JP2006220579A - Detector for horizontal force - Google Patents

Detector for horizontal force Download PDF

Info

Publication number
JP2006220579A
JP2006220579A JP2005035523A JP2005035523A JP2006220579A JP 2006220579 A JP2006220579 A JP 2006220579A JP 2005035523 A JP2005035523 A JP 2005035523A JP 2005035523 A JP2005035523 A JP 2005035523A JP 2006220579 A JP2006220579 A JP 2006220579A
Authority
JP
Japan
Prior art keywords
force
tunnel current
horizontal force
horizontal
movable table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035523A
Other languages
Japanese (ja)
Other versions
JP4761111B2 (en
Inventor
Yasuhisa Ando
泰久 安藤
Naoki Shiraishi
直規 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005035523A priority Critical patent/JP4761111B2/en
Publication of JP2006220579A publication Critical patent/JP2006220579A/en
Application granted granted Critical
Publication of JP4761111B2 publication Critical patent/JP4761111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detector for horizontal force for overcoming the problem on the operative instability in a conventional technology and detecting the horizontal force with high sensitivity by separating a movable table for applying a frictional force, from a movable table provided with a tunnel current detecting section. <P>SOLUTION: The horizontal force detector 1 is provided with the movable table 3, movably supported on a substrate and moved by a drive force from an electrostatic actuator 2, and the tunnel current detecting section 5, comprising a movable electrode 6 provided on the movable table and a fixed electrode 7 provided on the substrate, and detects the horizontal force by acting the external frictional force on the movable table. The movable table 3 is divided into the frictional force movable table 13 for applying frictional force and the driving movable table 14, provided with the movable electrode 6 of the tunnel current detecting section 5. The tables are supported by independent support members. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、トンネル電流により高感度で外力を検出する技術に関し、特に、精密計測、力センサ、走査型プローブ顕微鏡等の分野において水平力を検出するのに適した水平力検出装置に関するものである。   The present invention relates to a technique for detecting external force with high sensitivity by a tunnel current, and more particularly to a horizontal force detection device suitable for detecting horizontal force in the fields of precision measurement, force sensor, scanning probe microscope, and the like. .

高感度で摩擦力等の水平力を検出する装置として、原子間力顕微鏡(AFM)のバリエーションの一つに摩擦力顕微鏡(FFM)がある。これは、図5に示すように試料表面上を走査するプローブが取り付けられているカンチレバーの捻れを、レーザ光の反射などによって検出することにより、走査中にプローブ先端が試料から受ける摩擦力を測定する装置であり、広く知られている(以下「従来技術1」という。)。   One of the variations of an atomic force microscope (AFM) is a friction force microscope (FFM) as a highly sensitive apparatus for detecting a horizontal force such as a friction force. This is because, as shown in FIG. 5, the torsion of the cantilever to which the probe that scans the sample surface is attached is detected by the reflection of laser light, etc., and the frictional force that the probe tip receives from the sample during scanning And is widely known (hereinafter referred to as “Prior Art 1”).

静電アクチュエータとトンネル電流を組み合わせて力を検出する機構として、トンネル効果式加速度センサ(例えば、特許文献1参照。)がある。この機構では、図6に示すように梁に慣性力が作用したときに生じる梁先端の変位を、梁先端と基板に取り付けた突起間のトンネル電流により検出するものである。このとき、トンネル効果が生じる範囲(トンネル電流検出部)まで、梁先端と基板に取り付けた突起間の距離を接近させ、維持するために静電気力により梁の変位を制御している(以下「従来技術2」という。)。   As a mechanism for detecting a force by combining an electrostatic actuator and a tunnel current, there is a tunnel effect type acceleration sensor (see, for example, Patent Document 1). In this mechanism, as shown in FIG. 6, the displacement of the beam tip that occurs when an inertial force acts on the beam is detected by a tunnel current between the beam tip and a protrusion attached to the substrate. At this time, the displacement of the beam is controlled by electrostatic force in order to keep the distance between the beam tip and the projection attached to the substrate close to the range where the tunnel effect occurs (tunnel current detector) (hereinafter referred to as “conventional”). Technology 2 ”).

静電アクチュエータとトンネル電流を組み合わせた機構として他には、トンネル電流検知マイクロデバイス(例えば、特許文献2参照。)がある。この機構においては、図7に示すようにトンネル電流検出部の制御のために、櫛歯型静電アクチュエータを用いている(以下「従来技術3」という。)。
特開平6−324072号公報 特開平6−102005号公報
As another mechanism combining an electrostatic actuator and a tunnel current, there is a tunnel current detection microdevice (for example, see Patent Document 2). In this mechanism, as shown in FIG. 7, a comb-shaped electrostatic actuator is used to control the tunnel current detection unit (hereinafter referred to as “Prior Art 3”).
JP-A-6-324072 JP-A-6-102005

従来技術1の摩擦力顕微鏡において、水平力の検出感度は、カンチレバーの捻れ剛性により決定されるため、感度を向上させるためにカンチレバーの形状を変更すると、たわみのばね定数も変化してしまう。このため、たわみのばね定数と独立に水平力検出感度を調整することが不可能なだけでなく、固有振動数の低下により機械的ノイズの増加を引き起こすため高い水平力検出感度が得られないという問題があった。
水平力の検出を別の方法によって行えば、水平力の検出感度を独立に設定できるようになる。そのとき、トンネル電流を利用することで高感度が期待できる。そこで、上記した従来技術2のトンネル効果式加速度センサで、原子間力顕微鏡と組み合わせてプローブにより外力を加えれば、原理的に外力を測定可能である。しかし、該構造では、加速度の代わりに摩擦力を加えるのが困難である。
In the friction force microscope of the prior art 1, since the detection sensitivity of the horizontal force is determined by the torsional rigidity of the cantilever, if the shape of the cantilever is changed in order to improve the sensitivity, the spring constant of deflection also changes. For this reason, not only is it impossible to adjust the horizontal force detection sensitivity independently of the spring constant of the deflection, but a high horizontal force detection sensitivity cannot be obtained because it causes an increase in mechanical noise due to a decrease in the natural frequency. There was a problem.
If the horizontal force is detected by another method, the detection sensitivity of the horizontal force can be set independently. At that time, high sensitivity can be expected by utilizing the tunnel current. Therefore, the external force can be measured in principle by applying the external force with the probe in combination with the atomic force microscope in the tunnel effect type acceleration sensor of the above-described prior art 2. However, with this structure, it is difficult to apply a frictional force instead of acceleration.

一方、上記した従来技術3のトンネル電流検知マイクロデバイスのような機構であれば、接線方向に力を加えることが可能な部分の面積が広く、摩擦により水平力を加えることが容易である。しかし、以下のような問題があった。
(1)原子間力顕微鏡のプローブが検出デバイスに接触したとき、その刺激によってトンネル電流の制御が困難になる。
(2)プローブにより垂直方向の力を加えたときに、それがトンネル電流検出部を変化させてしまうため、純粋に水平方向の力を検出することが困難になる。
On the other hand, if the mechanism is similar to the tunnel current detection microdevice of the above-described prior art 3, the area of the portion where the force can be applied in the tangential direction is large, and it is easy to apply a horizontal force by friction. However, there were the following problems.
(1) When a probe of an atomic force microscope comes into contact with a detection device, it becomes difficult to control the tunnel current due to the stimulation.
(2) When a force in the vertical direction is applied by the probe, it changes the tunnel current detection unit, so that it is difficult to detect a force in the horizontal direction purely.

本発明は、摩擦力を加える移動テーブルとトンネル電流検出部を備える移動テーブルとを分割することにより、従来技術における動作の不安定性の問題を解消するとともに、高感度の水平力の検出が可能な水平力検出装置を提供することを目的とする。   The present invention divides a moving table for applying a frictional force and a moving table having a tunnel current detector, thereby eliminating the problem of instability of operation in the prior art and detecting a highly sensitive horizontal force. An object is to provide a horizontal force detection device.

上記目的を達成するために本発明の水平力検出装置は、基板上に移動可能に支持され、静電アクチュエータの駆動力により移動自在な移動テーブルと、該移動テーブルに設けられた移動電極及び基板上に設けられた固定電極とにより構成されるトンネル電流検出部を備え、移動テーブルに外部から摩擦力を作用させることにより水平力を検出する水平力検出装置において、前記移動テーブルを、摩擦力を加える摩擦力用移動テーブルとトンネル電流検出部の移動電極が設けられた駆動用移動テーブルとに分割し、それぞれのテーブルを独立の支持部材で支持するようにしたことを特徴とする。   To achieve the above object, a horizontal force detection device of the present invention is supported on a substrate so as to be movable, and is movable by a driving force of an electrostatic actuator, and a movable electrode and a substrate provided on the movable table. In a horizontal force detection device that includes a tunnel current detection unit configured by a fixed electrode provided on the upper surface and detects a horizontal force by applying a frictional force to the moving table from the outside, the moving table has a frictional force. It is divided into a moving table for the frictional force to be applied and a driving moving table provided with the moving electrode of the tunnel current detecting section, and each table is supported by an independent support member.

本発明は、以下のような優れた効果を奏する。
(1)本発明の水平力検出装置を用いて測定した摩擦力分布と、従来技術1の原子間力顕微鏡のカンチレバーのねじり信号から検出した摩擦力分布とを比較した結果は図2に示す通りであり、従来技術1の原子間力顕微鏡のカンチレバーのねじり信号を用いた場合、走査ラインごとのノイズが大きく、1ライン中のコントラストの変化も小さい。それに対して、本発明の水平力検出装置で測定した摩擦力分布は、コントラストが明瞭にに現われている。したがって、本発明の水平力検出装置を用いると高感度の摩擦力検出が可能になる。例えば、原子間力顕微鏡のカンチレバーのねじり信号の変化は30mVであるのに対し、本発明の水平力検出装置による信号の変化は300mVである。
(2)原子間力顕微鏡のカンチレバーにより垂直力をコントロールしようとしたとき、垂直力を大きく変化させるためには、カンチレバーのばね定数を変更する必要がある。しかし、その場合はカンチレバーのねじり剛性も変化するため、原子間力顕微鏡のカンチレバーのねじり信号による摩擦力検出感度も変化してしまう。それに対して、本発明の水平力検出装置を用いた場合は、カンチレバーを変更して荷重を高くしたり低くしたりしても、摩擦力の検出感度は影響を受けないので、安定した条件で測定を行うことができる。
(3)従来技術3のトンネル電流検知マイクロデバイスでは、本発明の水平力検出装置のサスペンションに相当する部分のばね定数は水平方向及び垂直方向ともに不明であるが、外力を加えることを想定していないため、それぞれ低く設計されており静電アクチュエータの発生力も小さいと考えられる。そのため、プローブにより力を加えたときに、垂直力の変化により水平信号が大きく変化すること、及び、最悪の場合にはトンネル電流の制御不能になることが予想される。
それに対して、本発明の水平力検出装置を用いれば、図2に示すように安定して摩擦力などの水平力を検出することが可能になる。
(3)本発明は、水平力検出ステージの垂直方向のばね定数を高くすることにより、高精度な摩擦力の検出を可能にしている。
(4)本発明は、グランド電極でトンネル電流回路を囲い、Ptをトンネル電流検出部の電極にデポジッションすることにより、安定してトンネル電流を得ることができる。
The present invention has the following excellent effects.
(1) The result of comparing the friction force distribution measured using the horizontal force detection device of the present invention with the friction force distribution detected from the torsion signal of the cantilever of the atomic force microscope of Prior Art 1 is as shown in FIG. When the torsion signal of the cantilever of the atomic force microscope of the prior art 1 is used, the noise for each scanning line is large and the change in contrast in one line is also small. In contrast, the frictional force distribution measured by the horizontal force detection device of the present invention clearly shows the contrast. Therefore, the use of the horizontal force detection device of the present invention enables highly sensitive friction force detection. For example, the change in the torsion signal of the cantilever of the atomic force microscope is 30 mV, whereas the change in the signal by the horizontal force detection device of the present invention is 300 mV.
(2) When the normal force is controlled by the cantilever of the atomic force microscope, it is necessary to change the spring constant of the cantilever in order to greatly change the normal force. However, in that case, the torsional rigidity of the cantilever also changes, so that the frictional force detection sensitivity based on the torsion signal of the cantilever of the atomic force microscope also changes. On the other hand, when the horizontal force detection device of the present invention is used, even if the cantilever is changed to increase or decrease the load, the detection sensitivity of the frictional force is not affected. Measurements can be made.
(3) In the tunnel current detection microdevice of prior art 3, the spring constant of the portion corresponding to the suspension of the horizontal force detection device of the present invention is unknown in both the horizontal direction and the vertical direction, but it is assumed that an external force is applied. Therefore, each is designed to be low and the generated force of the electrostatic actuator is considered to be small. Therefore, when a force is applied by the probe, it is expected that the horizontal signal greatly changes due to a change in the vertical force, and in the worst case, the tunnel current cannot be controlled.
On the other hand, if the horizontal force detection device of the present invention is used, it becomes possible to stably detect a horizontal force such as a friction force as shown in FIG.
(3) The present invention makes it possible to detect the frictional force with high accuracy by increasing the vertical spring constant of the horizontal force detection stage.
(4) In the present invention, a tunnel current can be stably obtained by enclosing the tunnel current circuit with a ground electrode and depositing Pt on the electrode of the tunnel current detector.

本発明に係る水平力検出装置を実施するための最良の形態を図面を参照して以下に説明する。   The best mode for carrying out a horizontal force detection apparatus according to the present invention will be described below with reference to the drawings.

図1は、水平力検出装置の全体構成を説明するための斜視図である。
水平力検出装置の本体1は、櫛歯形静電アクチュエータ2、外部から摩擦力を加えることが可能な移動テーブル3、サスペンション4及びトンネル電流検出部5からなり、シリコン基板上にMEMS(Micro Electro Mechanical System)技術を用いて作製される。
移動テーブル3は、基板上に一端が固定された弾性変形自在なサスペンション4により4隅を支持されており、櫛歯形静電アクチュエータ2の駆動力に応じて図の左右方向に移動されるようになっている。
また、トンネル電流検出部5は、移動テーブル3に備えられた移動電極6及び基板上に設けられた固定電極7から構成される。
移動電極6及び固定電極7には、電源11により所定の電圧が印加されるようになっており、また、両電極6、7間にトンネル電流が流れるとIVアンプ(電流−電圧変換アンプ)8を介して制御ユニット9に入力される。制御ユニット9は、高電圧アンプ(HVアンプ)10を介して櫛歯形静電アクチュエータ2に電圧を印加するようになっている。
FIG. 1 is a perspective view for explaining the overall configuration of the horizontal force detection device.
The main body 1 of the horizontal force detecting device comprises a comb-shaped electrostatic actuator 2, a moving table 3 capable of applying a frictional force from the outside, a suspension 4 and a tunnel current detecting unit 5. A MEMS (Micro Electro Mechanical) is formed on a silicon substrate. (System) technology.
The moving table 3 is supported at its four corners by an elastically deformable suspension 4 having one end fixed on the substrate, and is moved in the left-right direction in the figure according to the driving force of the comb-shaped electrostatic actuator 2. It has become.
The tunnel current detector 5 includes a moving electrode 6 provided on the moving table 3 and a fixed electrode 7 provided on the substrate.
A predetermined voltage is applied to the moving electrode 6 and the fixed electrode 7 by a power source 11, and when a tunnel current flows between the electrodes 6 and 7, an IV amplifier (current-voltage conversion amplifier) 8 Is input to the control unit 9 via. The control unit 9 applies a voltage to the comb-shaped electrostatic actuator 2 via a high voltage amplifier (HV amplifier) 10.

櫛歯形静電アクチュエータ2により、移動テーブル3に水平方向に駆動力を加えると、トンネル電流検出部5における移動電極6が固定電極7に接近し、トンネル電流検出部5にトンネル電流が流れる。このトンネル電流が一定になるように、IVアンプ(電流−電圧変換アンプ)8、制御ユニット9、高電圧アンプ(HVアンプ)10等の制御回路により、櫛歯形静電アクチュエータ2への印加電圧を調整する。この状態で、移動テーブル3上を原子間力顕微鏡のプローブ12で例えば図1の左右方向に摩擦すると、移動テーブル3に水平力が発生し、それを打ち消すだけの力が、櫛歯形静電アクチュエータ2により発生する。発生した力の大きさは、櫛歯形静電アクチュエータ2への印加電圧の変化分より求めることが可能であり、これより水平力が求められる。   When a driving force is applied to the moving table 3 in the horizontal direction by the comb-shaped electrostatic actuator 2, the moving electrode 6 in the tunnel current detecting unit 5 approaches the fixed electrode 7, and a tunnel current flows through the tunnel current detecting unit 5. The applied voltage to the comb-shaped electrostatic actuator 2 is controlled by a control circuit such as an IV amplifier (current-voltage conversion amplifier) 8, a control unit 9, and a high voltage amplifier (HV amplifier) 10 so that the tunnel current becomes constant. adjust. In this state, when the moving table 3 is rubbed with the probe 12 of the atomic force microscope, for example, in the left-right direction of FIG. 1, a horizontal force is generated on the moving table 3, and the force sufficient to counteract the force is a comb-shaped electrostatic actuator. 2 occurs. The magnitude of the generated force can be obtained from the change in the applied voltage to the comb-shaped electrostatic actuator 2, and the horizontal force is obtained from this.

ところで、水平力検出装置を外部からの摩擦等の刺激に対して安定して動作させるためには、移動テーブル3の水平方向の固有振動数が1kHz程度以上となるように、移動テーブル3を支えるサスペンション4の水平方向のばね定数を高く設定する必要がある。これにより、原子間力顕微鏡のプローブ10などによって加えられる外力に対して、トンネル電流検出部5の距離を安定して維持できるようになる。
また、垂直力の変化に対して安定して動作させるためには、SOI(silicon on insulataor)ウェーハをDRIE(deep reactive ion etching)などの手段で加工することにより厚みのある移動テーブル3を実現し、水平方向のばね定数よりも垂直方向のばね定数を十分(およそ5倍以上)に高く設定する必要がある。
さらに、必要なばね定数の比を得られないとき、あるいは垂直力の影響を一段と低く抑えたいときは、摩擦力を加える移動テーブルとトンネル電流検出部5の移動電極6を備える移動テーブルを分割し、それぞれを独立のサスペンションで支え、且つ両移動テーブルの間を上下方向に変位しやすい弾性変位機構で結合するのが良い。
By the way, in order to stably operate the horizontal force detecting device against external stimuli such as friction, the moving table 3 is supported so that the natural frequency in the horizontal direction of the moving table 3 is about 1 kHz or more. It is necessary to set the horizontal spring constant of the suspension 4 high. As a result, the distance of the tunnel current detector 5 can be stably maintained with respect to the external force applied by the probe 10 of the atomic force microscope.
In addition, in order to stably operate against changes in vertical force, a thick moving table 3 is realized by processing an SOI (silicon on insulator) wafer by means such as DRIE (deep reactive ion etching). It is necessary to set the spring constant in the vertical direction sufficiently higher (approximately 5 times or more) than the spring constant in the horizontal direction.
Furthermore, when the required spring constant ratio cannot be obtained, or when it is desired to suppress the influence of the vertical force to a lower level, the moving table including the moving table for applying the frictional force and the moving electrode 6 of the tunnel current detector 5 is divided. These are supported by independent suspensions, and the movable tables are preferably coupled by an elastic displacement mechanism that is easily displaced in the vertical direction.

図3は、垂直力の影響をより低くすることが可能な水平力検出装置の本体1の平面図である。
移動テーブルを、摩擦力を加える摩擦力用移動テーブル13とトンネル電流検出部5の移動電極を備える駆動用移動テーブル14とに分割し、それぞれを独立のサスペンションで支える。すなわち、摩擦力用移動テーブル13をサスペンション15で支え、駆動用移動テーブル14をサスペンション16で支える。そして、摩擦力用移動テーブル13と駆動用移動テーブル14との間を上下方向に変位しやすい弾性変位機構17で連結する。
このような構造とすることにより、垂直力が変化したときに、トンネル電流検出部5が受ける影響が極小化され、摩擦力用移動テーブル13に加えられた水平方向の力だけが移動電極を備えた駆動用移動テーブル14に伝わることになる。
FIG. 3 is a plan view of the main body 1 of the horizontal force detection device capable of further reducing the influence of the vertical force.
The moving table is divided into a friction force moving table 13 for applying a friction force and a driving moving table 14 having a moving electrode of the tunnel current detector 5, and each is supported by an independent suspension. That is, the frictional force moving table 13 is supported by the suspension 15, and the driving moving table 14 is supported by the suspension 16. Then, the friction force moving table 13 and the driving moving table 14 are connected by an elastic displacement mechanism 17 that is easily displaced in the vertical direction.
By adopting such a structure, when the vertical force changes, the influence of the tunnel current detecting unit 5 is minimized, and only the horizontal force applied to the frictional force moving table 13 includes the moving electrode. It is transmitted to the moving table 14 for driving.

また、トンネル電流検出部5で、トンネル電流を安定して得るために、集束イオンビーム(FIB)によるビームアシストデポジッションなどの手段を用いて、トンネル電流検出部5の対向電極部分に、図4に示すように、Pt等の金属を選択的に形成する方法が有効である。すなわち、トンネル電流検出部5の電極の品質が測定の安定性に大きく寄与するとともに、電極部分だけに酸化しにくいPt等の金属をつけることで、ノイズやリーク電流が抑えられ、かつトンネル電流が安定して検出されることになる。
さらに、デポジッションなどの方法を用いると、トンネル電流検出部5の初期間隔が狭くなり、より低い電圧でトンネル電流検出部5の制御が可能になる。
Further, in order to stably obtain a tunnel current in the tunnel current detection unit 5, a means such as beam assist deposition using a focused ion beam (FIB) is used to form a counter electrode portion of the tunnel current detection unit 5 in FIG. As shown in FIG. 4, a method of selectively forming a metal such as Pt is effective. That is, the quality of the electrode of the tunnel current detector 5 greatly contributes to the stability of the measurement, and by adding a metal such as Pt that is difficult to oxidize only to the electrode portion, noise and leakage current can be suppressed, and the tunnel current can be reduced. It will be detected stably.
Furthermore, when a method such as deposition is used, the initial interval of the tunnel current detection unit 5 is narrowed, and the tunnel current detection unit 5 can be controlled with a lower voltage.

(1)潤滑剤及び低摩擦コーティング材の開発・評価において、これらの摩擦力を高感度で測定する測定装置。
(2)原子間力顕微鏡用カンチレバーのねじれ剛性を正確に校正する校正装置。
(3)カーボンナノチューブ等の微小な材料の機械的特性評価装置。
(1) A measuring device that measures these frictional forces with high sensitivity in the development and evaluation of lubricants and low friction coating materials.
(2) A calibration device that accurately calibrates the torsional rigidity of a cantilever for an atomic force microscope.
(3) An apparatus for evaluating mechanical properties of minute materials such as carbon nanotubes.

本発明の実施の形態に係る水平力検出装置の全体構成を説明するための斜視図である。It is a perspective view for demonstrating the whole structure of the horizontal force detection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水平力検出装置を用いて測定した摩擦力分布と、従来の原子間力顕微鏡のカンチレバーのねじり信号から検出した摩擦力分布とを比較した電子顕微鏡写真である。It is the electron micrograph which compared the frictional force distribution measured using the horizontal force detection apparatus which concerns on embodiment of this invention, and the frictional force distribution detected from the torsion signal of the cantilever of the conventional atomic force microscope. 垂直力の影響をより低くすることが可能な本発明の実施の形態に係る水平力検出装置本体の平面図である。It is a top view of the horizontal force detection apparatus main body which concerns on embodiment of this invention which can make the influence of normal force lower. 本発明の実施の形態に係る電極部にPtをデポジッションしたときの様子を示す電子顕微鏡写真である。It is an electron micrograph which shows a mode when Pt is deposited on the electrode part which concerns on embodiment of this invention. 従来技術1の摩擦力顕微鏡により摩擦力の測定を行う状態を示す模式図である。It is a schematic diagram which shows the state which measures a friction force with the friction force microscope of the prior art 1. FIG. 従来技術2のトンネル効果式加速度センサを示す模式図である。It is a schematic diagram which shows the tunnel effect type acceleration sensor of the prior art 2. 従来技術3のトンネル電流検知マイクロデバイスを示す模式図である。It is a schematic diagram which shows the tunnel current detection microdevice of the prior art 3.

符号の説明Explanation of symbols

1 水平力検出装置の本体
2 櫛歯形静電アクチュエータ
3 移動テーブル
4 サスペンション
5 トンネル電流検出部
6 移動電極
7 固定電極
8 IVアンプ(電流−電圧変換アンプ)
9 制御ユニット
10 高電圧アンプ(HVアンプ)
11 電源
12 プローブ
13 摩擦力用移動テーブル
14 駆動用移動テーブル
15 サスペンション
16 サスペンション
17 弾性変位機構
DESCRIPTION OF SYMBOLS 1 Body of horizontal force detection apparatus 2 Comb-tooth type electrostatic actuator 3 Moving table 4 Suspension 5 Tunnel current detection part 6 Moving electrode 7 Fixed electrode 8 IV amplifier (current-voltage conversion amplifier)
9 Control unit 10 High voltage amplifier (HV amplifier)
DESCRIPTION OF SYMBOLS 11 Power supply 12 Probe 13 Frictional force moving table 14 Driving moving table 15 Suspension 16 Suspension 17 Elastic displacement mechanism

Claims (1)

基板上に移動可能に支持され、静電アクチュエータの駆動力により移動自在な移動テーブルと、該移動テーブルに設けられた移動電極及び基板上に設けられた固定電極とにより構成されるトンネル電流検出部を備え、移動テーブルに外部から摩擦力を作用させることにより水平力を検出する水平力検出装置において、前記移動テーブルを、摩擦力を加える摩擦力用移動テーブルとトンネル電流検出部の移動電極が設けられた駆動用移動テーブルとに分割し、それぞれのテーブルを独立の支持部材で支持するようにしたことを特徴とする水平力検出装置。   A tunneling current detector configured to be movably supported on a substrate and movable by a driving force of an electrostatic actuator, a moving electrode provided on the moving table, and a fixed electrode provided on the substrate A horizontal force detecting device for detecting a horizontal force by applying a frictional force to the moving table from the outside, wherein the moving table is provided with a moving table for a frictional force for applying a frictional force and a moving electrode for a tunnel current detecting unit. A horizontal force detecting device characterized in that the table is divided into a movable table for driving and each table is supported by an independent support member.
JP2005035523A 2005-02-14 2005-02-14 Horizontal force detector Expired - Fee Related JP4761111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035523A JP4761111B2 (en) 2005-02-14 2005-02-14 Horizontal force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035523A JP4761111B2 (en) 2005-02-14 2005-02-14 Horizontal force detector

Publications (2)

Publication Number Publication Date
JP2006220579A true JP2006220579A (en) 2006-08-24
JP4761111B2 JP4761111B2 (en) 2011-08-31

Family

ID=36982998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035523A Expired - Fee Related JP4761111B2 (en) 2005-02-14 2005-02-14 Horizontal force detector

Country Status (1)

Country Link
JP (1) JP4761111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361266A1 (en) * 2016-12-02 2018-08-15 Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk Method of lateral force calibration in an afm microscope and device for lateral force calibration in an afm microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141601A (en) * 1993-09-20 1995-06-02 Fujitsu Ltd Magnetic memory device
JP2002062245A (en) * 2001-06-11 2002-02-28 Ricoh Co Ltd Force microscope
WO2004081975A2 (en) * 2003-03-13 2004-09-23 Nat Inst Of Advanced Ind Scien Three-dimensional electrostatic actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07141601A (en) * 1993-09-20 1995-06-02 Fujitsu Ltd Magnetic memory device
JP2002062245A (en) * 2001-06-11 2002-02-28 Ricoh Co Ltd Force microscope
WO2004081975A2 (en) * 2003-03-13 2004-09-23 Nat Inst Of Advanced Ind Scien Three-dimensional electrostatic actuator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011001172, 安藤 泰久, 白石 直規, "3次元マイクロステージによる摩擦力測定", 第4回機素潤滑設計部門講演会講演論文集, 20040416, p. 133−136, JP, 社団法人日本機械学会 *
JPN6011001174, 安藤 泰久, 白石 直規, "マイクロデバイスを用いた摩擦力測定", 2004年度年次大会講演論文集, 20040904, Vol. 4, p. 113−114, JP, 社団法人日本機械学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361266A1 (en) * 2016-12-02 2018-08-15 Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk Method of lateral force calibration in an afm microscope and device for lateral force calibration in an afm microscope

Also Published As

Publication number Publication date
JP4761111B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US7441447B2 (en) Methods of imaging in probe microscopy
US7707873B2 (en) Three-dimensional nanoscale metrology using FIRAT probe
US7552625B2 (en) Force sensing integrated readout and active tip based probe microscope systems
US20070107502A1 (en) Overlay measurement methods with firat based probe microscope
TWI754649B (en) Method of determining an overlay error, method for manufacturing a multilayer semiconductor device, atomic force microscopy device, lithographic system and semiconductor device
US20070103697A1 (en) Integrated displacement sensors for probe microscopy and force spectroscopy
US20110170108A1 (en) Fast Microscale Actuators for Probe Microscopy
JPH0368880A (en) Apparatus and method for measuring magnetic force
JP2006258429A (en) Scanning probe microscope
US20100107284A1 (en) Cantilever, cantilever system, scanning probe microscope, mass sensor apparatus, viscoelasticity measuring instrument, manipulation apparatus, displacement determination method of cantilever, vibration method of cantilever and deformation method of cantilever
US7041963B2 (en) Height calibration of scanning probe microscope actuators
JP2017521655A (en) Scanning probe microscope and method for inspecting surfaces with high aspect ratio
Adams et al. Piezoelectric self-sensing of adsorption-induced microcantilever bending
US8695108B2 (en) In-liquid potential measurement device and atomic force microscope
JP5164743B2 (en) Cantilever, cantilever system, probe microscope and adsorption mass sensor
US6718821B1 (en) Laser interferometry force-feedback sensor for an interfacial force microscope
Chetwynd et al. A controlled-force stylus displacement probe
JP4761111B2 (en) Horizontal force detector
JP2006258536A (en) Work function measuring instrument
Moreno‐Herrero et al. AFM: Basic concepts
Fantner et al. DMCMN: In depth characterization and control of AFM cantilevers with integrated sensing and actuation
JP3294662B2 (en) Surface electrometer
CN112098679A (en) Measuring device of scanning probe microscope and method for scanning probe microscopic testing of measurement sample by using scanning probe microscope
RU2713964C1 (en) Direct displacement converter for micromechanical devices (displacement sensor)
US7752898B2 (en) Devices for probe microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees