JP2006220532A - Satellite positioning method, its system and frequency error detecting method - Google Patents

Satellite positioning method, its system and frequency error detecting method Download PDF

Info

Publication number
JP2006220532A
JP2006220532A JP2005034049A JP2005034049A JP2006220532A JP 2006220532 A JP2006220532 A JP 2006220532A JP 2005034049 A JP2005034049 A JP 2005034049A JP 2005034049 A JP2005034049 A JP 2005034049A JP 2006220532 A JP2006220532 A JP 2006220532A
Authority
JP
Japan
Prior art keywords
frequency
local
error
satellite
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005034049A
Other languages
Japanese (ja)
Other versions
JP4578261B2 (en
Inventor
Nobuhiro Kishimoto
信弘 岸本
Seiichiro Hirata
誠一郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAZERAN SYSTEMS JAPAN KK
Original Assignee
MAZERAN SYSTEMS JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAZERAN SYSTEMS JAPAN KK filed Critical MAZERAN SYSTEMS JAPAN KK
Priority to JP2005034049A priority Critical patent/JP4578261B2/en
Publication of JP2006220532A publication Critical patent/JP2006220532A/en
Application granted granted Critical
Publication of JP4578261B2 publication Critical patent/JP4578261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a satellite positioning system which can detect pseudorange with high sensitivity even from a very weak signal hidden in noises from the satellite and is very quick in processing speed. <P>SOLUTION: More exact frequency than the local frequency which a reception terminal emits at a local oscillator 34 is received from an external oscillator. Then, the local frequency emitted from the local oscillator 34 on the reference of the external frequency obtained from the external oscillator is measured, and the error of the local oscillation frequency given in advance from the measured local frequency is detected. Then, a plurality of candidate values of the exact local frequency error in a specific frequency range including the error of the local oscillation frequency are set. The signal received from the satellite is Doppler-corrected by each candidate value of the frequency error due to the Doppler effect of the satellite and the local frequency error and correlation-calculated, and by the correlation calculation results, an exact local frequency error is detected. Then, a delay value is detected from the correlation calculation results in which an exact local frequency error is shown and pseudorange is calculated from the delay value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、衛星測位方法とそのシステム及び周波数誤差検出方法に関するものである。 The present invention relates to a satellite positioning method, a system thereof, and a frequency error detection method.

測位用衛星(例えばGPS)受信機等に於ては、受信した衛星からの電波のコードに受信機内部で発生する同一コードを同期させて、コードを復調している。
しかし、測位用衛星は動いているために、ドップラ効果が生じ、そのため受信電波の周波数が衛星から送信したものとは異なっている。そこで、GPS受信機などにてドップラ補正を行って、この周波数を衛星から送信した時点と同一にすることを行っている。
In a positioning satellite (for example, GPS) receiver or the like, the code is demodulated by synchronizing the same code generated inside the receiver with the radio wave code from the received satellite.
However, since the positioning satellite is moving, the Doppler effect occurs, and therefore the frequency of the received radio wave is different from that transmitted from the satellite. Therefore, Doppler correction is performed by a GPS receiver or the like to make this frequency the same as when it was transmitted from the satellite.

また、受信機内の局部発振器(内部発振器)の周波数誤差があると、周波数変換後の周波数は衛星自身のドップラ効果による周波数誤差のほかに局部発振器の誤差が重畳される。
この際に受信機自身のみでドップラ補正を行おうとすれば、周波数誤差を自力で推定して考えられる周波数領域を総当りで試みる必要があり、コード復調が出来るまで繰り返す必要が生じるため、非常に長い処理時間が必要であるという欠点があった。つまり、コード復調するまで相当の時間がかかるという致命的な欠点を持っていた。
Further, if there is a frequency error of the local oscillator (internal oscillator) in the receiver, the error after the frequency conversion is superimposed on the error of the local oscillator in addition to the frequency error due to the Doppler effect of the satellite itself.
At this time, if the Doppler correction is to be performed only by the receiver itself, it is necessary to try the frequency range that can be considered by estimating the frequency error by itself, and it is necessary to repeat until the code demodulation is possible. There was a drawback that a long processing time was required. That is, it has a fatal defect that it takes a considerable time to demodulate the code.

また、外部より正確な衛星の周波数誤差をもらっても、局部発振器の誤差が不明ならばドップラ補正は上記の場合と同様に、周波数誤差を自力で推定して考えられる周波数領域を総当りで試みる必要があり、コード復調が出来るまで計算を繰り返す必要が生じるという欠点があった。
局部発振器の誤差を完全に排除するためには、超高安定の発振器が要求されることになる。例えば高価なルビジウム発振器などが必要になり、システムが高価になるという欠点があった。
In addition, even if an accurate satellite frequency error is obtained from outside, if the error of the local oscillator is unknown, Doppler correction needs to try the frequency range that can be considered by estimating the frequency error by itself as in the above case. There is a drawback that it is necessary to repeat the calculation until the code can be demodulated.
In order to completely eliminate the error of the local oscillator, an ultra-stable oscillator is required. For example, an expensive rubidium oscillator or the like is required, and the system is expensive.

また、この欠点を解決するために、外部から正確な周波数の信号を取り入れ、この信号に受信機内部の発振周波数の誤差を位相検出回路により検出することが従来から広く行われている。つまり、位相同期ループ回路により受信機内部の発振周波数を外部から正確な周波数の信号にロックさせて同一周波数にする手段(電波時計、JJY等)が、一般に広く用いられている。この手段は、一般にPLL(Phase Lock Loop )回路として広く知られている(例えば、特許文献1参照)。
特開平7−321644号公報
In order to solve this drawback, it has been widely practiced to incorporate a signal having an accurate frequency from the outside and detect an error in the oscillation frequency inside the receiver by this phase detection circuit. That is, means (radio timepiece, JJY, etc.) that locks the oscillation frequency inside the receiver to a signal having an accurate frequency from the outside by a phase-locked loop circuit and uses the same frequency is generally widely used. This means is generally known as a PLL (Phase Lock Loop) circuit (see, for example, Patent Document 1).
JP-A-7-321644

従来の手段では、外部から取り入れる受信信号が外部からドップラ効果を受けていたり、雑音にうずもれた信号である場合に、外部から取り入れる受信信号を基準にして、受信機内部の発振周波数の誤差を正確に検知することは、極めて困難であるという欠点をもっている。   In the conventional method, when the received signal received from the outside is subjected to the Doppler effect from the outside or is a signal that is devoted to noise, the error of the oscillation frequency inside the receiver with reference to the received signal received from the outside It is extremely difficult to accurately detect.

本発明の衛星測位方法は、局部発振部を有する受信機端末が衛星からの信号を受信し、受信した信号により上記受信機端末が上記衛星との間の擬似距離を求める衛星測位方法であって、上記受信機端末が上記局部発振部にて発振する局部周波数より正確な周波数を外部発振部から受信し、外部発振部から得た外部周波数を基準に局部発振部で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、上記衛星から受信した信号を該衛星のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値を検出して、該遅延値から上記擬似距離を求める。   The satellite positioning method of the present invention is a satellite positioning method in which a receiver terminal having a local oscillation unit receives a signal from a satellite, and the receiver terminal obtains a pseudorange with the satellite by the received signal. The receiver terminal receives from the external oscillator a frequency that is more accurate than the local frequency oscillated by the local oscillator, and measures the local frequency oscillated by the local oscillator based on the external frequency obtained from the external oscillator. Detecting a local oscillation frequency error given in advance from the measured local frequency, and setting a plurality of accurate local frequency error candidate values within a predetermined frequency region including the local oscillation frequency error. The signal received from the base station is subjected to Doppler correction using the frequency error due to the Doppler effect of the satellite and each candidate value of the local frequency error, and the correlation is calculated. Out, to detect a delay value from the exact local frequency error the correlation calculation results shown, obtaining the pseudorange from the delay value.

また、局部発振部を有する受信機端末が衛星からの信号を受信し、受信した信号により上記受信機端末が上記衛星との間の擬似距離を求める衛星測位方法であって、上記受信機端末が上記局部発振部にて発振する局部周波数より正確な周波数を外部発振部から受信し、外部発振部から得た外部周波数を基準に局部発振部で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定し、特定した周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、上記衛星から受信した信号を該衛星のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値を検出して、該遅延値から上記擬似距離を求める。   A receiver terminal having a local oscillating unit receives a signal from a satellite, and the receiver terminal obtains a pseudorange with the satellite based on the received signal, wherein the receiver terminal Receive an accurate frequency from the external oscillation unit from the local oscillation frequency oscillated by the local oscillation unit, measure the local frequency oscillated at the local oscillation unit based on the external frequency obtained from the external oscillation unit, and from the measured local frequency An error in the local oscillation frequency given in advance is detected, and the frequency range is set with the frequency calculated by adding and subtracting the maximum error in the external frequency given in advance to the error in the local oscillation frequency as the upper limit value and the lower limit value. A plurality of local frequency error candidate values that are accurate within the specified frequency region are set, and a signal received from the satellite is converted into a frequency error due to the Doppler effect of the satellite and the local frequency. The correlation calculation is performed by Doppler correction with each of the candidate values of the numerical error, the accurate local frequency error is detected from the correlation calculation result, the delay value is detected from the correlation calculation result indicating the accurate local frequency error, The pseudo distance is obtained from the delay value.

本発明の衛星測位システムは、衛星からの衛星信号を受信機端末が受信し、受信した受信信号により該受信機端末が該衛星との間の擬似距離を求める衛星測位システムに於て、上記受信機端末が、周波数を発振させる局部発振部と、該局部発振部が発振する局部周波数より正確な周波数を外部発振部から受信する受信部と、上記外部発振部から得た外部周波数を基準に局部発振部の局部周波数を計測しかつ計測した局部周波数から予め与えられている局部発振周波数の誤差を検出する第1段検出部と、この局部発振周波数の誤差を含む所定の周波数領域内で設定された正確な局部周波数誤差の複数個の候補値を入力されかつ上記衛星から受信した信号を該衛星のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正するドップラ補正部と、該ドップラ補正部で処理した信号を相関計算する相関計算部と、相関計算結果により正確な局部周波数誤差を検出する第2段検出部と、正確な局部周波数誤差が示された相関計算結果から遅延値を検出して該遅延値から上記擬似距離を求める擬似距離検出部と、を備えるものである。   The satellite positioning system according to the present invention is a satellite positioning system in which a receiver terminal receives a satellite signal from a satellite, and the receiver terminal obtains a pseudorange with the satellite based on the received signal received. A local oscillation unit that oscillates a frequency, a reception unit that receives an accurate frequency from the external oscillation unit, and a local frequency based on the external frequency obtained from the external oscillation unit. A first stage detection unit that measures the local frequency of the oscillation unit and detects an error of the local oscillation frequency given in advance from the measured local frequency, and is set within a predetermined frequency region including the error of the local oscillation frequency In addition, a plurality of candidate values for the accurate local frequency error are inputted, and a signal received from the satellite is dropped by the frequency error due to the Doppler effect of the satellite and each candidate value for the local frequency error. A Doppler correction unit for correction, a correlation calculation unit for performing correlation calculation on the signal processed by the Doppler correction unit, a second stage detection unit for detecting an accurate local frequency error from the correlation calculation result, and an accurate local frequency error are shown. A pseudo distance detecting unit that detects a delay value from the correlation calculation result and obtains the pseudo distance from the delay value.

また、上記第1段検出部で検出した局部発振周波数の誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定し、その特定した周波数領域内で正確な局部周波数誤差の複数の候補値を設定するものである。   Further, the frequency region is specified by using the frequency calculated by adding and subtracting the maximum error of the external frequency given in advance to the error of the local oscillation frequency detected by the first stage detection unit as an upper limit value and a lower limit value, A plurality of candidate values for an accurate local frequency error are set within the specified frequency region.

また、本発明の衛星測位方法は、局部発振部を有する受信機端末が衛星からの信号を受信し、受信した信号により上記受信機端末が上記衛星との間の擬似距離を求める衛星測位方法であって、上記受信機端末は中心周波数とその誤差範囲とを予め知り得る上記局部発振部を有し、該局部発振部が発振する局部発振周波数と上記中心周波数とから局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む上記誤差範囲内で正確な局部周波数誤差の候補値を複数個設定し、上記衛星から受信した信号を該衛星のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値を検出して、該遅延値から上記擬似距離を求める。   Further, the satellite positioning method of the present invention is a satellite positioning method in which a receiver terminal having a local oscillating unit receives a signal from a satellite, and the receiver terminal obtains a pseudorange between the satellite and the received signal. The receiver terminal has the local oscillation unit that can know the center frequency and its error range in advance, and detects an error of the local oscillation frequency from the local oscillation frequency oscillated by the local oscillation unit and the center frequency. Then, a plurality of accurate local frequency error candidate values within the error range including the error of the local oscillation frequency are set, and a signal received from the satellite is converted into a frequency error due to the Doppler effect of the satellite and the local frequency error. Correlation is calculated by Doppler correction with each candidate value, an accurate local frequency error is detected from the correlation calculation result, and a delay value is detected from the correlation calculation result indicating the accurate local frequency error. Obtaining the pseudo-range from the delay value.

本発明の周波数誤差検出方法は、受信機端末が局部発振部にて発振する局部周波数より正確な周波数を外部発振部から受信し、外部発振部から得た外部周波数を基準に局部発振部で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、衛星から受信した信号を該衛星のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出する。   In the frequency error detection method of the present invention, the receiver terminal receives a frequency that is more accurate than the local frequency oscillated by the local oscillating unit from the external oscillating unit, and oscillates at the local oscillating unit based on the external frequency obtained from the external oscillating unit. Measure the local frequency to be detected, detect an error of the local oscillation frequency given in advance from the measured local frequency, and multiple accurate local frequency error candidate values within a predetermined frequency region including this local oscillation frequency error The signal received from the satellite is subjected to correlation calculation by Doppler correction using the frequency error due to the Doppler effect of the satellite and each candidate value of the local frequency error, and an accurate local frequency error is detected from the correlation calculation result.

本発明は、雑音にうずもれた超微弱な信号であっても、信号対雑音比を著しく向上させた状態にすると共に、局部発振部の周波数誤差を自己検出させることができ、しかも、その処理時間を短くすることができる。つまり、高感度でかつ処理速度の早いものとすることができる。また、局部発振部の周波数誤差を検出するための演算処理回路が小規模なものとなり、装置(受信機端末)の簡素化が図れる。   The present invention makes it possible to make the signal-to-noise ratio remarkably improved, and to detect the frequency error of the local oscillating unit, even if it is a very weak signal with noise. Processing time can be shortened. That is, high sensitivity and high processing speed can be achieved. Further, the arithmetic processing circuit for detecting the frequency error of the local oscillating unit becomes a small scale, and the apparatus (receiver terminal) can be simplified.

従って、従来ではドップラ補正を正確に早く応答させるために超高感度で高価な発振器が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドップラ補正を正確かつ迅速に行なうことができる。   Therefore, in the past, an ultra-sensitive and expensive oscillator was required to make the Doppler correction respond accurately and quickly. However, in the present invention, the Doppler correction is performed even for an inexpensive oscillator that is generally used. It can be done accurately and quickly.

以下、実施の形態に示す図面に基づき本発明を詳説する。
図1〜図8に示す第1の実施の形態に於て、図1は、本発明の衛星測位方法及び衛星測位システムの実施の一形態の概略を示す全体ブロック図である。
図1に於て、A1 ,A2 ,A3 ,A4 は衛星(測位衛星)を示し、1は基地局である。基地局1は、受信機端末11に各測位衛星Aのドップラ情報(各測位衛星A自身のドップラ効果による周波数誤差)を送るために設けられたものである。
基地局1は、見晴らしの良い環境に設置された受信アンテナ2を備え、GPS基準信号をサーバ受信機3にて受信し、演算部4にてGPS信号からの衛星Aのドップラ効果による周波数誤差(ドップラ情報)を抽出する。
Hereinafter, the present invention will be described in detail with reference to the drawings shown in the embodiments.
In the first embodiment shown in FIGS. 1 to 8, FIG. 1 is an overall block diagram showing an outline of an embodiment of a satellite positioning method and a satellite positioning system of the present invention.
In FIG. 1, A 1 , A 2 , A 3 and A 4 indicate satellites (positioning satellites), and 1 is a base station. The base station 1 is provided to send the Doppler information of each positioning satellite A (frequency error due to the Doppler effect of each positioning satellite A) to the receiver terminal 11.
The base station 1 includes a receiving antenna 2 installed in an environment with a good view, receives a GPS reference signal by the server receiver 3, and a frequency error due to the Doppler effect of the satellite A from the GPS signal by the arithmetic unit 4 ( Doppler information) is extracted.

そして、送信部(送信機)5により演算部4での情報を、受信機端末11側に送信する。L1 は通信回線であり、演算部4の情報は通信回線L1 にて受信機端末11の受信部12に送信する。 And the information in the calculating part 4 is transmitted to the receiver terminal 11 side by the transmission part (transmitter) 5. L 1 is a communication line, and information of the calculation unit 4 is transmitted to the receiving unit 12 of the receiver terminal 11 through the communication line L 1 .

17は、受信機端末11内で発振する局部周波数より正確な周波数を発振する外部発振部である。外部発振部17で発振される外部周波数は通信回線L2 にて受信機端末11の受信部12に送信される。
なお、通信回線L1 ,L2 は、考えられる通信回線はすべて対象としており、電磁的通信手段等でもよく、例えば、地上放送、携帯電話通信、通信衛星を介して情報を垂れ流しで放送する通信、インターネット回線でも良い。また、通信回線L1 ,L2 を同一の通信回線としても自由である。
Reference numeral 17 denotes an external oscillation unit that oscillates a frequency that is more accurate than the local frequency that oscillates in the receiver terminal 11. External frequency oscillated by the external oscillation portion 17 is transmitted by the communication line L 2 to the receiver 12 of the receiver terminal 11.
Note that the communication lines L 1 and L 2 are all possible communication lines, and may be electromagnetic communication means, for example, terrestrial broadcasting, mobile phone communication, communication for broadcasting information via a communication satellite Internet connection is also acceptable. Also, the communication lines L 1 and L 2 can be freely set as the same communication line.

また、受信機端末11は、放送などの情報(携帯電話、インターネットなど)に対して、多くの端末11が同時に受信できることを想定している。なお、図1は説明を容易とするために、受信機端末11が1台の場合を示している。   In addition, it is assumed that the receiver terminal 11 can receive many terminals 11 simultaneously with respect to information such as broadcasting (mobile phone, Internet, etc.). FIG. 1 shows a case where there is one receiver terminal 11 for ease of explanation.

14は受信機端末11のアンテナ部である。受信機端末11(アンテナ部14)の場所は、衛星Aが直接見えるところのみならず、通常の開けた野外以外に、木の陰や、建物の中などGPS電波の強さがかなり弱い場所なども想定している。
13は衛星AからのGPS信号をダウンコンバートし(搬送波を除去し)たPN信号(C/Aコード)をA/D変換するGPS受信部であり、GPS受信部13は局部発振部34を有する(図2参照)。15はその信号を蓄積する部分(メモリ:RAM)である。6は局部発振部34が発振する周波数誤差(局部発振周波数の誤差)を検出(算出)する第1段検出部である。16はPN信号から周波数誤差を補正するドップラ補正部である。そして、ドップラ補正部16は、蓄積されたGPS信号のPN信号(I成分、Q成分)について、局部発振部34の正確な局部発振周波数誤差の候補値と基地局1からの搬送波のドップラ情報から、搬送波のドップラ補正を行なう。
Reference numeral 14 denotes an antenna unit of the receiver terminal 11. The location of the receiver terminal 11 (antenna unit 14) is not only where satellite A can be seen directly, but in places other than normal open fields, such as in the shade of trees or in buildings where GPS signal strength is very weak. It also assumes.
Reference numeral 13 denotes a GPS receiver that performs A / D conversion on a PN signal (C / A code) obtained by down-converting the GPS signal from the satellite A (removing the carrier wave). The GPS receiver 13 includes a local oscillator 34. (See FIG. 2). Reference numeral 15 denotes a portion (memory: RAM) for storing the signal. Reference numeral 6 denotes a first stage detection unit that detects (calculates) a frequency error (local oscillation frequency error) generated by the local oscillation unit 34. A Doppler correction unit 16 corrects a frequency error from the PN signal. Then, the Doppler correction unit 16 uses the accurate local oscillation frequency error candidate value of the local oscillation unit 34 and the carrier Doppler information from the base station 1 for the accumulated PN signal (I component, Q component) of the GPS signal. Then, Doppler correction of the carrier wave is performed.

また、受信機端末11は、ドップラ補正部16で処理した信号を相関計算する相関計算部9と、相関計算結果から正確な局部周波数誤差を検出する第2段検出部7と、を備えている。そして、19は正確な局部周波数誤差が示された相関計算結果から擬似距離を求める擬似距離検出部であり、20はここで得られた擬似距離の情報等により受信機端末11の自己位置を検出する位置計算部である。   The receiver terminal 11 includes a correlation calculation unit 9 that performs correlation calculation on the signal processed by the Doppler correction unit 16 and a second stage detection unit 7 that detects an accurate local frequency error from the correlation calculation result. . Reference numeral 19 is a pseudorange detection unit that obtains a pseudorange from the correlation calculation result indicating an accurate local frequency error, and 20 detects the self-position of the receiver terminal 11 based on the pseudorange information obtained here. It is a position calculation part to do.

図3は、衛星Aの受信信号と外部発振部17の外部周波数とを受信機端末11が受信して擬似距離を求めるまでのフローチャート図である。
図1と図3に於て、本発明の衛星測位方法について説明する。
まず、第1段検出部6で、(図2に示す)局部発振部34が発振する局部周波数をこの局部周波数より正確な外部周波数を基準に計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出する。次に、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差(局部発振周波数の誤差)の候補値を複数個設定し、各候補値をドップラ補正部16に入力する。そして、ドップラ補正部16にて、アンテナ部14で受信した衛星信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正する。周波数誤差がキャンセルされた衛星信号を相関計算部9で相関計算し、第2段検出部7にて相関計算結果により正確な局部周波数誤差を検出する。そして、擬似距離検出部19で、正確な局部周波数誤差が示された相関計算結果から遅延値τを検出して遅延値τから擬似距離を求める。ここで得られた擬似距離と、受信部12からの基地局位置、各衛星位置、基地局1と各衛星Aとの擬似距離の情報により位置計算部20で受信機端末11の自己位置を知ることができる。
FIG. 3 is a flowchart until the receiver terminal 11 receives the received signal of the satellite A and the external frequency of the external oscillation unit 17 and obtains the pseudorange.
1 and 3, the satellite positioning method of the present invention will be described.
First, the first stage detection unit 6 measures the local frequency oscillated by the local oscillation unit 34 (shown in FIG. 2) based on an external frequency that is more accurate than the local frequency, and is given in advance from the measured local frequency. Detect local oscillation frequency error. Next, a plurality of accurate local frequency error (local oscillation frequency error) candidate values are set within a predetermined frequency region including the local oscillation frequency error, and each candidate value is input to the Doppler correction unit 16. Then, the Doppler correction unit 16 performs Doppler correction on the satellite signal received by the antenna unit 14 using the frequency error due to the Doppler effect of the satellite A and each candidate value of the local frequency error. The correlation calculation unit 9 performs correlation calculation on the satellite signal from which the frequency error has been canceled, and the second stage detection unit 7 detects an accurate local frequency error from the correlation calculation result. Then, the pseudo distance detection unit 19 detects the delay value τ from the correlation calculation result indicating the accurate local frequency error, and obtains the pseudo distance from the delay value τ. The position calculation unit 20 knows the self-position of the receiver terminal 11 based on the pseudo distance obtained here, the base station position from the receiving unit 12, the position of each satellite, and the pseudo distance between the base station 1 and each satellite A. be able to.

以下、各処理ブロックに於ける動作を詳細に説明する。図2と図4は、受信機端末11の構成を示すブロック図である。また、図4に於て、第1段検出部6は、例えば、図4(a)又は図4(b)に示すような実施の形態があり、まず、図4(a)の実施形態の場合について説明する。
第1段検出部6は、カウンタ23を具備している。カウンタ23は局部周波数をカウントするものである。また、外部周波数は局部周波数より正確な周波数である。
局部発振部34は、局部発振器(周波数シンセサイザ)であり、一般に使用される安価な水晶発振器を用いることができる。なお、局部発振部34は周波数誤差を持っている。
Hereinafter, the operation in each processing block will be described in detail. 2 and 4 are block diagrams showing the configuration of the receiver terminal 11. As shown in FIG. In FIG. 4, the first stage detection unit 6 has, for example, an embodiment as shown in FIG. 4 (a) or FIG. 4 (b). First, in the embodiment of FIG. The case will be described.
The first stage detection unit 6 includes a counter 23. The counter 23 counts the local frequency. The external frequency is more accurate than the local frequency.
The local oscillator 34 is a local oscillator (frequency synthesizer), and an inexpensive crystal oscillator that is generally used can be used. The local oscillator 34 has a frequency error.

局部発振部34で発振した局部周波数と受信部12で受信した外部周波数とを第1段検出部6に入力する。そして、外部基準クロックを基準として、カウンタ23で局部周波数のカウントを開始する。外部基準クロックのカウントする所定時間は、例えば1sec である。
カウンタ23によって計測された局部周波数から局部周波数誤差(局部発振周波数の誤差)を算出する。誤差=(局部発振周波数の測定値)−(設計周波数)となる。この局部周波数誤差には、外部周波数が有する僅かな誤差も含まれている。
The local frequency oscillated by the local oscillator 34 and the external frequency received by the receiver 12 are input to the first stage detector 6. Then, the counter 23 starts counting the local frequency with the external reference clock as a reference. The predetermined time that the external reference clock counts is, for example, 1 sec.
A local frequency error (local oscillation frequency error) is calculated from the local frequency measured by the counter 23. Error = (measured value of local oscillation frequency) − (design frequency). This local frequency error includes a slight error of the external frequency.

また、局部発振部34が、図示省略のPLL(Phase Lock Loop )回路である場合は、その回路を構成する分周器にて周波数をN分の1(Nは所定数)に縮小されるため、第1段検出部6で検出された局部周波数誤差はN倍される。なお、この時の分周器の個数や縮小度Nの値等は、設計変更自在である。   When the local oscillator 34 is a PLL (Phase Lock Loop) circuit (not shown), the frequency is reduced to 1 / N (N is a predetermined number) by a frequency divider constituting the circuit. The local frequency error detected by the first stage detection unit 6 is multiplied by N. Note that the number of frequency dividers, the value of the degree of reduction N, etc. at this time can be freely changed in design.

また、図4(b)に示すように、第1段検出部6は、局部周波数と外部周波数の周波数をダウンコンバートする周波数変換部18と、周波数カウンタとしてのフーリエ変換部25とを有していてもよい。   As shown in FIG. 4B, the first stage detection unit 6 includes a frequency conversion unit 18 that down-converts the local frequency and the external frequency, and a Fourier transform unit 25 as a frequency counter. May be.

第1段検出部6で算出された局部周波数誤差は、受信機端末11内の候補値設定部51に送信され(図2参照)、この局部周波数誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定する。さらに、候補値設定部51では、特定した周波数領域内で正確な局部周波数誤差の候補値を複数個設定する。   The local frequency error calculated by the first stage detection unit 6 is transmitted to the candidate value setting unit 51 in the receiver terminal 11 (see FIG. 2), and the maximum error of the external frequency given in advance to this local frequency error. The frequency region is specified with the frequency calculated by adding and subtracting as the upper limit value and the lower limit value. Further, the candidate value setting unit 51 sets a plurality of accurate local frequency error candidate values within the specified frequency region.

この候補値の設定の仕方を具体的に説明すると、例えば、第1段検出部6で局部周波数誤差が2000Hzと算出され、予め与えられている外部周波数の最大誤差が 100Hzである場合、正確な局部周波数誤差は、局部周波数誤差2000Hzから外部周波数の最大誤差 100Hzを加算及び減算した2100Hzと1900Hzの間の周波数領域(1900Hz〜2100Hz)内に存在することになる。そして、特定した周波数領域(1900Hz〜2100Hz)内で、最大誤差 100Hzを(例えば)2000Hzを中心に10Hz毎にとった周波数を正確な局部周波数誤差の複数の候補値として設定する。この場合、候補値は、1900Hz、1910Hz、1920Hz、…2080Hz、2090Hz、2100Hzとなる。
また、最大誤差 100Hzを2000Hzを中心に10Hz毎に候補値を設定したが、候補値の設定の仕方は、受信機端末11の性能等に応じて設定すればよく、例えば、後述するドップラ補正部16の個数に対応して設定してもよい。
The method of setting the candidate value will be described in detail. For example, when the local frequency error is calculated as 2000 Hz by the first stage detection unit 6 and the maximum error of the external frequency given in advance is 100 Hz, it is accurate. The local frequency error exists in a frequency range (1900 Hz to 2100 Hz) between 2100 Hz and 1900 Hz obtained by adding and subtracting the maximum error 100 Hz of the external frequency from the local frequency error 2000 Hz. Then, within the specified frequency region (1900 Hz to 2100 Hz), a frequency having a maximum error of 100 Hz (for example) centered on 2000 Hz every 10 Hz is set as a plurality of accurate local frequency error candidate values. In this case, the candidate values are 1900 Hz, 1910 Hz, 1920 Hz,... 2080 Hz, 2090 Hz, 2100 Hz.
In addition, the candidate value is set for every 10 Hz with a maximum error of 100 Hz centered on 2000 Hz, but the method of setting the candidate value may be set according to the performance of the receiver terminal 11, for example, a Doppler correction unit described later It may be set corresponding to 16 pieces.

設定された複数の候補値は、ドップラ補正部16に入力される。なお、ドップラ補正部16は、複数個備えられており、上記の例では、21個備えている(図5参照)。
また、ドップラ補正部16には、I信号変換部35とQ信号変換部36とにより得られた信号も入力される(図6参照)。
The plurality of set candidate values are input to the Doppler correction unit 16. Note that a plurality of Doppler correction units 16 are provided, and in the above example, 21 are provided (see FIG. 5).
The Doppler correction unit 16 also receives signals obtained by the I signal conversion unit 35 and the Q signal conversion unit 36 (see FIG. 6).

次に、衛星信号を受信しI信号変換部35とQ信号変換部36で処理されてドップラ補正部16に入力されるまでの工程について説明する。
図2於て、GPS受信部13は、受信アンテナ部14によるPN信号を受信する高周波増幅部32と、周波数をダウンコンバートする周波数変換部33と、I信号変換部35(I信号変換搬送波除去部)と、Q信号変換部36(Q信号変換搬送波除去部)と、90度移相器37と、A/Dコンバータ部38,39と、信号を一時記憶するためのメモリ部15(RAM)と、を備えている。
Next, a process from reception of a satellite signal to processing by the I signal conversion unit 35 and Q signal conversion unit 36 and input to the Doppler correction unit 16 will be described.
In FIG. 2, a GPS receiving unit 13 includes a high frequency amplifying unit 32 that receives a PN signal from the receiving antenna unit 14, a frequency converting unit 33 that down-converts the frequency, and an I signal converting unit 35 (I signal converting carrier removing unit). ), Q signal conversion unit 36 (Q signal conversion carrier wave removal unit), 90 degree phase shifter 37, A / D converter units 38 and 39, and a memory unit 15 (RAM) for temporarily storing signals It is equipped with.

また、図6は、周波数変換部33にて処理した信号からI信号とQ信号とを得るI信号変換(搬送波除去)部35とQ信号変換(搬送波除去)部36に於ける動作概要を示す図である。47と48は乗算器であり、49と50は低域フィルタである。   FIG. 6 shows an outline of operations in an I signal conversion (carrier wave removal) unit 35 and a Q signal conversion (carrier wave removal) unit 36 for obtaining an I signal and a Q signal from the signal processed by the frequency conversion unit 33. FIG. 47 and 48 are multipliers, and 49 and 50 are low-pass filters.

図2と図6とにより、動作について説明すると、受信アンテナ部14からPN信号でスペクトラム拡散変調された 1.5GHz帯のGPS信号を高周波増幅部32にて受信する。局部発振部(周波数シンセサイザ)34と周波数変換部33によりPN信号がダウンコンバートされ、例えば70MHz帯の周波数領域に変換する。
これに局部発振部34と90度移相器37にて互いに90度位相の異なる70MHzの搬送波で掛け算する部分───すなわちI信号変換部35、Q信号変換部36の部分───で互いに搬送波70MHzが除去され互いに直交するI成分とQ成分のPN符号(C/Aコード符号)がそれぞれ取り出される。
The operation will be described with reference to FIG. 2 and FIG. 6. A 1.5 GHz band GPS signal subjected to spread spectrum modulation using a PN signal is received by the high frequency amplifier 32 from the receiving antenna unit 14. The PN signal is down-converted by the local oscillating unit (frequency synthesizer) 34 and the frequency converting unit 33, and converted into a frequency region of, for example, 70 MHz band.
The local oscillator 34 and the 90-degree phase shifter 37 multiply each other by a 70 MHz carrier wave having a phase difference of 90 degrees, that is, the parts of the I signal conversion unit 35 and the Q signal conversion unit 36. The carrier wave of 70 MHz is removed, and the PN code (C / A code code) of I component and Q component orthogonal to each other is taken out.

搬送波を除去する動作を図6にて説明すると、70MHz帯にダウンコンバートされたGPS信号はPN.cos((W+ΔW)t+Φ) で表される。ΔW はドップラ周波数であり、ΔW はアンテナ部14で捕らえられる衛星信号のドップラ周波数変動分と局部発振部34(周波数シンセサイザ)の周波数変動分とが合成されたものである。ここで衛星信号のドップラ周波数変動分(衛星Aのドップラ周波数誤差)をΔ WC とし、局部発振部34の周波数変動分(局部周波数誤差)をΔ WL とすると、ΔW=Δ WC + Δ WL となる。 The operation for removing the carrier wave will be described with reference to FIG. 6. The GPS signal down-converted to the 70 MHz band is represented by PN.cos ((W + ΔW) t + Φ). ΔW is a Doppler frequency, and ΔW is a combination of the Doppler frequency fluctuation of the satellite signal captured by the antenna unit 14 and the frequency fluctuation of the local oscillation unit 34 (frequency synthesizer). Here, if the Doppler frequency variation of the satellite signal (Doppler frequency error of satellite A) is Δ W C and the frequency variation (local frequency error) of the local oscillator 34 is Δ W L , then ΔW = Δ W C + Δ W L.

そして、図2の局部発振部34からの信号および90度移相器37にて、90度位相の異なる信号が、互いに直交する搬送波cos(Wt) とsin(Wt) として表される。これら直交する信号と周波数変換部33からの信号PN.cos((W+ΔW)t+Φ) とを乗算器47,48にて乗算し、低域フィルタ49,50を通すと、PN.cos (ΔWt+ Φ) ,−PN.sin (Δwt+ Φ) が得られる。これらの変換はI,Q変換器として汎用的に使われているものである。
図6では、I,Q信号変換部35,36それぞれに於て、入力信号PN.cos((W+ΔW)t+Φ) に対して、互いに直交する搬送波cos(Wt) ,sin(Wt) を乗算することで、搬送波周波数W が両者とも同一であるため、両者とも搬送波成分が除去されている。
Then, the signal from the local oscillating unit 34 and the 90-degree phase shifter 37 shown in FIG. 2 are represented as carriers cos (Wt) and sin (Wt) orthogonal to each other. When these orthogonal signals and the signal PN.cos ((W + ΔW) t + Φ) from the frequency converter 33 are multiplied by multipliers 47 and 48 and passed through the low-pass filters 49 and 50, PN.cos (ΔWt + Φ), −PN.sin (Δwt + Φ). These conversions are generally used as I and Q converters.
In FIG. 6, the input signal PN.cos ((W + ΔW) t + Φ) is multiplied by carrier waves cos (Wt) and sin (Wt) orthogonal to each other in the I and Q signal conversion units 35 and 36, respectively. As a result, the carrier frequency W 2 is the same, and thus the carrier component is removed from both.

次に、これら搬送波成分が除去された互いに直交する信号(アナログ信号)は、それぞれA/Dコンバータ部38,39にてアナログ信号からデジタル化された離散化信号に変換される。そして、これら2つの信号を一定時間、メモリ部(RAM)15に蓄積され、I信号とQ信号とのデータが、メモリ部15からドップラ補正部16へ送信される。   Next, the signals (analog signals) orthogonal to each other from which the carrier wave components are removed are converted from analog signals into digitized discretized signals by the A / D converter units 38 and 39, respectively. These two signals are accumulated in a memory unit (RAM) 15 for a predetermined time, and data of I signal and Q signal are transmitted from the memory unit 15 to the Doppler correction unit 16.

以上述べた高周波増幅部32、周波数変換部33、局部発振部34、I信号変換部35、Q信号変換部36、90度移相器37、A/Dコンバータ部38,39は、汎用的な部分であり一般に広く使われているものであり、具体的構成の説明は省略する。
また、本発明の実施例に於ては、PN信号を搬送波成分が除去されたPN信号として説明しているが、PN信号を搬送波成分が含まれたPN信号として構成してもよい。
つまり、図2に於てI信号変換部35、Q信号変換部36で、搬送波を除去しない回路として構成してもよい。
さらにこの場合、図6に於けるI信号変換部35の中の低域フィルタ49,Q信号変換部36の中の低域フィルタ50はバンドパスフィルタ(BPF)でも構成できる。
The high frequency amplification unit 32, frequency conversion unit 33, local oscillation unit 34, I signal conversion unit 35, Q signal conversion unit 36, 90 degree phase shifter 37, and A / D converter units 38 and 39 described above are generally used. This is a part and is generally used, and a description of the specific configuration is omitted.
In the embodiments of the present invention, the PN signal is described as the PN signal from which the carrier component is removed. However, the PN signal may be configured as a PN signal including the carrier component.
That is, in FIG. 2, the I signal conversion unit 35 and the Q signal conversion unit 36 may be configured as a circuit that does not remove the carrier wave.
Further, in this case, the low-pass filter 49 in the I signal conversion unit 35 and the low-pass filter 50 in the Q signal conversion unit 36 in FIG. 6 can also be constituted by a band pass filter (BPF).

そして、図5に於て、正確な局部周波数誤差の複数の候補値Δ WL ′と基地局1からの搬送波のドップラ情報(衛星Aのドップラ効果による周波数誤差)Δ WC と合成して入力信号Fx として、ドップラ補正部16に入力する。また、図7に於て、入力信号Fx はcos(ΔWt′) 又はsin(ΔWt′) と表し、ΔWt′=Δ WC +Δ WL ′である。
また、入力信号Fx は、候補値の個数と同じ個数存在し、迅速に演算処理を行うにはそれぞれのドップラ補正部16につき入力信号Fx を1個ずつ入力することが望ましい。
In FIG. 5, a plurality of accurate local frequency error candidate values Δ W L ′ and carrier wave Doppler information (frequency error due to the Doppler effect of satellite A) Δ W C are combined and input. The signal F x is input to the Doppler correction unit 16. In FIG. 7, the input signal F x is expressed as cos (ΔWt ′) or sin (ΔWt ′), and ΔWt ′ = ΔW C + ΔW L ′.
Further, the same number of input signals F x as the number of candidate values exist, and it is desirable to input one input signal F x for each Doppler correction unit 16 in order to perform a quick calculation process.

図7では、蓄積されたGPS信号のPN信号(I成分、Q成分)について、局部発振部34の正確な周波数誤差の候補値と基地局1からの搬送波のドップラ情報から、搬送波のドップラ補正を行う動作を示す。
26,27,28,29は乗算器、30は加算器、31は減算器を示す。ここでの入力信号はそれぞれメモリ部15に蓄積された離散化されたデータである。また、tは離散化された値を示すものとする。
ドップラ補正部16に入力される入力信号I信号、Q信号のデータはそれぞれPN.cos( ΔWt +Φ) 、―PN.sin( ΔWt +Φ) で表される。
In FIG. 7, carrier wave Doppler correction is performed on the accumulated PN signal (I component, Q component) of the GPS signal based on the exact frequency error candidate value of the local oscillator 34 and the carrier Doppler information from the base station 1. Indicates the action to be performed.
26, 27, 28, and 29 are multipliers, 30 is an adder, and 31 is a subtractor. The input signals here are discretized data stored in the memory unit 15, respectively. Further, t represents a discretized value.
The data of the input signal I signal and Q signal input to the Doppler correction unit 16 are represented by PN.cos (ΔWt + Φ) and −PN.sin (ΔWt + Φ), respectively.

これらの信号に対して、入力信号cos(ΔWt′) 及びsin(ΔWt′) を、乗算器26,27,28,29にて乗算し、加算器30と減算器31を通すと、―PN.sin (ΔWxt + Φ) と、PN.cos (ΔWxt + Φ) が得られる。これらの信号は離散化されたデジタル信号である。ここで、ΔWxt は、正確な局部周波数誤差Δ WL に対する候補値Δ WL ′の誤差(ずれ)であり、これは、候補値が外部周波数の僅かな周波数誤差を含んでいることから生じるものである。従って、ΔWxt が0に近くなるような候補値を検出すれば、正確な局部周波数の誤差を検出することになり、この検出工程について以下に説明する。 When these signals are multiplied by input signals cos (ΔWt ′) and sin (ΔWt ′) by multipliers 26, 27, 28, and 29, and passed through adder 30 and subtractor 31, −PN. sin (ΔWxt + Φ) and PN.cos (ΔWxt + Φ) are obtained. These signals are discretized digital signals. Here, DerutaWxt is accurate local frequency error delta W candidate values for L Δ W L 'error (deviation), which is, those resulting from the candidate value contains a small frequency error of the external frequency It is. Therefore, if a candidate value such that ΔWxt is close to 0 is detected, an accurate local frequency error is detected. This detection process will be described below.

ドップラ補正部16で処理されたそれぞれの信号を相関計算部9に送信する(図4参照)。相関計算部9では、受信したそれぞれの信号を受信機端末11が予め有している(後述する)レプリカPN符号(C/Aコード信号)と相関計算してピーク値を算出する(図5参照)。
相関計算は広く知られた内容であるが、以下簡単に説明する。
Each signal processed by the Doppler correction unit 16 is transmitted to the correlation calculation unit 9 (see FIG. 4). The correlation calculation unit 9 calculates a peak value by calculating a correlation between each received signal and a replica PN code (C / A code signal) that the receiver terminal 11 has in advance (described later) (see FIG. 5). ).
The correlation calculation is a well-known content, but will be briefly described below.

一般にGPS衛星Aは地球上を複数個回っており、各衛星Aからは、1575.42 MHz の搬送波を、それぞれ個別の衛星Aに対応したPN信号信号でスペクトラム拡散変調がなされ地球上に送信している。例えば1575.42 MHz を、衛星A1 はPN信号aで、衛星A2 はPN信号bで、スペクトラム拡散変調して送信しているとする。衛星A1 の信号を受信機端末11にて取り出す(復調させる)ためには受信機端末11側で予めPN信号aと同一のPN信号a′を記憶させておき、このPN信号a′により衛星A1 はPN信号aを受信機端末11にて復調させる。 In general, a plurality of GPS satellites A travel around the earth, and each satellite A transmits a 1575.42 MHz carrier wave to the earth after being subjected to spread spectrum modulation with a PN signal signal corresponding to each individual satellite A. . For example, it is assumed that 1575.42 MHz is transmitted by spectrum spread modulation with satellite A 1 using PN signal a and satellite A 2 using PN signal b. In order to take out (demodulate) the signal of the satellite A 1 at the receiver terminal 11, the receiver terminal 11 stores in advance the PN signal a ′ that is the same as the PN signal a and uses the PN signal a ′ as a satellite. A 1 demodulates the PN signal a at the receiver terminal 11.

そして、衛星A2 を受信するためには、予め受信機端末11側にPN信号bと同じPN信号b′を記憶しておかなければならない。したがって受信機端末11側には、予め各衛星Aから発射される各衛星Aに対応するすべてのPN信号をもっていなければ、各衛星Aの信号を受信できない。そして本発明において、この予め用意されているPN信号をレプリカPN符号としている。
そして、各GPS衛星Aに対応する(衛星受信信号を復調させる)各レプリカPN符号は、予めGPS受信機端末11が備える信号処理部21のROM46に記憶させている。
In order to receive the satellite A 2 , the same PN signal b ′ as the PN signal b must be stored in advance on the receiver terminal 11 side. Therefore, if the receiver terminal 11 does not have all the PN signals corresponding to each satellite A emitted from each satellite A in advance, the signal of each satellite A cannot be received. In the present invention, the PN signal prepared in advance is used as a replica PN code.
Each replica PN code corresponding to each GPS satellite A (demodulating the satellite reception signal) is stored in advance in the ROM 46 of the signal processing unit 21 provided in the GPS receiver terminal 11.

また、一般にデータXをx(n)(ただし n=0:N )、データYをh(n)(ただし n=0:N )、kを整数として0≦k≦Nとしたとき、数1の式のように表現する。   In general, when data X is x (n) (where n = 0: N), data Y is h (n) (where n = 0: N), k is an integer, and 0 ≦ k ≦ N, Equation 1 It is expressed as

Figure 2006220532
Figure 2006220532

そして、y(1),y(2),y(3) …y(N) を計算する。ここでy (k) の計算においてデータの加算回数はN個である。従って、このとき信号に重畳している雑音が統計的性質に合うガウス性のものとすると、N回の加算により雑音の成分は1/√Nに減少することが知られている。このためこの計算による雑音低減は1/√Nである。そして、この計算を相関計算という。(等価な相関計算は高速演算としてFFTを用いて一般によく知られて用いられる方法があるが、ここでは原理説明のために一般的な計算法を示した。)   Then, y (1), y (2), y (3)... Y (N) is calculated. Here, in the calculation of y (k), the number of data additions is N. Accordingly, it is known that the noise component is reduced to 1 / √N by adding N times if the noise superimposed on the signal at this time is Gaussian with a statistical property. Therefore, the noise reduction by this calculation is 1 / √N. This calculation is called correlation calculation. (Equivalent correlation calculation is a well-known method that uses FFT as a high-speed operation. Here, a general calculation method is shown for explaining the principle.)

周波数誤差検出方法としては、例えば、相関計算部9で相関計算した結果の中から、第2段検出部7で最大のピーク値を示す相関計算結果を選び、最大のピーク値を示す結果となった候補値を正確な局部周波数誤差として検出する。又は、図8のように、これらのピーク値(P1 〜Pn )を使って近似カーブ(曲線Z)を推定し、(曲線Zの極値Yから)正確な局部発振周波数の誤差を検出できる。 As a frequency error detection method, for example, the correlation calculation result indicating the maximum peak value is selected by the second stage detection unit 7 from the results of correlation calculation performed by the correlation calculation unit 9, and the result indicating the maximum peak value is obtained. The candidate value is detected as an accurate local frequency error. Alternatively, as shown in FIG. 8, an approximate curve (curve Z) is estimated using these peak values (P 1 to P n ), and an accurate local oscillation frequency error is detected (from the extreme value Y of the curve Z). it can.

そして、この正確な局部発振周波数の誤差が示された相関計算結果から擬似距離検出部19で遅延値τを検出し、擬似距離検出部19で遅延値τから受信機端末11と衛星Aとの擬似距離と求める。
なお、擬似距離検出部19は、周波数の周波数誤差がキャンセルされた信号から擬似距離を求めるものであり、通常行なわれている手段が利用でき、説明を省略する。
その後、図1の位置計算部20のブロックにて、基地局1からの基地局位置、各衛星位置、各衛星と基地局間の擬似距離の情報を受信機端末11の受信部12で取得して自己位置が決定される。なお、位置計算部20もここで求めた擬似距離と、基地局位置、各衛星位置、各衛星と基地局間の擬似距離から自己位置を決定する方法は一般に広く知られており容易に実現できる。
Then, the pseudo-range detector 19 detects the delay value τ from the correlation calculation result indicating the accurate local oscillation frequency error, and the pseudo-range detector 19 detects the delay value τ between the receiver terminal 11 and the satellite A. Calculate with pseudorange.
The pseudo distance detection unit 19 obtains the pseudo distance from the signal from which the frequency error of the frequency has been canceled, and can be used by usual means and will not be described.
Thereafter, in the block of the position calculation unit 20 in FIG. 1, information on the base station position from the base station 1, each satellite position, and the pseudorange between each satellite and the base station is acquired by the receiving unit 12 of the receiver terminal 11. Self-position is determined. Note that the position calculation unit 20 is generally well known and can be easily realized from the pseudo distance obtained here, the base station position, each satellite position, and the method for determining the self position from the pseudo distance between each satellite and the base station. .

なお、図2に於て、デジタル信号処理部21は、受信部12を介して得られるデータを処理するために受信部12に接続されたCPU部42、CPU部42と接続されたRAM(メモリ)45とROM(メモリ)46、またメモリ部(RAM)15に接続されたDSP部41、DSP部41に接続されたROM(メモリ)44、そしてパターン演算部22から構成されている。
パターン演算部22は、内部PN符号パターンを発生させ、予め記憶する演算記憶部分である。また、CPU部42とDSP部41は互いに接続され、CPU部42、RAM45、ROM46とでマイクロプロセッサとして動作する。
また、パターン演算部22は、予め作成しておいた内部PN符号パターンをメモリに蓄積した部分で構成してもよい。
In FIG. 2, the digital signal processing unit 21 includes a CPU unit 42 connected to the receiving unit 12 and a RAM (memory) connected to the CPU unit 42 in order to process data obtained via the receiving unit 12. ) 45, ROM (memory) 46, DSP section 41 connected to memory section (RAM) 15, ROM (memory) 44 connected to DSP section 41, and pattern calculation section 22.
The pattern calculation unit 22 is a calculation storage part that generates an internal PN code pattern and stores it in advance. The CPU unit 42 and the DSP unit 41 are connected to each other, and the CPU unit 42, the RAM 45, and the ROM 46 operate as a microprocessor.
Further, the pattern calculation unit 22 may be configured by a portion in which an internal PN code pattern created in advance is stored in a memory.

なお、内部PN符号パターン(レプリカPN信号)について簡単に説明する。
一般に測位用衛星(例えばGPS)は地球上を複数個回っており、各衛星からは、搬送波(GPSの場合1575.42 MHz)を、それぞれ個別の衛星に対応したPN信号(C/Aコードとも呼ばれる)でスペクトラム拡散変調がなされ、地球上に送信している。
例えば、1575.42 MHzを衛星A1 はPN信号aで、衛星A2 はPN信号bでスペクトラム拡散変調して送信しているとする。衛星A1 の信号を受信機端末11にて取り出す(復調させる)ためには、受信機端末11で予めPN信号aと同一のPN信号a′を記憶させておき、このPN信号a′により衛星A1 はPN信号aを受信機端末11にて復調させる。
そして衛星A2 からのPN信号bを受信するためには、予め受信機端末11に、PN信号bと同じPN信号b′を記憶しておかなければならない。
したがって、受信機端末11には予め各衛星Aから送信される各衛星Aに対応するすべてのPN信号を持っていなければ各衛星Aの信号を受信できない。
そして、本発明に於てこの予め用意されているPN信号を内部PN符号パターン(レプリカPN信号)としている。
The internal PN code pattern (replica PN signal) will be briefly described.
In general, positioning satellites (for example, GPS) travel around the earth, and from each satellite, a carrier wave (1575.42 MHz in the case of GPS) and a PN signal (also called a C / A code) corresponding to each individual satellite. Is spread spectrum modulated and transmitted to the earth.
For example, it is assumed that 1575.42 MHz is transmitted by performing spread spectrum modulation with the satellite A 1 using the PN signal a and the satellite A 2 using the PN signal b. In order to extract (demodulate) the signal of the satellite A 1 at the receiver terminal 11, the receiver terminal 11 stores in advance the PN signal a ′ that is the same as the PN signal a and uses the PN signal a ′ as a satellite. A 1 demodulates the PN signal a at the receiver terminal 11.
In order to receive the PN signal b from the satellite A 2 , the same PN signal b ′ as the PN signal b must be stored in the receiver terminal 11 in advance.
Therefore, if the receiver terminal 11 does not have all the PN signals corresponding to each satellite A transmitted from each satellite A in advance, the signal of each satellite A cannot be received.
In the present invention, this PN signal prepared in advance is used as an internal PN code pattern (replica PN signal).

ROM46は、主にデジタル信号処理の実行プログラムを記憶している部分であり、デジタル信号処理部21のハードウェア部が、DSP部41、CPU部42、RAM45、ROM46、ROM44の構成であり、また、これらの構成は、従来からCPU、DSPとメモリ(RAMとROM)を使った汎用的なデジタル信号処理構成として広く一般に使われたものであり、説明を省略する。   The ROM 46 is a part that mainly stores a digital signal processing execution program. The hardware part of the digital signal processing unit 21 is a configuration of a DSP unit 41, a CPU unit 42, a RAM 45, a ROM 46, and a ROM 44. These configurations have been widely used in general as general-purpose digital signal processing configurations using a CPU, DSP, and memory (RAM and ROM), and the description thereof will be omitted.

図9に示す第2の実施の形態に於て、図9は、受信機端末11の構成を示すブロック図である。受信機端末11は局部発振部34を有し、中心周波数とその誤差範囲の情報が、デジタル信号処理部21内のCPU部42に入力されている。そして、局部発振部34は中心周波数と誤差範囲とを予め知り得るようになっている。また、外部発振部17と、外部発振部17から外部周波数を得て局部周波数の誤差を検出する第1段検出部6と、は備えていない。   FIG. 9 is a block diagram showing the configuration of the receiver terminal 11 in the second embodiment shown in FIG. The receiver terminal 11 has a local oscillating unit 34, and information on the center frequency and its error range is input to the CPU unit 42 in the digital signal processing unit 21. The local oscillating unit 34 can know the center frequency and the error range in advance. Further, the external oscillation unit 17 and the first stage detection unit 6 that obtains an external frequency from the external oscillation unit 17 and detects an error in the local frequency are not provided.

各処理ブロックに於ける動作を説明する。
まず、局部発振部34が発振する局部発振周波数と中心周波数とから局部発振周波数の誤差を検出する。次に、候補値設定部51にて、検出した局部発振周波数誤差を含む(CPU部42から得られる)誤差範囲内で正確な局部周波数誤差の候補値を複数個設定する。そして、ドップラ補正部16にて、衛星Aから受信した信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正する。ドップラ補正部16で処理した信号を相関計算部9で相関計算を行い、相関計算結果により正確な局部周波数誤差を検出する。そして、この正確な局部発振周波数の誤差が示された相関計算結果から擬似距離検出部19で遅延値τを検出し、擬似距離検出部19で遅延値τから受信機端末11と衛星Aとの擬似距離と求める。
なお、図9に於て、図2と同一の符号は、図2と同様の構成であるので説明を省略する。
The operation in each processing block will be described.
First, an error in the local oscillation frequency is detected from the local oscillation frequency oscillated by the local oscillation unit 34 and the center frequency. Next, the candidate value setting unit 51 sets a plurality of accurate local frequency error candidate values within an error range (obtained from the CPU unit 42) including the detected local oscillation frequency error. Then, the Doppler correction unit 16 performs Doppler correction on the signal received from the satellite A using the frequency error due to the Doppler effect of the satellite A and each candidate value of the local frequency error. The correlation calculation unit 9 performs correlation calculation on the signal processed by the Doppler correction unit 16, and an accurate local frequency error is detected from the correlation calculation result. Then, the pseudo-range detector 19 detects the delay value τ from the correlation calculation result indicating the accurate local oscillation frequency error, and the pseudo-range detector 19 detects the delay value τ between the receiver terminal 11 and the satellite A. Calculate with pseudorange.
In FIG. 9, the same reference numerals as those in FIG. 2 have the same configurations as those in FIG.

以上のように、本発明の衛星測位方法によれば、局部発振部34を有する受信機端末11が衛星Aからの信号を受信し、受信した信号により受信機端末11が衛星Aとの間の擬似距離を求める衛星測位方法であって、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信し、外部発振部17から得た外部周波数を基準に局部発振部34で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、衛星Aから受信した信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値τを検出して、遅延値τから擬似距離を求めるので、衛星Aからの信号を建物の中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受けた超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有する局部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高感度で高価な発振器が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドップラ補正を正確かつ迅速に行なうことができる。
さらに、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信するので、局部発振部34の周波数誤差の検出の処理時間を短くすることができる。また、局部発振部34の周波数誤差を検出するための演算処理回路が小規模なものとなり、装置(受信機端末11)の簡素化が図れる。
さらに、局部発振部34の周波数誤差の中に含まれる外部周波数の誤差を除去することができ、局部発振部34の正確な周波数誤差を検出することができる。このことにより、擬似距離の検出を一層高感度に行うことができる。
As described above, according to the satellite positioning method of the present invention, the receiver terminal 11 having the local oscillator 34 receives the signal from the satellite A, and the receiver terminal 11 communicates with the satellite A by the received signal. A satellite positioning method for obtaining a pseudorange, in which the receiver terminal 11 receives a frequency that is more accurate than the local frequency oscillated by the local oscillator 34 from the external oscillator 17, and uses the external frequency obtained from the external oscillator 17 as a reference The local frequency oscillated by the local oscillation unit 34 is measured, and an error in the local oscillation frequency given in advance is detected from the measured local frequency, and an accurate local frequency within a predetermined frequency region including the error in the local oscillation frequency is detected. A plurality of frequency error candidate values are set, and a correlation calculation is performed by performing Doppler correction on the signal received from the satellite A using the frequency error due to the Doppler effect of the satellite A and each candidate value of the local frequency error. Local The frequency error is detected, the delay value τ is detected from the correlation calculation result showing the accurate local frequency error, and the pseudorange is obtained from the delay value τ. Therefore, the signal from the satellite A is received in the building or the like. Even if it is a case, that is, even a signal from a very weak satellite A that has suffered Doppler fluctuations that are aroused by noise, the local oscillation unit of the receiver terminal 11 has an extremely high sensitivity and good response. It can self-detect 34 oscillation frequency errors.
In other words, in the past, an ultra-sensitive and expensive oscillator was required to make the Doppler correction respond accurately and quickly. However, in the present invention, the Doppler correction can be performed even with an inexpensive oscillator that is commonly used. It can be done accurately and quickly.
Furthermore, since the receiver terminal 11 receives a frequency that is more accurate than the local frequency oscillated by the local oscillating unit 34 from the external oscillating unit 17, the processing time for detecting the frequency error of the local oscillating unit 34 can be reduced. Further, the arithmetic processing circuit for detecting the frequency error of the local oscillating unit 34 becomes small, and the device (receiver terminal 11) can be simplified.
Further, the error of the external frequency included in the frequency error of the local oscillation unit 34 can be removed, and the accurate frequency error of the local oscillation unit 34 can be detected. As a result, the pseudo distance can be detected with higher sensitivity.

また、局部発振部34を有する受信機端末11が衛星Aからの信号を受信し、受信した信号により受信機端末11が衛星Aとの間の擬似距離を求める衛星測位方法であって、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信し、外部発振部17から得た外部周波数を基準に局部発振部34で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定し、特定した周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、衛星Aから受信した信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値τを検出して、遅延値τから擬似距離を求めるので、衛星Aからの信号を建物の中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受けた超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有する局部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高感度で高価な発振器が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドップラ補正を正確かつ迅速に行なうことができる。
さらに、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信するので、局部発振部34の周波数誤差の検出の処理時間を短くすることができる。また、局部発振部34の周波数誤差を検出するための演算処理回路が小規模なものとなり、装置(受信機端末11)の簡素化が図れる。
さらに、局部発振部34の周波数誤差の中に含まれる外部周波数の誤差を除去することができ、局部発振部34の正確な周波数誤差を検出することができる。このことにより、擬似距離の検出を一層高感度に行うことができる。
また、局部周波数誤差の概算値に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定するので、正確な局部周波数誤差の候補値を限定した範囲の中から設定でき、正確な局部周波数誤差を効率良く検出することができる。
A satellite positioning method in which a receiver terminal 11 having a local oscillating unit 34 receives a signal from a satellite A, and the receiver terminal 11 obtains a pseudo-range from the satellite A by the received signal. The terminal 11 receives a frequency more accurate than the local frequency oscillated by the local oscillator 34 from the external oscillator 17, and measures the local frequency oscillated by the local oscillator 34 based on the external frequency obtained from the external oscillator 17. The error of the local oscillation frequency given in advance from the measured local frequency is detected, and the frequency calculated by adding and subtracting the maximum error of the external frequency given in advance to the error of the local oscillation frequency is set to the upper limit value and A frequency region is specified as a lower limit value, a plurality of accurate local frequency error candidate values are set within the specified frequency region, and a frequency error due to the Doppler effect of satellite A and a local frequency error are received from satellite A Correlation calculation is performed by Doppler correction with each candidate value, and an accurate local frequency error is detected from the correlation calculation result, and a delay value τ is detected from the correlation calculation result indicating the accurate local frequency error, and the delay value Since the pseudorange is obtained from τ, even when the signal from the satellite A is received in a building or the like, that is, the signal from the very weak satellite A subjected to the Doppler fluctuation that is strayed by noise. However, the oscillation frequency error of the local oscillation unit 34 included in the receiver terminal 11 can be self-detected with ultrahigh sensitivity and good responsiveness.
In other words, in the past, an ultra-sensitive and expensive oscillator was required in order to make Doppler correction respond quickly and accurately, but in the present invention, Doppler correction can be performed even for an inexpensive oscillator that is commonly used. It can be done accurately and quickly.
Furthermore, since the receiver terminal 11 receives a frequency that is more accurate than the local frequency oscillated by the local oscillating unit 34 from the external oscillating unit 17, the processing time for detecting the frequency error of the local oscillating unit 34 can be shortened. Further, the arithmetic processing circuit for detecting the frequency error of the local oscillating unit 34 becomes small, and the device (receiver terminal 11) can be simplified.
Further, the error of the external frequency included in the frequency error of the local oscillation unit 34 can be removed, and the accurate frequency error of the local oscillation unit 34 can be detected. As a result, the pseudo distance can be detected with higher sensitivity.
In addition, since the frequency region is specified with the frequency calculated by adding and subtracting the maximum error of the external frequency given in advance to the approximate value of the local frequency error as the upper limit value and the lower limit value, it is an accurate candidate value for the local frequency error Can be set from a limited range, and an accurate local frequency error can be detected efficiently.

また、本発明の衛星測位システムは、衛星Aからの衛星信号を受信機端末11が受信し、受信した受信信号により受信機端末11が衛星Aとの間の擬似距離を求める衛星測位システムに於て、受信機端末11が、周波数を発振させる局部発振部34と、局部発振部34が発振する局部周波数より正確な周波数を外部発振部17から受信する受信部12と、外部発振部17から得た外部周波数を基準に局部発振部34の局部周波数を計測しかつ計測した局部周波数から予め与えられている局部発振周波数の誤差を検出する第1段検出部6と、この局部発振周波数の誤差を含む所定の周波数領域内で設定された正確な局部周波数誤差の複数個の候補値を入力されかつ衛星Aから受信した信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正するドップラ補正部16と、ドップラ補正部16で処理した信号を相関計算する相関計算部9と、相関計算結果により正確な局部周波数誤差を検出する第2段検出部7と、正確な局部周波数誤差が示された相関計算結果から遅延値τを検出して遅延値τから擬似距離を求める擬似距離検出部19と、を備えるので、衛星Aからの信号を建物の中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受けた超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有する局部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高感度で高価な発振器が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドップラ補正を正確かつ迅速に行なうことができる。
さらに、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信するので、局部発振部34の周波数誤差の検出の処理時間を短くすることができる。また、局部発振部34の周波数誤差を検出するための演算処理回路が小規模なものとなり、装置(受信機端末11)の簡素化が図れる。
さらに、局部発振部34の周波数誤差の中に含まれる外部周波数の誤差を除去することができ、局部発振部34の正確な周波数誤差を検出することができる。このことにより、擬似距離の検出を一層高感度に行うことができる。
The satellite positioning system of the present invention is a satellite positioning system in which the receiver terminal 11 receives a satellite signal from the satellite A, and the receiver terminal 11 obtains a pseudo distance from the satellite A by the received signal. Thus, the receiver terminal 11 obtains from the external oscillation unit 17, the local oscillation unit 34 that oscillates the frequency, the reception unit 12 that receives an accurate frequency from the external oscillation unit 17 than the local frequency that the local oscillation unit 34 oscillates. The first stage detection unit 6 that measures the local frequency of the local oscillation unit 34 with reference to the external frequency and detects the error of the local oscillation frequency given in advance from the measured local frequency, and the error of the local oscillation frequency A plurality of candidate values of an accurate local frequency error set within a predetermined frequency region including the signal received from the satellite A and the frequency error due to the Doppler effect of the satellite A and each candidate value of the local frequency error Do A Doppler correction unit 16 that performs plastic correction, a correlation calculation unit 9 that performs correlation calculation on the signal processed by the Doppler correction unit 16, a second stage detection unit 7 that detects an accurate local frequency error based on the correlation calculation result, and an accurate local A pseudo-range detector 19 that detects a delay value τ from a correlation calculation result indicating a frequency error and obtains a pseudo-range from the delay value τ. Even in other words, even a signal from an extremely weak satellite A that has undergone Doppler fluctuations that have been affected by noise, the local oscillation unit 34 of the receiver terminal 11 has an extremely high sensitivity and good response. The oscillation frequency error can be self-detected.
In other words, in the past, an ultra-sensitive and expensive oscillator was required in order to make Doppler correction respond quickly and accurately, but in the present invention, Doppler correction can be performed even for an inexpensive oscillator that is commonly used. It can be done accurately and quickly.
Furthermore, since the receiver terminal 11 receives a frequency that is more accurate than the local frequency oscillated by the local oscillating unit 34 from the external oscillating unit 17, the processing time for detecting the frequency error of the local oscillating unit 34 can be shortened. Further, the arithmetic processing circuit for detecting the frequency error of the local oscillating unit 34 becomes small, and the device (receiver terminal 11) can be simplified.
Further, the error of the external frequency included in the frequency error of the local oscillation unit 34 can be removed, and the accurate frequency error of the local oscillation unit 34 can be detected. As a result, the pseudo distance can be detected with higher sensitivity.

また、第1段検出部6で検出した局部発振周波数の誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定し、その特定した周波数領域内で正確な局部周波数誤差の複数の候補値を設定するので、正確な局部周波数誤差の候補値を限定した範囲の中から設定でき、正確な局部周波数誤差を効率良く検出することができる。   Further, the frequency region is specified by using the frequency calculated by adding and subtracting the maximum error of the external frequency given in advance to the error of the local oscillation frequency detected by the first stage detection unit 6 as the upper limit value and the lower limit value, Since multiple candidate values for accurate local frequency error are set within the specified frequency domain, accurate local frequency error candidate values can be set from a limited range, and accurate local frequency error can be detected efficiently. Can do.

また、本発明の衛星測位方法は、局部発振部34を有する受信機端末11が衛星Aからの信号を受信し、受信した信号により受信機端末11が衛星Aとの間の擬似距離を求める衛星測位方法であって、受信機端末11は中心周波数とその誤差範囲とを予め知り得る局部発振部34を有し、局部発振部34が発振する局部発振周波数と中心周波数とから局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む誤差範囲内で正確な局部周波数誤差の候補値を複数個設定し、衛星Aから受信した信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値τを検出して、遅延値τから擬似距離を求めるので、衛星Aからの信号を建物の中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受けた超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有する局部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高感度で高価な発振器が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドップラ補正を正確かつ迅速に行なうことができる。このことにより、擬似距離の検出を一層高感度に行うことができる
さらに、受信機端末11が中心周波数とその誤差範囲とを予め知り得る局部発振部34を有するので、局部発振部34の周波数誤差の検出の処理時間を短くすることができる。また、局部発振部34の周波数誤差を検出するための演算処理回路が小規模なものとなり、装置(受信機端末11)の簡素化が図れる。
In the satellite positioning method of the present invention, the receiver terminal 11 having the local oscillating unit 34 receives a signal from the satellite A, and the receiver terminal 11 obtains a pseudo distance between the satellite A and the received signal. In this positioning method, the receiver terminal 11 has a local oscillation unit 34 that can know the center frequency and its error range in advance, and the local oscillation frequency error from the local oscillation frequency and the center frequency oscillated by the local oscillation unit 34 A plurality of accurate local frequency error candidate values are set within an error range including the error of the local oscillation frequency, and a signal received from the satellite A is converted into a frequency error caused by the Doppler effect of the satellite A and a local frequency error. Correlation calculation is performed by Doppler correction with each candidate value, an accurate local frequency error is detected from the correlation calculation result, a delay value τ is detected from the correlation calculation result indicating the accurate local frequency error, and the delay value τ From pseudorange Even if the signal from the satellite A is received in a building or the like, that is, the signal from the very weak satellite A that has been subjected to Doppler fluctuations that are strayed by noise, The oscillation frequency error of the local oscillation unit 34 included in the receiver terminal 11 can be self-detected with extremely high sensitivity and good response.
In other words, in the past, an ultra-sensitive and expensive oscillator was required in order to make Doppler correction respond quickly and accurately, but in the present invention, Doppler correction can be performed even for an inexpensive oscillator that is commonly used. It can be done accurately and quickly. This makes it possible to detect the pseudorange with higher sensitivity.Furthermore, since the receiver terminal 11 has the local oscillation unit 34 that can know the center frequency and its error range in advance, the frequency error of the local oscillation unit 34 can be detected. The processing time for detection can be shortened. Further, the arithmetic processing circuit for detecting the frequency error of the local oscillating unit 34 becomes small, and the device (receiver terminal 11) can be simplified.

また、本発明の周波数誤差検出方法は、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信し、外部発振部17から得た外部周波数を基準に局部発振部34で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、衛星Aから受信した信号を衛星Aのドップラ効果による周波数誤差と局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出するので、衛星Aからの信号を建物の中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受けた超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有する局部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高感度で高価な発振器が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドップラ補正を正確かつ迅速に行なうことができる。
さらに、受信機端末11が局部発振部34にて発振する局部周波数より正確な周波数を外部発振部17から受信するので、局部発振部34の周波数誤差の検出の処理時間を短くすることができる。また、局部発振部34の周波数誤差を検出するための演算処理回路が小規模なものとなり、装置(受信機端末11)の簡素化が図れる。
さらに、局部発振部34の周波数誤差の中に含まれる外部周波数の誤差を除去することができ、局部発振部34の正確な周波数誤差を検出することができる。
Further, the frequency error detection method of the present invention receives a frequency that is more accurate than the local frequency that the receiver terminal 11 oscillates at the local oscillation unit 34 from the external oscillation unit 17, and uses the external frequency obtained from the external oscillation unit 17 as a reference. The local frequency oscillated by the local oscillation unit 34 is measured, and an error in the local oscillation frequency given in advance is detected from the measured local frequency, and an accurate local frequency within a predetermined frequency region including the error in the local oscillation frequency is detected. A plurality of frequency error candidate values are set, and a correlation calculation is performed by performing Doppler correction on the signal received from the satellite A using the frequency error due to the Doppler effect of the satellite A and each candidate value of the local frequency error. Since the local frequency error is detected, even when the signal from the satellite A is received in the building or the like, that is, from the very weak satellite A that has been subjected to Doppler fluctuations that have been affected by noise. Even with this signal, it is possible to self-detect the oscillation frequency error of the local oscillation unit 34 of the receiver terminal 11 with ultrahigh sensitivity and good response.
In other words, in the past, an ultra-sensitive and expensive oscillator was required in order to make Doppler correction respond quickly and accurately, but in the present invention, Doppler correction can be performed even for an inexpensive oscillator that is commonly used. It can be done accurately and quickly.
Furthermore, since the receiver terminal 11 receives a frequency that is more accurate than the local frequency oscillated by the local oscillating unit 34 from the external oscillating unit 17, the processing time for detecting the frequency error of the local oscillating unit 34 can be shortened. Further, the arithmetic processing circuit for detecting the frequency error of the local oscillating unit 34 becomes small, and the device (receiver terminal 11) can be simplified.
Further, the error of the external frequency included in the frequency error of the local oscillation unit 34 can be removed, and the accurate frequency error of the local oscillation unit 34 can be detected.

本発明の第1の実施の形態の概略を示す全体ブロック図である。1 is an overall block diagram showing an outline of a first embodiment of the present invention. 受信機端末の構成を示すブロック図である。It is a block diagram which shows the structure of a receiver terminal. 衛星信号を受信してから擬似距離を得るまでのフローチャート図である。It is a flowchart figure after receiving a satellite signal until it acquires a pseudorange. 受信機端末の動作説明図である。It is operation | movement explanatory drawing of a receiver terminal. 正確な局部周波数誤差を検出する動作説明図である。It is operation | movement explanatory drawing which detects an exact local frequency error. I信号変換部とQ信号変換部を説明する動作説明図である。It is operation | movement explanatory drawing explaining an I signal conversion part and a Q signal conversion part. IQ信号から搬送波のドップラ補正を行うドップラ補正部を説明する動作説 明図である。FIG. 10 is an operation explanatory diagram illustrating a Doppler correction unit that performs Doppler correction of a carrier wave from an IQ signal. 説明用のグラフ図である。It is a graph figure for description. 第2の実施の形態の受信機端末の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver terminal of 2nd Embodiment.

符号の説明Explanation of symbols

6 第1段検出部
7 第2段検出部
9 相関計算部
11 受信機端末
12 受信部
16 ドップラ補正部
17 外部発振部
19 擬似距離検出部
34 局部発振部
A 衛星
τ 遅延値
6 1st stage detection part 7 2nd stage detection part 9 Correlation calculation part
11 Receiver terminal
12 Receiver
16 Doppler correction section
17 External oscillator
19 Pseudo distance detector
34 Local oscillator A Satellite τ Delay value

Claims (6)

局部発振部(34)を有する受信機端末(11)が衛星(A)からの信号を受信し、受信した信号により上記受信機端末(11)が上記衛星(A)との間の擬似距離を求める衛星測位方法であって、
上記受信機端末(11)が上記局部発振部(34)にて発振する局部周波数より正確な周波数を外部発振部(17)から受信し、外部発振部(17)から得た外部周波数を基準に局部発振部(34)で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、上記衛星(A)から受信した信号を該衛星(A)のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値(τ)を検出して、該遅延値(τ)から上記擬似距離を求めることを特徴とする衛星測位方法。
A receiver terminal (11) having a local oscillating unit (34) receives a signal from the satellite (A), and the receiver terminal (11) determines a pseudo distance between the satellite (A) and the received signal. A satellite positioning method
The receiver terminal (11) receives a frequency that is more accurate than the local frequency oscillated by the local oscillator (34) from the external oscillator (17) and is based on the external frequency obtained from the external oscillator (17). The local oscillation frequency oscillated by the local oscillation unit (34) is measured, and an error of the local oscillation frequency given in advance is detected from the measured local frequency, and accurate within a predetermined frequency region including the error of the local oscillation frequency A plurality of local frequency error candidate values are set, and a correlation calculation is performed by performing Doppler correction on the signal received from the satellite (A) by the frequency error due to the Doppler effect of the satellite (A) and each candidate value of the local frequency error. Then, an accurate local frequency error is detected from the correlation calculation result, a delay value (τ) is detected from the correlation calculation result indicating the accurate local frequency error, and the pseudo distance is obtained from the delay value (τ). With features Satellite positioning how.
局部発振部(34)を有する受信機端末(11)が衛星(A)からの信号を受信し、受信した信号により上記受信機端末(11)が上記衛星(A)との間の擬似距離を求める衛星測位方法であって、
上記受信機端末(11)が上記局部発振部(34)にて発振する局部周波数より正確な周波数を外部発振部(17)から受信し、外部発振部(17)から得た外部周波数を基準に局部発振部(34)で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定し、特定した周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、上記衛星(A)から受信した信号を該衛星(A)のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値(τ)を検出して、該遅延値(τ)から上記擬似距離を求めることを特徴とする衛星測位方法。
A receiver terminal (11) having a local oscillating unit (34) receives a signal from the satellite (A), and the receiver terminal (11) determines a pseudo distance between the satellite (A) and the received signal. A satellite positioning method
The receiver terminal (11) receives a frequency that is more accurate than the local frequency oscillated by the local oscillator (34) from the external oscillator (17) and is based on the external frequency obtained from the external oscillator (17). Measure the local frequency oscillated by the local oscillator (34), detect the error of the local oscillation frequency given in advance from the measured local frequency, and the maximum of the external frequency given in advance to the error of the local oscillation frequency The frequency range is specified by using the frequency calculated by adding and subtracting the error as the upper limit value and the lower limit value, and a plurality of accurate local frequency error candidate values are set within the specified frequency range, and received from the satellite (A). The signal is subjected to Doppler correction using the frequency error due to the Doppler effect of the satellite (A) and each candidate value of the local frequency error to calculate the correlation, and an accurate local frequency error is detected based on the correlation calculation result. A satellite positioning method, wherein a delay value (τ) is detected from a correlation calculation result indicating a partial frequency error, and the pseudorange is obtained from the delay value (τ).
衛星(A)からの衛星信号を受信機端末(11)が受信し、受信した受信信号により該受信機端末(11)が該衛星(A)との間の擬似距離を求める衛星測位システムに於て、
上記受信機端末(11)が、周波数を発振させる局部発振部(34)と、該局部発振部(34)が発振する局部周波数より正確な周波数を外部発振部(17)から受信する受信部(12)と、上記外部発振部(17)から得た外部周波数を基準に局部発振部(34)の局部周波数を計測しかつ計測した局部周波数から予め与えられている局部発振周波数の誤差を検出する第1段検出部(6)と、この局部発振周波数の誤差を含む所定の周波数領域内で設定された正確な局部周波数誤差の複数個の候補値を入力されかつ上記衛星(A)から受信した信号を該衛星(A)のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正するドップラ補正部(16)と、該ドップラ補正部(16)で処理した信号を相関計算する相関計算部(9)と、相関計算結果により正確な局部周波数誤差を検出する第2段検出部(7)と、正確な局部周波数誤差が示された相関計算結果から遅延値(τ)を検出して該遅延値(τ)から上記擬似距離を求める擬似距離検出部(19)と、を備えることを特徴とする衛星測位システム。
In a satellite positioning system, a receiver terminal (11) receives a satellite signal from a satellite (A), and the receiver terminal (11) obtains a pseudorange with the satellite (A) by the received signal. And
The receiver terminal (11) has a local oscillator (34) that oscillates a frequency, and a receiver that receives an accurate frequency from the external oscillator (17) than the local frequency that the local oscillator (34) oscillates ( 12) and the local frequency of the local oscillation unit (34) is measured based on the external frequency obtained from the external oscillation unit (17), and an error in the local oscillation frequency given in advance is detected from the measured local frequency. A first stage detection unit (6) and a plurality of candidate values of an accurate local frequency error set within a predetermined frequency region including an error of the local oscillation frequency are inputted and received from the satellite (A). A Doppler correction unit (16) for performing Doppler correction on the signal based on the frequency error due to the Doppler effect of the satellite (A) and each candidate value of the local frequency error, and a correlation calculation of the signal processed by the Doppler correction unit (16) A correlation calculator (9); A second stage detection unit (7) for detecting an accurate local frequency error based on the function calculation result, and a delay value (τ) detected from the correlation calculation result indicating the accurate local frequency error; And a pseudorange detector (19) for obtaining the pseudorange from the satellite positioning system.
上記第1段検出部(6)で検出した局部発振周波数の誤差に予め与えられている外部周波数の最大誤差を加算及び減算して算出した周波数を上限値及び下限値として周波数領域を特定し、その特定した周波数領域内で正確な局部周波数誤差の複数の候補値を設定する請求項3記載の衛星測位システム。   Specify the frequency region with the frequency calculated by adding and subtracting the maximum error of the external frequency given in advance to the error of the local oscillation frequency detected by the first stage detection unit (6) as the upper limit value and the lower limit value, 4. The satellite positioning system according to claim 3, wherein a plurality of candidate values for an accurate local frequency error are set within the specified frequency region. 局部発振部(34)を有する受信機端末(11)が衛星(A)からの信号を受信し、受信した信号により上記受信機端末(11)が上記衛星(A)との間の擬似距離を求める衛星測位方法であって、
上記受信機端末(11)は中心周波数とその誤差範囲とを予め知り得る上記局部発振部(34)を有し、該局部発振部(34)が発振する局部発振周波数と上記中心周波数とから局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む上記誤差範囲内で正確な局部周波数誤差の候補値を複数個設定し、上記衛星(A)から受信した信号を該衛星(A)のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出し、正確な局部周波数誤差が示された相関計算結果から遅延値(τ)を検出して、該遅延値(τ)から上記擬似距離を求めることを特徴とする衛星測位方法。
A receiver terminal (11) having a local oscillating unit (34) receives a signal from the satellite (A), and the receiver terminal (11) determines a pseudo distance between the satellite (A) and the received signal. A satellite positioning method
The receiver terminal (11) has the local oscillation unit (34) capable of knowing in advance the center frequency and its error range, and the local oscillation frequency oscillated by the local oscillation unit (34) and the center frequency An oscillation frequency error is detected, a plurality of accurate local frequency error candidate values are set within the error range including the local oscillation frequency error, and a signal received from the satellite (A) is transmitted to the satellite (A). Correlation calculation with Doppler correction based on the frequency error due to the Doppler effect and each candidate value of the above local frequency error, and the correlation calculation result shows the accurate local frequency error by detecting the accurate local frequency error from the correlation calculation result A satellite positioning method, wherein a delay value (τ) is detected from the delay value (τ) and the pseudorange is obtained from the delay value (τ).
受信機端末(11)が局部発振部(34)にて発振する局部周波数より正確な周波数を外部発振部(17)から受信し、外部発振部(17)から得た外部周波数を基準に局部発振部(34)で発振する局部周波数を計測し、計測した局部周波数から予め与えられている局部発振周波数の誤差を検出し、この局部発振周波数の誤差を含む所定の周波数領域内で正確な局部周波数誤差の候補値を複数個設定し、衛星(A)から受信した信号を該衛星(A)のドップラ効果による周波数誤差と上記局部周波数誤差の各候補値とによりドップラ補正して相関計算し、相関計算結果により正確な局部周波数誤差を検出することを特徴とする周波数誤差検出方法。   The receiver terminal (11) receives a frequency that is more accurate than the local frequency oscillated by the local oscillator (34) from the external oscillator (17), and local oscillation based on the external frequency obtained from the external oscillator (17) The local frequency that oscillates in the unit (34) is measured, an error in the local oscillation frequency given in advance is detected from the measured local frequency, and an accurate local frequency within a predetermined frequency region including the error in the local oscillation frequency is detected. A plurality of error candidate values are set, a signal received from the satellite (A) is subjected to Doppler correction using the frequency error due to the Doppler effect of the satellite (A) and each candidate value of the local frequency error, and correlation calculation is performed. A frequency error detection method, wherein an accurate local frequency error is detected from a calculation result.
JP2005034049A 2005-02-10 2005-02-10 Satellite positioning method and system Active JP4578261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034049A JP4578261B2 (en) 2005-02-10 2005-02-10 Satellite positioning method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034049A JP4578261B2 (en) 2005-02-10 2005-02-10 Satellite positioning method and system

Publications (2)

Publication Number Publication Date
JP2006220532A true JP2006220532A (en) 2006-08-24
JP4578261B2 JP4578261B2 (en) 2010-11-10

Family

ID=36982956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034049A Active JP4578261B2 (en) 2005-02-10 2005-02-10 Satellite positioning method and system

Country Status (1)

Country Link
JP (1) JP4578261B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305263B2 (en) 2009-02-16 2012-11-06 Samsung Electronics Co., Ltd. Global positioning system receiver and satellite clock correcting method thereof
US8331422B2 (en) 2008-02-28 2012-12-11 Magellan Systems Japan, Inc. Method and apparatus for acquisition, tracking, and transfer using sub-microsecond time transfer using weak GPS/GNSS signals
US8391341B2 (en) 2007-12-14 2013-03-05 Magellan Systems Japan, Inc. Process for sub-microsecond time transfer using weak GPS/GNSS signals
CN106597407A (en) * 2016-12-06 2017-04-26 西安电子科技大学 Combined cooperative multi-satellite weak echo signal time delay and doppler frequency shift estimation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391341B2 (en) 2007-12-14 2013-03-05 Magellan Systems Japan, Inc. Process for sub-microsecond time transfer using weak GPS/GNSS signals
US8615032B2 (en) 2007-12-14 2013-12-24 Magellan Systems Japan, Inc. Process for sub-microsecond time transfer using weak GPS/GNSS signals
US8331422B2 (en) 2008-02-28 2012-12-11 Magellan Systems Japan, Inc. Method and apparatus for acquisition, tracking, and transfer using sub-microsecond time transfer using weak GPS/GNSS signals
US8542718B2 (en) 2008-02-28 2013-09-24 Magellan Systems Japan, Inc. Method and apparatus for acquisition, tracking, and sub-microsecond time transfer using weak GPS/GNSS signals
US8305263B2 (en) 2009-02-16 2012-11-06 Samsung Electronics Co., Ltd. Global positioning system receiver and satellite clock correcting method thereof
CN106597407A (en) * 2016-12-06 2017-04-26 西安电子科技大学 Combined cooperative multi-satellite weak echo signal time delay and doppler frequency shift estimation method
CN106597407B (en) * 2016-12-06 2019-05-07 西安电子科技大学 More stellar associations are the same as lower weak echo signal time delay and Doppler frequency shift combined estimation method

Also Published As

Publication number Publication date
JP4578261B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US7764226B1 (en) Universal digital channel for receiving signals of global navigation satellite systems
US10324193B2 (en) Device for tracking a satellite radionavigation signal in a multipath environment
JP4154609B2 (en) Satellite signal reception processing apparatus and satellite signal reception processing method
US7528771B2 (en) Method and system for GPS position measuring and frequency error detecting method
WO2015065664A1 (en) Interference map for gnss device
US9634755B2 (en) Method and system for femtocell positioning using low earth orbit satellite signals
JP2009133702A (en) Positioning device
EP2006706B1 (en) Coherent integration enhancement method, positioning method, storage medium, coherent integration enhancement circuit, positioning circuit, and electronic instrument
CN102426368A (en) Losing lock detection method based on extended Kalman filter tracking loop in GPS receiver
US10191158B2 (en) GNSS receiver calculating a non-ambiguous discriminator to resolve subcarrier tracking ambiguities
JP4578261B2 (en) Satellite positioning method and system
JP4160969B2 (en) Satellite positioning method
JP4777353B2 (en) GPS positioning method and GPS positioning device
US20160025861A1 (en) Method and system for indoor global navigation satellite system detection utilizing low-earth orbit satellite signals
US8175136B2 (en) Noise cancellation method, receiver circuit, and electronic instrument
JP3809432B2 (en) Received signal processing apparatus and satellite positioning system
JP2011058923A (en) Satellite signal receiving apparatus
JP2008249649A (en) Calibration signal generator, gps receiver, gps information correction system
JP2008224683A (en) Satellite positioning system
US8767891B2 (en) Reception signal integrating method and receiver
JP6772194B2 (en) Offset carrier modulation ranging signal processing method
JP2001208821A (en) Receiver for positioning, and method of processing positioning information applied therefor
JP2004279183A (en) Positioning system, mobile terminal, positioning method, program for exhibiting positioning function, and information recording medium recording program for exhibiting positioning function
US20230129514A1 (en) Positioning system and method
JP2017003268A (en) Satellite tracking information output device, satellite tracking information output method and satellite tracking information output program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4578261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350