JP2006227432A - Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same - Google Patents

Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same Download PDF

Info

Publication number
JP2006227432A
JP2006227432A JP2005043014A JP2005043014A JP2006227432A JP 2006227432 A JP2006227432 A JP 2006227432A JP 2005043014 A JP2005043014 A JP 2005043014A JP 2005043014 A JP2005043014 A JP 2005043014A JP 2006227432 A JP2006227432 A JP 2006227432A
Authority
JP
Japan
Prior art keywords
vapor deposition
base plate
optical filter
plate
mask plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005043014A
Other languages
Japanese (ja)
Inventor
Katsura Nakajima
桂 中嶋
昭一 ▲くわ▼原
Shoichi Kuwahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Finetech Nisca Inc
Original Assignee
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisca Corp filed Critical Nisca Corp
Priority to JP2005043014A priority Critical patent/JP2006227432A/en
Publication of JP2006227432A publication Critical patent/JP2006227432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of optical filter capable of inexpensively manufacturing an optical filter which permits multistage concentration adjustment with a uniform light transmittance, without causing reflectance changes due to the difference in light wavelength, by using a simple method, and to provide the optical filter that uses the manufacturing method. <P>SOLUTION: A crucible (raw material storing part) for storing vapor deposition raw material and a substrate plate are arranged facing on prescribed positions in a vacuum vapor deposition chamber (tank). A first vapor deposition is performed, as follows: a first mask plate is disposed on the substrate plate so that the substrate plate and the mask plate become substantially parallel to each other and form a space with a prescribed interval. Subsequently, a second vapor deposition is performed as follows: a second mask plate having a masking region different from that of the masking plate having mentioned is disposed so that the substrate plate and the mask plate become substantially parallel to each other and form a space having a prescribed interval. As a result, a plurality of coating layers having different thickness are formed on the substrate plate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラスチック材料その他の光透過性の基体プレート上に光学特性を有する皮膜を形成した光学フィルタの製造方法及びこれを用いた各種光学機器用の光学フィルタ或いは光量調整装置に関する。   The present invention relates to a method of manufacturing an optical filter in which a film having optical characteristics is formed on a plastic material or other light-transmitting substrate plate, and an optical filter or light amount adjusting device for various optical devices using the same.

一般にカメラ装置、プロジェクタ装置、リヤプロジェクションTVその他の光学機器に使用される光学フィルタは、機器の発光部或いは撮像管などの受光部に組み込まれ特定の波長の光をカットするフィルタとして広く知られている。そしてこの光学フィルタはプラスチック或いはガラスなどの透明プレート上に光学特性を有する皮膜を蒸着加工などで形成している。例えばカメラ装置の撮像部に組み込まれているNDフィルタ(ニュートラルデンシティフィルタ)はプラスチックシート上にクロメル膜、二酸化ケイ素膜(SiO2)を蒸着処理して皮膜を形成している。 In general, an optical filter used in a camera device, a projector device, a rear projection TV, or other optical equipment is widely known as a filter that is incorporated in a light-emitting portion of a device or a light-receiving portion such as an imaging tube and cuts light of a specific wavelength. Yes. In this optical filter, a film having optical characteristics is formed on a transparent plate such as plastic or glass by vapor deposition. For example, an ND filter (neutral density filter) incorporated in an imaging unit of a camera device forms a film by vapor-depositing a chromel film and a silicon dioxide film (SiO 2 ) on a plastic sheet.

そこでスチールカメラ、ビデオカメラなどの撮像レンズ系に光量調整用の絞り装置を組み込んだ際に、小絞り時に光量調整羽根のハンチング現象や光の回折現象によって解像度が低下する問題があり、この現象による影響を防止する為NDフィルタを羽根先端部に設けて小絞り時にはこのフィルタを介して撮像光を取り込むようにしている。最近特にカメラ装置の高解像度化や小型化が進むに伴いフィルタ全面が一様な光透過率のフィルタでは絞り開口内にフィルタが進入する際、急激な光量の変化によって回折現象を完全に防止できない問題が生ずる。   Therefore, when a diaphragm device for adjusting the amount of light is incorporated into an imaging lens system such as a still camera or a video camera, there is a problem that the resolution decreases due to the hunting phenomenon or light diffraction phenomenon of the light amount adjusting blade when the aperture is small. In order to prevent the influence, an ND filter is provided at the tip of the blade, and the imaging light is taken in through this filter when the aperture is small. In recent years, especially when the resolution of a camera device has been increased and the size has been reduced, a filter having a uniform light transmittance on the entire surface of the filter cannot completely prevent the diffraction phenomenon due to a sudden change in the amount of light when the filter enters the aperture. Problems arise.

そこで例えば、特許文献1には光の透過率を数段階に調節することが可能なフィルタが提案されている。このフィルタは図7にその断面図を示すが階段状に薄膜を形成して撮影光路に臨ませる位置によって濃度を段階的に調節する薄膜構造を採っている。図7において透明基板100の上に透明誘電体層110をSiO2、TiO2、Nb25等の材料で形成し、この透明誘電体層110の上に光吸収体層120をTiNx、NbNx、AlNx等の低級窒化物で形成し、順次交互に積層形成している。そして光吸収体層120は階段状に厚さが異なるように形成され、図示a−aの透過率と図示b−bの透過率では後者が大きくなり、以下同様にc−c、d−d、e−eの順に透過率が大きくなるように層形成している。 Therefore, for example, Patent Document 1 proposes a filter that can adjust the light transmittance in several steps. FIG. 7 shows a cross-sectional view of this filter, which has a thin film structure in which the density is adjusted stepwise depending on the position where the thin film is formed in a stepped manner and faced on the photographing optical path. In FIG. 7, a transparent dielectric layer 110 is formed of a material such as SiO 2 , TiO 2 , or Nb 2 O 5 on a transparent substrate 100, and a light absorber layer 120 is formed on the transparent dielectric layer 110 with TiNx, NbNx. And lower nitrides such as AlNx, and are alternately stacked. The light absorber layer 120 is formed so as to have different thicknesses in a stepped manner, and the latter becomes larger in the transmittances aa and bb in the drawing, and so on. The layers are formed so that the transmittance increases in the order of ee.

かゝる複数の透過率を薄膜形成する際に図7のものが階段状に形成しているのに対し、図8に示すように傾斜して徐々に(無段階で)層形成することが同文献に開示されている。図8において透明基板100の上に透明誘電層110、その上に光吸収体層120を形成する際にこの光吸収体層120を傾斜させて一端は厚く他端は薄くなるように層形成している。この光吸収体層120の厚さによって光の透過率が徐々に変化するグラデーションフィルタが知られている。
特開2003−322709号公報
When forming a plurality of such transmittances in the form of a thin film, the one in FIG. 7 is formed in a staircase pattern, but as shown in FIG. It is disclosed in the same document. In FIG. 8, when forming the transparent dielectric layer 110 on the transparent substrate 100 and the light absorber layer 120 thereon, the light absorber layer 120 is inclined so that one end is thick and the other is thin. ing. A gradation filter in which the light transmittance gradually changes depending on the thickness of the light absorber layer 120 is known.
JP 2003-322709 A

上述の光学フィルタでは次の問題が生ずる。図7に示す層断面を階段状に形成した薄膜フィルタでは厚さの異なる境界層に段差端面F1〜F4が必然的に形成され、この段差端面部で光の透過量が急激に変化するため光の回折が起こり、この回折の影響により画像が呆けることがある。また図8に示す層断面を傾斜した薄膜で形成したフィルタでは、その傾斜を持った多層膜の影響により少なくとも赤色波長領域側での分光透過率の平坦性が崩れ易く、その影響で赤みを帯びた画像となる問題があった。   The following problems occur in the above optical filter. In the thin-film filter in which the layer cross-section shown in FIG. Diffraction may occur, and the image may be blurred due to the influence of this diffraction. In addition, in the filter formed of a thin film whose layer cross section is inclined as shown in FIG. 8, the flatness of the spectral transmittance at least on the red wavelength region side is easily broken due to the influence of the inclined multilayer film, and the effect is reddish. There was a problem that became an image.

そこで本発明は光の波長の違いによって反射率が変化することがなく均一な光透過率で多段階に濃度調整することが可能であり、同時に薄膜形状によって光の干渉を起こすことのない光学フィルタを簡単な方法で安定して安価に製造することの可能な光学フィルタの製造方法及びこれを用いた光学フィルタの提供をその主な課題としている。   Accordingly, the present invention provides an optical filter that can adjust the concentration in multiple steps with a uniform light transmittance without changing the reflectance due to the difference in the wavelength of light, and at the same time does not cause light interference due to the thin film shape. The main problem is to provide a method for manufacturing an optical filter that can be manufactured stably and inexpensively by a simple method and an optical filter using the same.

本発明は上記課題を解決するために、以下の構成を採用したものである。透光性材料から成る基材プレートに光学特性を有する蒸着膜を形成する光学フィルタの製造方法であって、真空蒸着室(槽)内の所定位置に蒸着素材を収納したるつぼ(素材収納部)と基材プレートとを対向配置し、基材プレートに第1のマスク板を該基材プレートとマスク板とを略々平行で所定間隔の空間を形成して第1の蒸着処理を施し、次いで上記マスク板と異なるマスキング領域を有する第2のマスク板を上記基材プレートとの間に略々平行で所定間隔の空間を形成して第2の蒸着処理を施し、上記基材プレート上に複数の厚さの異なる皮膜層を形成する。   The present invention employs the following configuration in order to solve the above-described problems. A method of manufacturing an optical filter for forming a vapor deposition film having optical characteristics on a base plate made of a light-transmitting material, wherein a crucible (material storage portion) stores a vapor deposition material at a predetermined position in a vacuum vapor deposition chamber (tank) And a base plate, the first mask plate is placed on the base plate, and the base plate and the mask plate are substantially parallel to form a space with a predetermined interval, and then a first vapor deposition process is performed. A second mask plate having a masking area different from that of the mask plate is subjected to a second vapor deposition process by forming a substantially parallel space between the base plate and the base plate, and a plurality of the mask plates are formed on the base plate. Film layers having different thicknesses are formed.

本発明によると、プラスチックシートから成る基材プレートと、板毎に順次大きさが異なる適宜な開口を有する複数枚のマスク板を用いて、真空蒸着室内の適宜位置に前記基材プレートと、この基材プレートの蒸着面に対しほぼ平行でしかも所定の間隔を隔て前記複数のマスク板の内、最も大きな開口を有するマスク板より蒸着工程毎に順次交換支持し、その基材プレート表面に真空蒸着法により蒸着膜を形成することで、その蒸着膜が基材プレート表面上に階段状に上下に積層された膜層を形成した複数の領域に分かれ、それぞれの領域は均一な光透過率を有するとともに、それぞれの領域は異なる光透過率を有し、その各領域の側端部が下層の膜層平面に掛け光透過率が順次増大変化するグラデーション領域を形成して成ることによって、多段階濃度フィルタで有りながら、その多段階濃度の領域間の一部がグラデーションフィルタとすることで、そのグラデーション部分で多少反射を受け赤みを帯びるものの、フィルタ全体として多段階濃度の均一な光透過率を得ることが出来、しかも回折現象による画像斑が生じ難い光学フィルタを提供することが出来る。   According to the present invention, using a base plate made of a plastic sheet and a plurality of mask plates having appropriate openings of different sizes for each plate, the base plate at an appropriate position in the vacuum deposition chamber, A plurality of mask plates, which are substantially parallel to the deposition surface of the base plate and spaced apart by a predetermined distance, are sequentially exchanged and supported by the mask plate having the largest opening for each deposition step, and vacuum deposition is performed on the surface of the base plate. By forming a vapor deposition film by the method, the vapor deposition film is divided into a plurality of regions in which a film layer is formed in a stepwise manner on the surface of the base plate, and each region has a uniform light transmittance. In addition, each region has a different light transmittance, and the side end portion of each region is formed on a lower film layer plane to form a gradation region in which the light transmittance increases and changes sequentially. Even though it is a multistage density filter, a part of the area between the multistage density areas is a gradation filter, so that the gradation part is slightly reflected and reddish, but the entire filter has uniform multistage density light transmission. It is possible to provide an optical filter that can obtain a high rate and that hardly causes image spots due to diffraction phenomenon.

以下、添付図面に基づいて本発明に係る光学フィルタ(NDフィルタ)及びその製造方法の実施形態を詳細に説明する。ここで、図1は基材プレート(基材プレート)に積層された蒸着膜の構造を示す断面図、図2は真空蒸着装置の概要図、図3(a)乃至図3(d)は蒸着製造工程での固定治具に対する基材プレートとマスク板との位置関係を示す斜視図である。   Embodiments of an optical filter (ND filter) and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings. Here, FIG. 1 is a sectional view showing the structure of a deposited film laminated on a substrate plate (substrate plate), FIG. 2 is a schematic view of a vacuum deposition apparatus, and FIGS. 3 (a) to 3 (d) are depositions. It is a perspective view which shows the positional relationship of the base material plate and mask board with respect to the fixing jig in a manufacturing process.

まず本発明に係わる光学フィルタは図1(a)にその全体断面を、図1(b)に拡大断面を示すように、透光性材料例えばプラスチックフィルム(シート)で基材プレート(基材プレート)11を設け、この基材プレート11上に透明誘電体膜と光吸収体膜とを交互に積層状に形成し、最表面を撥水性皮膜CXでコーティングする。透明誘電体膜(以下誘電体層と云う)13は二酸化ケイ素(SiO2)などで形成し、光吸収体膜(以下光吸収体層と云う)12はNi、Cr、Tiなどの金属膜或いは金属酸化膜で形成する。図示のものはニッケル90%、クロム10%のクロメル合金で光吸収体層12を形成している。図1(b)に示すようにプラスチックシートで形成した基材プレート11にクロメル合金で光吸収体層12を、その上に二酸化ケイ素で誘電体層13を順次交互に積層構造に重ねて構成し、膜厚さt1,t2,t3で段階状に形成する。この各膜厚さt1,t2,t3は全て均一な分光特性形成され、光透過率はT1<T2<T3でT1、2及びT3の膜層が平坦な部分は均一の透過率に形成される。 First, the optical filter according to the present invention is shown in FIG. 1 (a) as an overall cross section and as shown in FIG. 1 (b) as an enlarged cross section. 11), transparent dielectric films and light absorber films are alternately formed on the base plate 11 in a laminated form, and the outermost surface is coated with a water repellent film CX. A transparent dielectric film (hereinafter referred to as a dielectric layer) 13 is formed of silicon dioxide (SiO 2 ) or the like, and a light absorber film (hereinafter referred to as a light absorber layer) 12 is a metal film such as Ni, Cr, Ti, or the like. A metal oxide film is used. In the illustrated example, the light absorber layer 12 is formed of a chromel alloy of 90% nickel and 10% chromium. As shown in FIG. 1 (b), a light absorber layer 12 made of a chromel alloy is formed on a base plate 11 formed of a plastic sheet, and a dielectric layer 13 made of silicon dioxide is alternately laminated on the laminated structure. The film is formed stepwise with film thicknesses t 1 , t 2 , and t 3 . The film thicknesses t 1 , t 2 , and t 3 are all formed with uniform spectral characteristics, and the light transmittance is a portion where the film layers of T 1, T 2, and T 3 are flat when T 1 <T 2 <T 3. Is formed with uniform transmittance.

従って、複数の濃度(図示のものは3段階)で例えば図示T1部は透過率5%、T2部は20%、T3部は30%のように濃度を3段階に選択できることとなる。そして図示T1部とT2部及びT2部とT3部との境界はT1部の厚さt1から徐々に薄くしてT2部の厚さt2と一致させ、T2部とT3部の境界も同様に膜厚を徐々に減少させる。つまり階段状に均一厚さで厚さの異なる複数の膜面を形成し、境界は大きい厚さの面から隣接する小さい厚さの面に徐々に膜厚を減少させる。 Therefore, the ability to select multiple concentrations (three stages as shown), for example, the illustrated T 1 parts transmittance 5%, T 2 parts 20%, T 3 parts concentration as 30% in three steps . The boundary between the 2 parts shown T 1 parts of T and T 2 parts of T 3 parts to match the thickness t 2 of the 2 parts of T gradually thinner from a thickness t 1 of 1 part T, T 2 parts boundary of T 3 parts also reduces gradually the thickness in the same manner as. That is, a plurality of film surfaces having different thicknesses with a uniform thickness are formed stepwise, and the film thickness is gradually reduced from a surface having a large thickness to a surface having a small thickness adjacent thereto.

以上図1(a)に示すように、本発明の基体となる基材プレート11は、その厚さが約25〜200μmの範囲であり、好ましくは50〜100μmの範囲である。25μm以下では薄すぎて剛性が不足し、蒸着材料が脆い材料の誘電体材料を含むため、基材プレート11の屈曲によって蒸着膜が剥がれ易くなるからである。一方、200μm以上の厚さになると、濁度が増して光の散乱が多くなり、フィルタとして用いた時に光学系内でフレアの原因となるからである。   As shown in FIG. 1A, the base plate 11 serving as the base of the present invention has a thickness in the range of about 25 to 200 μm, and preferably in the range of 50 to 100 μm. This is because if the thickness is 25 μm or less, the film is too thin and the rigidity is insufficient, and the vapor deposition material includes a fragile dielectric material. On the other hand, when the thickness is 200 μm or more, turbidity increases and light scattering increases, which causes flare in the optical system when used as a filter.

また、本発明の注目すべき点は、基材プレート11の材料としてノルボルネン系樹脂又はノルボルネン系樹脂を含む材料を用いていることである。ノルボルネン系樹脂は、熱収縮率が極めて低い上に光学フィルタの用途に適した90%以上の光透過率と、ヘイズ値が0.5%以下の濁度を有している。さらに、ノルボルネン系樹脂は、ガラス転移温度が120℃以上であり、真空蒸着装置内での基材プレート11の加熱温度より高いので、その点でもシート表面のシワの発生を有効に防止することができる。   Further, it should be noted that the base plate 11 is made of a norbornene resin or a material containing a norbornene resin as the material of the base plate 11. The norbornene-based resin has an extremely low heat shrinkage rate, a light transmittance of 90% or more suitable for an optical filter, and a turbidity with a haze value of 0.5% or less. Furthermore, since norbornene-based resin has a glass transition temperature of 120 ° C. or higher and higher than the heating temperature of the base plate 11 in the vacuum deposition apparatus, it is possible to effectively prevent generation of wrinkles on the sheet surface. it can.

しかも、ノルボルネン系樹脂又はノルボルネン系樹脂を含む材料の中でキャスティング加工によりシート状に成形された材料を基材プレート11に選ぶことで、成形時に材料自体にストレスが加えられることが無いので、例えば従来使用のPET(ポリエチレンテレフタレート)又はPEN(ポリエチレンナフタレート)材の様に引抜き加工による異方性特性を持つことが無く、複屈折を起こし難く、その結果この光学フィルタ(NDフィルタ)を用いた光量調整装置を装備した光学機器としては画像ボケや画像斑の無い鮮明な画像を捉えることが出来る。   In addition, by selecting the base plate 11 as a material formed into a sheet shape by casting in the norbornene-based resin or the material containing the norbornene-based resin, no stress is applied to the material itself at the time of molding. Like conventional PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) material, it does not have anisotropic characteristics due to drawing and hardly causes birefringence. As a result, this optical filter (ND filter) was used. As an optical device equipped with a light amount adjusting device, it is possible to capture a clear image free from image blur and image spots.

さらに、本発明の注目すべき点は、図1(a)に示したように、本発明の光学フィルタ(NDフィルタ;以下同様)10が、基材プレート11の表面に光吸収体層12と誘電体層13とを交互に積層し、その最上層の上に硬質のフッ化マグネシウム膜(MgF2)14、最後に蒸着層全体を撥水性皮膜CXでコーティング処理していることである。 Further, the remarkable point of the present invention is that, as shown in FIG. 1 (a), the optical filter (ND filter; the same shall apply hereinafter) 10 of the present invention has the light absorber layer 12 and the surface of the base plate 11. The dielectric layers 13 are alternately laminated, and the hard magnesium fluoride film (MgF 2 ) 14 is coated on the uppermost layer, and finally the entire deposited layer is coated with the water-repellent film CX.

そして、光吸収体層12はニッケル90%、クロム10%の合金(クロメル)を蒸着材料とするもので、光吸収特性を備えた有色の蒸着膜として形成されるが、特に酸化されにくい性質を有しているので、真空蒸着工程で長時間高温にさらされる場合や、後述するように一連の蒸着工程の中で、基材プレート11を何回も外気にさらすような場合にも膜の酸化を受けにくく、光学特性に悪影響を及ぼさない。   The light absorber layer 12 is made of an alloy of 90% nickel and 10% chromium (chromel) as a vapor deposition material, and is formed as a colored vapor deposition film having light absorption characteristics. Therefore, the film is oxidized even when it is exposed to a high temperature for a long time in the vacuum deposition process or when the substrate plate 11 is exposed to the outside air several times in a series of deposition processes as will be described later. It is not easily affected and does not adversely affect optical properties.

これらの蒸着膜は、真空蒸着法によって形成されるが、それぞれの膜厚は概ね0.5〜1.0μm程度が好ましい。光透過率は膜厚や積層数によって調整することができる。なお、前記クロメル以外にもニッケルとクロムとの合金からクロメルと同じような特性を備えた蒸着膜を形成することができる。特に、ニッケルの比率が90%以上の合金を使用することが望ましい。尚、蒸着膜を上述の真空蒸着法以外のイオンプレーティング法あるいはスパッタリング法によって形成しても良い。   These deposited films are formed by a vacuum deposition method, and the thickness of each film is preferably about 0.5 to 1.0 μm. The light transmittance can be adjusted by the film thickness and the number of stacked layers. In addition to the chromel, a deposited film having characteristics similar to chromel can be formed from an alloy of nickel and chromium. In particular, it is desirable to use an alloy having a nickel ratio of 90% or more. Note that the deposited film may be formed by an ion plating method or a sputtering method other than the above-described vacuum deposition method.

また、誘電体層13は反射防止機能を備えており、前記光吸収体層12と交互に積層されることで可視波長域での反射を確実に防止できる。また、最上面に蒸着されるフッ化マグネシウム膜14によりフィルタ表面を保護している。更に、撥水性皮膜CXは、上述したようにニッケル−クロム合金を蒸着材料として成る蒸着膜は酸化に強い材料ではあるが、過酷な環境下の中では徐々に酸化の影響を受け経時変化することがあり、このコーティング処理することによって酸化を極力抑えることが出来る。この撥水性皮膜CXは、フッ素系樹脂、シリコーン系樹脂、ポリプロピレン系樹脂等の有機系樹脂化合物、若しくはそれらの樹脂成分を含む共重合体から成る有機系樹脂化合物を蒸着し形成している。   In addition, the dielectric layer 13 has an antireflection function, and can be reliably prevented from being reflected in the visible wavelength region by being alternately laminated with the light absorber layer 12. The filter surface is protected by a magnesium fluoride film 14 deposited on the uppermost surface. Furthermore, as described above, the water-repellent coating CX is a material that is resistant to oxidation as a vapor deposition film made of a nickel-chromium alloy as a vapor deposition material. Oxidation can be suppressed as much as possible by this coating treatment. The water-repellent coating CX is formed by vapor-depositing an organic resin compound such as an organic resin compound such as a fluorine resin, a silicone resin, or a polypropylene resin, or a copolymer containing these resin components.

次に上述の光学フィルタの製造方法について説明する。
本発明は基材プレート11に光吸収体層12と誘電体層13とを真空蒸着で形成する。図2に示す真空蒸着装置15は真空ポンプ16に接続された蒸着槽17を備えている。蒸着槽17の上部の空間には半球状の回転台18が設けられ、この回転台18の表面に被蒸着体19が設置される。回転台18の上方には被蒸着体19を加熱するためのヒータ20が配設されている。一方、蒸着槽17内の底面には蒸着材料が収容されたるつぼ21と、その近傍に電子銃22とが備えられている。るつぼ21の上面には4個の凹所が設けられ、これら凹所に蒸着材料であるクロメル23、二酸化ケイ素24、フッ化マグネシウム25がそれぞれ顆粒状で収容されている。
Next, a method for manufacturing the above-described optical filter will be described.
In the present invention, the light absorber layer 12 and the dielectric layer 13 are formed on the base plate 11 by vacuum deposition. The vacuum deposition apparatus 15 shown in FIG. 2 includes a deposition tank 17 connected to a vacuum pump 16. A hemispherical turntable 18 is provided in the space above the vapor deposition tank 17, and a deposition target 19 is installed on the surface of the turntable 18. Above the turntable 18, a heater 20 for heating the deposition target 19 is disposed. On the other hand, a crucible 21 containing a vapor deposition material is provided on the bottom surface of the vapor deposition tank 17, and an electron gun 22 is provided in the vicinity thereof. Four recesses are provided on the upper surface of the crucible 21, and chromel 23, silicon dioxide 24, and magnesium fluoride 25, which are vapor deposition materials, are accommodated in the respective recesses in the form of granules.

前記回転台18に設置される被蒸着体19は、図3(a)乃至図3(d)で示すように、回転台18の表面に直接固定される平板状の固定治具26と、この固定治具26と略同じ大きさに形成された前記基材プレート11と、この基材プレート11を前記固定治具26との間で所定の適宜間隔Lを隔てられ、保持した状態で挟み込むマスク板27(27a、27b、27c、27d)とで構成される。固定治具26には対向する2箇所の隅部にボルト28が立設される。一方、基材プレート11及びマスク板27には前記ボルト28に対応した位置に位置決め用の挿通孔29,30がそれぞれ設けられている。マスク板27には一枚の基材プレート11から光学フィルタを多数個取りできるように、光学フィルタの形状に加工し得る形状の開口エリア31が縦横方向に多数設けられている。   As shown in FIGS. 3A to 3D, the vapor deposition target 19 installed on the turntable 18 includes a plate-like fixing jig 26 that is directly fixed to the surface of the turntable 18, and this. The base plate 11 formed to be approximately the same size as the fixing jig 26 and a mask for sandwiching the base plate 11 with the base plate 11 being held at a predetermined appropriate distance L between the fixing jig 26. It is comprised with the board 27 (27a, 27b, 27c, 27d). Bolts 28 are erected on the fixing jig 26 at two opposite corners. On the other hand, the base plate 11 and the mask plate 27 are provided with insertion holes 29 and 30 for positioning at positions corresponding to the bolts 28, respectively. The mask plate 27 is provided with a large number of opening areas 31 in the vertical and horizontal directions that can be processed into the shape of an optical filter so that a large number of optical filters can be obtained from a single substrate plate 11.

この固定治具26の上に基材プレート11及びマスク板27の順に載置し、ボルト28にナット(図示せず)を締め付けることでマスク板27が基材プレート11に対し所定の適宜間隔Lを隔てられ保持した状態で固定される。このように、マスク板27を基材プレート11に対し所定の適宜間隔Lを隔てられ保持した状態で固定させることで、開口エリア31の周縁での蒸着膜が外側に拡散し、この拡散によって蒸着膜の側端部以外は均一な光透過率を有するとともに、その側端部は各蒸着平面に掛け光透過率が順次減少変化するグラデーション領域を形成して成ることによって、多段階濃度フィルタで有りながら、その多段階濃度の領域間の一部がグラデーションフィルタとすることで、そのグラデーション部分で多少反射を受け赤みを帯びるものの、フィルタ全体として多段階濃度の均一な光透過率を得ることが出来、しかも回折現象による画像斑が生じ難い光学フィルタを得ることが出来る。   The base plate 11 and the mask plate 27 are placed on the fixing jig 26 in this order, and a nut (not shown) is fastened to the bolt 28 so that the mask plate 27 is spaced from the base plate 11 by a predetermined appropriate distance L. It is fixed in a state of being separated and held. As described above, the mask plate 27 is fixed to the base plate 11 while being held at a predetermined appropriate distance L, so that the vapor deposition film at the periphery of the opening area 31 diffuses outside, and vapor deposition is performed by this diffusion. Other than the side edge of the film, it has a uniform light transmittance, and the side edge part is a multistage density filter by forming a gradation region where the light transmittance gradually decreases and changes on each deposition plane. However, a part of the area between the multi-level density areas is a gradation filter, so that even though the gradation area is slightly reflected and reddish, the entire filter can obtain a uniform multi-level density light transmittance. In addition, it is possible to obtain an optical filter that hardly causes image spots due to diffraction phenomenon.

以上、図1で説明した光学フィルタを真空蒸着で誘電体層13と光吸収体層12とを形成する際に、本発明は基材プレート11とマスク板27との間に所定の間隔の空間を形成して蒸着処理を行なうことを特徴とし、これを図9に基づいて説明する。   As described above, when the dielectric layer 13 and the light absorber layer 12 are formed by vacuum deposition of the optical filter described in FIG. 1, the present invention provides a space having a predetermined interval between the base plate 11 and the mask plate 27. Is formed, and a vapor deposition process is performed, which will be described with reference to FIG.

図9(a)は通常の蒸着方法で用いられる基材プレート11とマスク板27との関係を示し、両者は完全に密着した状態である。このように基材プレート11とマスク板27が密着した状態では基材プレート上に均一な薄膜nが形成される。図7に示す従来の階段状の薄膜を形成する際には図9(a)のように基材プレートとマスク板とを密着させて製作する。   FIG. 9A shows the relationship between the base plate 11 and the mask plate 27 used in a normal vapor deposition method, and the two are in a state of complete contact. In this manner, in a state where the base plate 11 and the mask plate 27 are in close contact, a uniform thin film n is formed on the base plate. When the conventional step-like thin film shown in FIG. 7 is formed, the base plate and the mask plate are closely adhered as shown in FIG.

本発明は図9(b)に示すように基材プレート11とマスク板27との間に略々平行で所定間隔Lの空間を形成する。すると光吸収体層12、誘電体層13を構成する膜材料はるつぼ21から基材プレート11に向かって分子レベルの微粒子が飛散しプレート表面に付着する。このとき所定間隔Lの空間によって略均一な厚さの膜面m1とマスキング領域の近傍では徐々に厚さが減少し、傾斜した境界膜面m2が形成される。これによって図1(b)に示すグラデーション層が形成される。   In the present invention, as shown in FIG. 9 (b), a substantially parallel space L is formed between the base plate 11 and the mask plate 27. Then, in the film material constituting the light absorber layer 12 and the dielectric layer 13, molecular level fine particles scatter from the crucible 21 toward the base plate 11 and adhere to the plate surface. At this time, the film surface m1 having a substantially uniform thickness and the thickness in the vicinity of the masking region are gradually reduced by the space of the predetermined interval L, and an inclined boundary film surface m2 is formed. Thereby, the gradation layer shown in FIG. 1B is formed.

この基材プレート11とマスク板27との間隔Lと、図1(b)に示すグラデーション領域Gとの関係を図10に示す。膜厚が300ナノメートル(300×10-9m)のとき間隔Lを0.5mmとした場合G=0.4mm、以下同様にL=1.0mmのときG=0.8mm,L=2.0mmのときG=1.3mm,L=3.0mmのときG=1.8mmのグラデーション領域が形成される。 FIG. 10 shows the relationship between the distance L between the base plate 11 and the mask plate 27 and the gradation region G shown in FIG. When the film thickness is 300 nanometers (300 × 10 −9 m) and the distance L is 0.5 mm, G = 0.4 mm. Similarly, when L = 1.0 mm, G = 0.8 mm, L = 2 A gradation region of G = 1.3 mm is formed when 0.0 mm, and G = 1.8 mm when L = 3.0 mm.

上記のようにして準備した被蒸着体19を前記回転台18にセットしたのち蒸着槽17内を密閉し、真空ポンプ16によって真空引きを行なう。このとき同時にヒータ20によって内部温度を上げていき、被蒸着体19の基材プレート11を約120℃に加熱制御する。蒸着槽17内部の真空度が所定のレベルに到達したら、電子銃22から発した電子ビーム32によって蒸着材料であるクロメル23と二酸化ケイ素24を交互に加熱融解して被蒸着体19に蒸着する。そして、図3(a)乃至図3(c)で示す順序でマスク板27を取替えながら蒸着を繰り返した後、図3(d)で示す様にマスク板27を取替えフッ化マグネシウム25を加熱融解して蒸着する。被蒸着体19に位置決めされた基材プレート11にはマスク板27の開口エリア31を通した領域だけに上記の蒸着材料が図1に示したような順序で積層される。最後に被蒸着体19に撥水性コーティング材CXをコーティング処理する。   After the deposition object 19 prepared as described above is set on the rotary table 18, the inside of the deposition tank 17 is sealed, and the vacuum pump 16 performs evacuation. At this time, the internal temperature is raised by the heater 20 at the same time, and the base plate 11 of the deposition target 19 is controlled to be heated to about 120 ° C. When the degree of vacuum inside the vapor deposition tank 17 reaches a predetermined level, the chromel 23 and the silicon dioxide 24 which are vapor deposition materials are alternately heated and melted by the electron beam 32 emitted from the electron gun 22 and vapor deposited on the vapor deposition target 19. Then, after repeating the deposition while replacing the mask plate 27 in the order shown in FIGS. 3A to 3C, the mask plate 27 is replaced and the magnesium fluoride 25 is heated and melted as shown in FIG. 3D. And deposit. The above-mentioned vapor deposition materials are laminated in the order as shown in FIG. 1 on the base plate 11 positioned on the deposition target 19 only in the region through the opening area 31 of the mask plate 27. Finally, the water-repellent coating material CX is applied to the vapor-deposited body 19.

次に上述の方法で基材プレート11に蒸着膜を形成する工程を以下に詳述する。
本発明の光学フィルタはプラスチックシートの片面に薄膜を形成する場合と、両面それぞれに薄膜を形成する場合があり、順次説明する。
Next, the process of forming a vapor deposition film on the base plate 11 by the above method will be described in detail below.
In the optical filter of the present invention, there are a case where a thin film is formed on one surface of a plastic sheet and a case where a thin film is formed on each of both surfaces.

[基板プレート11の片面に蒸着膜を形成する工程]
(1)蒸着槽内に装着する固定治具26に基材プレート11を固定する。固定治具26に基材プレート11を装着し、図10に示すように間隔Lを隔て第1のマスク板27aを取り付ける。このマスク板27aは開口エリア31aが最大のマスク板を使用する。この固定治具(以下被蒸着体19で総称する)を複数準備する。
(2)以下被蒸着体19を蒸着槽17の回転台18に所定数セットする。
(3)第1の蒸着膜の形成。
クロメル23を収納したるつぼ21を蒸着位置にセットして蒸着を実行し、クロメル膜(光吸収体層)12を形成する。次いで二酸化ケイ素24を収納したるつぼ21を蒸着位置にセットし蒸着処理を実行し、二酸化ケイ素膜(誘電体層)13を形成する。
被蒸着体19を蒸着槽17の回転台18から取り出した後、第2のマスク板27bを固定治具26に取り付ける。尚、この第2のマスク板27bは第2の開口エリア31bを有するマスク板を使用する。
(4)第2蒸着層の蒸着開始。
クロメル23を収納したるつぼ21を蒸着位置にセットして蒸着を実行し、クロメル膜(光吸収体層)12を形成する。次いで二酸化ケイ素24を収納したるつぼ21を蒸着位置にセットし蒸着処理を実行し、二酸化ケイ素膜(誘電体層)13を形成する。
被蒸着体19を蒸着槽17の回転台18から取り出した後、第3のマスク板27cと交換し固定治具26に取り付ける。尚、この第3のマスク板27cは第3の開口エリア31cを有するマスク板を使用する。
(5)第3蒸着層の蒸着開始。
クロメル23を収納したるつぼ21を蒸着位置にセットして蒸着を実行し、クロメル膜(光吸収体層)12を形成する。次いで二酸化ケイ素24を収納したるつぼ21を蒸着位置にセットし蒸着処理を実行し、二酸化ケイ素膜(誘電体層)13を形成する。
(6)コーティング層蒸着。
被蒸着体19を蒸着槽17の回転台18から取り出し第1のマスク板27aと交換後再度セットする。るつぼ21を移動しフッ化マグネシウム25を蒸着位置にセットして蒸着を実行し、フッ化マグネシウム膜14を形成する。次いで、るつぼ21を移動し撥水性コーティングCXを蒸着位置にセットして蒸着を実行し、撥水性被膜を形成する。
(7)被蒸着体19を蒸着槽17の回転台18から取り出す。
(8)フィルタ外形の形成。
被蒸着体19をプレス型で所定形状に内抜き加工する。
(9)絞り装置組立。
光学フィルタ10を第1絞り羽根42に貼り付け、第1絞り羽根42を第2絞り羽根43の後にベース部材40に取り付け、絞り装置39を組み立てる。このとき真空ポンプ16、ヒータ20、電子銃22の作動制御は蒸着時間等で最適な時間で起動する。
[Step of forming a vapor deposition film on one surface of the substrate plate 11]
(1) The base plate 11 is fixed to a fixing jig 26 mounted in the vapor deposition tank. The base plate 11 is attached to the fixing jig 26, and the first mask plate 27a is attached at an interval L as shown in FIG. This mask plate 27a uses a mask plate having the largest opening area 31a. A plurality of the fixing jigs (hereinafter collectively referred to as vapor deposition body 19) are prepared.
(2) A predetermined number of vapor deposition bodies 19 are set on the turntable 18 of the vapor deposition tank 17 below.
(3) Formation of the first vapor deposition film.
The crucible 21 containing the chromel 23 is set at the vapor deposition position and vapor deposition is performed to form a chromel film (light absorber layer) 12. Next, the crucible 21 containing the silicon dioxide 24 is set at the vapor deposition position and the vapor deposition process is performed to form the silicon dioxide film (dielectric layer) 13.
After the deposition object 19 is taken out from the turntable 18 of the vapor deposition tank 17, the second mask plate 27 b is attached to the fixing jig 26. The second mask plate 27b is a mask plate having a second opening area 31b.
(4) Start of vapor deposition of the second vapor deposition layer.
The crucible 21 containing the chromel 23 is set at the vapor deposition position and vapor deposition is performed to form a chromel film (light absorber layer) 12. Next, the crucible 21 containing the silicon dioxide 24 is set at the vapor deposition position and the vapor deposition process is performed to form the silicon dioxide film (dielectric layer) 13.
After the deposition target 19 is taken out from the turntable 18 of the deposition tank 17, it is replaced with the third mask plate 27 c and attached to the fixing jig 26. The third mask plate 27c is a mask plate having a third opening area 31c.
(5) Start of vapor deposition of the third vapor deposition layer.
The crucible 21 containing the chromel 23 is set at the vapor deposition position and vapor deposition is performed to form a chromel film (light absorber layer) 12. Next, the crucible 21 containing the silicon dioxide 24 is set at the vapor deposition position and the vapor deposition process is performed to form the silicon dioxide film (dielectric layer) 13.
(6) Coating layer deposition.
The deposition object 19 is taken out from the turntable 18 of the vapor deposition tank 17 and set again after replacement with the first mask plate 27a. The crucible 21 is moved, the magnesium fluoride 25 is set at the vapor deposition position, and vapor deposition is performed to form the magnesium fluoride film 14. Next, the crucible 21 is moved, the water repellent coating CX is set at the vapor deposition position, and vapor deposition is performed to form a water repellent film.
(7) The object 19 is taken out from the turntable 18 of the vapor deposition tank 17.
(8) Formation of filter outer shape.
The object to be vapor-deposited 19 is hollowed into a predetermined shape with a press die.
(9) Drawing device assembly.
The optical filter 10 is attached to the first diaphragm blade 42, the first diaphragm blade 42 is attached to the base member 40 after the second diaphragm blade 43, and the diaphragm device 39 is assembled. At this time, the operation control of the vacuum pump 16, the heater 20, and the electron gun 22 is started in an optimum time such as a deposition time.

[基板プレート11の両面に蒸着膜を形成する工程]
(1)蒸着槽内に装着する固定治具26に基材プレート11を固定する。固定治具26に基材プレート11を装着し、図10に示すように間隔Lを隔て第1のマスク板27aを取り付ける。このマスク板27aは開口エリア31aが最大のマスク板を使用する。この固定治具(以下被蒸着体19で総称する)を複数準備する。
(2)以下被蒸着体19を蒸着槽17の回転台18に所定数セットする。
(3)第1の蒸着膜の形成。
クロメル23を収納したるつぼ21を蒸着位置にセットして蒸着を実行し、クロメル膜(光吸収体層)12を形成する。次いで二酸化ケイ素24を収納したるつぼ21を蒸着位置にセットし蒸着処理を実行し、二酸化ケイ素膜(誘電体層)13を形成する。
(4)被蒸着体19を蒸着槽17の回転台18から取り出した後、基材プレート11の取付面を反転し、第2のマスク板27bと交換の後、再度固定治具26に取付ける。尚、この第2のマスク板27bは第2の開口エリア31bを有するマスク板を使用する。
(5)第2蒸着層の蒸着開始。
クロメル23を収納したるつぼ21を蒸着位置にセットして蒸着を実行し、クロメル膜(光吸収体層)12を形成する。次いで二酸化ケイ素24を収納したるつぼ21を蒸着位置にセットし蒸着処理を実行し、二酸化ケイ素膜(誘電体層)13を形成する。
(6)被蒸着体19を蒸着槽17の回転台18から取り出した後、基材プレート11の取付面を反転し、第3のマスク板27cと交換の後、再度固定治具26に取り付ける。尚、この第3のマスク板27cは第3の開口エリア31cを有するマスク板を使用する。
(7)第3蒸着層の蒸着開始。
クロメル23を収納したるつぼ21を蒸着位置にセットして蒸着を実行し、クロメル膜(光吸収体層)12を形成する。次いで二酸化ケイ素24を収納したるつぼ21を蒸着位置にセットし蒸着処理を実行し、二酸化ケイ素膜(誘電体層)13を形成する。その後基材プレート11の取付面を反転する。
(8)コーティング層蒸着。
被蒸着体19を蒸着槽17の回転台18から取り出し第1のマスク板27aと交換後再度セットする。るつぼ21を移動しフッ化マグネシウム25を蒸着位置にセットして蒸着を実行し、フッ化マグネシウム膜14を形成する。
(9)次いで、るつぼ21を移動し撥水性コーティングCXを蒸着位置にセットして蒸着を実行し、撥水性被膜を形成する。
(10)被蒸着体19を蒸着槽17の回転台18から取り出し基材プレート11の取付面を反転後、マスク板27aを再度セットする。るつぼ21を移動しフッ化マグネシウム25を蒸着位置にセットして蒸着を実行し、フッ化マグネシウム膜14を形成する。
(11)次いで、るつぼ21を移動し撥水性コーティングCXを蒸着位置にセットして蒸着を実行し、撥水性被膜を形成する。
(12)被蒸着体19を蒸着槽17の回転台18から取り出す。
(13)フィルタ外形の形成。
被蒸着体19をプレス型で所定形状に内抜き加工する。
(14)絞り装置組立。
光学フィルタ10を第1絞り羽根42に貼り付け、第1絞り羽根42を第2絞り羽根43の後にベース部材40に取り付け、絞り装置39を組み立てる。このとき真空ポンプ16、ヒータ20、電子銃22の作動制御は蒸着時間等で最適な時間で起動する。
[Step of forming vapor deposition film on both surfaces of substrate plate 11]
(1) The base plate 11 is fixed to a fixing jig 26 mounted in the vapor deposition tank. The base plate 11 is attached to the fixing jig 26, and the first mask plate 27a is attached at an interval L as shown in FIG. This mask plate 27a uses a mask plate having the largest opening area 31a. A plurality of the fixing jigs (hereinafter collectively referred to as vapor deposition body 19) are prepared.
(2) A predetermined number of vapor deposition bodies 19 are set on the turntable 18 of the vapor deposition tank 17 below.
(3) Formation of the first vapor deposition film.
The crucible 21 containing the chromel 23 is set at the vapor deposition position and vapor deposition is performed to form a chromel film (light absorber layer) 12. Next, the crucible 21 containing the silicon dioxide 24 is set at the vapor deposition position and the vapor deposition process is performed to form the silicon dioxide film (dielectric layer) 13.
(4) After the deposition object 19 is taken out from the turntable 18 of the vapor deposition tank 17, the mounting surface of the base plate 11 is reversed, and after being replaced with the second mask plate 27b, it is mounted on the fixing jig 26 again. The second mask plate 27b is a mask plate having a second opening area 31b.
(5) Start of vapor deposition of the second vapor deposition layer.
The crucible 21 containing the chromel 23 is set at the vapor deposition position and vapor deposition is performed to form a chromel film (light absorber layer) 12. Next, the crucible 21 containing the silicon dioxide 24 is set at the vapor deposition position and the vapor deposition process is performed to form the silicon dioxide film (dielectric layer) 13.
(6) After the deposition object 19 is taken out from the turntable 18 of the vapor deposition tank 17, the mounting surface of the base plate 11 is reversed, replaced with the third mask plate 27 c, and mounted on the fixing jig 26 again. The third mask plate 27c is a mask plate having a third opening area 31c.
(7) Start of vapor deposition of the third vapor deposition layer.
The crucible 21 containing the chromel 23 is set at the vapor deposition position and vapor deposition is performed to form a chromel film (light absorber layer) 12. Next, the crucible 21 containing the silicon dioxide 24 is set at the vapor deposition position and the vapor deposition process is performed to form the silicon dioxide film (dielectric layer) 13. Thereafter, the mounting surface of the base plate 11 is reversed.
(8) Coating layer deposition.
The deposition object 19 is taken out from the turntable 18 of the vapor deposition tank 17 and set again after replacement with the first mask plate 27a. The crucible 21 is moved, the magnesium fluoride 25 is set at the vapor deposition position, and vapor deposition is performed to form the magnesium fluoride film 14.
(9) Next, the crucible 21 is moved, the water-repellent coating CX is set at the vapor deposition position, and vapor deposition is performed to form a water-repellent film.
(10) The deposition target 19 is taken out from the turntable 18 of the vapor deposition tank 17, the mounting surface of the base plate 11 is reversed, and then the mask plate 27a is set again. The crucible 21 is moved, the magnesium fluoride 25 is set at the vapor deposition position, and vapor deposition is performed to form the magnesium fluoride film 14.
(11) Next, the crucible 21 is moved, the water-repellent coating CX is set at the vapor deposition position, and vapor deposition is performed to form a water-repellent film.
(12) The object 19 is taken out from the turntable 18 of the vapor deposition tank 17.
(13) Formation of filter outer shape.
The object to be vapor-deposited 19 is punched into a predetermined shape with a press die.
(14) Assembling the throttle device.
The optical filter 10 is attached to the first diaphragm blade 42, the first diaphragm blade 42 is attached to the base member 40 after the second diaphragm blade 43, and the diaphragm device 39 is assembled. At this time, the operation control of the vacuum pump 16, the heater 20, and the electron gun 22 is started in an optimum time such as a deposition time.

図4は上記のようにして得られた光学フィルタ10の光学特性を示したものであり、縦軸が光の透過率をパーセント表示で示し、横軸が光学フィルタ10の蒸着膜の断面との関係を示すグラフである。図4によれば、光の透過率がほぼ0%、30%、60%の3段階の濃度フィルタが得られると共に、各幕層の領域部分は光透過率が順次減少変化するグラデーション領域を形成している。   FIG. 4 shows the optical characteristics of the optical filter 10 obtained as described above. The vertical axis indicates the light transmittance in percentage, and the horizontal axis indicates the cross section of the deposited film of the optical filter 10. It is a graph which shows a relationship. According to FIG. 4, a three-stage density filter with light transmittances of approximately 0%, 30%, and 60% can be obtained, and a gradation region in which the light transmittance gradually decreases and changes is formed in the area portion of each curtain layer. is doing.

図5は光透過率の異なる3つの領域を備えた光学フィルタが多数形成された基材プレート11を示したものである。図5に示したように、蒸着膜が形成された部分を図示の様にプレス加工により打ち抜くと同時に切り分け2枚の光学フィルタ10(10a、10b)が完成する。この光学フィルタ10には図4で示す様に光透過率の異なる3つの領域T1,T2,T3と基板プレート11及び各領域間の部分は光透過率が順次減少変化するグラデーション領域G1,G2,G3を形成することと成る。 FIG. 5 shows a base plate 11 on which a large number of optical filters having three regions having different light transmittances are formed. As shown in FIG. 5, the portion where the deposited film is formed is punched out by pressing as shown in the drawing, and at the same time, the two optical filters 10 (10a, 10b) are completed. As shown in FIG. 4, the optical filter 10 has three regions T 1 , T 2 , T 3 having different light transmittances, a substrate plate 11 and a gradation region G in which the light transmittance is successively reduced and changed between the regions. 1 , G 2 , and G 3 are formed.

これは例えば図3(a)乃至図3(c)で示すような3種類のマスク板27a,27b,27cを使用し、しかもそれらマスク板27a,27b,27cをそれぞれ予め設定した間隔で基材プレート11から離し固定治具26に固定することで形成することで出来る。即ち、第1のマスク板27aには3つの領域T1,T2,T3に対応する開口エリア31aが設けられ、第2のマスク板27bには第2領域T2及び第3領域T1に対応する開口エリア31bが設けられ、第3のマスク板27cには第3領域T1に対応する開口エリア31cが設けられている。 For example, three types of mask plates 27a, 27b, and 27c as shown in FIGS. 3A to 3C are used, and the mask plates 27a, 27b, and 27c are respectively set at predetermined intervals. It can be formed by being separated from the plate 11 and fixed to the fixing jig 26. That is, the first mask plate 27a is provided with opening areas 31a corresponding to the three regions T 1 , T 2 , T 3 , and the second mask plate 27b has the second region T 2 and the third region T 1. open area 31b corresponding is provided, the third mask plate 27c open area 31c is provided corresponding to the third region T 1.

そして、第1のマスク板27aを用いた第1回目の蒸着工程で全体領域T1,T2,T3を蒸着し、第2のマスク板27bを用いた第2回目の蒸着工程で第2および第3領域T2,T1を蒸着し、第3のマスク板27cを用いた第3回目の蒸着工程で第3領域T1のみを蒸着することで、それぞれの領域の蒸着膜の積層数が異なり、結果的に光透過率が段階的に異なる複数の領域を形成することができることになる。尚、この蒸着工程に於いてマスク板27a,27b,27cをそれぞれ予め設定した間隔で基材プレート11から離すことで、その隙間の間に蒸着膜が拡散し光透過率が順次減少変化するグラデーション領域G1,G2,G3を形成する。 Then, the entire regions T 1 , T 2 , T 3 are deposited in the first deposition process using the first mask plate 27a, and the second deposition process is performed in the second deposition process using the second mask plate 27b. And the third regions T 2 and T 1 are vapor-deposited, and only the third region T 1 is vapor-deposited in the third vapor-deposition process using the third mask plate 27c, so that the number of vapor-deposited films in the respective regions is increased. As a result, a plurality of regions having different light transmittances in stages can be formed. In this vapor deposition process, the mask plates 27a, 27b, and 27c are separated from the base plate 11 at predetermined intervals, so that the vapor deposition film diffuses between the gaps, and the light transmittance gradually decreases. Regions G 1 , G 2 and G 3 are formed.

上記のように、光透過率が段階的に異なる領域を有する光学フィルタを製造する場合には、上述した三種類のマスク板27a,27b,27cを蒸着工程の途中で交換する必要があり、その都度蒸着槽17を開けて被蒸着体19を外部に取り出してマスク板を交換するため外気に触れることになるが、上述したように、光吸収体層12は酸化されにくい性質を備えているので、蒸着膜は酸化作用をほとんど受けることがない。そのために、光学フィルタの光学特性にもほとんど影響を及ぼすことがなく、図4に示したのと同じような特性を示す。   As described above, when manufacturing an optical filter having regions with different light transmittances in stages, the above-described three types of mask plates 27a, 27b, and 27c need to be replaced during the vapor deposition process. Each time the vapor deposition tank 17 is opened and the vapor deposition target 19 is taken out and the mask plate is exchanged, it is exposed to the outside air. However, as described above, the light absorber layer 12 is not easily oxidized. The deposited film is hardly subjected to oxidation. Therefore, it hardly affects the optical characteristics of the optical filter, and exhibits the same characteristics as shown in FIG.

図6は、上述の光学フィルタ10が組み込まれた絞り装置の一例を示したものであり、小型のビデオカメラやデジタルカメラ等に搭載される露光調整用の絞り装置について説明する。この絞り装置は、ベース部材40、アーム41、第1絞り羽根42、第2絞り羽根43、一対のマグネット44、駆動コイルと制動コイルからなる励磁用の電導コイル45、駆動コイルと制動コイルを外部装置と電気的に接続するための電極端子46、その他マグネットの移動位置を捕らえ絞りの開口量を検知するための磁気センサ(図示せず)等で構成され、前記ベース部材40の底面中央部には露光孔47が設けられ、左右両側には前記絞り羽根42,43のスライドをガイドするガイドピン48が数箇所に設けられている。   FIG. 6 shows an example of an aperture device in which the above-described optical filter 10 is incorporated. An aperture device for exposure adjustment mounted on a small video camera, digital camera, or the like will be described. This diaphragm device includes a base member 40, an arm 41, a first diaphragm blade 42, a second diaphragm blade 43, a pair of magnets 44, a conductive coil 45 for excitation including a drive coil and a brake coil, and a drive coil and a brake coil externally. An electrode terminal 46 for electrical connection with the apparatus, and a magnetic sensor (not shown) for capturing the moving position of the magnet and detecting the aperture of the diaphragm, etc. The exposure hole 47 is provided, and guide pins 48 for guiding the slide of the diaphragm blades 42 and 43 are provided at several positions on both the left and right sides.

前記第1絞り羽根42及び第2絞り羽根43にはガイドピン48が挿入されるガイドされる長溝49と、前記露光孔47と略同一形状の絞り開口エリア50とが形成されている。そして、この絞り開口エリア50の一部と被さるように、本発明の光学フィルタ10がスライド可能に配設されている。そして、前記第1絞り羽根42及び第2絞り羽根43を互いにスライド移動させることによって露光孔47を通過する光量を調整できると共に、小絞りの際には前記光学フィルタ10を露光孔47側にスライドさせることで露光孔47の光透過率を微調整することができる。   The first diaphragm blade 42 and the second diaphragm blade 43 are formed with a long slot 49 into which a guide pin 48 is inserted and a diaphragm opening area 50 having substantially the same shape as the exposure hole 47. The optical filter 10 of the present invention is slidably disposed so as to cover a part of the aperture opening area 50. The amount of light passing through the exposure hole 47 can be adjusted by sliding the first diaphragm blade 42 and the second diaphragm blade 43 relative to each other, and the optical filter 10 is slid toward the exposure hole 47 when the aperture is small. By doing so, the light transmittance of the exposure hole 47 can be finely adjusted.

本発明に係るNDフィルタの構造を示す断面図であり、全体断面図を示す。It is sectional drawing which shows the structure of the ND filter which concerns on this invention, and shows whole sectional drawing. 本発明に係るNDフィルタの構造を示す断面図であり、拡大断面図を示す。It is sectional drawing which shows the structure of the ND filter concerning this invention, and shows an expanded sectional view. 本発明のNDフィルタを製造するための真空蒸着装置の概要図である。It is a schematic diagram of the vacuum evaporation system for manufacturing ND filter of the present invention. 固定治具に対する基材プレートとマスク板との位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the base material plate and mask board with respect to a fixing jig. 固定治具に対する基材プレートとマスク板との位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the base material plate and mask board with respect to a fixing jig. 固定治具に対する基材プレートとマスク板との位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the base material plate and mask board with respect to a fixing jig. 固定治具に対する基材プレートとマスク板との位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the base material plate and mask board with respect to a fixing jig. 本発明に係る光学フィルタの光学特性を示しグラフである。It is a graph which shows the optical characteristic of the optical filter which concerns on this invention. 光透過率の異なる領域を備えた光学フィルタと、この光学フィルタが多数形成された基材プレートを示す斜視図である。It is a perspective view which shows the optical filter provided with the area | region where light transmittance differs, and the base material plate in which many this optical filter was formed. 本発明に係る光学フィルタを組み込んだ絞り装置の一実施例を示す斜視図である。It is a perspective view which shows one Example of the aperture_diaphragm | restriction apparatus incorporating the optical filter which concerns on this invention. 従来の光学フィルタの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional optical filter. 図7と異なる従来の光学フィルタの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional optical filter different from FIG. 光学フィルタの蒸着方法を示す説明図であり、(a)は通常の基材プレートとマスク板との関係を示し、(b)は本発明に係わる基材プレートとマスク板との関係を示す。It is explanatory drawing which shows the vapor deposition method of an optical filter, (a) shows the relationship between a normal base-material plate and a mask board, (b) shows the relationship between the base-material plate concerning this invention, and a mask board. 基材プレートとマスク板との間隔Lの関係を示す説明図である。It is explanatory drawing which shows the relationship of the space | interval L of a base material plate and a mask board.

符号の説明Explanation of symbols

10 光学フィルタ(NDフィルタ)
11 基材プレート
12 光吸収体膜(光吸収体層)
13 透明誘電体膜(誘電体層)
14 フッ化マグネシウム膜
CX 撥水性皮膜
15 真空蒸着装置
17 蒸着槽
19 被蒸着体
26 固定治具
27 マスク板(27a,27b,27c,27d)
31 開口エリア
10 Optical filter (ND filter)
11 substrate plate 12 light absorber film (light absorber layer)
13 Transparent dielectric film (dielectric layer)
14 Magnesium fluoride film CX Water-repellent coating 15 Vacuum deposition apparatus 17 Deposition tank 19 Deposition body 26 Fixing jig 27 Mask plate (27a, 27b, 27c, 27d)
31 Opening area

Claims (7)

透光性材料から成る基材プレートに光学特性を有する蒸着膜を形成する光学フィルタの製造方法であって、
真空蒸着室(槽)内の所定位置に蒸着素材を収納したるつぼ(素材収納部)と基材プレートとを対向配置し、
基材プレートに第1のマスク板を該基材プレートとマスク板とを略々平行で所定間隔の空間を形成して第1の蒸着処理を施し、次いで上記マスク板と異なるマスキング領域を有する第2のマスク板を上記基材プレートとの間に略々平行で所定間隔の空間を形成して第2の蒸着処理を施し、上記基材プレート上に複数の厚さの異なる皮膜層を形成することを特徴とする光学フィルタの製造方法。
An optical filter manufacturing method for forming a deposited film having optical characteristics on a base plate made of a light-transmitting material,
Place the crucible (material storage part) that stores the vapor deposition material in a predetermined position in the vacuum evaporation chamber (tank) and the base plate,
A first mask plate is formed on the base plate, and the base plate and the mask plate are substantially parallel to each other to form a space having a predetermined interval, and a first deposition process is performed. A second vapor deposition process is performed by forming a space at a predetermined interval between the mask plate and the base plate, and a plurality of coating layers having different thicknesses are formed on the base plate. An optical filter manufacturing method characterized by the above.
前記第1、第2の蒸着処理における基材プレートとマスク板との間に形成する略々平行で所定間隔の空間は、マスク板のマスキング領域の端縁部分に光透過率が徐々に変化するグラデーション域を形成する距離に設定されていることを特徴とする請求項1に記載の光学フィルタの製造方法。   In the substantially parallel and predetermined space formed between the base plate and the mask plate in the first and second vapor deposition processes, the light transmittance gradually changes at the edge portion of the masking area of the mask plate. The method for manufacturing an optical filter according to claim 1, wherein the distance is set to form a gradation area. 前記第1のマスク板と第2のマスク板とはそれぞれに形成するマスキング領域が前記基材プレートに段階的に光透過率の異なる複数の皮膜層を形成するように構成され、この各皮膜層は均一の厚さで均一の光透過率を有し、各皮膜層の境界は光透過率が徐々に変化するグラデーション層が形成されることを特徴とする請求項1又は2に記載の光学フィルタの製造方法。   Each of the first mask plate and the second mask plate is configured such that a masking region formed on each of the first mask plate and the second mask plate forms a plurality of coating layers having different light transmittances on the base plate stepwise. The optical filter according to claim 1, wherein a gradation layer having a uniform thickness and a uniform light transmittance is formed, and a gradation layer in which the light transmittance gradually changes is formed at the boundary of each coating layer. Manufacturing method. 透光性材料から成る基材プレートと、
この基材プレート表面に形成された蒸着膜と、から構成され、
上記蒸着膜は段階的に光透過率の異なる複数の皮膜層で形成され、
この各皮膜層は略均一の厚さで均一の光透過率を有し、
隣接する皮膜層との境界とは光透過率が徐々に変化するグラデーション層で連ねられていることを特徴とする光学フィルタ。
A base plate made of a translucent material;
A vapor-deposited film formed on the surface of the base plate, and
The deposited film is formed of a plurality of coating layers having different light transmittances in stages,
Each coating layer has a uniform light transmittance with a substantially uniform thickness,
An optical filter characterized in that the boundary between adjacent coating layers is connected by a gradation layer in which light transmittance gradually changes.
前記グラデーション層は、前記基材プレート表面に蒸着膜層を形成する際に基材プレートとマスク板との間に略々平行で所定間隔の空間を形成して真空蒸着処理を施すことによって形成されることを特徴とする請求項4に記載の光学フィルタ。   The gradation layer is formed by forming a substantially parallel space at a predetermined interval between the base plate and the mask plate and performing a vacuum evaporation process when forming the vapor deposition film layer on the surface of the base plate. The optical filter according to claim 4. 前記基材プレートはノルボルネン系の樹脂材料がキャスティング加工でシート状に成形されてなる請求項4に記載の光学フィルタ。   The optical filter according to claim 4, wherein the base plate is formed from a norbornene-based resin material in a sheet shape by casting. 露出開口を有する地板と、
この地板に移動自在に支持され前記露出開口を開閉し光量を調整する光量調整手段と、
この光量調整手段と共に前記露出開口に対し進退するNDフィルタとを備えた光量調整装置において、
前記NDフィルタは、プラスチックシートから成る基材プレートと、この基材プレート表面に形成された蒸着材料とから成り、
前記蒸着材料は前記基材プレート表面上に階段状に上下に積層された膜層に形成され複数の領域に分かれ、
それぞれの領域は均一な光透過率を有するとともに、それぞれの領域は異なる光透過率を有する蒸着膜であって、
この各蒸着膜の側端面は各蒸着平面に掛け光透過率が順次減少変化するグラデーション領域を形成して成ることを特徴とする光量調整装置。
A main plate having an exposed opening;
A light amount adjusting means that is movably supported by the base plate and opens and closes the exposure opening to adjust the light amount;
In the light amount adjusting device comprising the light amount adjusting means and an ND filter that advances and retreats with respect to the exposure opening,
The ND filter is composed of a base plate made of a plastic sheet and a deposition material formed on the surface of the base plate,
The vapor deposition material is formed in a film layer that is stacked stepwise on the surface of the base plate and divided into a plurality of regions,
Each region has a uniform light transmittance, and each region is a deposited film having a different light transmittance,
A light amount adjusting device characterized in that the side end face of each vapor deposition film is formed with a gradation region in which the light transmittance is decreased and changed sequentially on each vapor deposition plane.
JP2005043014A 2005-02-18 2005-02-18 Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same Pending JP2006227432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043014A JP2006227432A (en) 2005-02-18 2005-02-18 Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043014A JP2006227432A (en) 2005-02-18 2005-02-18 Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same

Publications (1)

Publication Number Publication Date
JP2006227432A true JP2006227432A (en) 2006-08-31

Family

ID=36988840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043014A Pending JP2006227432A (en) 2005-02-18 2005-02-18 Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same

Country Status (1)

Country Link
JP (1) JP2006227432A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094385A (en) * 2005-08-30 2007-04-12 Canon Electronics Inc Nd filter, diaphragm device having nd filter, and optical apparatus
JP2009007651A (en) * 2007-06-29 2009-01-15 Nisca Corp Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JP2011070150A (en) * 2009-04-14 2011-04-07 Nippon Hoso Kyokai <Nhk> Nd filter, television camera, and method for manufacturing nd filter
JP2012533686A (en) * 2009-07-23 2012-12-27 エムエスゲー リトグラス アクチエンゲゼルシャフト Method for forming a structured coating on a substrate, a coated substrate, and a semi-finished product comprising the coated substrate
JP2015175865A (en) * 2014-03-13 2015-10-05 セイコーエプソン株式会社 Optical component, method for manufacturing optical component, electronic equipment, and traveling object
JP2017526945A (en) * 2014-06-18 2017-09-14 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Metal dielectric optical filter, sensor device, and manufacturing method
WO2018024040A1 (en) * 2016-08-03 2018-02-08 京东方科技集团股份有限公司 Mask plate, mask plate assembly comprising the mask plate, and manufacturing method thereof
US10197716B2 (en) 2012-12-19 2019-02-05 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
US10222523B2 (en) 2012-12-19 2019-03-05 Viavi Solutions Inc. Sensor device including one or more metal-dielectric optical filters
US10378955B2 (en) 2012-12-19 2019-08-13 Viavi Solutions Inc. Spectroscopic assembly and method
CN112647041A (en) * 2020-12-16 2021-04-13 业成科技(成都)有限公司 Coating film correction mask plate and evaporation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323362A (en) * 1991-04-19 1992-11-12 Ulvac Japan Ltd Formation of multilayer film and its forming device
JP2002220656A (en) * 2000-11-22 2002-08-09 Sanyo Electric Co Ltd Mask for vapor deposition and manufacturing method therefor
JP2003022729A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Touch panel switch
JP2004037548A (en) * 2002-06-28 2004-02-05 Nisca Corp Nd filter, its manufacture method and diaphragm device incorporating nd filter
JP2004295015A (en) * 2003-03-28 2004-10-21 Nidec Copal Corp Nd filter and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323362A (en) * 1991-04-19 1992-11-12 Ulvac Japan Ltd Formation of multilayer film and its forming device
JP2002220656A (en) * 2000-11-22 2002-08-09 Sanyo Electric Co Ltd Mask for vapor deposition and manufacturing method therefor
JP2003022729A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Touch panel switch
JP2004037548A (en) * 2002-06-28 2004-02-05 Nisca Corp Nd filter, its manufacture method and diaphragm device incorporating nd filter
JP2004295015A (en) * 2003-03-28 2004-10-21 Nidec Copal Corp Nd filter and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094385A (en) * 2005-08-30 2007-04-12 Canon Electronics Inc Nd filter, diaphragm device having nd filter, and optical apparatus
US8755134B2 (en) 2005-08-30 2014-06-17 Canon Denshi Kabushiki Kaisha ND filter, and iris device and optical apparatus having the same
JP2009007651A (en) * 2007-06-29 2009-01-15 Nisca Corp Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JP2011070150A (en) * 2009-04-14 2011-04-07 Nippon Hoso Kyokai <Nhk> Nd filter, television camera, and method for manufacturing nd filter
JP2012533686A (en) * 2009-07-23 2012-12-27 エムエスゲー リトグラス アクチエンゲゼルシャフト Method for forming a structured coating on a substrate, a coated substrate, and a semi-finished product comprising the coated substrate
US10197716B2 (en) 2012-12-19 2019-02-05 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
US10222523B2 (en) 2012-12-19 2019-03-05 Viavi Solutions Inc. Sensor device including one or more metal-dielectric optical filters
US10378955B2 (en) 2012-12-19 2019-08-13 Viavi Solutions Inc. Spectroscopic assembly and method
US10670455B2 (en) 2012-12-19 2020-06-02 Viavi Solutions Inc. Spectroscopic assembly and method
US10928570B2 (en) 2012-12-19 2021-02-23 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
CN112951862A (en) * 2012-12-19 2021-06-11 唯亚威通讯技术有限公司 Sensor device comprising one or more metal-dielectric filters
US11782199B2 (en) 2012-12-19 2023-10-10 Viavi Solutions Inc. Metal-dielectric optical filter, sensor device, and fabrication method
JP2015175865A (en) * 2014-03-13 2015-10-05 セイコーエプソン株式会社 Optical component, method for manufacturing optical component, electronic equipment, and traveling object
JP2017526945A (en) * 2014-06-18 2017-09-14 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Metal dielectric optical filter, sensor device, and manufacturing method
WO2018024040A1 (en) * 2016-08-03 2018-02-08 京东方科技集团股份有限公司 Mask plate, mask plate assembly comprising the mask plate, and manufacturing method thereof
US10934613B2 (en) 2016-08-03 2021-03-02 Boe Technology Group Co., Ltd. Mask plate, mask plate assembly including mask plate and method for manufacturing same
CN112647041A (en) * 2020-12-16 2021-04-13 业成科技(成都)有限公司 Coating film correction mask plate and evaporation system
CN112647041B (en) * 2020-12-16 2023-06-27 业成科技(成都)有限公司 Coating film correction mask plate and evaporation system

Similar Documents

Publication Publication Date Title
JP2006227432A (en) Manufacturing method of optical filter, and optical filter and light quantity adjusting device using the same
JP5728572B2 (en) Optical filter and optical device
US7230779B2 (en) ND filter and aperture diaphragm apparatus
JP6006718B2 (en) Optical filter, optical device, electronic device, and antireflection composite
US11231533B2 (en) Optical element having dielectric layers formed by ion-assisted deposition and method for fabricating the same
JP2008276112A (en) Nd filter
US20090316262A1 (en) Transmission type polarizing element, and composite polarizing plate using the element
US8665520B2 (en) Neutral density optical filter and image pickup apparatus
JP3692096B2 (en) ND filter, manufacturing method thereof, and diaphragm device incorporating the ND filter
US6842301B2 (en) ND filter and aperture device including the same
JP5058783B2 (en) Optical element and method of manufacturing the optical element
JP2013015827A (en) Nd filter and optical device
JP6867148B2 (en) Optical filter and imaging optical system
JP2006201661A (en) Nd filter, method for producing nd filter and light quantity controller using nd filter
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP4804830B2 (en) Multilayer film forming method and film forming apparatus
US7295391B1 (en) ND filter for aperture device and aperture device comprising ND filter
JP4671410B2 (en) Light aperture device and camera with ND filter with IR cut function
JP6053352B2 (en) Optical filter, optical device, and optical filter manufacturing method.
JP4240458B2 (en) ND filter for light quantity diaphragm, light quantity diaphragm device, camera having the light quantity diaphragm device, and filter manufacturing method
JP2018180430A (en) Optical filter
JP2007316238A (en) Nd filter
JP2005062903A (en) Nd filter and light quantity adjusting apparatus using the same
JP2006078519A (en) Nd filter, light quantity diaphragm device, camera equipped with light quantity diaphragm device
JP5174588B2 (en) Optical filter and optical filter manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A131 Notification of reasons for refusal

Effective date: 20100730

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20100727

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124