が可能な地熱を利用した冷暖房システムの好ましい実施例を示す系統図である。図示のように、ヒートポンプ100は、蒸発器110と、圧縮機(図示せず)と、凝縮器120と、膨張弁(図示せず)とを備えている。前記蒸発器110と、圧縮機と、凝縮器120と、膨張弁とが構成するサイクルによって作動流体が流動される。前記作動流体は、ヒートポンプ100の内部を流動し、気化と液化を繰り返しながら熱を伝達する。例えば、前記作動流体は、前記蒸発器110で蒸発しながら外部から熱を奪い取り、前記凝縮器120で凝縮しながら外部に熱を放出する。ちなみに、本実施例では、三つのヒートポンプ100が使用されているが、その使用数は、これに限定されるものでなく、冷暖房の容量によって異なる。   FIG. 1 is a system diagram showing a preferred embodiment of an air-conditioning system using geothermal heat capable of simultaneous air-conditioning operation according to the present invention. As illustrated, the heat pump 100 includes an evaporator 110, a compressor (not shown), a condenser 120, and an expansion valve (not shown). The working fluid is caused to flow by a cycle constituted by the evaporator 110, the compressor, the condenser 120, and the expansion valve. The working fluid flows inside the heat pump 100 and transfers heat while repeating vaporization and liquefaction. For example, the working fluid takes heat from the outside while being evaporated by the evaporator 110 and releases heat to the outside while condensing by the condenser 120. Incidentally, in the present embodiment, three heat pumps 100 are used, but the number of uses is not limited to this, and varies depending on the capacity of the air conditioning.

前記蒸発器110と凝縮器120とには、前記ヒートポンプ100の作動流体と熱交換する別の冷暖房の作動流体(以下、単に「冷暖房作動流体」と言う。)が通過する。ちなみに、前記ヒートポンプ100で使用される作動流体の例として、HFC−404Aがあり、前記冷暖房作動流体の例として水がある。前記冷暖房作動流体は、前記ヒートポンプ100の蒸発器110に連結される冷房パイプ130と、凝縮器120に連結される暖房パイプ140との内部を流動する。   The evaporator 110 and the condenser 120 pass through another cooling / heating working fluid (hereinafter simply referred to as “cooling / heating working fluid”) that exchanges heat with the working fluid of the heat pump 100. Incidentally, HFC-404A is an example of the working fluid used in the heat pump 100, and water is an example of the cooling / heating working fluid. The cooling / heating working fluid flows in the cooling pipe 130 connected to the evaporator 110 of the heat pump 100 and the heating pipe 140 connected to the condenser 120.

前記冷房パイプ130と暖房パイプ140との内部を冷暖房作動流体が円滑に流動するように、それぞれ冷房循環ポンプ132と暖房循環ポンプ142とが設けられる。前記冷房循環ポンプ132と暖房循環ポンプ142とは、冷暖房作動流体を加圧することで、冷房パイプ130と暖房パイプ140との内部に前記冷暖房作動流体をそれぞれ流動させる。   A cooling circulation pump 132 and a heating circulation pump 142 are respectively provided so that the cooling / heating working fluid smoothly flows in the cooling pipe 130 and the heating pipe 140. The cooling circulation pump 132 and the heating circulation pump 142 pressurize the cooling / heating working fluid to cause the cooling / heating working fluid to flow inside the cooling pipe 130 and the heating pipe 140, respectively.

前記冷房パイプ130と暖房パイプ140とは、それぞれ冷暖房用熱交換部150とヒートポンプ100との間で冷暖房作動流体を流動させる。前記冷暖房用熱交換部150は、実際に冷暖房が必要な空間に設けられる。前記冷暖房用熱交換部150には、前記冷房パイプ130と連結される冷房用熱交換器152があり、前記暖房パイプ140と連結される暖房用熱交換器154がある。これらの冷房用熱交換器152と暖房用熱交換器154との代表的な例として、ファンコイルユニットが挙げられる。   The cooling pipe 130 and the heating pipe 140 cause the cooling / heating working fluid to flow between the cooling / heating heat exchanger 150 and the heat pump 100, respectively. The air conditioning unit 150 is provided in a space that actually requires air conditioning. The cooling / heating heat exchanger 150 includes a cooling heat exchanger 152 connected to the cooling pipe 130 and a heating heat exchanger 154 connected to the heating pipe 140. A typical example of the cooling heat exchanger 152 and the heating heat exchanger 154 is a fan coil unit.

前記冷房用熱交換器152と暖房用熱交換器154とは、それぞれ冷房または暖房のための空間に設けられる。よって、前記冷房用熱交換器152と暖房用熱交換器154とは、同じ空間に共に設けられても、また別の空間にそれぞれ設けられてもよい。例えば、冷房または暖房を選択する必要があるホテルルームやアイスリンクの観衆席のような空間には、冷房用熱交換器152と暖房用熱交換器154とが共に設けられる必要があり、またアイスリンクそのものには冷房用熱交換器152のみが設けられる必要がある。   The cooling heat exchanger 152 and the heating heat exchanger 154 are provided in a space for cooling or heating, respectively. Therefore, the cooling heat exchanger 152 and the heating heat exchanger 154 may be provided together in the same space or in different spaces. For example, in a room such as a hotel room or an ice rink seat where cooling or heating needs to be selected, both a cooling heat exchanger 152 and a heating heat exchanger 154 need to be provided, and ice Only the heat exchanger 152 for cooling needs to be provided in the link itself.

前記ヒートポンプ100の蒸発器110及び凝縮器120にそれぞれ連結されるよう、地熱パイプ160が設けられる。前記地熱パイプ160の内部には、地熱作動流体が流動する。前記地熱作動流体は、前記ヒートポンプ100の作動流体との間で行われる熱交換を前記蒸発器110または凝縮器120で行う。前記地熱パイプ160は、前記ヒートポンプ100と後述する地熱交換部170との間で熱を伝達する地熱作動流体が流動する通路となる。前記地熱作動流体としては、水を使用することができる。前記地熱パイプ160には地熱循環ポンプ162が設けられる。前記地熱循環ポンプ162は、前記地熱作動流体を加圧して地熱パイプ160の内部を流動させる。   A geothermal pipe 160 is provided to be connected to the evaporator 110 and the condenser 120 of the heat pump 100, respectively. A geothermal working fluid flows in the geothermal pipe 160. The geothermal working fluid exchanges heat with the working fluid of the heat pump 100 by the evaporator 110 or the condenser 120. The geothermal pipe 160 serves as a passage through which a geothermal working fluid that transmits heat flows between the heat pump 100 and a geothermal exchange unit 170 described later. Water can be used as the geothermal working fluid. The geothermal pipe 160 is provided with a geothermal circulation pump 162. The geothermal circulation pump 162 pressurizes the geothermal working fluid to flow inside the geothermal pipe 160.

地熱交換部170は、地中に埋設される。前記地熱交換部170の例としては、地熱交換パイプがある。前記地熱交換部170は、前記地熱パイプ160を通じて伝達された地熱作動流体と地球との間で熱交換が行われるところである。   The geothermal exchange unit 170 is buried in the ground. An example of the geothermal exchange unit 170 is a geothermal exchange pipe. The geothermal exchange unit 170 is where heat is exchanged between the geothermal working fluid transmitted through the geothermal pipe 160 and the earth.

次に、図2は、本発明の他の実施例を示す図である。本実施例では、説明の便宜上、図1に示す実施例と同じ構成には同じ符号を付し、その説明を省略する。   Next, FIG. 2 is a diagram showing another embodiment of the present invention. In the present embodiment, for convenience of explanation, the same components as those in the embodiment shown in FIG.

本実施例では、前記ヒートポンプ100の側から出る冷暖房作動流体が流れる冷房パイプ130が内部を貫通している氷蓄熱槽180を設けている。前記氷蓄熱槽180は、内部に熱貯蔵媒体(例えば、水)が設けられる。前記熱貯蔵媒体は、前記冷房パイプ130の内部を流動する冷暖房作動流体との熱交換により固体化することもある。すなわち、水の場合、氷になって熱を貯蔵する。   In the present embodiment, there is provided an ice heat storage tank 180 through which a cooling pipe 130 through which a cooling / heating working fluid exits from the heat pump 100 passes. The ice heat storage tank 180 is provided with a heat storage medium (for example, water). The heat storage medium may be solidified by heat exchange with a cooling / heating working fluid flowing inside the cooling pipe 130. That is, in the case of water, it becomes ice and stores heat.

前記氷蓄熱槽180を設けると共に、前記冷房パイプ130には、第1及び第2の切換弁181及び182を設けることで、冷房パイプ130の内部を流動する冷暖房作動流体を制御する。前記第1の切換弁181には、バイパスパイプ184が連結される。前記バイパスパイプ184は、冷暖房作動流体が氷蓄熱槽180を通過せず、ヒートポンプ100から冷暖房用熱交換部150に伝達するようにしている。すなわち、前記第1の切換弁181の制御により冷暖房作動流体が前記氷蓄熱槽180を選択的に通過する。   The ice heat storage tank 180 is provided, and the cooling pipe 130 is provided with first and second switching valves 181 and 182 to control the cooling / heating working fluid flowing inside the cooling pipe 130. A bypass pipe 184 is connected to the first switching valve 181. The bypass pipe 184 transmits the cooling / heating working fluid from the heat pump 100 to the cooling / heating heat exchanger 150 without passing through the ice heat storage tank 180. That is, the air conditioning working fluid selectively passes through the ice heat storage tank 180 by the control of the first switching valve 181.

このように、氷蓄熱槽180を設けるのは、冷房と暖房とを交互に使用する場合に、冷房に必要なエネルギーを最小化するためである。すなわち、暖房の際にヒートポンプから出る廃熱を氷蓄熱槽180に貯蔵して置き、その後の冷房時に使用するようにしている。   Thus, the ice heat storage tank 180 is provided in order to minimize the energy required for cooling when cooling and heating are used alternately. In other words, waste heat from the heat pump during heating is stored and stored in the ice heat storage tank 180 for use in subsequent cooling.

図3は、本発明のさらに他の実施例を示す図である。本実施例では、説明の便宜上、図2に示す実施例と同じ構成には同じ符号を付し、その説明を省略する。   FIG. 3 is a diagram showing still another embodiment of the present invention. In the present embodiment, for convenience of explanation, the same components as those in the embodiment shown in FIG.

本実施例では、前記地熱パイプ160と地熱交換部170との間に補助熱交換部190をさらに設けている。前記補助熱交換部190の例としては、冷却塔が挙げられる。このような補助熱交換部190は、地熱作動流体の熱を外部に放出することで、地熱交換部170の容量を相対的に減らすことができる。すなわち、前記地熱交換部170を小型化してその設置に必要な空間を減らすことができる。   In this embodiment, an auxiliary heat exchange unit 190 is further provided between the geothermal pipe 160 and the geothermal exchange unit 170. An example of the auxiliary heat exchange unit 190 is a cooling tower. Such an auxiliary heat exchange unit 190 can reduce the capacity of the geothermal exchange unit 170 by releasing the heat of the geothermal working fluid to the outside. That is, the space required for the installation can be reduced by downsizing the geothermal exchange unit 170.

前記補助熱交換部190は、前記地熱交換部170とは別に設けられるもので、一般に地上や建物の屋上などに設けられる。前記補助熱交換部190は、前記地熱交換部170に流動される地熱作動流体と外部との熱交換を行い、前記地熱交換部170の容量を最小化する。   The auxiliary heat exchanging unit 190 is provided separately from the geothermal heat exchanging unit 170, and is generally provided on the ground or on the roof of a building. The auxiliary heat exchanging unit 190 exchanges heat between the geothermal working fluid flowing to the geothermal heat exchanging unit 170 and the outside, and minimizes the capacity of the geothermal heat exchanging unit 170.

以下、このような構成からなる、本発明による冷暖房同時運転が可能な地熱を利用した冷暖房システム及びその制御方法の作用を詳しく説明する。   Hereinafter, the operation of the cooling / heating system using the geothermal heat and the control method thereof according to the present invention, which can be operated simultaneously with cooling and heating, will be described in detail.

図4を参照して、図1に示す実施例の動作を説明する。先ず、暖房運転を説明すると、暖房運転では、前記ヒートポンプ100が駆動し相対的に高温となった冷暖房作動流体が前記暖房パイプ140を通じて前記冷暖房熱交換部150に伝達されて暖房を行う。   The operation of the embodiment shown in FIG. 1 will be described with reference to FIG. First, the heating operation will be described. In the heating operation, the heat pump 100 is driven and a relatively high temperature cooling / heating working fluid is transmitted to the cooling / heating heat exchanging unit 150 through the heating pipe 140 to perform heating.

すなわち、前記地熱交換部170で地熱作動流体に地球から熱が伝達される。前記地熱作動流体は、前記ヒートポンプ100の蒸発器110と連結されている地熱パイプ160に設けられた地熱循環ポンプ162により前記地熱パイプ160に沿って流動(移動)し、前記ヒートポンプ100に伝達される。   That is, heat is transferred from the earth to the geothermal working fluid at the geothermal exchange unit 170. The geothermal working fluid flows (moves) along the geothermal pipe 160 by the geothermal circulation pump 162 provided in the geothermal pipe 160 connected to the evaporator 110 of the heat pump 100 and is transmitted to the heat pump 100. .

前記ヒートポンプ100の蒸発器110で地熱作動流体とヒートポンプ100の作動流体との間の熱交換が行われる。よって、ヒートポンプ100の作動流体は、前記蒸発器110での熱交換により相対的に高温となる。前記ヒートポンプ100の作動流体は、前記ヒートポンプ100を構成するサイクルを循環し、前記凝縮器120に伝達される。前記凝縮器120で前記ヒートポンプ100の作動流体は、凝縮しながら熱を放出し、前記暖房パイプ140に沿って流動する冷暖房作動流体に熱を供給する。   The evaporator 110 of the heat pump 100 exchanges heat between the geothermal working fluid and the working fluid of the heat pump 100. Therefore, the working fluid of the heat pump 100 becomes relatively high due to heat exchange in the evaporator 110. The working fluid of the heat pump 100 circulates through a cycle constituting the heat pump 100 and is transmitted to the condenser 120. In the condenser 120, the working fluid of the heat pump 100 releases heat while condensing, and supplies heat to the cooling / heating working fluid that flows along the heating pipe 140.

よって、前記冷暖房作動流体は、熱を吸収して相対的に高温となり、前記暖房循環ポンプ142により暖房パイプ140に沿って循環し、前記暖房用熱交換器154に伝達される。暖房運転の際の暖房用熱交換器154とヒートポンプ100との間での冷暖房作動流体の流動が、矢印で示されている。前記暖房用熱交換器154で冷暖房作動流体は、熱交換により所定の空間を暖房する。   Therefore, the cooling / heating working fluid absorbs heat and becomes relatively high temperature, circulates along the heating pipe 140 by the heating circulation pump 142, and is transmitted to the heating heat exchanger 154. The flow of the cooling / heating working fluid between the heat exchanger 154 for heating and the heat pump 100 during the heating operation is indicated by arrows. In the heating heat exchanger 154, the cooling / heating working fluid heats a predetermined space by heat exchange.

次に、冷房運転の過程を説明する。冷房運転時にも前記ヒートポンプ100は、暖房運転時と同様に動作する。すなわち、ヒートポンプ100の作動流体は、サイクル内を同様に流動する。   Next, the process of the cooling operation will be described. Even during the cooling operation, the heat pump 100 operates in the same manner as during the heating operation. That is, the working fluid of the heat pump 100 flows similarly in the cycle.

そして、前記蒸発器110で熱交換され、相対的に低い温度の冷暖房作動流体が前記冷房パイプ130を通じて前記冷暖房用熱交換部150に伝達される。前記冷暖房用熱交換部150に伝達された冷暖房作動流体は、冷房用熱交換器152で熱交換し、所望の空間を冷房する。   Then, heat is exchanged in the evaporator 110, and a cooling / heating working fluid having a relatively low temperature is transmitted to the cooling / heating heat exchanger 150 through the cooling pipe 130. The cooling / heating working fluid transmitted to the cooling / heating heat exchanger 150 exchanges heat in the cooling heat exchanger 152 to cool a desired space.

このとき、前記ヒートポンプ100の凝縮器120では、ヒートポンプ100の作動流体から地熱作動流体に熱伝達が行われる。すなわち、前記ヒートポンプ100の作動流体が凝縮されることによって出る熱は、前記地熱作動流体に伝達される。前記地熱作動流体は、前記凝縮器120と連結された地熱パイプ160に設けられた地熱循環ポンプ162の動作により前記地熱パイプ160に沿って流動し、前記地熱交換部170に伝達される。前記地熱交換部170では、前記地熱作動流体と地球との間の熱交換が行われる。冷房動作の際の前記冷房パイプ130の内部での冷暖房作動流体の流動が、図4に矢印で示されている。   At this time, in the condenser 120 of the heat pump 100, heat is transferred from the working fluid of the heat pump 100 to the geothermal working fluid. That is, the heat generated when the working fluid of the heat pump 100 is condensed is transferred to the geothermal working fluid. The geothermal working fluid flows along the geothermal pipe 160 by the operation of a geothermal circulation pump 162 provided in the geothermal pipe 160 connected to the condenser 120, and is transmitted to the geothermal exchange unit 170. In the geothermal exchange section 170, heat exchange is performed between the geothermal working fluid and the earth. The flow of the cooling / heating working fluid inside the cooling pipe 130 during the cooling operation is shown by arrows in FIG.

次に、冷暖房運転が同時に行われる過程を説明する。冷暖房運転が同時に行われる場合には、前記地熱交換部170は使用されない。すなわち、前記ヒートポンプ100の駆動により前記凝縮器120から冷暖房作動流体に伝達された熱で暖房を行い、前記蒸発器110から冷暖房作動流体に伝達された熱で冷房を行う。   Next, a process in which the air conditioning operation is performed simultaneously will be described. When the cooling / heating operation is performed simultaneously, the geothermal exchange unit 170 is not used. That is, the heat pump 100 is driven to heat the heat transmitted from the condenser 120 to the cooling / heating working fluid, and the heat is transferred from the evaporator 110 to the cooling / heating working fluid.

すなわち、前記ヒートポンプ100の作動流体が前記凝縮器120で凝縮することによって発生した熱は、前記暖房用熱交換器154と連結された暖房パイプ140の内部を流れる冷暖房作動流体に伝達され、前記冷暖房作動流体が暖房循環ポンプ142により流動され、暖房用熱交換器154で熱を所望する空間に供給して暖房を行う。   That is, heat generated by the working fluid of the heat pump 100 condensing in the condenser 120 is transmitted to the cooling / heating working fluid that flows inside the heating pipe 140 connected to the heating heat exchanger 154, and The working fluid is flowed by the heating circulation pump 142, and the heating heat exchanger 154 supplies heat to a desired space to perform heating.

そして、前記ヒートポンプ100の作動流体が前記蒸発器110で蒸発しながら熱を吸収する。すなわち、前記冷房パイプ130の内部を流れる冷暖房作動流体から熱を奪い取る。このようになると、前記冷房パイプ130の内部を流れる冷暖房作動流体は、相対的に低い温度となり、前記冷房循環ポンプ132により流動され、前記冷房用熱交換器152で熱交換を行い、所望の空間を冷房する。   The working fluid of the heat pump 100 absorbs heat while evaporating in the evaporator 110. That is, heat is taken away from the cooling / heating working fluid flowing in the cooling pipe 130. In this case, the cooling / heating working fluid flowing inside the cooling pipe 130 has a relatively low temperature, is flowed by the cooling circulation pump 132, and performs heat exchange by the cooling heat exchanger 152, thereby obtaining a desired space. Cool the air.

次に、図5及び図6を参照して、図2に示す実施例の動作を説明する。図2に示す実施例で氷蓄熱槽180が使用されない場合には、冷房運転と暖房運転とは、図4での説明と同様に行われる。しかし、前記氷蓄熱槽180を使用するか、あるいは氷蓄熱槽180の媒体を固体化する場合には、前記地熱交換部170を使用しなくなる。勿論、このとき(氷蓄熱槽180が使用されない場合)は、前記冷房パイプ130の内部を流動する冷暖房作動流体が氷蓄熱槽180を通過せず、バイパスパイプ184を通過する。   Next, the operation of the embodiment shown in FIG. 2 will be described with reference to FIGS. When the ice heat storage tank 180 is not used in the embodiment shown in FIG. 2, the cooling operation and the heating operation are performed in the same manner as described with reference to FIG. However, when the ice heat storage tank 180 is used or the medium of the ice heat storage tank 180 is solidified, the geothermal exchange unit 170 is not used. Of course, at this time (when the ice heat storage tank 180 is not used), the cooling / heating working fluid flowing inside the cooling pipe 130 does not pass through the ice heat storage tank 180 but passes through the bypass pipe 184.

しかし、氷蓄熱槽180を使用する場合には、前記地熱交換部170を使用しなくてもよい。先ず、図5に矢印で示されているように、暖房運転を行うときは、ヒートポンプ100の蒸発器110で冷房パイプ130の内部を流動する冷暖房作動流体が熱を奪い取られ、相対的に温度が低くなり、この冷暖房作動流体が前記氷蓄熱槽180の媒体を固体化する。このように、氷蓄熱槽180に熱を貯蔵するためには、前記第1の切換弁181は、バイパスパイプ184を通じては冷暖房作動流体が流動しないようにする。   However, when the ice heat storage tank 180 is used, the geothermal exchange unit 170 may not be used. First, as shown by the arrows in FIG. 5, when heating operation is performed, the cooling / heating working fluid that flows inside the cooling pipe 130 is deprived of heat by the evaporator 110 of the heat pump 100, and the temperature is relatively low. This cooling / heating working fluid solidifies the medium of the ice heat storage tank 180. Thus, in order to store heat in the ice heat storage tank 180, the first switching valve 181 prevents the cooling / heating working fluid from flowing through the bypass pipe 184.

すなわち、第1の切換弁181と第2の切換弁182とをそれぞれ制御し、冷暖房作動流体が蒸発器110から出て氷蓄熱槽180を経て再び蒸発器110に流入するようにする。これにより、暖房運転中に氷蓄熱槽180に熱を蓄積して冷房運転時に使用することができる。   That is, the first switching valve 181 and the second switching valve 182 are controlled so that the cooling / heating working fluid exits the evaporator 110 and flows again into the evaporator 110 through the ice heat storage tank 180. Thereby, heat can be accumulated in the ice heat storage tank 180 during the heating operation and can be used during the cooling operation.

図6は、前記氷蓄熱槽180の熱を利用して冷房運転を行う動作状態を示す図である。図示のように、前記冷房パイプ130の内部を流動する冷暖房作動流体は、前記氷蓄熱槽180を通過して前記冷房用熱交換器152に伝達され、前記冷房用熱交換器152を通過した後、前記ヒートポンプ100の蒸発器110に流入される。このような冷暖房作動流体の流動は、冷房循環ポンプ132により行われ、前記ヒートポンプ100の蒸発器110は、冷暖房作動流体がそのまま通過する。   FIG. 6 is a diagram illustrating an operation state in which the cooling operation is performed using the heat of the ice heat storage tank 180. As shown in the drawing, the cooling / heating working fluid flowing inside the cooling pipe 130 passes through the ice heat storage tank 180 and is transmitted to the cooling heat exchanger 152, and then passes through the cooling heat exchanger 152. , And flows into the evaporator 110 of the heat pump 100. Such a flow of the cooling / heating working fluid is performed by the cooling circulation pump 132, and the cooling / heating working fluid passes through the evaporator 110 of the heat pump 100 as it is.

このような方式により前記氷蓄熱槽180の熱が完全に無くなると、冷房運転のために、図4で説明したようにシステムを駆動させる。ちなみに、前記氷蓄熱槽180を使用して冷房運転を行う方法の一つとして、深夜電力を利用してもよい。すなわち、安い深夜電力を利用して氷蓄熱槽180の媒体を凍らせ、冷房運転が必要なときに使用することができる。   When the heat of the ice heat storage tank 180 is completely eliminated by such a method, the system is driven as described with reference to FIG. 4 for the cooling operation. Incidentally, midnight power may be used as one of the methods for performing the cooling operation using the ice heat storage tank 180. That is, the medium of the ice heat storage tank 180 can be frozen using cheap late-night power and used when cooling operation is required.

一方、図3に示す前記さらに他の実施例では、補助熱交換部190をさらに設けることで、地熱作動流体が地熱交換部170に伝達される前に、相対的に低い温度になる。これにより、地熱交換部170では、放出すべき熱を相対的に減らし、地熱交換部170の大きさを最小化することができる。   On the other hand, in the still another embodiment shown in FIG. 3, the auxiliary heat exchange unit 190 is further provided, so that the geothermal working fluid reaches a relatively low temperature before being transmitted to the geothermal exchange unit 170. Thereby, in the geothermal exchange part 170, the heat which should be discharge | released can be reduced relatively and the magnitude | size of the geothermal exchange part 170 can be minimized.

以上のように、上記実施の形態を参照して詳細に説明され図示されたが、本発明は、これに限定されるものでなく、このような本発明の基本的な技術的思想を逸脱しない範囲内で、当業界の通常の知識を有する者にとっては、他の多くの変更が可能であろう。また、本発明は、添付の特許請求の範囲により解釈されるべきであることは言うまでもない。   As described above, although described and illustrated in detail with reference to the above embodiment, the present invention is not limited to this and does not depart from the basic technical idea of the present invention. Many other modifications will be possible to those skilled in the art within the scope. Needless to say, the present invention should be construed in accordance with the appended claims.

図1は、本発明による冷暖房同時運転が可能な地熱を利用した冷暖房システムの好ましい実施例の構成を示す系統図である。FIG. 1 is a system diagram showing a configuration of a preferred embodiment of an air-conditioning system using geothermal heat capable of simultaneous operation of air-conditioning according to the present invention. 図2は、本発明の他の実施例の構成を示す系統図である。FIG. 2 is a system diagram showing the configuration of another embodiment of the present invention. 図3は、本発明のさらに他の実施例の構成を示す系統図である。FIG. 3 is a system diagram showing a configuration of still another embodiment of the present invention. 図4は、図1に示す実施例の動作を示す動作状態図である。FIG. 4 is an operation state diagram showing the operation of the embodiment shown in FIG. 図5は、図2に示す実施例における暖房運転が行える状態を示す動作状態図である。FIG. 5 is an operation state diagram showing a state where the heating operation in the embodiment shown in FIG. 2 can be performed. 図6は、図2に示す実施例における氷蓄熱槽による冷房運転が行える状態を示す動作状態図である。FIG. 6 is an operation state diagram showing a state in which the cooling operation by the ice heat storage tank in the embodiment shown in FIG. 2 can be performed.

符号の説明Explanation of symbols

100…ヒートポンプ、110…蒸発器、120…凝縮器、130…冷房パイプ、132…冷房循環ポンプ、140…暖房パイプ、142…暖房循環ポンプ、150…冷暖房用熱交換部、152…冷房用熱交換器、154…暖房用熱交換器、160…地熱パイプ、162…地熱循環ポンプ、170…地熱交換部、190…補助熱交換部   DESCRIPTION OF SYMBOLS 100 ... Heat pump, 110 ... Evaporator, 120 ... Condenser, 130 ... Cooling pipe, 132 ... Cooling circulation pump, 140 ... Heating pipe, 142 ... Heating circulation pump, 150 ... Heat exchange part for cooling / heating, 152 ... Heat exchange for cooling 154 ... Heat exchanger for heating, 160 ... Geothermal pipe, 162 ... Geothermal circulation pump, 170 ... Geothermal exchange part, 190 ... Auxiliary heat exchange part

Claims (8)

作動流体の熱交換が行われる蒸発器と凝縮器とを含むヒートポンプと、
前記ヒートポンプの蒸発器と連結され、前記ヒートポンプの作動流体と前記蒸発器で熱交換を行う冷暖房作動流体が内部を流動する冷房パイプと、前記ヒートポンプの凝縮器と連結され、前記ヒートポンプの作動流体と前記凝縮器で熱交換を行う冷暖房作動流体が内部を流動する暖房パイプと、
前記冷房パイプと連結されると共に冷暖房作動流体が伝達されることで所定の空間を冷房する冷房用熱交換器と、前記暖房パイプと連結されると共に冷暖房作動流体が伝達されることで所定の空間を暖房する暖房用熱交換器とを含む冷暖房用熱交換部と、
前記ヒートポンプの蒸発器及び凝縮器のそれぞれと連結され、前記ヒートポンプの作動流体と前記蒸発器または凝縮器で熱交換を行う地熱作動流体が内部を流動する地熱パイプと、
前記地熱パイプと連結されると共に地熱作動流体が伝達されることで地球との熱交換を行う地熱交換部とを備えることを特徴とする冷暖房同時運転が可能な地熱を利用した冷暖房システム。
A heat pump including an evaporator and a condenser in which heat exchange of the working fluid takes place;
A cooling pipe connected to an evaporator of the heat pump, and a cooling / heating working fluid that exchanges heat with the working fluid of the heat pump and the evaporator, and a condenser of the heat pump, and a working fluid of the heat pump A heating pipe in which a cooling / heating working fluid that performs heat exchange in the condenser flows, and
A cooling heat exchanger for cooling a predetermined space by being connected to the cooling pipe and transmitting a cooling / heating working fluid, and a predetermined space by being connected to the heating pipe and receiving a cooling / heating working fluid. A heat exchanger for heating and cooling including a heat exchanger for heating,
A geothermal pipe connected to each of the evaporator and condenser of the heat pump, and a geothermal working fluid that exchanges heat with the working fluid of the heat pump and the evaporator or the condenser,
A cooling / heating system using geothermal heat that can be operated simultaneously with cooling and heating, comprising a geothermal exchanging unit that is connected to the geothermal pipe and transmits a geothermal working fluid to the geothermal working fluid.
前記冷房パイプ内部を流動する冷暖房作動流体と熱交換して熱を貯蔵する媒体を有する氷蓄熱槽が、前記冷房パイプにさらに設けられることを特徴とする請求項1に記載の冷暖房同時運転が可能な地熱を利用した冷暖房システム。   2. The simultaneous cooling and heating operation according to claim 1, wherein an ice heat storage tank having a medium for storing heat by exchanging heat with a cooling and heating working fluid flowing inside the cooling pipe is further provided in the cooling pipe. Air-conditioning system using natural geothermal heat. 前記ヒートポンプから冷暖房用熱交換部に冷暖房作動流体を伝達する冷房パイプが前記氷蓄熱槽を貫通するように設けられ、前記冷房パイプには、前記氷蓄熱槽をバイパスして冷暖房作動流体が流動するようにバイパスパイプがさらに備えられると共に、第1及び第2の切換弁が備えられ、氷蓄熱槽の動作の有無により冷暖房作動流体の流動を制御することを特徴とする請求項2に記載の冷暖房同時運転が可能な地熱を利用した冷暖房システム。   A cooling pipe for transmitting a cooling / heating working fluid from the heat pump to the cooling / heating heat exchanger is provided so as to pass through the ice heat storage tank, and the cooling / heating working fluid flows in the cooling pipe by bypassing the ice storage tank. The air conditioner according to claim 2, further comprising a bypass pipe and a first and a second switching valve for controlling the flow of the air conditioning fluid according to the presence or absence of the operation of the ice heat storage tank. Air conditioning system using geothermal heat that can be operated simultaneously. 前記ヒートポンプと地熱交換部との間を連結する前記地熱パイプには、補助熱交換部がさらに備えられ、該補助熱交換部は、前記地熱交換部に伝達される地熱作動流体の熱を外部に排出することを特徴とする請求項3に記載の冷暖房同時運転が可能な地熱を利用した冷暖房システム。   The geothermal pipe connecting the heat pump and the geothermal heat exchanging unit is further provided with an auxiliary heat exchanging unit, and the auxiliary heat exchanging unit transmits the heat of the geothermal working fluid transmitted to the geothermal heat exchanging unit to the outside. The cooling and heating system using geothermal heat capable of simultaneous cooling and heating operation according to claim 3, wherein the cooling and heating operation is performed. 前記冷房パイプ、暖房パイプ及び地熱パイプには、それぞれ循環ポンプが設けられ、前記循環ポンプは、それぞれ選択的に組み合わされて動作することで、前記各パイプ内部で作動流体が流動するようにすることを特徴とする請求項1乃至4の何れか一項に記載の冷暖房同時運転が可能な地熱を利用した冷暖房システム。   Each of the cooling pipe, the heating pipe and the geothermal pipe is provided with a circulation pump, and the circulation pumps are selectively combined to operate so that the working fluid flows inside each pipe. The air-conditioning system using the geothermal which can perform the air-conditioning simultaneous operation as described in any one of Claims 1 thru | or 4 characterized by these. ヒートポンプの作動流体と蒸発器で熱交換し、且つ冷暖房用熱交換部とヒートポンプの蒸発器とを連結する冷房用パイプ内部を流動する冷暖房作動流体、またはヒートポンプの作動流体と凝縮器で熱交換し、且つ冷暖房用熱交換部とヒートポンプの凝縮器とを連結する暖房用パイプ内部を流動する冷暖房作動流体と、ヒートポンプの蒸発器及び凝縮器内を流動する作動流体とが熱交換すると共に、
前記ヒートポンプの作動流体と前記蒸発器または凝縮器でそれぞれ熱交換し、且つ地熱交換部と前記ヒートポンプの蒸発器及び凝縮器とをそれぞれ連結する地熱パイプ内部を流動する地熱作動流体と、前記冷暖房作動流体とが熱交換することで冷暖房運転が行われる冷暖房システムにおいて、
前記暖房パイプ内部を流れる冷暖房作動流体とヒートポンプの作動流体とが熱交換して暖房運転されると同時に、前記冷房パイプ内部を流れる冷暖房作動流体とヒートポンプの作動流体とが熱交換して冷房運転されることを可能とするのを特徴とする冷暖房同時運転が可能な冷暖房システムの制御方法。
Heat exchange with the working fluid of the heat pump and the evaporator, and heat exchange with the cooling and heating working fluid flowing inside the cooling pipe connecting the heat exchange unit for cooling and heating and the evaporator of the heat pump, or with the working fluid and condenser of the heat pump. In addition, the cooling / heating working fluid that flows inside the heating pipe that connects the heat exchange unit for heating and cooling and the condenser of the heat pump, and the working fluid that flows inside the evaporator and the condenser of the heat pump exchange heat,
Heat exchange between the working fluid of the heat pump and the evaporator or the condenser, and a geothermal working fluid that flows inside a geothermal pipe that connects a geothermal exchange section and the evaporator and condenser of the heat pump, respectively, and the cooling and heating operation In an air conditioning system in which an air conditioning operation is performed by exchanging heat with a fluid,
Heating operation is performed by exchanging heat between the cooling / heating working fluid flowing inside the heating pipe and the working fluid of the heat pump, and simultaneously cooling operation is performed by exchanging heat between the cooling / heating working fluid flowing inside the cooling pipe and the working fluid of the heat pump. A control method for an air conditioning system capable of simultaneous operation of air conditioning, characterized in that
前記暖房運転が行われると同時に、冷房パイプに設けられた氷蓄熱槽の媒体に前記冷房パイプ内部を流動する冷暖房作動流体の熱が伝達されて蓄積されるようにすることを特徴とする請求項6に記載の冷暖房同時運転が可能な冷暖房システムの制御方法。   The heat of the cooling / heating working fluid flowing inside the cooling pipe is transmitted to and stored in a medium of an ice storage tank provided in the cooling pipe simultaneously with the heating operation. 6. A control method of an air conditioning system capable of simultaneous air conditioning operation according to 6. 前記氷蓄熱槽に蓄積された熱を利用して冷房を行うにあたって、前記冷暖房用熱交換部とヒートポンプとの間を連結する冷房パイプ内部を流動する冷暖房作動流体は、前記ヒートポンプの内部を熱交換無しに通過することを特徴とする請求項7に記載の冷暖房同時運転が可能な冷暖房システムの制御方法。   When performing cooling using the heat accumulated in the ice heat storage tank, the cooling / heating working fluid that flows inside the cooling pipe that connects between the heat exchanger for cooling / heating and the heat pump exchanges heat inside the heat pump. The method for controlling an air conditioning system capable of simultaneous cooling and heating operation according to claim 7, wherein the air conditioning system passes simultaneously.
JP2006044094A 2005-02-25 2006-02-21 Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor Pending JP2006234376A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050015707A KR100630361B1 (en) 2005-02-25 2005-02-25 An air-conditioning system using geothermal and chill in ice storage

Publications (1)

Publication Number Publication Date
JP2006234376A true JP2006234376A (en) 2006-09-07

Family

ID=36935812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044094A Pending JP2006234376A (en) 2005-02-25 2006-02-21 Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor

Country Status (3)

Country Link
JP (1) JP2006234376A (en)
KR (1) KR100630361B1 (en)
CN (1) CN100427853C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019462A (en) * 2008-07-09 2010-01-28 Shimizu Corp Geothermal utilization air conditioning system
US20110108233A1 (en) * 2008-05-15 2011-05-12 Scandinavian Energy Efficiency Co Seec Ab Heating and cooling network for buildings
JP2012057836A (en) * 2010-09-07 2012-03-22 Daikin Industries Ltd Underground heat exchanger and heat pump using the same
JP2013533449A (en) * 2010-05-05 2013-08-22 グリーンスリーブス、エルエルシー Energy chassis and energy exchange device
CN103925735A (en) * 2014-03-28 2014-07-16 山东中瑞新能源科技有限公司 System and method for coupling passive space radiation refrigeration with buried-pipe ground-source heat pump
US10387581B2 (en) 2013-09-05 2019-08-20 Greensleeves, LLC System for optimization of building heating and cooling systems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758820B1 (en) 2006-03-23 2007-09-14 한국건설기술연구원 Cooling and heating system using geothermy and solar energy and extra haeting source and operation control method thereof
CN101368772B (en) * 2007-08-15 2011-08-24 珠海格力电器股份有限公司 Multi-mode heat reclamation water type ground source heat pump unit
US20090120606A1 (en) * 2007-11-08 2009-05-14 Earth To Air, Llc Double DX Hydronic System
KR101043043B1 (en) * 2010-12-09 2011-06-21 주식회사 제이앤지 Air conditioning and heating system using heat recovery type of heat pump
CN102721235A (en) * 2012-05-19 2012-10-10 合肥天鹅制冷科技有限公司 Water source heating and air conditioning water heater
KR20210074794A (en) 2019-12-12 2021-06-22 권희영 Heat and ice storage tank
KR102523752B1 (en) 2021-11-15 2023-04-20 조동환 Heat Pump Airconditioning and Heating Equipement using Geothermy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706888A (en) * 1995-06-16 1998-01-13 Geofurnace Systems, Inc. Geothermal heat exchanger and heat pump circuit
CN2508184Y (en) * 2001-05-31 2002-08-28 姚圣聪 Ground source (water sowrce) heat pump air conditioning device
CN1389689A (en) * 2001-06-01 2003-01-08 徐云生 Peak-regulating ground source heat pump system for accumulating energy with valley power
JP2003106705A (en) * 2001-09-27 2003-04-09 Zeneral Heat Pump Kogyo Kk Heat pump heating and cooling hot-water supply device for ice heat reserve using soil heat
CN2515606Y (en) * 2001-12-14 2002-10-09 张端桥 Earth source heat pump domestic central air conditioner
CN1415910A (en) * 2002-10-18 2003-05-07 北京工业大学 Heat supply and air conditioning system through pipeline buried underground and its application
CN2672568Y (en) * 2003-12-20 2005-01-19 于奎明 Energy storage type geo-heat pump system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110108233A1 (en) * 2008-05-15 2011-05-12 Scandinavian Energy Efficiency Co Seec Ab Heating and cooling network for buildings
US10386098B2 (en) * 2008-05-15 2019-08-20 Sens Geoenergy Storage Ab Heating and cooling network for buildings
JP2010019462A (en) * 2008-07-09 2010-01-28 Shimizu Corp Geothermal utilization air conditioning system
JP2013533449A (en) * 2010-05-05 2013-08-22 グリーンスリーブス、エルエルシー Energy chassis and energy exchange device
US9080789B2 (en) 2010-05-05 2015-07-14 Greensleeves, LLC Energy chassis and energy exchange device
US10180268B2 (en) 2010-05-05 2019-01-15 Greensleeves, LLC Energy chassis and energy exchange device
JP2012057836A (en) * 2010-09-07 2012-03-22 Daikin Industries Ltd Underground heat exchanger and heat pump using the same
US10387581B2 (en) 2013-09-05 2019-08-20 Greensleeves, LLC System for optimization of building heating and cooling systems
US11092353B2 (en) 2013-09-05 2021-08-17 Greensleeves Technologies Corp. System for optimization of building heating and cooling systems
CN103925735A (en) * 2014-03-28 2014-07-16 山东中瑞新能源科技有限公司 System and method for coupling passive space radiation refrigeration with buried-pipe ground-source heat pump

Also Published As

Publication number Publication date
KR20060094591A (en) 2006-08-30
CN1825031A (en) 2006-08-30
KR100630361B1 (en) 2006-10-02
CN100427853C (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP2006234376A (en) Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor
JP5327308B2 (en) Hot water supply air conditioning system
JP3886977B2 (en) Combined air conditioning system
JP3925383B2 (en) Hot water supply device, air conditioning hot water supply system, and hot water supply system
EP1563229B1 (en) Air conditioning system and methods
KR101270616B1 (en) Co-generation
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
CN102753914B (en) Air conditioner and air-conditioning hot-water-supplying system
JP5455521B2 (en) Air conditioning and hot water supply system
KR100998483B1 (en) Module multi type air conditioning and heating system using geothermal heat pump
WO2011108068A1 (en) Air-conditioning hot-water-supplying system
EP1815188B1 (en) Hot water supply and air conditioning system using co2 heat pump
KR100734904B1 (en) Heat pump system for cooling and heating
JP2000179970A (en) Air conditioning system
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
KR200411589Y1 (en) Heat pump system for cooling and heating
JP2005257127A (en) Natural refrigerant heat pump system
KR200390333Y1 (en) Heat pump type air conditioning and heating system
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2013083439A5 (en)
JP2013083439A (en) Hot water supply air conditioning system
JP2004218943A (en) Air conditioning and water heater
JP2006010137A (en) Heat pump system
JP2010216784A (en) Air conditioning system
JP4809055B2 (en) Air conditioner and other function addition equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081107