JP2006226964A5 - - Google Patents

Download PDF

Info

Publication number
JP2006226964A5
JP2006226964A5 JP2005044427A JP2005044427A JP2006226964A5 JP 2006226964 A5 JP2006226964 A5 JP 2006226964A5 JP 2005044427 A JP2005044427 A JP 2005044427A JP 2005044427 A JP2005044427 A JP 2005044427A JP 2006226964 A5 JP2006226964 A5 JP 2006226964A5
Authority
JP
Japan
Prior art keywords
probe
sample
tip
value
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044427A
Other languages
Japanese (ja)
Other versions
JP5095084B2 (en
JP2006226964A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005044427A priority Critical patent/JP5095084B2/en
Priority claimed from JP2005044427A external-priority patent/JP5095084B2/en
Publication of JP2006226964A publication Critical patent/JP2006226964A/en
Publication of JP2006226964A5 publication Critical patent/JP2006226964A5/ja
Application granted granted Critical
Publication of JP5095084B2 publication Critical patent/JP5095084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

試料の表面形状の測定方法及び装置Method and apparatus for measuring surface shape of sample

本発明は、試料の表面形状の測定方法及び装置に関するものである。一層特に、本発明は、触針式で軟らかい試料の段差や膜厚を高速に測定する際の探針の針圧の制御方法及び装置に関する。   The present invention relates to a method and apparatus for measuring the surface shape of a sample. More particularly, the present invention relates to a probe pressure control method and apparatus for measuring the level difference and film thickness of a stylus type soft sample at high speed.

本明細書において、用語“試料の表面形状”は試料の段差、膜厚、表面粗さの概念を包含するものとする。   In this specification, the term “sample surface shape” includes the concept of the step, film thickness, and surface roughness of the sample.

従来技術による触針式段差計の一例を添付図面の図11に示す。図11において、Aは探針で支点Bに揺動可能に取り付けられた支持体Cの一端に装着され、またこの一端に隣接して探針Aの垂長方向変位を検出する変位センサDが設けられている。変位センサDは探針Aの垂長方向変位に応じて電気信号を発生する差動トランスから成っている。一方、支持体Cの他端には探針Aに針圧を加える針圧発生装置Eが設けられている。針圧発生装置Eは、コイルFと、コイルFの中心から軸方向にずれた位置に配置された高透磁率材のコアGとを備え、コイルFに流す電流の大きさに応じて発生される、高透磁率材のコアGをコイルFの中心へ引き込む力より探針Aを試料に押し当てるように構成されている。そして試料または図1の検出系を走査することで探針Aは試料表面をなぞり、その表面形状に応じて、固定された支点Bのまわりに微小に回転運動し、その変位を差動トランスDで検出して試料の表面形状や段差が測定される。   An example of a stylus type step meter according to the prior art is shown in FIG. 11 of the accompanying drawings. In FIG. 11, A is attached to one end of a support C that is swingably attached to a fulcrum B by a probe, and a displacement sensor D that detects displacement in the vertical direction of the probe A is adjacent to this end. Is provided. The displacement sensor D comprises a differential transformer that generates an electrical signal in accordance with the displacement of the probe A in the vertical direction. On the other hand, a needle pressure generator E that applies a needle pressure to the probe A is provided at the other end of the support C. The needle pressure generator E includes a coil F and a core G of a high permeability material arranged at a position shifted in the axial direction from the center of the coil F, and is generated according to the magnitude of the current flowing through the coil F. The probe A is configured to be pressed against the sample by a force that pulls the core G of the high permeability material into the center of the coil F. Then, by scanning the sample or the detection system of FIG. 1, the probe A traces the surface of the sample, and finely rotates around the fixed fulcrum B according to the shape of the surface. And the surface shape and level difference of the sample are measured.

また、測定試料の両面に、測定試料を挟んで二つの触針の先端を接触させ、二つの触針の先端を相互に直接接触させた場合との触針の移動距離の差により測定試料の膜厚を測定するようにした触針式膜厚測定技術は従来公知である(特許文献1参照)。   Also, the tip of the two styluses are brought into contact with both sides of the measurement sample with the measurement sample sandwiched between them, and the difference in the movement distance of the stylus from the case where the tips of the two styluses are in direct contact with each other is measured. A stylus type film thickness measurement technique for measuring a film thickness is conventionally known (see Patent Document 1).

さらに、軸受けを中心として揺動自在のアームの端部に被測定物と接触する触針本体を設け、触針本体と被測定物との接触によって生じるアームの位置を検出して触針本体の変位量を求めるように構成した形状測定装置も公知である(特許文献2参照)。また、弾性ヒンジを介してアームをフレームに回動可能に支持し、アームの一端に触針を設け、アームの他端に可動プレートを設け、可動プレートを二枚の平行プレート間で移動できるようにし、これらのプレートでブリッジ電極を形成し、可動アームの回動によりブリッジのへ平衡が失われ、これにより触針の先端の変位量を測定するように構成した形状測定装置も公知である(特許文献3参照)。
特開平9−229663号 特許第3401444号 特表平8−502357号
Furthermore, a stylus body that contacts the object to be measured is provided at the end of the arm that can swing around the bearing, and the position of the arm that is generated by the contact between the stylus body and the object to be measured is detected. A shape measuring device configured to obtain a displacement amount is also known (see Patent Document 2). In addition, the arm is supported rotatably on the frame via an elastic hinge, a stylus is provided at one end of the arm, a movable plate is provided at the other end of the arm, and the movable plate can be moved between two parallel plates. In addition, a shape measuring device is also known in which a bridge electrode is formed by these plates, and the balance to the bridge is lost by the rotation of the movable arm, thereby measuring the displacement of the tip of the stylus ( (See Patent Document 3).
JP-A-9-229663 Japanese Patent No. 3401444 Special table hei 8-502357

例えばフォトレジストなどの軟らかい試料の測定では、探針の針先に掛かる力すなわち針圧に応じて試料が変形する。かかる力が強いと、段差や膜厚は正しく測定できない。図1に試料の構成すなわちシリコン基板上にレジスト膜が形成され、シリコン基板上のレジスト膜の段差を探針で走査している状態を示している。図2には探針の針先に加える力と段差測定値との関係例を示し、2mgfでの測定値との差を縦軸にプロットしている。探針の針先に加える力が強いとレジスト膜が変形し、膜厚測定値が小さくなることが分かる。つまり、軟らかい試料では針先の力を小さくしないと正しい段差が得られない。   For example, in the measurement of a soft sample such as a photoresist, the sample is deformed in accordance with the force applied to the tip of the probe, that is, the needle pressure. If this force is strong, the step and film thickness cannot be measured correctly. FIG. 1 shows a configuration of a sample, that is, a state where a resist film is formed on a silicon substrate and a step of the resist film on the silicon substrate is scanned with a probe. FIG. 2 shows an example of the relationship between the force applied to the tip of the probe and the step measurement value, and the difference from the measurement value at 2 mgf is plotted on the vertical axis. It can be seen that if the force applied to the tip of the probe is strong, the resist film is deformed and the measured film thickness becomes small. That is, in a soft sample, a correct step cannot be obtained unless the force of the needle tip is reduced.

一方、段差計が使用される現場では、膜厚検査時間を短縮するために、測定時間の短縮が要求され、走査速度を大きくしないといけない。例えば0.1mm/秒が要求される。図3には探針の針圧0.15mgf、探針の走査速度0.1mm/秒での測定結果を示している。試料は図2に示す構成と同じで、レジスト膜の厚さは約2μmである。横軸は時間で、60msで走査を開始し、760msで70μm走査が進んでいる。380ms相当の位置にレジスト膜の端すなわち段差があり、そこから変位が増しているが、探針を押さえる力が弱いために膜厚以上に針が飛び上がり、その後、戻ってもレジスト膜表面で針が再び跳ね上がり、その結果、振動を繰返し、その振動がなかなか収まらない。従って、振動が収まるまで待たねばならず、無駄に時間を浪費する。探針の針圧0.12mgf、探針の走査速度0.1mm/秒にした場合には、振動が収まるのに1000ms要し、その間に100μm走査が進むことになる。時間の無駄の他に、100μm以上の無駄に大きいパターンを用意する必要も生じる。また、端に近いところでの膜厚や表面形状を測定できないという問題も生じる。   On the other hand, in the field where a step meter is used, in order to shorten the film thickness inspection time, it is required to shorten the measurement time, and the scanning speed must be increased. For example, 0.1 mm / second is required. FIG. 3 shows the measurement results at a probe needle pressure of 0.15 mgf and a probe scanning speed of 0.1 mm / second. The sample is the same as that shown in FIG. 2, and the thickness of the resist film is about 2 μm. The horizontal axis is time, scanning starts at 60 ms, and 70 μm scanning progresses at 760 ms. At the position corresponding to 380 ms, there is an end of the resist film, that is, a step, and the displacement is increased from that, but the needle jumps beyond the film thickness because the force to hold the probe is weak, and even after returning, the needle on the resist film surface Jumps up again, and as a result, it repeats vibration and the vibration does not settle easily. Therefore, it is necessary to wait until the vibration is settled, and time is wasted. When the probe pressure is 0.12 mgf and the probe scanning speed is 0.1 mm / second, it takes 1000 ms for the vibration to subside, and the scanning of 100 μm proceeds during that time. In addition to wasting time, it is also necessary to prepare an unnecessarily large pattern of 100 μm or more. In addition, there arises a problem that the film thickness and surface shape near the edge cannot be measured.

そこで、本発明は、探針の針圧を低くして被測定試料の変形を避け、しかも探針の走査速度を高くしても上記の問題を解決して正確な測定を比較的短い時間で行うことのできる試料の表面形状の測定方法及び装置を提供することを目的としている。   Therefore, the present invention avoids the deformation of the sample to be measured by lowering the probe pressure of the probe, and solves the above problem even if the scanning speed of the probe is increased, so that accurate measurement can be performed in a relatively short time. It is an object of the present invention to provide a method and apparatus for measuring the surface shape of a sample that can be performed.

上記の目的を達成するために、本発明の第1の発明によれば、探針を被測定試料の表面に接触させて被測定試料の表面形状を測定する方法において、被測定表面上における探針の垂直方向変位に基いて、探針の速度及び加速度の少なくとも一つをリアルタイムでモニターして、探針のとびを検出し、とびを検出したら探針のとびを抑える力を増して表面形状を測定することを特徴としている。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a method for measuring a surface shape of a sample to be measured by bringing a probe into contact with the surface of the sample to be measured. Based on the vertical displacement of the needle, monitor at least one of the speed and acceleration of the probe in real time to detect the jump of the probe. It is characterized by measuring.

本発明による方法においては、被測定試料は比較的軟らかい材料から成り、探針が軟らかい試料の上に達した時点で探針に加える力を徐々に弱めて、とびを防ぎ、かつ、試料の変形のない状態で表面形状を測定することができる。   In the method according to the present invention, the sample to be measured is made of a relatively soft material, and when the probe reaches the soft sample, the force applied to the probe is gradually weakened to prevent jumping and deformation of the sample. The surface shape can be measured in the absence of any.

探針のとびは、探針の被測定試料の表面に垂直な方向の位置をzとするとき、dz/dtの値が、探針の針圧をF、探針の支点のまわりの慣性モーメントをI、支点から探針の先端までの距離をrとするときのFr/Iに対して予定の範囲内になった時に判断され得る。一例として条件
1.1×Fr/I<dz/dt<0.9×Fr/I
を用いることができる。この場合、dz/dtを1.1×Fr/Iより大きくしたのはこの下限値より小さいと応答速度が悪くなり、また係数はdz/dtを計算する際のノイズの問題で正確な導出が困難であるために導入され得る。代わりに、かかる条件として
z/dt<0.9×Fr/I
を用いてもよい。
When the position of the probe in the direction perpendicular to the surface of the sample to be measured is z, the value of d 2 z / dt 2 indicates that the probe pressure is F and the probe fulcrum is around the fulcrum of the probe. Can be determined when the moment of inertia is within a predetermined range with respect to Fr 2 / I where I is I and the distance from the fulcrum to the tip of the probe is r. Condition as an example
1.1 × Fr 2 / I <d 2 z / dt 2 <0.9 × Fr 2 / I
Can be used. In this case, d 2 z / dt 2 is made larger than 1.1 × Fr 2 / I, and if it is smaller than this lower limit value, the response speed is deteriorated, and the coefficient is noise in calculating d 2 z / dt 2. This problem can be introduced because accurate derivation is difficult. Instead, as such a condition, d 2 z / dt 2 <0.9 × Fr 2 / I
May be used.

また、探針のとびはじめは、探針の被測定試料の表面に垂直な方向の位置をzとするとき、dz/dtの値が設定値より大きくかつdz/dtの値が負であるときに判断され得る。 In addition, when the position of the probe in the direction perpendicular to the surface of the sample to be measured is z, the value of dz / dt is larger than the set value and the value of d 2 z / dt 2 is negative. It can be determined when.

代わりに、探針のとびは、探針の被測定試料の表面に垂直な方向の位置をzとするとき、dz/dtの値が探針の走査速度/2〜走査速度/10より大きくなった時に判断され得る。   Instead, when the position of the probe in the direction perpendicular to the surface of the sample to be measured is z, the value of dz / dt becomes larger than the scanning speed / 2 to the scanning speed / 10 of the probe. It can be judged when.

さらにまた、探針のとびは、探針の被測定試料の表面に垂直な方向の位置をzとするとき、dz/dtの値が探針の走査速度/2〜走査速度/10より大きくしかもdz/dtの値が負となった時に判断してもよい。 Furthermore, the probe skip is such that the value of dz / dt is larger than the probe scanning speed / 2 to the scanning speed / 10, where z is the position in the direction perpendicular to the surface of the sample to be measured. it may be determined when the value of d 2 z / dt 2 becomes negative.

探針の変位のモニターは、電気的又は光学的に行うことができる。   The probe displacement can be monitored electrically or optically.

また、本発明の第2の発明による試料の表面形状の測定装置は、
被測定試料の表面に対して垂直方向に移動可能でしかも被測定試料の表面に沿って相対的に移動可能である探針と;
探針に被測定試料の表面に対して垂直方向に向う針圧を作用させる針圧付加手段と;
探針の垂直方向の変位を検出する検出手段と;
検出手段の出力信号に基き探針のとびを検出すると共に探針のとびの検出に応じて針圧付加手段を制御して探針の針圧を漸減させる制御手段と;
を有することを特徴としている。
A sample surface shape measuring apparatus according to the second invention of the present invention is
A probe that is movable in a direction perpendicular to the surface of the sample to be measured and is relatively movable along the surface of the sample to be measured;
Needle pressure application means for applying a needle pressure in a direction perpendicular to the surface of the sample to be measured to the probe;
Detecting means for detecting the vertical displacement of the probe;
Control means for detecting the skip of the probe based on the output signal of the detection means and controlling the needle pressure applying means in accordance with the detection of the probe jump to gradually decrease the needle pressure of the probe;
It is characterized by having.

制御手段は、探針の垂直方向の変位を検出する検出手段からの探針の垂直方向の変位を表す出力信号に基き逐次探針の速度及び(又は)加速度を計算し、得られた探針の加速度の値が予定の負の設定値を超えた時、針圧付加手段に針圧低減信号を供給して針圧を漸減させるように構成したコンピュータ装置を備え得る。   The control means sequentially calculates the velocity and / or acceleration of the probe based on the output signal representing the vertical displacement of the probe from the detection means for detecting the vertical displacement of the probe, and the obtained probe When the acceleration value exceeds a predetermined negative set value, a computer device configured to gradually decrease the needle pressure by supplying a needle pressure reduction signal to the needle pressure adding means may be provided.

探針の加速度の設定値は、探針の針圧をF、探針の支点のまわりの慣性モーメントをI、支点から探針の先端までの距離をrとするときFr/Iに基いて決められ得る。 The set value of the probe acceleration is based on Fr 2 / I where F is the needle pressure of the probe, I is the moment of inertia around the fulcrum of the probe, and r is the distance from the fulcrum to the tip of the probe. Can be decided.

また、制御手段は、探針の垂直方向の変位を検出する検出手段からの探針の垂直方向の変位を表す出力信号に基き逐次探針の速度及び(又は)加速度を計算し、得られた探針の速度が設定値より大きくかつ加速度の値が負の値である時、針圧付加手段に針圧低減信号を供給して針圧を漸減させるように構成したコンピュータ装置を備えてもよい。   Further, the control means sequentially calculates the velocity and / or acceleration of the probe based on the output signal indicating the vertical displacement of the probe from the detection means for detecting the vertical displacement of the probe. A computer device configured to gradually decrease the needle pressure by supplying a needle pressure reduction signal to the needle pressure adding means when the probe speed is larger than the set value and the acceleration value is a negative value may be provided. .

探針の速度の設定値は、探針の針圧をF、探針の支点のまわりの慣性モーメントをI、支点から探針の先端までの距離をrとするときFr/Iに基いて決められ得る。一例として、探針の速度の設定値は、探針の走査速度の1/2〜1/10であり得る。 The set value of the probe speed is based on Fr 2 / I where F is the needle pressure of the probe, I is the moment of inertia around the fulcrum of the probe, and r is the distance from the fulcrum to the tip of the probe. Can be decided. As an example, the setting value of the probe speed may be 1/2 to 1/10 of the scanning speed of the probe.

以上説明してきたように、本発明の第1の発明によれば、被測定表面上における探針の垂直方向変位に基いて、探針の速度及び加速度の少なくとも一つをリアルタイムでモニターして、探針のとびを検出し、とびを検出したら探針のとびを抑える力を増すように構成したことにより、従来技術では探針がとんで測定できない場合でも、針先の変位、速度、加速度をモニターしながら針先の力を制御しているので、探針のとびを小さく、または、とばないようにすることができ、試料の表面形状を短時間で正確に測定できるようになる。   As described above, according to the first aspect of the present invention, based on the vertical displacement of the probe on the surface to be measured, at least one of the probe speed and acceleration is monitored in real time, By detecting the skip of the probe and increasing the force to suppress the skip of the probe once it has been detected, the tip displacement, speed, and acceleration can be measured even when the probe cannot be measured with the conventional technology. Since the force of the probe tip is controlled while monitoring, the skip of the probe can be reduced or not skipped, and the surface shape of the sample can be accurately measured in a short time.

また、本発明の第2の発明によれば、探針の垂直方向の変位を検出する検出手段の出力信号に基き探針のとびを検出すると共に探針のとびの検出に応じて針圧付加手段を制御して探針の針圧を漸減させる制御手段を設けたことにより、探針のとびを小さく、または、とばないようにすることができ、試料の表面形状を短時間で正確に測定できる試料の表面形状の測定装置を提供することができる。   According to the second aspect of the present invention, the probe jump is detected based on the output signal of the detecting means for detecting the vertical displacement of the probe, and the needle pressure is applied according to the detection of the probe jump. By providing control means to control the means and gradually reduce the probe needle pressure, the probe jump can be reduced or skipped, and the surface shape of the sample can be accurately measured in a short time. An apparatus for measuring the surface shape of a sample that can be measured can be provided.

以下添付図面の図4〜図10を参照して本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図4には、本発明による測定装置の一つの実施の形態を示し、1は固定支持台で、その上に支点2を介して揺動支持棒3が設けられ、この揺動支持棒3の一端には探針4が下向きに取り付けられている。探針4はその先端はダイヤモンドで構成され、また先端の半径は一般的には2.5μmであるが、それより大きくても小さくてもよい。また、揺動支持棒3の他端には探針4に垂直下方の力すなわち針圧を加える力を発生する針圧付加手段5が設けられている。この針圧付加手段5は図示例では、揺動支持棒3の他端から上方へのびる作動子5aと作動子5aを受ける穴をもつコイル5bとで構成されている。揺動支持棒3の一端における探針4より支点2側において、探針4の垂直方向の変位を検出する検出手段6が設けられ、この検出手段6は揺動支持棒3に一端を固定した測定子6aと測定子6aの他端すなわち自由端を受けるコイル6bとを備えた差動トランスで構成されている。   FIG. 4 shows one embodiment of a measuring apparatus according to the present invention. Reference numeral 1 denotes a fixed support base, on which a swing support bar 3 is provided via a fulcrum 2, and the swing support bar 3 A probe 4 is attached to one end downward. The tip of the probe 4 is made of diamond, and the radius of the tip is generally 2.5 μm, but it may be larger or smaller. Further, the other end of the swing support bar 3 is provided with a needle pressure applying means 5 for generating a vertically downward force, ie, a force for applying a needle pressure to the probe 4. In the illustrated example, the needle pressure applying means 5 is composed of an actuator 5a extending upward from the other end of the swing support rod 3 and a coil 5b having a hole for receiving the actuator 5a. On the fulcrum 2 side of the probe 4 at one end of the swing support rod 3, there is provided detection means 6 for detecting the vertical displacement of the probe 4. One end of the detection means 6 is fixed to the swing support rod 3. The measuring element 6a and the other end of the measuring element 6a, that is, a coil 6b that receives the free end, are configured as a differential transformer.

また、図4において7は試料ホルダーで、その上に走査ステージ8が探針4に対して予定の操作速度で移動できるように設けられ、この走査ステージ8上には被測定試料9が取り付けられ得る。   In FIG. 4, reference numeral 7 denotes a sample holder, on which a scanning stage 8 is provided so as to move at a predetermined operation speed with respect to the probe 4, and a sample 9 to be measured is attached on the scanning stage 8. obtain.

針圧付加手段5及び探針4の垂直方向の変位を検出する検出手段6は制御手段10に接続され、この制御手段は検出手段6からの出力信号に基いて針圧付加手段5の動作を制御するように構成されている。なお、図4の装置において試料9を固定して探針側を走査するように構成することも可能である。   The detection means 6 for detecting the displacement in the vertical direction of the needle pressure applying means 5 and the probe 4 is connected to the control means 10, which controls the operation of the needle pressure adding means 5 based on the output signal from the detection means 6. Configured to control. Note that the apparatus shown in FIG. 4 may be configured such that the sample 9 is fixed and the probe side is scanned.

図5には図4に示す制御手段10の構成の一例を示している。図5において、11はコンピュータ装置で、このコンピュータ装置11はアナログ入出力ボード12を介して、針圧付加手段5におけるコイル5bに接続された針圧付加手段用電源13及び走査ステージ8の駆動装置14にそれぞれ接続されている。また、コンピュータ装置11は、汎用インターフェースボード15を介してデジタルロックイン増幅器及び発振器を備えた検出回路16に接続され、この検出回路16は検出手段6を成す差動トランスの一次コイル及び二次コイルに接続されている。   FIG. 5 shows an example of the configuration of the control means 10 shown in FIG. In FIG. 5, reference numeral 11 denotes a computer device. The computer device 11 is connected to the needle pressure applying means power supply 13 connected to the coil 5 b in the needle pressure applying means 5 and the drive device for the scanning stage 8 via the analog input / output board 12. 14 respectively. The computer device 11 is connected to a detection circuit 16 having a digital lock-in amplifier and an oscillator via a general-purpose interface board 15, and the detection circuit 16 is a primary coil and a secondary coil of a differential transformer constituting the detection means 6. It is connected to the.

このように構成した図示装置の動作について以下説明する。
差動トランスの二次コイルの出力電圧は、検出回路16で計測され、検出回路16は計測した出力電圧に相応したのアナログ信号をアナログ入出力ボード12を介してコンピュータ装置11に入力し、コンピュータ装置11はこのアナログ信号に基き、既知の感度係数を用いて探針4の針先の垂直方向変位に換算する。これをミリ秒間隔で逐次、繰返し行うことで、ほぼリアルタイムで変位をモニターする。またコンピュータ装置11は、探針4の針先の垂直方向変位を時間徴分して針先のz方向(試料表面に垂直方向)の速度、加速度を算出し、こうして得られた速度及び加速度もリアルタイムでモニターし、探針4のとびを判断する。
The operation of the illustrated apparatus configured as described above will be described below.
The output voltage of the secondary coil of the differential transformer is measured by the detection circuit 16, and the detection circuit 16 inputs an analog signal corresponding to the measured output voltage to the computer device 11 via the analog input / output board 12. Based on the analog signal, the device 11 converts the tip of the probe 4 into a vertical displacement using a known sensitivity coefficient. By repeating this process sequentially at millisecond intervals, the displacement is monitored almost in real time. Further, the computer 11 calculates the velocity and acceleration in the z direction (perpendicular to the sample surface) of the probe tip by time-division of the vertical displacement of the probe tip of the probe 4, and the velocity and acceleration thus obtained are also calculated. Monitor in real time to determine the skip of the probe 4.

探針4のとびを判断する方法を以下に示す。探針4の針先での力すなわち針圧をF、探針4の針先の垂直方向位置をz、支点2のまわりの慣性モーメントをI、支点2から探針4の針先までの距離をrとして、支点の周りの運動方程式を変形すると次の式を得る。
F=I/rz/dt (1)
即ち、力Fが働く場での、質量がI/rの質点の運動とみなすことができる。従って、探針4が跳んでいる間は重力場での質点の自由落下運動とみなすことができ、Fが一定ならdz/dtも一定になる。つまり図3におけるzの軌跡は放物線になっている。
A method for determining the skip of the probe 4 will be described below. The force at the tip of the probe 4, that is, the needle pressure, is F, the vertical position of the probe tip 4 is z, the moment of inertia around the fulcrum 2 is I, and the distance from the fulcrum 2 to the tip of the probe 4 Let r be r and the equation of motion around the fulcrum is transformed to give
F = I / r 2 d 2 z / dt 2 (1)
That is, it can be regarded as a motion of a mass point having a mass of I / r 2 in a field where a force F is applied. Therefore, while the probe 4 is jumping, it can be regarded as a free fall motion of the mass point in the gravitational field, and if F is constant, d 2 z / dt 2 is also constant. That is, the locus of z in FIG. 3 is a parabola.

なお、探針4の針先のz方向の初速(針先が試料表面から離れるときの速さ)をvとし、支点2で支えられた可動部分の重心が支点に近いと仮定すると、放物線の到達高さh、針先が飛んでいる時間(針先が試料表面を離れた後、再び表面に戻るまでの時間)2tはそれぞれ次式で表わすことができ、可動部分の設計に有用である。
h=Iv /2r (2)
2t=2Iv/rF (3)
即ち、Iを小さくし、rを大きくすることでhや2tを小さくできることを示し、その際の依存性も示している。また、vは走査の速さに比例するので、走査速さととびの関係も分かる。
Assuming that the initial velocity in the z direction of the probe tip of the probe 4 (the speed at which the probe tip moves away from the sample surface) is v 0 and the center of gravity of the movable part supported by the fulcrum 2 is close to the fulcrum, a parabola 2t 0 can be expressed by the following formulas, and is useful for designing the movable part: time to reach h, time when the needle tip flies (time until the needle tip returns to the surface after leaving the sample surface) It is.
h = Iv 0 2 / 2r 2 F (2)
2t 0 = 2Iv 0 / r 2 F (3)
That is, to reduce the I, indicate that can reduce the h and 2t 0 by increasing the r, also shows the dependence of the time. Further, since v 0 is proportional to the scanning speed, the relationship between the scanning speed and the jump is also known.

上記のように針が飛んでいる間はdz/dtは負の一定値になる。図6に図3のデータの時間微分(dz/dt)を示す。A−A’間、B−B’間、C−C’間、...でdz/dtが負のほぼ一定値になっており、それらのところで針が飛んでいることを示している。 While the needle is flying as described above, d 2 z / dt 2 becomes a negative constant value. FIG. 6 shows the time differentiation (dz / dt) of the data of FIG. AA ′, BB ′, CC ′,. . . D 2 z / dt 2 is a negative and substantially constant value, indicating that the needle is flying at those points.

探針の飛びをd2z/dt2 の値で判断する場合には、式(1)で決まる値 F r2 / I になったかどうかで探針の飛びを判断する。d2z/dt2 の値をモニターしながら、例えば、不等式
1.1 × F r2 / I < d2z/dt2 < 0.9 × F r2 / I
を満たすかどうかで判断する(Fは負の値である)。1.1及び0.9の係数を掛けた理由は、後述のようにノイズの問題で正確なd2z/dt2 の導出が困難なためで、不等式により範囲を限定した。
When the probe jump is determined by the value of d 2 z / dt 2 , the probe jump is determined based on whether or not the value F r 2 / I determined by Equation (1) has been reached. While monitoring the value of d 2 z / dt 2 , for example, the inequality
1.1 × F r 2 / I <d 2 z / dt 2 <0.9 × F r 2 / I
(F is a negative value). The reason for multiplying the coefficients of 1.1 and 0.9 is that it is difficult to derive accurate d 2 z / dt 2 due to noise as described later, and the range was limited by inequality.

本来、d2z/dt2 はF r2 / I より小さくはなり得ないので、例えば次式で探針の飛びを判断することも可能である。
d2z/dt2 < 0.9 × F r2 / I
zの測定値はノイズを含むので、d2z/dt2 を正確に導出するには、ノイズを除去するように移動平均などの処理が必要であり、それを行うには多くのデータ数が必要となり、その分の測定に時間が余計にかかり、とびの判断に時間を要する。また、場合によっては、この方法では上の段から下の段に降りるときにも「とんだ」と判断するが、その場合には力を増す必要はない。つまり、必要がないときにも、力を増してしまう場合がある。
Originally, d 2 z / dt 2 cannot be smaller than F r 2 / I. Therefore, for example, the jump of the probe can be determined by the following equation.
d 2 z / dt 2 <0.9 × F r 2 / I
Since the measured value of z includes noise, in order to accurately derive d 2 z / dt 2 , a process such as moving average is required to remove the noise, and a large amount of data is required to do so. It is necessary, and it takes extra time to measure it, and it takes time to make a jump. In some cases, this method also determines that “stop” when descending from the upper level to the lower level, but in that case, it is not necessary to increase the force. In other words, it may increase power even when it is not necessary.

飛び始めを判断するには、dz/dtをモニターしながら針圧Fで決まる値(式(1)参照)になったかどうかで判断できる。ところでdz/dtを短時間で(少ない収集データ数で)正確に求めることはノイズが伴うため困難であり、正確に求めるには収集データ数を多くする必要があるので時間を要し、飛び始めの判断がその分遅れる。また計測器の測定時定数の問題でzの急速な変化の正確な測定は困難である。そのような場合には、図6からも分かるように、「dz/dtがある値より大きく」、かつ、「dz/dtが負である」ときに「飛び始め」と判断することができる。 The start of flight can be determined by determining whether or not the value determined by the needle pressure F (see formula (1)) is reached while monitoring d 2 z / dt 2 . By the way, it is difficult to accurately obtain d 2 z / dt 2 in a short time (with a small number of collected data) due to noise, and it takes time because it is necessary to increase the number of collected data to obtain accurately. The decision to start flying is delayed by that amount. Also, it is difficult to accurately measure the rapid change of z due to the measurement time constant of the measuring instrument. In such a case, as can be seen from FIG. 6, when “dz / dt is greater than a certain value” and “d 2 z / dt 2 is negative”, it is determined as “start to fly”. Can do.

このように、「dz/dtがある値より大きく」、かつ、「dz/dtが負である」ときに「飛び始め」と判断する場合には、とびを短時間で判断でき、試料の上の段から下の段に降りるときには「力の制御が必要なとび」とは判断しない。正確には、とんだことを判断するわけではなく、とぶことが分かっている計測(式(2)、(3)より力と走査速度からとびの大きさが分かる。探針の針先が試料表面から離れるときの速さv0は探針の針先と試料との接触角度にもよるが走査速度と同程度の値である)において、どの時点で力の制御を開始するかを判断する方法である。 As described above, when “dz / dt is greater than a certain value” and “d 2 z / dt 2 is negative” and “jump start” is determined, the jump can be determined in a short time, When descending from the upper stage to the lower stage of the sample, it is not judged that “the force needs to be controlled”. Exactly, it is not a judgment that it is jumping, and the magnitude of the jump is known from the force and the scanning speed based on the measurements that are known to jump (formulas (2) and (3)). (The speed v 0 when moving away from the head depends on the contact angle between the tip of the probe and the sample, but is the same value as the scanning speed). It is.

試料の上の段にさしかかるとき、dz/dtは走査速さと同程度になる。そして、探針の飛びが生じると、dz/dtが前述の値になるのだが、値の正確な導出に時間がかかるため、値ではなく符号だけで判断する。即ち、「dz/dtが走査速度と同程度(正の値)」かつ「dz/dtが負」になったときに、力の制御を開始すればよい。試料の平らの場所と、上の段にさしかかる場所とでは、dz/dtの値が桁違いに異なるので、判断は容易である。また、上記の「dz/dtが走査速度と同程度(正の値)」とは、例えば「走査速さの数分の1程度」でもよい。従って、例えば、
走査速度/2 < dz/dt かつ dz/dt < 0
で判断してもよい。さらには、「走査速度/2 < dz/dt」を満たした後、「d2z/dt2 < 0」を満たすまでの時間は実際には十分短い(図7の例では10から20msであり、その間に進む走査距離は1から2μmと非常に小さい)ので、
走査速度/2 < dz/dt
で判断してもよい。
When reaching the upper stage of the sample, dz / dt is approximately the same as the scanning speed. When the probe jumps, d 2 z / dt 2 becomes the aforementioned value. However, since it takes time to accurately derive the value, the determination is made only by the sign, not the value. That is, force control may be started when “dz / dt is approximately the same as the scanning speed (positive value)” and “d 2 z / dt 2 is negative”. Since the dz / dt value differs by an order of magnitude between the flat place of the sample and the place approaching the upper stage, the judgment is easy. Further, the above-mentioned “dz / dt is about the same as the scanning speed (positive value)” may be, for example, “about a fraction of the scanning speed”. So, for example,
Scan speed / 2 <dz / dt and d 2 z / dt 2 <0
You may judge by. Furthermore, the time from when “scanning speed / 2 <dz / dt” is satisfied to when “d 2 z / dt 2 <0” is satisfied is actually sufficiently short (in the example of FIG. 7, it is 10 to 20 ms). The scanning distance that travels between them is very small (1 to 2 μm)
Scanning speed / 2 <dz / dt
You may judge by.

このようにしてdz/dt、dz/dtのモニタリングから探針4が飛び始めたと判断したら、探針4を押さえる力を発生させている針圧付加手段5におけるコイル5bに流す電流を増加させ、力を増大して探針4の飛びを小さくする。この操作は、例えば図5に示す制御手段において、コンピュータ装置11からアナログ入出力ボード12を介して針圧付加手段用電源13にアナログ制御信号を供給し、それにより針圧付加手段用電源13は針圧付加手段5におけるコイル5bへの電流を増加させ、作動子5aを引く力を強めることにより行われ得る。この場合、探針4の針先の軌跡は式(1)、(2)及び(3)に従う。そして振幅が小さくなりながら振動を繰り返した後、やがて探針4の針先のz方向の値は試料表面に対して静止する。力を増したことで、この静止までの時間を短くすることができる。 When it is determined that the probe 4 has started to fly from the monitoring of dz / dt and d 2 z / dt 2 in this way, the current flowing through the coil 5b in the needle pressure applying means 5 that generates a force for pressing the probe 4 is supplied. Increase the force to reduce the flying of the probe 4. For example, in the control means shown in FIG. 5, an analog control signal is supplied from the computer 11 to the needle pressure applying means power supply 13 via the analog input / output board 12 so that the needle pressure adding means power supply 13 is This can be done by increasing the current to the coil 5b in the needle pressure applying means 5 and strengthening the force that pulls the actuator 5a. In this case, the trajectory of the probe tip of the probe 4 follows the equations (1), (2), and (3). Then, after repeating the vibration while the amplitude is reduced, the value in the z direction of the probe tip of the probe 4 eventually stops with respect to the sample surface. By increasing the power, the time to rest can be shortened.

ところで試料が比較的軟らかい場合には、力が大きいままでは試料表面がマイナスz方向に変形した状態となるため、力を元の小さい値に戻す必要がある。しかし、急激に力を小さくすると試料の弾性や、支点2から探針4までの揺動支持棒3の部分の弾性により、探針4の針先は再び跳ね上がり、試料表面から離れ、振動が発生する。これを避けるために力を徐々に弱める必要がある。そのため本発明では、コンピュータ装置11に組み込まれるプログラムを用いて、予定の減衰特性で発生する力を減衰させるようなアナログ制御信号を針圧付加手段用電源13に供給するようにされている。   If the sample is relatively soft, the surface of the sample is deformed in the minus z direction if the force remains large, so the force needs to be returned to the original small value. However, if the force is suddenly reduced, the tip of the probe 4 jumps up again due to the elasticity of the sample and the elasticity of the rocking support rod 3 from the fulcrum 2 to the probe 4, and it is separated from the sample surface, generating vibration. To do. To avoid this, it is necessary to gradually weaken the force. Therefore, in the present invention, an analog control signal for attenuating the force generated with a predetermined attenuation characteristic is supplied to the power supply 13 for the stylus pressure applying means by using a program incorporated in the computer device 11.

図7に制御と測定結果の例を示す。
図3と同じ試料において、探針4に加える力を0.15mgf、走査速度を0.1mm/sという同じ条件で測定を開始し、2msごとにz、dz/dt、dz/dtをモニターし、dz/dt>5×10−5mm/ms、かつ、dz/dt<0を満たしたときに、針圧付加手段用電源13から針圧付加手段5におけるコイル5bへ流す電流を増加させ、探針4に加える力を1.8mgfに増大した。このときの時間は図7の横軸で約380msである。その後、160msの間、その力を保っている。そして、その後、40msかけて一定の割合で電流値を下げ、図の横軸580msで探針4に加える力を0.15mgf戻している。これにより探針4の飛びを小さく押さえて、飛んでいる時間を短くし、時間の無駄を省き、かつ、試料の端により近い場所での膜厚、段差測定が可能になった。
FIG. 7 shows an example of control and measurement results.
In the same sample as in FIG. 3, measurement was started under the same conditions of 0.15 mgf applied to the probe 4 and 0.1 mm / s scanning speed, and z, dz / dt, d 2 z / dt 2 every 2 ms. When dz / dt> 5 × 10 −5 mm / ms and d 2 z / dt 2 <0 are satisfied, the power supply 13 for the needle pressure applying means 5 is switched to the coil 5 b in the needle pressure adding means 5. The flowing current was increased, and the force applied to the probe 4 was increased to 1.8 mgf. The time at this time is about 380 ms on the horizontal axis of FIG. After that, the power is maintained for 160ms. Thereafter, the current value is decreased at a constant rate over 40 ms, and the force applied to the probe 4 is returned by 0.15 mgf on the horizontal axis 580 ms in the figure. As a result, the flying of the probe 4 is suppressed to be small, the flying time is shortened, the time is wasted, and the film thickness and step difference can be measured at a location closer to the end of the sample.

他の制御、測定方法としては次の方法がある。
試料の段差部分でも探針4がとばない程度の強い力で測定を開始し、探針4の針先が軟らかい試料の上に来たら(通常、段差は予めある程度は分かっているので、zのモニタリングにより判断する)力を徐々に弱める方法である。
Other control and measurement methods include the following methods.
Measurement is started with a strong force that does not cause the probe 4 to stop even at the step portion of the sample, and when the tip of the probe 4 comes on the soft sample (usually, the step is known to some extent, z This is a method of gradually weakening the power.

走査速度を0.1mm/s、探針4の針先半径を2.5μm、試料上の段差を2μmとした場合では、探針4に加える力を1mgfとすると、探針4はほとんど飛ばなかったので、探針4に加える力を1mgf程度で開始し、試料の上の段(軟らかい試料)に来たら徐々に例えば0.15mgfまで弱めればよい。   When the scanning speed is 0.1 mm / s, the tip radius of the probe 4 is 2.5 μm, and the step on the sample is 2 μm, the probe 4 hardly flies if the force applied to the probe 4 is 1 mgf. Therefore, the force applied to the probe 4 is started at about 1 mgf, and when it reaches the upper stage (soft sample) of the sample, it may be gradually reduced to, for example, 0.15 mgf.

探針4の針先が試料の上の段に来たかどうかの判断は、試料の上の段に上がる際にdz/dtが急激に大きくなるので、dz/dtをモニタリングすることでも可能である。   Whether the tip of the probe 4 has reached the upper stage of the sample can be determined by monitoring dz / dt because dz / dt rapidly increases as it rises to the upper stage of the sample. .

以下、実施例について具体的に説明する。コンピュータ装置11による検出回路16からのアナログ信号(変位データ)の取り込みと針圧付加手段用電源13及び走査ステージ8の駆動装置14へのアナログ信号の出力(針圧付加手段用電源13の制御と走査ステージ8の制御)は2msごとに行った。針圧付加手段用電源13の応答時間は50μs、針圧付加手段5におけるコイル5bの自己インダクタンスは1mHのオーダーであり、コイル5b内のコアすなわち作動子5aにはパーマロイPBを用いた。検出手段6すなわち差動トランスの駆動周波数は5kHz、検出手段6におけるロックイン増幅器のローパスフィルターの時定数は3ms、ロックイン増幅器内部のデータメモリヘの取り込み時間間隔は1msとし、測定終了後に変位のデジタルデータを汎用インターフェースボード15を介してコンピュータ装置11に取り込んだ。リアルタイムのモニター、制御はアナログ信号で行い、最終的な表面形状のデータは精度の高いデジタルデータを採用した。   Examples will be specifically described below. Taking in an analog signal (displacement data) from the detection circuit 16 by the computer 11 and outputting an analog signal to the power supply 13 for the needle pressure application means and the drive device 14 for the scanning stage 8 (control of the power supply 13 for the needle pressure addition means) The control of the scanning stage 8) was performed every 2 ms. The response time of the needle pressure applying means power supply 13 is 50 μs, the self-inductance of the coil 5b in the needle pressure applying means 5 is on the order of 1 mH, and a permalloy PB is used for the core in the coil 5b, that is, the actuator 5a. The driving frequency of the detecting means 6, that is, the differential transformer is 5 kHz, the time constant of the low-pass filter of the lock-in amplifier in the detecting means 6 is 3 ms, the time interval for taking in the data memory inside the lock-in amplifier is 1 ms, The digital data was taken into the computer device 11 via the general-purpose interface board 15. Real-time monitoring and control were performed using analog signals, and the final surface shape data was digital data with high accuracy.

図3のデータで、「谷の部分」(例えば490ms辺り)が下がりきっていないのは、検出回路16におけるロックイン増幅器のローパスフィルターの時定数の問題で、変位の時間変化が大きい場合には計測器による値が実際の変位に追随していない。このことは図7でも同じである。しかし、実際の測定ではmsオーダーの追随は必要ないので、問題はない。図7で段差測定に用いるのは横軸600ms以上の十分に追随している平らな部分である。 In the data of FIG. 3, the “valley part” (for example, around 490 ms) is not lowered due to the problem of the time constant of the low-pass filter of the lock-in amplifier in the detection circuit 16 when the time change of the displacement is large. The value by the measuring instrument does not follow the actual displacement. This is the same in FIG. However, since there is no need to follow ms order in actual measurement, there is no problem. In FIG. 7, the level difference measurement uses a sufficiently flat portion that follows the horizontal axis of 600 ms or more.

ところで、本発明は、断面形状が垂直である試料の段差に限らず、テーパー状の段差をもつ試料にも同様に適用できる。また探針の針先の角度は60度であるが、先端半径Rは標準的には2.5μmであり、これより小さい例えば0.25μmのものもあれば、逆に大きいものでよい。   By the way, the present invention is not limited to a sample step having a vertical cross-sectional shape, and can be similarly applied to a sample having a tapered step. The angle of the tip of the probe is 60 degrees, but the tip radius R is typically 2.5 μm, and may be smaller than this, for example, 0.25 μm, or conversely larger.

段差、形状、針先端半径により「とび方」は変わるが、正確には、「走査速度」と「探針の針先が試料表面から離れるときのz方向の速さv0」の関係は当然変わることになる。例えばRが大きければ、同じ走査速度でもv0 は小さくなる。 The “how to jump” changes depending on the step, shape, and needle tip radius, but the relationship between “scanning speed” and “speed in the z direction when the tip of the probe moves away from the sample surface v 0 ” Will change. For example, if R is large, v 0 becomes small even at the same scanning speed.

比較例として、試料上にスプレー式絶縁膜で段差形成し、段差は約20μmであり、探針4の針先の半径は0.05 mm程度であり、また針先はSUS304を使用した。走査速度は0.67 mm/sとし、探針の針先に加える力は0.25 mgfとした。その測定結果を図8に示す。条件が変わればとび方も変わることが認められ、飛びの形態は主に走査速度と探針の針先に加える力に依存している。すなわち走査速度が大きいので、とびは大きい。   As a comparative example, a step was formed on the sample with a spray-type insulating film, the step was about 20 μm, the radius of the tip of the probe 4 was about 0.05 mm, and the tip was made of SUS304. The scanning speed was 0.67 mm / s, and the force applied to the tip of the probe was 0.25 mgf. The measurement results are shown in FIG. It is recognized that if the conditions change, the jumping method also changes, and the form of the jump mainly depends on the scanning speed and the force applied to the tip of the probe. That is, since the scanning speed is high, the jump is large.

とびの検知と力の制御の別の例を図9及び図10に示す。図9には変位を、また図10には加速度を示している。走査速度は0.5mm/sであり、線Aは針先での力を0.3 mgfで一定にした場合であり、また線Bは0.3mgfでスタートし、加速度から判断して(α<‐2×10−6 m/s/(1×10−3s))、1.7mgfに制御した場合である。なお、試料の段差は約35μmである。 Another example of jump detection and force control is shown in FIGS. FIG. 9 shows displacement, and FIG. 10 shows acceleration. The scanning speed is 0.5 mm / s, the line A is when the force at the needle tip is constant at 0.3 mgf, and the line B starts at 0.3 mgf and is judged from the acceleration (α <− 2 × 10 −6 m / s / (1 × 10 −3 s)) and 1.7 mgf. The step of the sample is about 35 μm.

試料と走査方向の例を示す概略線図。The schematic diagram which shows the example of a sample and a scanning direction. 軟らかい試料での力と段差測定値の関係を示すグラフ。The graph which shows the relationship between the force in a soft sample, and a level | step difference measured value. 従来の方法による測定例を示すグラフ。The graph which shows the example of a measurement by the conventional method. 本発明による装置の構成を示す概略部分断面図。1 is a schematic partial cross-sectional view showing the configuration of an apparatus according to the present invention. 図4における制御手段の構成の一例を示すブロック線図。The block diagram which shows an example of a structure of the control means in FIG. 図3のデータの時間微分を示すグラフ。The graph which shows the time differentiation of the data of FIG. 本発明による測定例を示すグラフ。The graph which shows the example of a measurement by this invention. 従来の方法による別の測定例を示すグラフ。The graph which shows another example of a measurement by the conventional method. 本発明による別の測定例を示すグラフ。The graph which shows another measurement example by this invention. 本発明による別の測定例を示すグラフ。The graph which shows another measurement example by this invention. 探針式段差計の従来例を示す概略図。Schematic which shows the prior art example of a probe type level difference meter.

符号の説明Explanation of symbols

1:固定支持台
2:支点
3:揺動支持棒
4:探針
5:針圧付加手段
6:検出手段
7:試料ホルダー
8:走査ステージ
9:被測定試料
10:制御手段
11:コンピュータ装置
12:アナログ入出力ボード
13:針圧付加手段用電源
14:駆動装置
15:汎用インターフェースボード
16:検出回路
1: fixed support base 2: fulcrum 3: swing support rod 4: probe 5: needle pressure applying means 6: detection means 7: sample holder 8: scanning stage 9: sample to be measured 10: control means 11: computer device 12 : Analog I / O board 13: Power supply for needle pressure applying means 14: Drive device 15: General-purpose interface board 16: Detection circuit

JP2005044427A 2005-02-21 2005-02-21 Method and apparatus for measuring surface shape of sample Expired - Fee Related JP5095084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044427A JP5095084B2 (en) 2005-02-21 2005-02-21 Method and apparatus for measuring surface shape of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044427A JP5095084B2 (en) 2005-02-21 2005-02-21 Method and apparatus for measuring surface shape of sample

Publications (3)

Publication Number Publication Date
JP2006226964A JP2006226964A (en) 2006-08-31
JP2006226964A5 true JP2006226964A5 (en) 2008-04-10
JP5095084B2 JP5095084B2 (en) 2012-12-12

Family

ID=36988453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044427A Expired - Fee Related JP5095084B2 (en) 2005-02-21 2005-02-21 Method and apparatus for measuring surface shape of sample

Country Status (1)

Country Link
JP (1) JP5095084B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122254A (en) * 2006-11-13 2008-05-29 Ulvac Japan Ltd Differential transformer for displacement sensor in probe type step profiler
JP5036420B2 (en) * 2007-06-21 2012-09-26 株式会社東京精密 Surface shape measuring apparatus and abnormality detection method
JP5173292B2 (en) 2007-07-13 2013-04-03 株式会社アルバック Measuring method of surface shape of sample
JP5124249B2 (en) * 2007-11-30 2013-01-23 株式会社アルバック Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
JP5713659B2 (en) * 2010-12-21 2015-05-07 キヤノン株式会社 Shape measuring method and shape measuring apparatus
JP5782863B2 (en) * 2011-06-24 2015-09-24 株式会社アルバック Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method
JP2013007669A (en) * 2011-06-24 2013-01-10 Ulvac Japan Ltd Stylus jump suppression method in stylus type step profiler for surface shape measurement
JP5998501B2 (en) * 2012-02-07 2016-09-28 凸版印刷株式会社 Paper cup flange level difference measuring instrument and measurement method
CN103033122B (en) * 2012-12-20 2016-02-03 小米科技有限责任公司 A kind of plane error degree measuring equipment and measuring method
CN105180786A (en) * 2015-09-22 2015-12-23 苏州润吉驱动技术有限公司 Elevator traction machine brake wheel hop detection tool
CN105737708A (en) * 2015-12-21 2016-07-06 芜湖市甬微制冷配件制造有限公司 Shaft rod deflection detection instrument
IT201800005610A1 (en) * 2018-05-23 2019-11-23 METHOD AND EQUIPMENT FOR CHECKING OR MEASURING THE DIMENSIONS OF A MECHANICAL PART
CN109115081B (en) * 2018-10-12 2023-08-22 烟台华孚制冷设备有限公司 Ice cream machine stirrer detection device and detection method thereof
CN112146701B (en) * 2020-09-17 2022-09-30 五邑大学 Tactile measurement device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669300A (en) * 1984-03-30 1987-06-02 Sloan Technology Corporation Electromagnetic stylus force adjustment mechanism
JPH05340706A (en) * 1992-06-08 1993-12-21 Tokyo Seimitsu Co Ltd Displacement detector
JP3459710B2 (en) * 1995-09-29 2003-10-27 キヤノン株式会社 Stylus probe
JP3943939B2 (en) * 2002-01-23 2007-07-11 株式会社東芝 Thickness detector

Similar Documents

Publication Publication Date Title
JP5095084B2 (en) Method and apparatus for measuring surface shape of sample
JP2006226964A5 (en)
JP5173292B2 (en) Measuring method of surface shape of sample
US6675637B2 (en) Touch sensor
JP4852264B2 (en) Stylus type step gauge for surface shape measurement and its needle pressure correction method
WO2006106876A1 (en) Microstructure probe card, and microstructure inspecting device, method, and computer program
EP1794598B1 (en) Methods and apparatus for reducing vibration rectification errors in closed-loop accelerometers
JP5124249B2 (en) Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
JP3515364B2 (en) Apparatus, method and recording medium for examining topographical characteristics of sample surface
JP5009564B2 (en) Surface following type measuring instrument
JP5782863B2 (en) Method for improving the performance of a stylus profilometer for surface shape measurement, and stylus profilometer for surface shape measurement using the method
JP4922583B2 (en) Friction force correction method of stylus type step gauge for surface shape measurement
JP2007040896A (en) Device, method, and program for inspecting microstructure
JP2010048599A (en) Device and method for inspecting minute structure
JPH09250922A (en) Method and device for obtaining surface shape
JP4500156B2 (en) Material property evaluation system
JP4659529B2 (en) Stylus type step gauge for surface shape measurement and automatic calibration method thereof
JP2007327826A (en) Method of correcting force of stylus type step difference gage for measuring surface profile
JPH06140479A (en) Device for testing semiconductor integrated circuit
JP5095255B2 (en) Air resistance correction method for stylus profilometer for surface shape measurement
JP2014190923A (en) Device, method and program for calculating position of actuator
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
JP2008215930A (en) Measuring method and measuring device of sample surface
JP2001013155A (en) Measuring method for scanning probe microscope and device
JP2009222548A (en) Surface potential measurement method and surface potentiometer