JP2006223044A - Wind turbine generator - Google Patents

Wind turbine generator Download PDF

Info

Publication number
JP2006223044A
JP2006223044A JP2005033496A JP2005033496A JP2006223044A JP 2006223044 A JP2006223044 A JP 2006223044A JP 2005033496 A JP2005033496 A JP 2005033496A JP 2005033496 A JP2005033496 A JP 2005033496A JP 2006223044 A JP2006223044 A JP 2006223044A
Authority
JP
Japan
Prior art keywords
power generator
wind power
iron cores
wind
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005033496A
Other languages
Japanese (ja)
Other versions
JP4798598B2 (en
Inventor
Yutaka Hara
豊 原
Toshiaki Matsuoka
稔昌 松岡
Kazuo Sakamoto
一夫 坂本
Chokichi Yanagi
長吉 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Showa Denki Co Ltd
Original Assignee
Tottori University NUC
Showa Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC, Showa Denki Co Ltd filed Critical Tottori University NUC
Priority to JP2005033496A priority Critical patent/JP4798598B2/en
Publication of JP2006223044A publication Critical patent/JP2006223044A/en
Application granted granted Critical
Publication of JP4798598B2 publication Critical patent/JP4798598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size and weight of a driving apparatus for making torque characteristics of a wind turbine generator variable. <P>SOLUTION: The wind turbine generator includes a rotating rotor 1 that is rotated by the rotation of a wind turbine 400, and has multiple magnets 3 disposed at predetermined intervals so that they encircle its own rotation center 1c; multiple cores 5 disposed at predetermined intervals so that they are movable in the direction of the extension of the center line of the rotation center 1c and they encircle the rotation center 1c; multiple generating coils 6 that are provided in correspondence with the individual cores 5 and generate power by a change accompanied by the rotation of the magnetic flux of the magnets 3 taking the corresponding cores as magnetic paths; and the driving apparatus 9 that moves the individual cores 5 in the direction of the extension of the center line 1c. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、磁石式の風力発電機に関するものである。   The present invention relates to a magnet type wind power generator.

例えば、図10[特許文献1(特開2003−324896号公報)]に記載されているように、回転計5により、回転子10または風車1の回転数を検出し、その値がある基準値を越えたら、固定磁石15と回転子10の距離Dまたはオーバーラップ距離Lを変化させ、磁界を強めて回転数の抑制をする風力発電機は提案されている。なお、図10中の符号は、公報中の符合と同一の符号としてある   For example, as described in FIG. 10 [Patent Document 1 (Japanese Patent Laid-Open No. 2003-324896)], the rotation speed of the rotor 10 or the windmill 1 is detected by the tachometer 5, and the value is a certain reference value. A wind power generator has been proposed in which the distance D or overlap distance L between the fixed magnet 15 and the rotor 10 is changed to increase the magnetic field and the rotational speed is suppressed. In addition, the code | symbol in FIG. 10 is made into the code | symbol same as the code | symbol in a gazette

また、図11[特許文献2(特開2002−325412号公報)]に記載されているように、風車発電機を想定してはいないが、カウンタ振り子51に作用する遠心力により、永久磁石47のついたロータ(回転子)46の軸方向距離を変える永久磁石式発電機は提案されている。なお、図11中の符号は、公報中の符合と同一の符号としてある。   Further, as described in FIG. 11 [Patent Document 2 (Japanese Patent Laid-Open No. 2002-325412)], although a wind turbine generator is not assumed, the permanent magnet 47 is caused by the centrifugal force acting on the counter pendulum 51. A permanent magnet generator has been proposed that changes the axial distance of the rotor (rotor) 46 with the. In addition, the code | symbol in FIG. 11 is made into the code | symbol same as the code | symbol in a gazette.

また、図12[特許文献3(特開2001−161052号公報)]に記載されているように、電磁石式のアクチュエータ7で固定子コア4及び固定子コイル11を軸方向に移動させ、永久磁石3と固定コイル11とのオーバーラップを可変とするタイプと、円筒状の皿バネ13を用い、風車ロータ1に作用する風圧により、前記オーバーラップを可変とするタイプの2方式が提案されている。なお、図12中の符号は、公報中の符合と同一の符号としてある。   Further, as described in FIG. 12 [Patent Document 3 (Japanese Patent Laid-Open No. 2001-161052)], the stator core 4 and the stator coil 11 are moved in the axial direction by the electromagnet actuator 7 to obtain a permanent magnet. There are two types, a type in which the overlap between the fixed coil 11 and the fixed coil 11 is variable, and a type in which the overlap is variable by a wind pressure acting on the wind turbine rotor 1 using a cylindrical disc spring 13. . In addition, the code | symbol in FIG. 12 is made into the code | symbol same as the code | symbol in a gazette.

また、図13[特許文献4(実開昭60−174474号公報)]に記載されているように、風車発電機を想定してはいないが、一般の永久磁石タイプは界磁制御ができないため、電圧を一定にすることを可能とするために(自動車用では一定電圧が必要)、ソレノイドタイプのアクチュエータ31により、磁石24と固定コイル28との軸方向ギャップの変化を可能とし、界磁制御を実現する自動車用永久磁石式発電機は提案されている。なお、図13中の符号は、公報中の符合と同一の符号としてある。   Further, as described in FIG. 13 [Patent Document 4 (Japanese Utility Model Publication No. 60-174474)], a wind turbine generator is not assumed. However, since a general permanent magnet type cannot perform field control, voltage In order to make the voltage constant (a constant voltage is required for automobiles), the solenoid type actuator 31 enables the axial gap between the magnet 24 and the fixed coil 28 to be changed, thereby realizing field control. Permanent magnet generators have been proposed. In addition, the code | symbol in FIG. 13 is made into the code | symbol same as the code | symbol in a gazette.

特開2003−324896号公報(図3、図4及びその説明)Japanese Patent Laid-Open No. 2003-324896 (FIGS. 3, 4 and description thereof) 特開2002−325412号公報(図1、図2及びその説明)Japanese Patent Laid-Open No. 2002-325412 (FIGS. 1, 2 and description thereof) 特開2001−161052号公報(図5、図6及びその説明)Japanese Patent Laid-Open No. 2001-161052 (FIGS. 5 and 6 and explanation thereof) 実開昭60−174474号公報(図2及びその説明)Japanese Utility Model Publication No. 60-174474 (FIG. 2 and its description)

前述の特許文献1〜特許文献4に記載の永久磁石式の発電機においては、何れも、コイルと鉄心とは一体となっており、これら一体のコイルと鉄心とを移動させるには、その重量に見合った動力が必要であり、相応の大きさ、重量の駆動装置が必要である。一方、風力発電機は、殆どの場合、高さの高い支柱上に取り付けられるので、駆動装置は小型化、軽量化することが望ましい。   In each of the permanent magnet generators described in Patent Documents 1 to 4, the coil and the iron core are integrated with each other. Therefore, it is necessary to have a driving device of a suitable size and weight. On the other hand, since the wind power generator is almost always mounted on a high column, it is desirable to reduce the size and weight of the driving device.

また、前述の特許文献1〜特許文献4に記載の永久磁石式の発電機においては、何れも、風力発電機の風車の回転を強制的に停止する機能は無いが、強風時には、安全上、風車の回転を強制的に停止する方が好ましい。   Moreover, in the permanent magnet type generators described in Patent Documents 1 to 4, none of them has a function of forcibly stopping the rotation of the wind turbine of the wind power generator. It is preferable to forcibly stop the rotation of the windmill.

この発明は、前述のような実情に鑑みてなされたもので、永久磁石式の風力発電機において鉄心を移動させる駆動装置を小型化、軽量化することを主たる目的とするものである。   The present invention has been made in view of the above circumstances, and has as its main object to reduce the size and weight of a drive device for moving an iron core in a permanent magnet type wind power generator.

また、この発明は、永久磁石式の風力発電機において、風力発電機の風車の回転を強制的に停止する機能を付加することを従たる目的とするものである。   Another object of the present invention is to add a function of forcibly stopping the rotation of the wind turbine of the wind power generator in the permanent magnet type wind power generator.

この発明に係る風力発電機は、風車の回転により回転し自己の回転中心を取り巻くように所定間隔で配設された複数個の磁石を有する回転界磁、前記回転中心の中心線延在方向に可移動にしかも前記回転中心を取り巻くように所定間隔で配設された複数個の鉄心、これら各鉄心の各々に対応して設けられ対応鉄心を磁路とする前記磁石の磁束の前記回転に伴う変化により夫々発電する複数個の発電コイル、及び前記各鉄心を前記中心線延在方向に移動させる駆動装置を備えているものである。   A wind power generator according to the present invention includes a rotating field having a plurality of magnets arranged at predetermined intervals so as to rotate around a rotation center of the wind turbine and rotate around the rotation center of the wind turbine. A plurality of iron cores which are movable and are arranged at predetermined intervals so as to surround the rotation center, and are provided corresponding to each of the iron cores, and accompanying the rotation of the magnetic flux of the magnet using the corresponding iron cores as magnetic paths. A plurality of power generating coils each generating electric power by change, and a driving device for moving each iron core in the direction of extension of the center line are provided.

また、この発明に係る風力発電機は、風車の回転により回転し自己の回転中心を取り巻くように所定間隔で配設された複数個の磁石を有する回転界磁、前記回転中心の中心線延在方向に可移動にしかも前記回転中心を取り巻くように所定間隔で配設された複数個の鉄心、これら各鉄心の各々に対応して設けられ対応鉄心を磁路とする前記磁石の磁束の前記回転に伴う変化により夫々発電する複数個の発電コイル、及び前記各鉄心を前記中心線延在方向に移動させる駆動装置を備えた構造とし、更に、風速が所定値を超えると前記複数個の鉄心が前記駆動装置による移動によって前記回転界磁に当接するようにしたものである。   Further, the wind power generator according to the present invention is a rotating field having a plurality of magnets arranged at predetermined intervals so as to rotate around the rotation center of the wind turbine by rotating the windmill, and the center line of the rotation center extends. A plurality of iron cores that are movable in the direction and are disposed at predetermined intervals so as to surround the rotation center, and the rotation of the magnetic flux of the magnet provided corresponding to each of the iron cores and using the corresponding iron core as a magnetic path. A plurality of power generation coils each generating power by a change accompanying the above, and a drive device that moves each of the iron cores in the direction of extension of the center line, and when the wind speed exceeds a predetermined value, the plurality of iron cores It is made to contact | abut to the said rotating field by the movement by the said drive device.

この発明は、風車の回転により回転し自己の回転中心を取り巻くように所定間隔で配設された複数個の磁石を有する回転界磁、前記回転中心の中心線延在方向に可移動にしかも前記回転中心を取り巻くように所定間隔で配設された複数個の鉄心、これら各鉄心の各々に対応して設けられ対応鉄心を磁路とする前記磁石の磁束の前記回転に伴う変化により夫々発電する複数個の発電コイル、及び前記各鉄心を前記中心線延在方向に移動させる駆動装置を備えているので、前記駆動装置が小型、軽量になる効果がある。   According to the present invention, a rotating field having a plurality of magnets arranged at predetermined intervals so as to rotate by rotation of a windmill and surround a rotation center of the windmill, which is movable in the direction in which the center line of the rotation center extends. A plurality of iron cores arranged at predetermined intervals so as to surround the rotation center, and each of the iron cores is provided corresponding to each of the iron cores, and each of the iron cores generates electric power by the change accompanying the rotation of the magnetic flux using the corresponding iron core as a magnetic path. Since a plurality of power generation coils and a drive device that moves each iron core in the direction of extension of the center line are provided, the drive device can be reduced in size and weight.

また、この発明は、風車の回転により回転し自己の回転中心を取り巻くように所定間隔で配設された複数個の磁石を有する回転界磁、前記回転中心の中心線延在方向に可移動にしかも前記回転中心を取り巻くように所定間隔で配設された複数個の鉄心、これら各鉄心の各々に対応して設けられ対応鉄心を磁路とする前記磁石の磁束の前記回転に伴う変化により夫々発電する複数個の発電コイル、及び前記各鉄心を前記中心線延在方向に移動させる駆動装置を備えた構造とし、更に、風速が所定値を超えると前記複数個の鉄心が前記駆動装置による移動によって前記回転界磁に当接するようにしたので、強風時などに、風力発電機の風車の回転を強制的に停止することができる効果がある。   Further, the present invention provides a rotating field having a plurality of magnets arranged at predetermined intervals so as to rotate around the rotation center of the wind turbine by rotation of the windmill, and to be movable in the direction in which the center line of the rotation center extends. In addition, a plurality of iron cores arranged at predetermined intervals so as to surround the rotation center, and a change associated with the rotation of the magnetic flux of the magnet provided corresponding to each of the iron cores and having the corresponding iron core as a magnetic path, respectively. The structure includes a plurality of power generation coils for generating power, and a drive device that moves each iron core in the direction of extension of the center line. Further, when the wind speed exceeds a predetermined value, the plurality of iron cores are moved by the drive device. Therefore, the rotation of the wind turbine of the wind power generator can be forcibly stopped in a strong wind or the like.

実施の形態1.
以下この発明の実施の形態1を図1〜図9により説明する。図1は実施の形態1を説明するに当たっての基本的特性を示す図で、或る風車ローターの実測値に基づき描いた風車ローターの出力―回転数・特性を示す図である。図2は実施の形態1を説明するに当たっての基本的特性を示す図で、或る風車ローターのトルク―回転数・特性を示す図である。図3〜図9は実施の形態1の事例を示す図で、図3は発電機の非ブレーキ状態の場合の縦断正面図、図4(a)(b)(c)は発電機左側面図、発電機正面図、及び発電機右側面図を同一図面上に関連付けて示す図、図5は水平軸タイプローターの場合の風車システム模式図、図6は垂直軸タイプローターの場合の風車システム模式図、図7は空隙を変化させた場合の発電機の出力特性 Pg1, Pg2, Pg3を示す図、図8は空隙を変化させた場合の発電機のトルク特性 Tg1, Tg2, Tg3を示す図、図9は発電機のブレーキ状態の場合の縦断正面図である。なお、各図中、同一符合は同一部分を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing basic characteristics for explaining the first embodiment, and is a diagram showing an output-rotation speed / characteristic of a wind turbine rotor drawn based on an actual measurement value of a certain wind turbine rotor. FIG. 2 is a diagram showing basic characteristics for explaining the first embodiment, and is a diagram showing torque-rotation speed / characteristics of a certain windmill rotor. 3 to 9 are diagrams showing examples of the first embodiment, FIG. 3 is a longitudinal front view when the generator is not braked, and FIGS. 4A, 4B, and 4C are left side views of the generator. FIG. 5 is a diagram showing a generator front view and a generator right side view in association with each other on the same drawing, FIG. 5 is a schematic diagram of a windmill system in the case of a horizontal axis type rotor, and FIG. Fig. 7 is a diagram showing the output characteristics Pg1, Pg2, Pg3 of the generator when the gap is changed, and Fig. 8 is a diagram showing the torque characteristics Tg1, Tg2, Tg3 of the generator when the gap is changed, FIG. 9 is a longitudinal front view of the generator in a brake state. In addition, in each figure, the same code | symbol shows the same part.

最初に、図3及び図4により、本実施の形態の風力発電機の構造を説明する。   Initially, the structure of the wind power generator of this Embodiment is demonstrated with FIG.3 and FIG.4.

図3及び図4において、風力発電機100は、回転ローター1、バックヨーク2、永久磁石からなる複数個の磁石3、円環状の非磁性の非導電性環状板4、複数個の鉄心5、円筒状コイル巻線からなる複数個の発電コイル6、鉄心保持板7、スライダ8、ステッピングモータを駆動源とする駆動装置9、ボールネジ10、ボールネジ用ベアリング11、回転ローター用ベアリング12、固定中心軸13、スペーサ14、カップリングフランジ15、一対のコイル取付板16、ボールネジ結合部材17、駆動装置固定板18、駆動装置固定板用支柱19、本体支持板20、本体固定板21、及び磁石固定板22で構成されている。   3 and 4, the wind power generator 100 includes a rotating rotor 1, a back yoke 2, a plurality of magnets 3 made of permanent magnets, an annular nonmagnetic non-conductive annular plate 4, a plurality of iron cores 5, A plurality of power generating coils 6 composed of cylindrical coil windings, an iron core holding plate 7, a slider 8, a driving device 9 using a stepping motor as a driving source, a ball screw 10, a ball screw bearing 11, a rotating rotor bearing 12, a fixed central shaft 13, spacer 14, coupling flange 15, pair of coil mounting plates 16, ball screw coupling member 17, driving device fixing plate 18, driving device fixing plate column 19, main body support plate 20, main body fixing plate 21, and magnet fixing plate 22 is comprised.

前記回転ローター1は、前記固定中心軸13に前記回転ローター用ベアリング12を介して回転自在に支承されており、その回転中心(線)1cは、前記固定中心軸13の中心(線)13cと同軸状をなしている。   The rotary rotor 1 is rotatably supported on the fixed central shaft 13 via the rotary rotor bearing 12, and the rotational center (line) 1 c is the center (line) 13 c of the fixed central shaft 13. It is coaxial.

また、前記回転ローター1は、風車側には風車に結合される前記カップリングフランジ15が一体に結合され、その前記回転中心線1cは、前記風車および前記カップリングフランジ15の各回転中心とも同心である。   In addition, the rotating rotor 1 is integrally coupled with the coupling flange 15 coupled to the wind turbine on the wind turbine side, and the rotation center line 1c is concentric with the rotation centers of the wind turbine and the coupling flange 15. It is.

更にまた、前記回転ローター1は、円盤状をなし、その風車と反対側の面には、図示のように、自己の回転中心1cを取り巻くように複数個の前記磁石3,3,3・・・が、前記回転ローター1の回転方向に所定間隔で等間隔に、前記磁石固定板22によって固定されている。なお、本実施の形態では、前記磁石3を8個配設した場合を例示してある。   Furthermore, the rotary rotor 1 has a disk shape, and on the surface opposite to the windmill, as shown in the drawing, a plurality of the magnets 3, 3, 3,. Are fixed by the magnet fixing plate 22 at equal intervals in the rotation direction of the rotary rotor 1. In the present embodiment, the case where eight magnets 3 are arranged is illustrated.

前記複数個の鉄心5,5,5・・・は、各々対応する前記円筒状の発電コイル6を可移動に貫通しており、前記鉄心保持板7、前記スライダ8、前記ボールネジ結合部材17と共に、前記駆動装置9による前記ボールネジ10の回転によって、前記回転中心1cの中心線延在方向に移動する。   The plurality of iron cores 5, 5, 5... Movably penetrate the corresponding cylindrical power generation coils 6, and together with the iron core holding plate 7, the slider 8, and the ball screw coupling member 17. By the rotation of the ball screw 10 by the driving device 9, it moves in the direction of the center line extending of the rotation center 1c.

また、前記複数個の鉄心5,5,5・・・は、前記回転中心1c(即ち、前記固定中心軸13の中心線13c)を取り巻くように所定間隔で等間隔に配設され、各々の前記回転ローター1側の端部が、前記円環状の非磁性の非導電性環状板4によって一体に結合され、反対側の端部が前記鉄心保持板7によって一体に結合されている。なお、本実施の形態では、前記鉄心5及び発電コイル6を夫々12個配設した場合を例示してある。   Further, the plurality of iron cores 5, 5, 5,... Are arranged at equal intervals at predetermined intervals so as to surround the rotation center 1c (that is, the center line 13c of the fixed center shaft 13). The end portion on the rotating rotor 1 side is integrally coupled by the annular nonmagnetic non-conductive annular plate 4, and the opposite end portion is integrally coupled by the iron core holding plate 7. In the present embodiment, a case where twelve iron cores 5 and twelve power generating coils 6 are arranged is illustrated.

前記複数個の発電コイル6,6,6・・・は、互いに平行な円盤状の前記一対のコイル取付板16,16に跨って該取付板16,16に取り付けられ、該取付板16,16は、本体支持板20を介して、本体固定板21に取り付けられている。   The plurality of power generating coils 6, 6, 6... Are attached to the mounting plates 16, 16 across the pair of disk-shaped coil mounting plates 16, 16 parallel to each other. Is attached to the main body fixing plate 21 via the main body support plate 20.

前記一対のコイル取付板16,16には、前記複数個の棒状の鉄心5,5,5・・・が可移動に貫通している。前記複数個の棒状の鉄心5,5,5・・・の各々は、棒状磁性体であるが、例えば、非導電性のバルク状部材で形成された管状磁性部材内に薄板状高透磁率材を層状に埋設して渦電流抑制構造に構成することもできる。   The plurality of rod-shaped iron cores 5, 5, 5,... Penetrate through the pair of coil mounting plates 16, 16 in a movable manner. Each of the plurality of rod-shaped iron cores 5, 5, 5,... Is a rod-shaped magnetic body. For example, a thin plate-like high permeability material is formed in a tubular magnetic member formed of a non-conductive bulk member. Can be embedded in layers to form an eddy current suppressing structure.

また、前記一対のコイル取付板16,16には、前記ボールネジ結合部材17が前記中心線1c,13cの延在方向に可移動に取り付けられ、前記ボールネジ結合部材17には、前記鉄心保持板7および前記スライダ8が取り付けられている。   In addition, the ball screw coupling member 17 is movably attached to the pair of coil attachment plates 16 and 16 in the extending direction of the center lines 1c and 13c, and the iron core holding plate 7 is attached to the ball screw coupling member 17. The slider 8 is attached.

前記スライダ8は、前記ボールネジ10に螺合し、前記ボールネジ10は、前記駆動装置9のステップモータ等の駆動源の出力軸(図示省略)に結合され、前記駆動装置9は、前記駆動装置固定板18に取り付けられ、前記駆動装置固定板18は、複数個所が前記駆動装置固定板用支柱19によって、前記一対のコイル取付板16,16の回転ローター1と反対側のコイル取付板16に取り付けられている。   The slider 8 is screwed into the ball screw 10, and the ball screw 10 is coupled to an output shaft (not shown) of a driving source such as a step motor of the driving device 9, and the driving device 9 is fixed to the driving device. The drive device fixing plate 18 is attached to the coil mounting plate 16 on the side opposite to the rotary rotor 1 of the pair of coil mounting plates 16, 16 by the driving device fixing plate column 19. It has been.

前記ボールネジ10の回転中心10cは、前記固定中心軸13の中心13cと同軸状をなしている。つまり前記回転ローター1の回転中心1cと、前記固定中心軸13の中心13cと、前記ボールネジ10の回転中心10cとは、同一直線上にある。   The rotation center 10 c of the ball screw 10 is coaxial with the center 13 c of the fixed central shaft 13. That is, the rotation center 1c of the rotary rotor 1, the center 13c of the fixed central shaft 13, and the rotation center 10c of the ball screw 10 are on the same straight line.

前記カップリングフランジ15に結合された風車が風力によって回転すると、当該回転により、前記カップリングフランジ15を介して前記回転ローター1が、自己の回転中心1cを中心にして回転し、前記複数個の磁石3も、前記回転ローター1の回転中心1cを中心にして回転し、回転磁界が発生する。対応鉄心を磁路とする前記磁石の磁束は、前記回転磁界により変化し、その結果、前記複数個の発電コイル6,6,6・・・は誘起起電力により交流電力を発生する。   When the wind turbine coupled to the coupling flange 15 is rotated by the wind force, the rotation causes the rotating rotor 1 to rotate about the rotation center 1c via the coupling flange 15, and the plurality of the plurality of the plurality of the plurality of the plurality of the plurality of the plurality of the plurality of the plurality. The magnet 3 also rotates around the rotation center 1c of the rotary rotor 1 to generate a rotating magnetic field. The magnetic flux of the magnet having the corresponding iron core as a magnetic path is changed by the rotating magnetic field, and as a result, the plurality of power generating coils 6, 6, 6... Generate AC power by induced electromotive force.

前記駆動装置9により前記ボールネジ10を回転させると、前記ボールネジ10はその位置が前記駆動装置9を介して前記駆動装置固定板18に固定されているので、前記スライダ8と共に前記ボールネジ結合部材17、前記鉄心保持板7、前記複数個の鉄心5、前記非導電性環状板4が、前記回転ローター1の前記中心線1cの延在方向に移動する。前記複数個の鉄心5,5,5・・・及び前記非導電性環状板4は、前記ボールネジ10の一方向の回転により、前記回転ローター1の前記複数個の磁石3,3,3・・・に近づくように移動し、前記ボールネジ10の他方向(前記と逆方向)の回転により、前記複数個の磁石3,3,3・・・から遠ざかるように移動する。風速との関係では、前記駆動装置9は、前記複数個の磁石3,3,3・・・を、風速が早くなれば前記回転ローター1の前記磁石3,3,3・・・に近づく方向(前記磁石3と前記鉄心5との間の空隙gが小さくなる方向)に移動させ、風速が遅くなれば前記回転ローター1の前記磁石3,3,3・・・から遠ざかる方向(前記磁石3と前記鉄心5との間の空隙gが大きくなる方向)に移動させるように作動する。   When the ball screw 10 is rotated by the driving device 9, the position of the ball screw 10 is fixed to the driving device fixing plate 18 via the driving device 9, so that the ball screw coupling member 17, together with the slider 8, The iron core holding plate 7, the plurality of iron cores 5, and the nonconductive annular plate 4 move in the extending direction of the center line 1 c of the rotary rotor 1. The plurality of iron cores 5, 5, 5... And the non-conductive annular plate 4 are rotated in one direction by the ball screw 10, so that the plurality of magnets 3, 3, 3. .., And move away from the plurality of magnets 3, 3, 3... By rotation in the other direction (the opposite direction to the above) of the ball screw 10. In relation to the wind speed, the driving device 9 moves the plurality of magnets 3, 3, 3... Toward the magnets 3, 3, 3. (The direction in which the gap g between the magnet 3 and the iron core 5 is reduced) and the wind speed is reduced, the direction away from the magnets 3, 3, 3... Of the rotary rotor 1 (the magnet 3). And the iron core 5 are operated so as to move in the direction in which the gap g increases.

ここで、通常の風車及び風力発電機の特性について図1及び図2により説明する。   Here, the characteristic of a normal windmill and a wind power generator is demonstrated with reference to FIG.1 and FIG.2.

図1は、ある風車ローターの実測値に基づき描いた風車ローターの出力―回転数・特性である。風速:Vの増加に伴い、各風速ごとの特性曲線が、徐々に高い出力を示すことがわかる。この図1よりわかるように、一般に、各風速における風車の最大出力:Pmは、回転数:n(rpm)の3乗に比例して変化する。風車ローターの出力:Pは、トルク:Tと回転角速度:ωの積(P=Tω)で与えられるので、最大出力:Pmを発生する時の風車トルクは、図2に示すように、nの2乗に比例する。しかし、一般に、負荷を一定とする時(例えばバッテリーのみを充電する場合)の発電機のトルク特性:Tgは回転数に比例するため、例えば、図2のように低い風速時に風車の最大出力が得られるように発電機を選定すると、風速が高くなった場合には、最大出力が得られず、回転数も高い状態で動作することになる。大型の風車の場合には翼のピッチ(取付角度)制御により、風車ローターの特性を可変とするが、小型風車では固定ピッチが一般的であり、効率改善のためには発電機の特性や負荷の大きさを変える必要がある。   FIG. 1 shows the output-rotation speed / characteristic of a wind turbine rotor drawn on the basis of an actual measurement value of a certain wind turbine rotor. Wind speed: It can be seen that the characteristic curve for each wind speed gradually increases as V increases. As can be seen from FIG. 1, in general, the maximum output Pm of the wind turbine at each wind speed changes in proportion to the cube of the rotation speed n (rpm). Since the output of the wind turbine rotor: P is given by the product of torque: T and rotational angular velocity: ω (P = Tω), the wind turbine torque when generating the maximum output: Pm is n as shown in FIG. It is proportional to the square. However, in general, when the load is constant (for example, when only the battery is charged), the torque characteristic of the generator: Tg is proportional to the number of revolutions. Therefore, for example, the maximum output of the windmill at a low wind speed as shown in FIG. When the generator is selected so as to be obtained, when the wind speed increases, the maximum output cannot be obtained and the engine operates at a high rotational speed. In the case of a large windmill, the characteristics of the windmill rotor can be made variable by controlling the blade pitch (mounting angle). However, in the small windmill, a fixed pitch is generally used. It is necessary to change the size.

次いで、本発明の実施の形態の特性について説明する。   Next, characteristics of the embodiment of the present invention will be described.

前述したように通常の発電機では、トルクが回転数に比例して変化するが、本発明の実施の形態の発電機では、駆動装置9によりボールネジ10を回転させることで、スライダの併進移動を介して、発電コイル6の中心に存在する鉄心5を、発電機の回転中心1cの延在方向に移動させ、鉄心5と回転子である永久磁石3との距離(空隙g)を変化させることで、発電コイル6を貫通する磁束を変化させて、発電機のトルク特性をフレキシブルに変化可能とする構造を有する。   As described above, in a normal generator, the torque changes in proportion to the number of rotations. However, in the generator according to the embodiment of the present invention, the ball screw 10 is rotated by the drive device 9 so that the slider is translated. Then, the iron core 5 existing at the center of the power generation coil 6 is moved in the extending direction of the rotation center 1c of the generator, and the distance (gap g) between the iron core 5 and the permanent magnet 3 as the rotor is changed. Thus, the magnetic flux penetrating through the power generation coil 6 is changed so that the torque characteristics of the generator can be changed flexibly.

図5または図6に示すように、本発電機は水平軸風車および垂直軸風車のいずれに対しても適用可能であり、いずれのタイプにおいても、鉄心移動は、風速計200から得られる風速値(風速信号)に基づいて、風車トルクコントローラ300出力制御信号によって駆動装置9を制御することにより行なう。   As shown in FIG. 5 or FIG. 6, the generator can be applied to both a horizontal axis wind turbine and a vertical axis wind turbine. In either type, the core movement is the wind speed value obtained from the anemometer 200. Based on the (wind speed signal), the driving device 9 is controlled by the output control signal of the wind turbine torque controller 300.

風速が小さい場合は、前述のように鉄心5を永久磁石3から遠ざけ、制動トルクが小さいコアレス型発電機に近い状態の発電機として動作させる。この場合は、駆動装置9への風車トルクコントローラ300からの電力供給は無しとするように制御する。この場合、図7及び図8に示す発電機出力曲線Pg1および発電機トルク曲線Tg1上の黒丸の点が動作点となる。   When the wind speed is low, the iron core 5 is moved away from the permanent magnet 3 as described above, and is operated as a generator in a state close to a coreless generator with a small braking torque. In this case, control is performed so that power is not supplied from the wind turbine torque controller 300 to the drive device 9. In this case, black dots on the generator output curve Pg1 and the generator torque curve Tg1 shown in FIGS. 7 and 8 are operating points.

風速が大きい場合は、駆動装置9を駆動して、鉄心5を永久磁石3方向に動かし、効率の高いコア有りタイプの発電機として動作させる。例えば、図7及び図8に示す発電機出力曲線Pg2および発電機トルク曲線Tg2上の動作点(図示の黒丸の点)のように、予め、風車ローター400の特性を知っておけば、各風速における最大効率を発生する回転数状態に、発電機のトルク特性を変化させることが可能である。   When the wind speed is high, the driving device 9 is driven to move the iron core 5 in the direction of the permanent magnet 3 to operate as a highly efficient cored generator. For example, if the characteristics of the wind turbine rotor 400 are known in advance, such as operating points (black dots in the figure) on the generator output curve Pg2 and the generator torque curve Tg2 shown in FIGS. It is possible to change the torque characteristics of the generator to a rotational speed state that generates the maximum efficiency at.

強風状態では通常風車は過回転制御を行なうか、あるいは回転を止めることになるが、本発電機では、前記空隙gをさらに狭め、鉄心5を永久磁石3に接近させることで、図7及び図8に示す発電機トルク曲線Pg3および発電機トルク曲線Tg3の動作点(図示の黒丸の点)のように、比較的高い出力を保ったまま、回転数を減少させることが可能である。   In a strong wind state, the normal wind turbine performs over-rotation control or stops rotating. However, in this power generator, the gap g is further narrowed, and the iron core 5 is brought closer to the permanent magnet 3, so that FIG. 7 and FIG. It is possible to reduce the rotational speed while maintaining a relatively high output as indicated by operating points (black dots in the figure) of the generator torque curve Pg3 and the generator torque curve Tg3 shown in FIG.

さらに風が強まり、回転させることが危険と判断される状態では、図9に示すように、鉄心5を回転ローター1に当接させ、ブレーキとする。風速計200による計測値が、所定の基準風速以上では、このブレーキ状態を維持し、この状態では、駆動装置9への電力供給を止めておく。強力な永久磁石3を使用しているため、駆動装置9に電力供給がなくても、ブレーキ状態を維持可能である。なお、鉄心5を回転ローター1に直接接触する際の不均一接触や振動発生、鉄心5の破損等を防ぐため、全ての鉄心5の頭部(回転ローター1側の大径部)を、少なくとも回転ローター1側の面が平坦な部分を有する1つの円環状非導電性環状板4で結合し、この非導電性環状板4の平坦部分が回転ロータ1に接触するようにし、鉄心5を回転ローター1に間接的に当接するようにしてある。   In a state where it is judged that it is dangerous to rotate the wind further, as shown in FIG. 9, the iron core 5 is brought into contact with the rotating rotor 1 and used as a brake. When the measured value by the anemometer 200 is equal to or higher than a predetermined reference wind speed, this braking state is maintained, and in this state, the power supply to the driving device 9 is stopped. Since the strong permanent magnet 3 is used, the brake state can be maintained even if the drive device 9 is not supplied with electric power. In order to prevent non-uniform contact and vibration when the iron core 5 is in direct contact with the rotary rotor 1, damage to the iron core 5, etc., all the heads of the iron core 5 (large diameter portion on the rotary rotor 1 side) are at least The rotating rotor 1 side surface is joined by one annular non-conductive annular plate 4 having a flat portion, and the flat portion of the non-conductive annular plate 4 is brought into contact with the rotating rotor 1 to rotate the iron core 5. Indirect contact with the rotor 1 is made.

暴風状態が終り、風速計200による計測値が、所定の基準風速以下になったならば、再び、駆動装置9を駆動して鉄心5を回転ローター1から引き離し、風車を回転状態とする。   When the stormy state is over and the measured value by the anemometer 200 becomes equal to or lower than a predetermined reference wind speed, the driving device 9 is driven again to pull the iron core 5 away from the rotating rotor 1 to turn the windmill into a rotating state.

なお、前述のように複数個の発電コイル6の出力電力は交流(本実施の形態では3相交流)であるので、図5及び図6に示すように、整流器500で直流に変換し、更に、充電コントローラ600によりバッテリー700を定電圧充電し、バッテリー700から負荷800に給電する。   Since the output power of the plurality of power generation coils 6 is alternating current (three-phase alternating current in the present embodiment) as described above, it is converted to direct current by a rectifier 500 as shown in FIGS. The battery 700 is charged at a constant voltage by the charge controller 600 and the load is supplied from the battery 700 to the load 800.

また、本実施の形態では、前述のように、風車400の回転により回転し自己の回転中心1cを取り巻くように所定間隔で配設された複数個の磁石3,3,3・・・を有する回転ローター1、前記回転中心1cの中心線延在方向に可移動にしかも前記回転中心1cを取り巻くように所定間隔で配設された複数個の鉄心5,5,5・・・、これら各鉄心5の各々に対応して設けられ対応鉄心を磁路とする前記磁石3の磁束の前記回転に伴う変化により夫々発電する複数個の発電コイル6,6,6・・・、及び前記各鉄心5を前記中心線1c延在方向に移動させる駆動装置9を備えた構造であるので、前記各発電コイル6,6,6・・・を駆動しなくて済み、駆動装置9が小型、軽量になる。   In the present embodiment, as described above, a plurality of magnets 3, 3, 3,... Are arranged at predetermined intervals so as to rotate around the rotation center 1c of the wind turbine 400 by rotating the windmill 400. The rotating rotor 1, a plurality of iron cores 5, 5, 5..., Which are movable in the direction of the center line of the rotation center 1c and are disposed at predetermined intervals so as to surround the rotation center 1c. .., And a plurality of power generating coils 6, 6, 6... That each generate electric power by the change accompanying the rotation of the magnetic flux of the magnet 3 that has a corresponding iron core as a magnetic path. Are driven in the direction in which the center line 1c extends, so that it is not necessary to drive each of the power generating coils 6, 6, 6... .

また、本実施の形態では、前述のように、前記各鉄心5,5,5・・・は、前記駆動装置9によって駆動されるボールネジ10によって移動させられるので、小さな駆動源で大きな駆動力と鉄心5,5,5・・・の正確な位置決めが可能となる。   In the present embodiment, as described above, each of the iron cores 5, 5, 5... Is moved by the ball screw 10 driven by the driving device 9, so that a large driving force can be obtained with a small driving source. Accurate positioning of the iron cores 5, 5, 5.

また、本実施の形態では、前述のように、前記駆動装置9は、前記各鉄心5,5,5・・・を、風速が早くなれば前記回転ローター1の磁石3に近づく方向に移動させ、風速が遅くなれば前記回転ローター1の磁石3から遠ざかる方向に移動させるので、各風速における最大効率を発生する回転数状態に、発電機のトルク特性を変化させることが可能である。   In the present embodiment, as described above, the driving device 9 moves the iron cores 5, 5, 5,... In a direction approaching the magnet 3 of the rotary rotor 1 as the wind speed increases. When the wind speed is slow, the rotor is moved away from the magnet 3 of the rotary rotor 1, so that it is possible to change the torque characteristics of the generator to the rotational speed state that generates the maximum efficiency at each wind speed.

また、本実施の形態では、前述のように、風速計200の出力に基づいて、前記各鉄心5,5,5・・・を、風速が早くなれば前記回転ローター1の磁石3に近づく方向に移動させ、風速が遅くなれば前記回転ローター1の磁石3から遠ざかる方向に移動させるので、ある風速までは最大効率を得るように前記空隙gを制御し、特定の風速を越えた場合は、回転数を抑制するように前記空隙gを制御することが可能である。   In the present embodiment, as described above, based on the output of the anemometer 200, each of the iron cores 5, 5, 5... Approaches the magnet 3 of the rotary rotor 1 as the wind speed increases. When the wind speed slows down, it moves in a direction away from the magnet 3 of the rotary rotor 1, so that the gap g is controlled to obtain maximum efficiency up to a certain wind speed, and when a specific wind speed is exceeded, It is possible to control the gap g so as to suppress the rotational speed.

また、本実施の形態では、前述のように、前記鉄心5,5,5・・・の移動量を制御する基準信号として使用する前記風速計200は、前記風車400の回転力とは独立して動作するので、前記鉄心5,5,5・・・の移動に伴う前記風車400の回転数変化の影響を受けることなく前記鉄心5,5,5・・・の移動量を制御することができ、風速に応じた正確に制御することができる。   In the present embodiment, as described above, the anemometer 200 used as a reference signal for controlling the movement amount of the iron cores 5, 5, 5,... Is independent of the rotational force of the windmill 400. Can control the amount of movement of the iron cores 5, 5, 5... Without being affected by the change in the rotational speed of the windmill 400 due to the movement of the iron cores 5, 5, 5. Can be controlled accurately according to the wind speed.

また、本実施の形態では、前述のように、風速が所定値を超えると前記複数個の鉄心5,5,5・・・が前記駆動装置9による移動によって前記回転ローター1に当接するようにしてあるので、回転させることが危険な程風が強い場合、回転ローター1を介して風車の回転を抑制あるいは停止させることができ、風力発電機を安全に運転することが可能である。   In the present embodiment, as described above, when the wind speed exceeds a predetermined value, the plurality of iron cores 5, 5, 5,... Are brought into contact with the rotating rotor 1 by the movement of the driving device 9. Therefore, when the wind is so strong that it is dangerous to rotate, the rotation of the windmill can be suppressed or stopped via the rotating rotor 1, and the wind power generator can be operated safely.

また、本実施の形態では、前述のように、前記複数個の鉄心5,5,5・・・は、当該複数個の鉄心を結合する非導電性環状板4を介して前記回転ローター1に面接触して当接するようにしてあるので、前記鉄心5,5,5・・・を前記回転ローター1に直接接触させる場合に比べて、不均一接触や振動発生、鉄心5の破損等を防ぐことができる。   In the present embodiment, as described above, the plurality of iron cores 5, 5, 5,... Are connected to the rotary rotor 1 via the non-conductive annular plate 4 that couples the plurality of iron cores. Since the surfaces are in contact with each other, compared to the case where the iron cores 5, 5, 5... Are brought into direct contact with the rotating rotor 1, non-uniform contact, vibration, damage to the iron core 5, etc. are prevented. be able to.

また、本実施の形態では、前記各鉄心5,5,5・・・は、非導電性のバルク状部材で形成された非導電性の管状磁性部材内に薄板状高透磁率材を層状に埋設して渦電流抑制構造に構成すれば、鉄心内部磁束の増加と鉄損(渦電流)の減少を両立させることができる。   Further, in the present embodiment, each of the iron cores 5, 5, 5... Is layered with a thin plate-like high magnetic permeability material in a non-conductive tubular magnetic member formed of a non-conductive bulk member. If it embed | buries and it comprises in an eddy current suppression structure, the increase of an iron core internal magnetic flux and the reduction of an iron loss (eddy current) can be made compatible.

この発明の実施の形態1を説明するに当たっての基本的特性を示す図で、或る風車ローターの実測値に基づき描いた風車ローターの出力―回転数・特性を示す図である。It is a figure which shows the basic characteristic in describing Embodiment 1 of this invention, and is a figure which shows the output-rotation speed and characteristic of the windmill rotor drawn based on the measured value of a certain windmill rotor. この発明の実施の形態1を説明するに当たっての基本的特性を示す図で、或る風車ローターのトルク―回転数・特性を示す図である。It is a figure which shows the basic characteristic in describing Embodiment 1 of this invention, and is a figure which shows the torque-rotation speed and characteristic of a certain windmill rotor. この発明の実施の形態1を示す図で、発電機の非ブレーキ状態の場合の縦断正面図である。It is a figure which shows Embodiment 1 of this invention, and is a vertical front view in the case of the non-brake state of a generator. この発明の実施の形態1を示す図で、発電機左側面図、発電機正面図、及び発電機右側面図を同一図面上に関連付けて示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a figure which correlates and shows a generator left view, a generator front view, and a generator right view on the same drawing. この発明の実施の形態1を示す図で、水平軸タイプローターの場合の風車システム模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a windmill system schematic diagram in the case of a horizontal axis type rotor. この発明の実施の形態1を示す図で、垂直軸タイプローターの場合の風車システム模式図である。It is a figure which shows Embodiment 1 of this invention, and is a windmill system schematic diagram in the case of a vertical axis type rotor. この発明の実施の形態1を示す図で、空隙を変化させた場合の発電機の出力特性 Pg1, Pg2, Pg3を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the output characteristics Pg1, Pg2, Pg3 of a generator at the time of changing a space | gap. この発明の実施の形態1を示す図で、空隙を変化させた場合の発電機のトルク特性 Tg1, Tg2, Tg3を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the torque characteristics Tg1, Tg2, Tg3 of a generator at the time of changing a space | gap. この発明の実施の形態1を示す図で、発電機のブレーキ状態の場合の縦断正面図である。It is a figure which shows Embodiment 1 of this invention, and is a vertical front view in the case of the brake state of a generator. 特許文献1(特開2003−324896号公報)に記載されている風力発電機を示す図である。It is a figure which shows the wind power generator described in patent document 1 (Unexamined-Japanese-Patent No. 2003-324896). 特許文献2(特開2002−325412号公報)に記載されている永久磁石式発電機を示す図である。It is a figure which shows the permanent magnet type generator described in patent document 2 (Unexamined-Japanese-Patent No. 2002-325412). 特許文献3(特開2001−161052号公報)に記載されている風車発電機を示す図である。It is a figure which shows the windmill generator described in patent document 3 (Unexamined-Japanese-Patent No. 2001-161052). 特許文献4(実開昭60−174474号公報)に記載されている自動車用永久磁石式発電機を示す図である。It is a figure which shows the permanent magnet type generator for motor vehicles described in patent document 4 (Japanese Utility Model Laid-Open No. 60-174474).

符号の説明Explanation of symbols

1 回転ローター、
1c,10c,13c 中心(線)、
2 バックヨーク、
3 磁石、
4 非導電性環状板、
5 鉄心、
6 発電コイル、
7 鉄心保持板、
8 スライダ、
9 駆動装置、
10 ボールネジ、
11 ボールネジ用ベアリング、
12 回転ローター用ベアリング、
13 固定中心軸、
14 スペーサ、
15 カップリングフランジ、
16 一対のコイル取付板、
17 ボールネジ結合部材、
18 駆動装置固定板、
19 駆動装置固定板用支柱、
20 本体支持板、
21 本体固定板、
100 風力発電機、
200 風速計、
300 風車トルクコントローラ、
400 風車ロータ、
500 整流器、
600 充電コントローラ、
700 バッテリー、
800 負荷、
g 空隙。
1 rotating rotor,
1c, 10c, 13c center (line),
2 Back yoke,
3 magnets,
4 Non-conductive annular plate,
5 Iron core,
6 Generator coil,
7 Iron core holding plate,
8 Slider,
9 Drive device,
10 Ball screw,
11 Ball screw bearings,
12 Bearing for rotary rotor,
13 fixed central axis,
14 spacer,
15 coupling flange,
16 A pair of coil mounting plates,
17 Ball screw coupling member,
18 Driving device fixing plate,
19 Support device fixing plate support,
20 body support plate,
21 body fixing plate,
100 wind power generator,
200 anemometer,
300 windmill torque controller,
400 windmill rotor,
500 rectifiers,
600 charge controller,
700 battery,
800 load,
g Void.

Claims (8)

風車の回転により回転し自己の回転中心を取り巻くように所定間隔で配設された複数個の磁石を有する回転ローター、前記回転中心の中心線延在方向に可移動にしかも前記回転中心を取り巻くように所定間隔で配設された複数個の鉄心、これら各鉄心の各々に対応して設けられ対応鉄心を磁路とする前記磁石の磁束の前記回転に伴う変化により夫々発電する複数個の発電コイル、及び前記各鉄心を前記中心線延在方向に移動させる駆動装置を備えた風力発電機。   A rotary rotor having a plurality of magnets arranged at predetermined intervals so as to rotate around the rotation center of the wind turbine by rotation of the windmill, movable in the direction of extension of the center line of the rotation center and so as to surround the rotation center And a plurality of power generating coils each of which is generated in accordance with the change of the magnetic flux of the magnet provided corresponding to each of the iron cores and having the corresponding iron core as a magnetic path. And a wind power generator provided with a driving device for moving each iron core in the direction of extension of the center line. 請求項1に記載の風力発電機において、前記各鉄心は、前記駆動装置によって駆動されるボールネジによって移動させられることを特徴とする風力発電機。   2. The wind power generator according to claim 1, wherein each of the iron cores is moved by a ball screw driven by the driving device. 請求項1及び請求項2の何れか一に記載の風力発電機において、前記駆動装置は、前記各鉄心を、風速が早くなれば前記回転ローターの磁石に近づく方向に移動させ、風速が遅くなれば前記回転ローターの磁石から遠ざかる方向に移動させることを特徴とする風力発電機。   3. The wind power generator according to claim 1, wherein the driving device moves each of the iron cores in a direction approaching the magnet of the rotating rotor as the wind speed increases. For example, the wind power generator is moved in a direction away from the magnet of the rotary rotor. 請求項3に記載の風力発電機において、前記駆動装置は、風速計の出力に基づいて、前記各鉄心を、風速が早くなれば前記回転ローターの磁石に近づく方向に移動させ、風速が遅くなれば前記回転ローターの磁石から遠ざかる方向に移動させることを特徴とする風力発電機。   4. The wind power generator according to claim 3, wherein the driving device moves the iron cores in a direction approaching the magnet of the rotating rotor when the wind speed increases, based on the output of the anemometer, so that the wind speed becomes slow. For example, the wind power generator is moved in a direction away from the magnet of the rotary rotor. 請求項4に記載の風力発電機において、前記風速計は、前記風車の回転力とは独立して動作することを特徴とする風力発電機。   5. The wind power generator according to claim 4, wherein the anemometer operates independently of the rotational force of the windmill. 請求項1〜請求項5の何れか一に記載の風力発電機において、風速が所定値を超えると前記複数個の鉄心が前記駆動装置による移動によって前記回転ローターに当接することを特徴とする風力発電機。   6. The wind power generator according to claim 1, wherein when the wind speed exceeds a predetermined value, the plurality of iron cores are brought into contact with the rotating rotor by the movement of the driving device. Generator. 請求項6に記載の風力発電機において、前記複数個の鉄心は、当該複数個の鉄心を結合する非磁性の非導電性環状板を介して前記回転ローターに面接触して当接することを特徴とする風力発電機。   7. The wind power generator according to claim 6, wherein the plurality of iron cores are brought into surface contact with the rotating rotor via a nonmagnetic non-conductive annular plate that couples the plurality of iron cores. Wind power generator. 請求項1〜請求項7の何れか一に記載の風力発電機において、前記各鉄心は、非導電性のバルク状部材で形成された非導電性の管状磁性部材内に薄板状高透磁率材を層状に埋設して渦電流抑制構造に構成されていることを特徴とする風力発電機。   The wind power generator according to any one of claims 1 to 7, wherein each of the iron cores is a thin plate-like high magnetic permeability material in a non-conductive tubular magnetic member formed of a non-conductive bulk member. A wind power generator characterized in that it is constructed in an eddy current suppressing structure by embedding in a layer.
JP2005033496A 2005-02-09 2005-02-09 Wind power generator Expired - Fee Related JP4798598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033496A JP4798598B2 (en) 2005-02-09 2005-02-09 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033496A JP4798598B2 (en) 2005-02-09 2005-02-09 Wind power generator

Publications (2)

Publication Number Publication Date
JP2006223044A true JP2006223044A (en) 2006-08-24
JP4798598B2 JP4798598B2 (en) 2011-10-19

Family

ID=36984977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033496A Expired - Fee Related JP4798598B2 (en) 2005-02-09 2005-02-09 Wind power generator

Country Status (1)

Country Link
JP (1) JP4798598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195051A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Power generator for generating electric power by receiving fluid
KR100965601B1 (en) 2008-02-12 2010-06-23 주식회사 효성 Apparatus for power supply of wind power generator
CN101931358A (en) * 2010-07-06 2010-12-29 华南理工大学 Automatic magnetic adjustment low-speed starting wind power generating motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107718A (en) * 1993-10-01 1995-04-21 Isuzu Ceramics Kenkyusho:Kk Permanent magnet generator
JPH1182281A (en) * 1997-09-05 1999-03-26 Sony Corp Wind power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107718A (en) * 1993-10-01 1995-04-21 Isuzu Ceramics Kenkyusho:Kk Permanent magnet generator
JPH1182281A (en) * 1997-09-05 1999-03-26 Sony Corp Wind power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965601B1 (en) 2008-02-12 2010-06-23 주식회사 효성 Apparatus for power supply of wind power generator
JP2009195051A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Power generator for generating electric power by receiving fluid
CN101931358A (en) * 2010-07-06 2010-12-29 华南理工大学 Automatic magnetic adjustment low-speed starting wind power generating motor

Also Published As

Publication number Publication date
JP4798598B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US7042128B2 (en) Brushless permanent magnet wheel motor with variable axial rotor/stator alignment
CN111213307B (en) Permanent magnet motor with passively controlled variable rotor/stator alignment
JP5450361B2 (en) Axial gap type rotating machine and axial gap type generator
JP5460566B2 (en) Axial gap type rotating electrical machine
US8860343B2 (en) Rotary electric machine
JP2002262489A5 (en)
KR20100125259A (en) Modular electromagnetic device with reversible generator-motor operation
TW201117527A (en) Motor yaw drive system for a wind turbine
GB2484164A (en) Dynamo-electric machine with rotor magnet adjustable shunt
CN103986301B (en) High-dynamic moving-magnetic type linear rotation integrated two-degree-of-freedom motor
CN106374702B (en) Disc type iron core-free Flux modulation motor
EP3349339A1 (en) Rotary electric machine, rotary electric machine system, and machine
JP4798598B2 (en) Wind power generator
PL233865B1 (en) Electric machine
US10763713B2 (en) Permanent magnet motor with passively controlled variable rotor/stator alignment
US20130082147A1 (en) Axial flux motor reaction wheel for spacecraft
JP5858399B2 (en) Magnetic deceleration mechanism and low-speed rotor magnetic deceleration rotation control method
CN104919687A (en) Magnetic brake having reduced-notching hysteresis
CN103935500A (en) Outboard machine accelerator-gear automatic control device
TWI652883B (en) Magnetic power generator
CN107579639B (en) High-temperature-resistant permanent magnet servo motor
KR20090088154A (en) Device for generating stiffness using complex application of pm-type and vcm-type, and joint of robot manipulator comprising the same
JP6986337B2 (en) Variable magnetic flux motor
TWM564862U (en) Magnetic-assisted power generator
CN107733118B (en) A kind of low rotor inertia servo motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees