JP2006225173A - High heat insulation multilayer glass - Google Patents

High heat insulation multilayer glass Download PDF

Info

Publication number
JP2006225173A
JP2006225173A JP2005037252A JP2005037252A JP2006225173A JP 2006225173 A JP2006225173 A JP 2006225173A JP 2005037252 A JP2005037252 A JP 2005037252A JP 2005037252 A JP2005037252 A JP 2005037252A JP 2006225173 A JP2006225173 A JP 2006225173A
Authority
JP
Japan
Prior art keywords
glass
heat insulating
heat insulation
particles
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037252A
Other languages
Japanese (ja)
Other versions
JP4119435B2 (en
Inventor
Masamichi Ipponmatsu
正道 一本松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renaissance Energy Investment Co Ltd
Original Assignee
Renaissance Energy Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renaissance Energy Investment Co Ltd filed Critical Renaissance Energy Investment Co Ltd
Priority to JP2005037252A priority Critical patent/JP4119435B2/en
Publication of JP2006225173A publication Critical patent/JP2006225173A/en
Application granted granted Critical
Publication of JP4119435B2 publication Critical patent/JP4119435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide high heat insulation multilayer glass capable of highly insulating heat and being made lightweight. <P>SOLUTION: Vitreous porous granular particles 3 comprising porous spherical particles synthesized using reverse micelle process and having uniform particle diameter are filled in an insulation layer 4 between 2 sheets of plate glass 2, the outer periphery of 2 sheets of plate glass 2 is sealed with a sealing member 5 and the inside of the heat insulation layer 4 is evacuated to reduce the pressure, for example, to about 10<SP>-1</SP>Pa. The particle diameter of the porous spherical particle is preferably 3-20 μm from the view point of flowability. The pressure applied on the outside surface of the plate glass 2 is dispersed through the flowable granular particles 3 and supported by the granular particles 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高断熱複層ガラスに関し、特に、複層ガラスの高断熱化及び軽量化技術に関する。   The present invention relates to highly heat-insulating double glazing, and more particularly, to high heat insulation and weight reduction technology of double glazing.

住宅やビル等の建物の壁部、床部、天井部等を高断熱化する場合、住宅金融公庫の高断熱住宅の規格では、100〜200mm程度の厚さのロックウールが壁や天井等に対して規定されており、熱貫流率が約0.2〜0.5W/(m・K)の断熱性能を有する。これに対して、窓のガラス部は高性能の複層断熱ガラス(代表的空気層の厚み60mm)でも、熱貫流率が1.6〜3.0W/(m・K)と約1桁程度大きいため、換気によるものを除く外部との熱の出入りはその半分以上が窓のガラス部を通過している。従って、ガラス部の遮熱性を高めることは建物を高断熱化して省エネルギ化を図る上で非常に重要である。 When the walls, floors, ceilings, etc. of buildings such as houses and buildings are highly insulated, rock wool with a thickness of about 100 to 200 mm is applied to the walls, ceilings, etc. It has a heat insulation performance of about 0.2 to 0.5 W / (m 2 · K). On the other hand, even if the glass part of the window is a high-performance multi-layer insulation glass (typical air layer thickness 60 mm), the heat transmissivity is 1.6 to 3.0 W / (m 2 · K), about one digit. Because of its large size, more than half of the heat input and output except for ventilation is passing through the glass part of the window. Therefore, it is very important to increase the heat shielding property of the glass part in order to increase the heat insulation of the building and save energy.

一般に、複層断熱ガラスは、2枚の板ガラス間に空気の対流が生じ難い範囲の密閉空気層を形成し断熱層としている。複層断熱ガラスを高断熱化するために、密閉空気層を空気より熱伝導性の低いアルゴンガス等を封入した複層断熱ガラスや、密閉空気層を真空排気した真空複層ガラスがある(例えば、下記特許文献1〜3参照)。また、アルゴンガス等の封入や真空排気により密閉空気層の気密性を確保する必要から、大面積の複層断熱ガラスの作製が困難なため、密閉空気層の空気量を低減する目的として、密閉空気層にシリカ微粒子が鎖状に繋がったエアロゾルを封入して高断熱化を図った複層断熱ガラスがある(例えば、下記特許文献4参照)。   In general, the double-layer heat insulating glass forms a sealed air layer in a range in which air convection hardly occurs between two sheet glasses to form a heat insulating layer. In order to increase the thermal insulation of the multilayer insulation glass, there is a multilayer insulation glass in which a sealed air layer is filled with argon gas having a lower thermal conductivity than air or a vacuum multilayer glass in which the sealed air layer is evacuated (for example, , See Patent Documents 1 to 3 below). In addition, since it is difficult to produce a large-area double-layer insulation glass because it is necessary to ensure the airtightness of the sealed air layer by sealing with argon gas or evacuating, sealing is performed for the purpose of reducing the amount of air in the sealed air layer. There is a multilayer heat insulating glass in which an aerosol in which silica fine particles are connected in a chain shape is enclosed in an air layer to achieve high heat insulation (for example, see Patent Document 4 below).

特開平11−199277号公報JP 11-199277 A 特開平11−092181号公報Japanese Patent Laid-Open No. 11-092181 特開平11−079795号公報Japanese Patent Application Laid-Open No. 11-079795 特開平11−071141号公報Japanese Patent Laid-Open No. 11-071141

しかしながら、従来の真空複層ガラスでは、2枚の板ガラス間に外側から密閉空気層に加わる大気圧を支えるために2枚の板ガラス間に多くの支持部材を挿入した複雑な構造となり、板ガラスやサッシ部分の構造を頑強なものとする必要から重量化が避けられない。   However, the conventional vacuum double-glazed glass has a complicated structure in which many support members are inserted between the two glass sheets to support the atmospheric pressure applied to the sealed air layer from the outside between the two glass sheets. Weight increase is inevitable because the structure of the part needs to be robust.

また、密閉空気層にエアロゾルを封入した複層断熱ガラスでは、粒子間に粒子径より大きな空隙が多く残存し、空気の対流が効果的に抑制されないため、一般的な複層ガラスより断熱化が図れるものの、飛躍的な断熱性能の改善は期待できない。   In addition, in multi-layer insulation glass in which aerosol is sealed in a sealed air layer, many voids larger than the particle diameter remain between the particles, and air convection is not effectively suppressed. Although it can be achieved, a dramatic improvement in thermal insulation performance cannot be expected.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、高断熱化及び軽量化が可能な高断熱複層ガラスを提供することにある。   This invention is made | formed in view of the above-mentioned problem, The objective is to provide the highly heat insulation double glazing which can make high heat insulation and weight reduction.

上記目的を達成するための本発明に係る高断熱複層ガラスは、2枚の板ガラス間の断熱層に、逆ミセル法を用いて合成した粒径が略均一なガラス質の多孔質球状粒子からなる粉粒体を充填し、前記2枚の板ガラスの外周間を封止部材で封止していることを特徴とする。   In order to achieve the above object, the highly heat-insulating multilayer glass according to the present invention comprises a glassy porous spherical particle having a substantially uniform particle size synthesized by a reverse micelle method in a heat insulating layer between two plate glasses. It fills with the granular material which becomes and seals between the outer periphery of the said 2 sheet glass with the sealing member, It is characterized by the above-mentioned.

上記特徴の高断熱複層ガラスによれば、逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子が、粒子形状が球状(球形または略球形)で、且つ、粒径が略一定に揃った粉粒体として形成されるため、粒子間の空隙距離が略一定で充填ガスの平均自由行程以下に短くでき、この結果、10−1Pa(約10−3Torr)程度の低真空でも粒子間の空隙での対流を効果的に抑制でき、伝導損失の少ない極めて高い断熱を実現できる。また、逆ミセル法を用いて合成されるため、多孔質球状粒子がパーライトのような焼成時に形成されるクラック等を有しないため、機械的振動による微粉化の可能性は極めて低く、断熱層内に断熱性を損なう大きな空洞部の発生する可能性が極めて低くなる。更に、多孔質球状粒子が、石英ガラス粒子等のガラス質であると、一般に低温では熱媒体の格子振動の熱伝導への寄与度が大きくなるため、粉体断熱材の多孔質球状粒子がガラス質であることにより、低温での熱伝導をより効果的に抑制できる。 According to the highly heat-insulating double-glazed glass having the above characteristics, porous spherical particles having a substantially uniform particle size synthesized using the reverse micelle method have a spherical particle shape (spherical or substantially spherical) and a particle size of approximately Since it is formed as a uniform powder, the gap distance between the particles is substantially constant and can be shortened below the mean free path of the filling gas. As a result, it is as low as 10 −1 Pa (about 10 −3 Torr). Even in a vacuum, convection in the voids between particles can be effectively suppressed, and extremely high heat insulation with little conduction loss can be realized. In addition, since it is synthesized using the reverse micelle method, the porous spherical particles do not have cracks or the like formed during firing like pearlite, so the possibility of pulverization by mechanical vibration is extremely low, and the inside of the heat insulating layer The possibility of generating large cavities that impair heat insulation is extremely low. Furthermore, if the porous spherical particles are vitreous such as quartz glass particles, the contribution of the lattice vibration of the heat medium to the heat conduction generally increases at low temperatures. Due to the quality, heat conduction at a low temperature can be more effectively suppressed.

例えば、10−1Pa(約10−3Torr)程度の真空度では、概ね0.001〜0.002W/(m・K)程度の熱伝導率を有する断熱層を形成することができる。この場合、例えば、断熱層の厚さを5mm程度に設計すれば、熱貫流率が0.2〜0.4W/(m・K)となり、従来の高性能な高断熱複層ガラスの10分の1程度となり、つまり断熱性能は約10倍となり、更に、厚みも数分の1となることから、高断熱化と軽量化が同時に図れる。高断熱複層ガラスの軽量化は施工性の大幅な改善となる。 For example, when the degree of vacuum is about 10 −1 Pa (about 10 −3 Torr), a heat insulation layer having a thermal conductivity of about 0.001 to 0.002 W / (m · K) can be formed. In this case, for example, if the thickness of the heat insulating layer is designed to be about 5 mm, the heat transmissivity becomes 0.2 to 0.4 W / (m 2 · K), which is 10 Since the heat insulation performance is about 10 times, and the thickness is also reduced to a fraction, it is possible to simultaneously achieve high heat insulation and light weight. The weight reduction of the highly heat insulating double-glazed glass greatly improves the workability.

尚、断熱層を真空排気しない場合でも、断熱層の熱伝導率として0.02〜0.05W/(m・K)程度が得られるため、従来の高性能な高断熱複層ガラスに対して2〜4倍程度の高断熱化が図れる。   Even when the heat insulating layer is not evacuated, the heat conductivity of the heat insulating layer is about 0.02 to 0.05 W / (m · K), so that the conventional high performance high heat insulating double-glazed glass can be obtained. High heat insulation of about 2 to 4 times can be achieved.

ところで、逆ミセル法を用いて合成した石英ガラス粒子等の粉粒体は可視光に対して完全な透明ではないものの、半透明であるため、断熱層の厚さを5mm程度に設計すれば、十分に光を透過するため、擦りガラス、採光用ガラス、温室用ガラス等として利用できる。   By the way, although the granular material such as quartz glass particles synthesized using the reverse micelle method is not completely transparent to visible light, it is translucent, so if the thickness of the heat insulating layer is designed to be about 5 mm, Since it transmits light sufficiently, it can be used as rubbed glass, lighting glass, greenhouse glass, and the like.

更に、本発明に係る高断熱複層ガラスは、上記特徴に加えて、前記多孔質球状粒子の直径が、3〜30μmであることが好ましい。粒径は、大き過ぎると粒子間の空隙距離が大きくなり、そこで対流が生じて断熱性が低下し、逆に小さ過ぎると取り扱い時に飛散しやすく取り扱い難くなるため、多孔質球状粒子の直径は3〜30μmであることが好ましい。また、流動性の観点から見ると、分子間引力が無視できるサイズの間は粒径が小さいほどブリッジ等が形成され難く流動性が高い。ところが、粒径が数μmになると常温における熱揺動が粒子の運動エネルギと同程度になり、且つ、分子間力も無視できなくなるので、流動性が疎外され、充填作業が困難となるので好ましくない。   Furthermore, in the highly heat-insulating multilayer glass according to the present invention, in addition to the above characteristics, the porous spherical particles preferably have a diameter of 3 to 30 μm. If the particle size is too large, the gap distance between the particles becomes large, and convection occurs there, resulting in a decrease in heat insulation. On the other hand, if the particle size is too small, the particles are easily scattered during handling and difficult to handle. It is preferable that it is -30 micrometers. Further, from the viewpoint of fluidity, the smaller the particle size, the smaller the particle size is, and the higher the fluidity, the smaller the particle size. However, when the particle size is several μm, the thermal fluctuation at room temperature is almost the same as the kinetic energy of the particles, and the intermolecular force cannot be ignored. .

更に、本発明に係る高断熱複層ガラスは、上記何れかの特徴に加えて、前記断熱層を真空排気して、前記2枚の板ガラスの外側面に掛かる圧力を前記粉粒体で支持可能な構造であることが好ましい。断熱層が真空排気されて低圧状態にあると、2枚の板ガラスの外側面に大気圧による圧力が掛かるが、多孔質球状粒子からなる粉粒体が流動性を有し、且つ、常温大気圧の条件では塑性変形することがないため、板ガラスに加わる応力は粉粒体を通って分散され、板ガラスに特別の強度を要求しない。この場合、粉粒体の流動性を高め充填と応力分散を容易にするためには、多孔質球状粒子の直径は、7〜10μm程度がより好ましい。   Furthermore, in addition to any of the above features, the highly heat-insulating double-glazed glass according to the present invention can support the pressure applied to the outer surface of the two sheet glasses with the powder by evacuating the heat-insulating layer. It is preferable that it is a simple structure. When the heat insulating layer is evacuated and in a low pressure state, pressure is applied to the outer surfaces of the two sheet glasses by atmospheric pressure, but the granular material composed of porous spherical particles has fluidity and is at room temperature and atmospheric pressure. Since there is no plastic deformation under the above conditions, the stress applied to the plate glass is dispersed through the powder and the plate glass does not require special strength. In this case, the diameter of the porous spherical particles is more preferably about 7 to 10 μm in order to increase the fluidity of the powder and facilitate filling and stress dispersion.

本発明に係る高断熱複層ガラスの実施の形態につき、図面に基づいて説明する。   An embodiment of a highly heat insulating double-glazed glass according to the present invention will be described with reference to the drawings.

図1に示すように、本発明に係る高断熱複層ガラス1は、2枚の板ガラス2の間にガラス質の多孔質球状粒子からなる粉粒体3を密に充填して断熱層4を形成し、板ガラス2の外周間を合成樹脂製の封止部材5で気密封止して構成され、更に、断熱層4内が10−1Pa(約10−3Torr)程度の真空に減圧されている。但し、10−1Pa程度の減圧により断熱性を十分に向上させることができるが、更に低真空に減圧しても構わない。 As shown in FIG. 1, the highly heat-insulating multilayer glass 1 according to the present invention densely fills a granular material 3 made of vitreous porous spherical particles between two plate glasses 2 to form a heat-insulating layer 4. The outer periphery of the plate glass 2 is hermetically sealed with a sealing member 5 made of synthetic resin, and the inside of the heat insulating layer 4 is further reduced to a vacuum of about 10 −1 Pa (about 10 −3 Torr). ing. However, although the heat insulation can be sufficiently improved by reducing the pressure to about 10 −1 Pa, it may be further reduced to a low vacuum.

断熱層4内に充填される粉粒体3は、逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子からなる粉粒体であり、具体的には、以下の要領で生成される石英ガラス粒子の粉粒体である。即ち、逆ミセル法により、油性の有機溶媒中に粒子原料を含む水溶液である水ガラス溶液(珪酸ナトリウム水溶液)を乳化分散させ、その乳化分散させた水ガラスのコロイドに炭酸ナトリウム等の沈殿剤を加えると、コロイド中の表面張力により球状化していた水ガラス粒子(エマルション粒子)がその形状を保ったままガラス粒子として沈殿するため、沈殿したガラス粒子を濾過分離、洗浄、乾燥して、粒子形状が略完全に球形で粒径も略一定の石英ガラス粒子が、粉粒体3として生成される。尚、粒径を略均一に揃える手法として、孔径を均一に揃えた貫通孔を多数有する高分子膜等の多孔膜を利用して、水ガラス溶液をその多孔膜を通過させて有機溶媒中に注入して乳化分散させ粒子原料のエマルション粒子を得る公知の膜乳化逆ミセル法が利用できる。膜乳化逆ミセル法については、例えば、特開平04−54605号公報、特開平05−240号公報、特開平05−23565号公報、特開平05−192907号公報等に詳細が開示されている。上記要領で生成された石英ガラス粒子の粉粒体は、嵩密度として、150〜300kg/m(=0.15〜0.3g/cm)程度のものが得られる。 The granular material 3 filled in the heat insulating layer 4 is a granular material composed of porous spherical particles having a substantially uniform particle diameter synthesized by the reverse micelle method, and specifically, produced in the following manner. It is a granular material of quartz glass particles. That is, by a reverse micelle method, a water glass solution (sodium silicate aqueous solution), which is an aqueous solution containing particle raw materials in an oily organic solvent, is emulsified and dispersed, and a precipitating agent such as sodium carbonate is added to the emulsified and dispersed water glass colloid. When added, water glass particles (emulsion particles) that have been spheroidized due to the surface tension in the colloid are precipitated as glass particles while maintaining their shape, so the precipitated glass particles are separated by filtration, washed, and dried to form a particle shape. However, quartz glass particles having a substantially spherical shape and a substantially constant particle size are produced as the powder particles 3. As a method for making the particle diameters substantially uniform, a porous film such as a polymer film having a large number of through-holes with uniform pore diameters is used, and a water glass solution is passed through the porous film in an organic solvent. A known membrane emulsification reverse micelle method can be used in which emulsion particles are injected and emulsified and dispersed to obtain emulsion particles of the particle material. Details of the membrane emulsification reverse micelle method are disclosed in, for example, Japanese Patent Application Laid-Open No. 04-54605, Japanese Patent Application Laid-Open No. 05-240, Japanese Patent Application Laid-Open No. 05-23565, Japanese Patent Application Laid-Open No. 05-192907, and the like. The quartz glass particles produced in the above manner have a bulk density of about 150 to 300 kg / m 3 (= 0.15 to 0.3 g / cm 3 ).

本実施形態では、生成された石英ガラス粒子の粒径として、3〜30μmの範囲のもの、特に、粉粒体3の流動性の観点より7〜10μm前後のものが好ましい。また、石英ガラス粒子の粒径のバラツキとして、体積基準の標準偏差を平均粒径の50%未満、更に好ましくは、20%未満に抑えるのが好ましい。従って、当該バラツキ範囲内のものを粒径が略均一と定義する。   In the present embodiment, the generated silica glass particles preferably have a particle size in the range of 3 to 30 μm, particularly about 7 to 10 μm from the viewpoint of the fluidity of the granular material 3. Further, as a variation in the particle diameter of the quartz glass particles, the standard deviation based on volume is preferably suppressed to less than 50%, more preferably less than 20% of the average particle diameter. Therefore, the particle size within the variation range is defined as substantially uniform.

尚、嵩密度が150〜300kg/m(=0.15〜0.3g/cm)程度で粒径が略均一で3〜30μmの範囲にある粉粒体3として、鈴木油脂工業株式会社製の商品名「ゴッドボール」(登録商標)で市販されている多孔質無機質微粒子(石英ガラス粒子)の粉粒体が利用できる。 In addition, as the powder body 3 having a bulk density of about 150 to 300 kg / m 3 (= 0.15 to 0.3 g / cm 3 ) and a substantially uniform particle size in the range of 3 to 30 μm, Suzuki Oil & Fat Co., Ltd. A granular material of porous inorganic fine particles (quartz glass particles) commercially available under the trade name “Godball” (registered trademark) manufactured by the same company can be used.

封止部材5は、2枚の板ガラス2の外周間を気密封止可能な材料の中から適宜選択すればよい。例えば、エポキシ樹脂、ブチルゴム等が利用可能である。   What is necessary is just to select the sealing member 5 suitably from the material which can airtightly seal between the outer periphery of the sheet glass 2 of 2 sheets. For example, epoxy resin, butyl rubber, etc. can be used.

本実施形態では、粉粒体3が逆ミセル法を用いて合成した粒径が3〜30μmの範囲で略均一な多孔質球状粒子からなる粉粒体であり極めて優れた流動性を有し、また、常温大気圧の条件では塑性変形することがないため、断熱層4内が10−1Pa(約10−3Torr)程度の低真空に減圧され、2枚の板ガラス2に外側面からのみ大気圧による圧力が加わることになるが、当該圧力が断熱層4内に密に充填された粉粒体3を通って分散され、板ガラス2に掛かる応力が粉粒体3により支持される。従って、板ガラス2に従来の真空複層ガラスに要求される強度は必要なく、また、板ガラス2間の中央部に多数のスペーサー部材を必要としない。従って、本発明に係る高断熱複層ガラス1では、大面積の真空複層ガラスの作製が可能となる。 In the present embodiment, the granular material 3 is a granular material composed of substantially spherical spherical particles having a particle diameter of 3 to 30 μm synthesized using the reverse micelle method, and has extremely excellent fluidity. Further, since plastic deformation does not occur under normal temperature and atmospheric pressure conditions, the inside of the heat insulating layer 4 is decompressed to a low vacuum of about 10 −1 Pa (about 10 −3 Torr), and the two glass sheets 2 are only exposed from the outer surface. Although the pressure by atmospheric pressure is added, the said pressure is disperse | distributed through the granular material 3 with which the heat insulation layer 4 was filled closely, and the stress concerning the plate glass 2 is supported by the granular material 3. Accordingly, the plate glass 2 does not need the strength required for the conventional vacuum double-layer glass, and a large number of spacer members are not required in the central portion between the plate glasses 2. Therefore, in the highly heat insulating double-glazed glass 1 according to the present invention, it is possible to produce a large-area vacuum double-glazed glass.

また、本実施形態では、板ガラス2の外周間にもスペーサー部材を設けていない。但し、一般的な複層ガラスと同様に、例えば断熱層4の厚さを規定する目的等で、板ガラス2の外周間にだけスペーサー部材を設けても構わない。この場合、図2に示すように、封止部材5は、例えば、スペーサー部材6と2枚の板ガラス2の間の両側の隙間とスペーサー部材6の内側または外側に断面が「コ」の字状に、或いは、スペーサー部材6の内側または外側に設ければよい。   Moreover, in this embodiment, the spacer member is not provided between the outer periphery of the plate glass 2 either. However, a spacer member may be provided only between the outer peripheries of the plate glass 2 for the purpose of defining the thickness of the heat insulating layer 4, for example, in the same manner as a general multilayer glass. In this case, as shown in FIG. 2, the sealing member 5 has, for example, a “U” -shaped cross section on the gap between both sides between the spacer member 6 and the two sheet glasses 2 and on the inside or outside of the spacer member 6. Alternatively, it may be provided inside or outside the spacer member 6.

板ガラス2の外周間の気密封止処理の仕方としては、例えば、図3に示すように、2枚の板ガラス2の外周間に窓枠のサッシ部材7を挿入し、サッシ部材7の内周部の表裏両側にOリング8用の溝を設けて、サッシ部材7の内周及び板ガラス2の外周に沿ってサッシ部材7の表裏両側にOリング8を介装して、当該Oリング8によって気密封止するようにしても構わない。   For example, as shown in FIG. 3, the window frame sash member 7 is inserted between the outer peripheries of the two glass sheets 2, and the inner peripheral portion of the sash member 7. Grooves for the O-ring 8 are provided on both front and back sides of the sash member, and O-rings 8 are provided on both front and back sides of the sash member 7 along the inner periphery of the sash member 7 and the outer periphery of the plate glass 2. You may make it seal tightly.

本発明に係る高断熱複層ガラス1の断熱性能は、断熱層4の厚さ、断熱層4内の真空度、粉粒体3の性状等に依存するが、粉粒体3が逆ミセル法を用いて合成した粒径が略均一な多孔質球状粒子からなる粉粒体で、粒径(直径)が略均一で3〜30μmの範囲にあり、断熱層4内を10−1Pa(約10−3Torr)程度の真空に保持していれば、断熱層4の熱伝導率が概ね0.001〜0.002W/(m・K)程度となり、断熱層4の厚さ5mm程度に設計すれば、断熱層4の熱貫流率が0.2〜0.4W/(m・K)となり、従来の高性能な高断熱複層ガラスの10分の1程度となる。つまり、本発明に係る高断熱複層ガラス1の断熱性能は、従来の高性能な高断熱複層ガラスと比較して、約10倍となり、更に、厚みも数分の1に薄くできる。尚、断熱層4の厚さ、粉粒体3の性状(粒径等)、断熱層4内の真空度は、上記数値例に限定されるものではない。 The heat insulating performance of the highly heat insulating double-glazed glass 1 according to the present invention depends on the thickness of the heat insulating layer 4, the degree of vacuum in the heat insulating layer 4, the properties of the granular material 3, and the like, but the granular material 3 is the reverse micelle method. In which the particle diameter (diameter) is in a range of 3 to 30 μm and the inside of the heat insulation layer 4 is 10 −1 Pa (about If the vacuum is maintained at about 10 −3 Torr), the heat conductivity of the heat insulating layer 4 is about 0.001 to 0.002 W / (m · K), and the heat insulating layer 4 is designed to have a thickness of about 5 mm. If it does so, the heat-transfer rate of the heat insulation layer 4 will be 0.2-0.4 W / (m < 2 > * K), and will become about 1/10 of the conventional high performance highly heat insulation double glazing. That is, the heat insulation performance of the highly heat insulating double glazing 1 according to the present invention is about 10 times that of the conventional high performance high heat insulating double glazing, and the thickness can be reduced to a fraction. In addition, the thickness of the heat insulation layer 4, the property (particle diameter etc.) of the granular material 3, and the degree of vacuum in the heat insulation layer 4 are not limited to the above numerical example.

以下に、別の実施形態につき説明する。
〈1〉上記実施形態では、断熱層4内は真空排気され減圧状態となる場合を説明したが、断熱層4内を真空排気せずに常圧に設定しても構わない。真空排気しない場合は、断熱性能において上記実施形態より劣るが、断熱層4の熱伝導率として0.02〜0.05W/(m・K)程度が得られるため、従来の高性能な高断熱複層ガラスに対して2〜4倍程度の高断熱化が図れる。
Hereinafter, another embodiment will be described.
<1> In the above embodiment, the case where the inside of the heat insulating layer 4 is evacuated and depressurized has been described. However, the inside of the heat insulating layer 4 may be set to normal pressure without being evacuated. When not evacuated, the thermal insulation performance is inferior to that of the above embodiment. However, since the thermal conductivity of the thermal insulation layer 4 is about 0.02 to 0.05 W / (m · K), the conventional high performance and high thermal insulation. High insulation can be achieved about 2 to 4 times that of the multilayer glass.

〈2〉上記実施形態では、石英ガラス粒子の粉粒体3を、逆ミセル法を用いて合成する方法について簡単に説明したが、逆ミセル法に使用する多孔膜、有機溶媒、沈殿剤等は、公知の膜乳化逆ミセル法で使用されるものが使用できる。   <2> In the above embodiment, the method of synthesizing the quartz glass particle powder 3 using the reverse micelle method has been briefly described. However, the porous film, the organic solvent, the precipitant, and the like used in the reverse micelle method are as follows. Those used in the known membrane emulsification reverse micelle method can be used.

〈3〉上記実施形態では、断熱層4内部に減圧後に残留する気相成分について、特に明示しなかったが、断熱層4内部の気相成分として、空気等以外に、希ガスを使用するのがより好ましい。断熱層4内部の気相には通常空気が入っており、そのまま減圧した場合は残存気体として空気と水分が入っている場合が多い。しかしながら、空気の主成分である窒素や酸素及び水は多原子分子であるため分子全体の運動エネルギのほかに、振動回転のエネルギを持っており熱伝導率が高い。よって、断熱層4内部の気相成分として希ガスを用いることで、断熱層4内部の気相成分による熱伝導を低減でき、断熱性能の向上が図れる。また、断熱層4内部の気相成分としてはできるだけ分子量の大きなAr(アルゴン)等の希ガスが望ましい。   <3> In the above embodiment, the vapor phase component remaining in the heat insulating layer 4 after being depressurized is not specified, but a rare gas is used as the gas phase component in the heat insulating layer 4 other than air. Is more preferable. The gas phase inside the heat insulating layer 4 normally contains air, and when the pressure is reduced as it is, air and moisture are often contained as residual gases. However, since nitrogen, oxygen, and water, which are the main components of air, are polyatomic molecules, they have vibration and rotation energy in addition to the kinetic energy of the whole molecule, and have high thermal conductivity. Therefore, by using a rare gas as the gas phase component inside the heat insulating layer 4, heat conduction due to the gas phase component inside the heat insulating layer 4 can be reduced, and the heat insulating performance can be improved. Further, as a gas phase component inside the heat insulating layer 4, a rare gas such as Ar (argon) having a molecular weight as large as possible is desirable.

本発明に係る高断熱複層ガラスは、住宅やビル等の高断熱仕様の建物の壁等に設ける高断熱複層ガラスとして利用可能である。特に、断熱層が充填する粉粒体によって半透明となるが十分に光を透過するため、擦りガラス、採光用ガラス、温室用ガラス等として利用できる。   The highly heat-insulating double-glazed glass according to the present invention can be used as a highly heat-insulating double-glazed glass provided on the walls of highly insulated buildings such as houses and buildings. In particular, it becomes translucent due to the granular material filled in the heat insulating layer, but sufficiently transmits light, so that it can be used as rubbing glass, daylighting glass, greenhouse glass, and the like.

本発明に係る高断熱複層ガラスの一実施形態における概略構造を模式的に示す断面図Sectional drawing which shows typically the schematic structure in one Embodiment of the high heat insulation multilayer glass which concerns on this invention 本発明に係る高断熱複層ガラスの一実施形態における板ガラスの外周間の封止構造を模式的に示す断面図Sectional drawing which shows typically the sealing structure between the outer periphery of the plate glass in one Embodiment of the high heat insulation multilayer glass which concerns on this invention 本発明に係る高断熱複層ガラスの一実施形態における他の概略構造を模式的に示す断面図Sectional drawing which shows typically the other schematic structure in one Embodiment of the highly heat insulation multilayer glass which concerns on this invention

符号の説明Explanation of symbols

1: 高断熱複層ガラス
2: 板ガラス
3: 粉粒体
4: 断熱層
5: 封止部材
6: スペーサー部材
7: サッシ部材
8: Oリング
1: High heat insulation double glazing 2: Sheet glass 3: Powder body 4: Heat insulation layer 5: Sealing member 6: Spacer member 7: Sash member 8: O-ring

Claims (3)

2枚の板ガラス間の断熱層に、逆ミセル法を用いて合成した粒径が略均一なガラス質の多孔質球状粒子からなる粉粒体を充填し、
前記2枚の板ガラスの外周間を封止部材で封止していることを特徴とする高断熱複層ガラス。
Filling the heat insulating layer between the two glass sheets with a granular material composed of vitreous porous spherical particles having a substantially uniform particle size synthesized using the reverse micelle method,
A highly heat insulating double glazing characterized in that the outer periphery of the two sheet glasses is sealed with a sealing member.
前記多孔質球状粒子の直径が、3〜30μmであることを特徴とする請求項1に記載の高断熱複層ガラス。   The diameter of the said porous spherical particle is 3-30 micrometers, The highly heat insulation multilayer glass of Claim 1 characterized by the above-mentioned. 前記断熱層を真空排気して、前記2枚の板ガラスの外側面に掛かる圧力を前記粉粒体で支持可能な構造であることを特徴とする請求項1または2に記載の装置。   3. The apparatus according to claim 1, wherein the heat insulating layer is evacuated to have a structure capable of supporting the pressure applied to the outer surface of the two sheet glasses with the granular material. 4.
JP2005037252A 2005-02-15 2005-02-15 High thermal insulation double glazing Expired - Fee Related JP4119435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037252A JP4119435B2 (en) 2005-02-15 2005-02-15 High thermal insulation double glazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037252A JP4119435B2 (en) 2005-02-15 2005-02-15 High thermal insulation double glazing

Publications (2)

Publication Number Publication Date
JP2006225173A true JP2006225173A (en) 2006-08-31
JP4119435B2 JP4119435B2 (en) 2008-07-16

Family

ID=36986866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037252A Expired - Fee Related JP4119435B2 (en) 2005-02-15 2005-02-15 High thermal insulation double glazing

Country Status (1)

Country Link
JP (1) JP4119435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178372A (en) * 2017-04-03 2018-11-15 株式会社竹中工務店 Aerogel-utilizing translucent member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178372A (en) * 2017-04-03 2018-11-15 株式会社竹中工務店 Aerogel-utilizing translucent member

Also Published As

Publication number Publication date
JP4119435B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Hu et al. Hollow‐structured materials for thermal insulation
Liang et al. Thermal performance and service life of vacuum insulation panels with aerogel composite cores
JP5390358B2 (en) Method for producing airgel-containing heat-insulating article
US9169687B2 (en) Insulating glazing with thermal protection insulating panel
JP4303674B2 (en) Insulation block and cold storage
Gangåssæter et al. Air-filled nanopore based high-performance thermal insulation materials
Han et al. Bioinspired synthesis of monolithic and layered aerogels
JP2009502472A (en) A getter system comprising an active phase inserted into a porous material dispersed in a low permeability means
Zhuang et al. Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels
JPWO2013172033A1 (en) Method for producing double-glazed glass
Zhou et al. 3D printed template‐directed assembly of multiscale graphene structures
US20230391047A1 (en) Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
Deng et al. Photothermal‐Responsive Microporous Nanosheets Confined Ionic Liquid for Efficient CO2 Separation
CN108689679A (en) A kind of preparation method of high temperature resistant gradient fiber composite aerogel heat-insulating material
JP4119435B2 (en) High thermal insulation double glazing
Sun et al. High-strength and superamphiphobic chitosan-based aerogels for thermal insulation and flame retardant applications
US20200024893A1 (en) Double glazed window of polycarbonate layer
KR20070073541A (en) Vacuum multilayer glass
JP5115885B2 (en) Double glazing
US8293362B2 (en) Closed-cell foam silica
CN105064874B (en) A kind of preparation method of aerogel thermal insulation glass
JP2006225852A (en) Thermal insulating moisture prevention film
Wang et al. Hierarchically Structured M13 Phage Aerogel for Enhanced Sound‐Absorption
JP6771183B2 (en) Glass panel unit and glass window equipped with it
JP6529423B2 (en) Spacer for double layer glass and double layer glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080401

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080424

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110502

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120502

LAPS Cancellation because of no payment of annual fees