JP2006218558A - Polishing tool, polishing device, and polishing method - Google Patents

Polishing tool, polishing device, and polishing method Download PDF

Info

Publication number
JP2006218558A
JP2006218558A JP2005032750A JP2005032750A JP2006218558A JP 2006218558 A JP2006218558 A JP 2006218558A JP 2005032750 A JP2005032750 A JP 2005032750A JP 2005032750 A JP2005032750 A JP 2005032750A JP 2006218558 A JP2006218558 A JP 2006218558A
Authority
JP
Japan
Prior art keywords
elastic
polishing
polishing liquid
tool
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005032750A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ito
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005032750A priority Critical patent/JP2006218558A/en
Publication of JP2006218558A publication Critical patent/JP2006218558A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing tool capable of realizing efficient polishing by introducing polishing liquid and abrasive grains leaking in the direction perpendicular to the tool rotary direction by providing obstacles near a side face of a minimum spacing part as a processing area. <P>SOLUTION: This polishing tool is an elastic rotary tool having a cylindrical face having curvature on a column-shaped cylindrical face, and prevents leakage of polishing liquid and abrasive grains from inside of a processing area by installing an elastic element having rigidity not deteriorating roughness of a workpiece surface on a rotary tool side face in the direction perpendicular to a rotary direction of the processing area as a minimum spacing part constituted by a workpiece and a cylindrical face having curvature of an elastic rotary tool. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細砥粒を分散させた溶液(研磨液)中に被加工物を浸して、被加工物と研磨工具とが接触することのないように微小間隔を保った状態で研磨工具を回転させ、ニップ部に発生した液流によって被加工物に微細砥粒を衝突させて被加工物の表面を滑らかに仕上げるいわゆる非接触研磨に用いられる研磨工具、研磨装置及び研磨方法に関するものである。   The present invention immerses the work piece in a solution (polishing liquid) in which fine abrasive grains are dispersed, and maintains the polishing tool in a state where a fine interval is maintained so that the work piece and the polishing tool do not come into contact with each other. The present invention relates to a polishing tool, a polishing apparatus, and a polishing method used for so-called non-contact polishing, in which fine abrasive grains collide with a workpiece by a liquid flow generated in a nip portion to smoothly finish the surface of the workpiece. .

上記の非接触研磨はEEM(Elastic Emission Machining)と呼ばれる研磨方法であって、レンズ、ミラー等の光学部品の加工では、ポリウレタン球や、内部に気体を封入した弾性薄膜部材が研磨工具として用いられてきた(特許文献1,2参照)。   The above-mentioned non-contact polishing is a polishing method called EEM (Elastic Emission Machining). In processing of optical parts such as lenses and mirrors, polyurethane spheres or elastic thin film members filled with gas are used as polishing tools. (See Patent Documents 1 and 2).

例えば、図6に示すように、ポリウレタン球等の弾性体101を一体的に支持するコア102をネジ部材103によって回転軸111の先端に固定し、回転軸111を、筐体112に保持された一対のベアリング113,114によって回転支持させ、カップリング115によって回転軸111の後端をモータ116に接続して、研磨液に浸した弾性体101を高速回転させる。   For example, as shown in FIG. 6, a core 102 that integrally supports an elastic body 101 such as a polyurethane sphere is fixed to the tip of a rotating shaft 111 by a screw member 103, and the rotating shaft 111 is held by a housing 112. A pair of bearings 113 and 114 are rotated and supported, and a coupling 115 connects the rear end of the rotating shaft 111 to a motor 116 to rotate the elastic body 101 immersed in the polishing liquid at high speed.

弾性体101を回転軸111に固定するためのコア102は、アルミやSUS材で構成され、コア102の周りにポリウレタン樹脂を創生したものの外形を、研削加工等の機械加工手段を用いて一定の曲率半径を有する球形状に加工することで弾性体101を形成する。   The core 102 for fixing the elastic body 101 to the rotating shaft 111 is made of aluminum or SUS material, and the outer shape of the polyurethane resin created around the core 102 is fixed by using a machining means such as grinding. The elastic body 101 is formed by processing into a spherical shape having a curvature radius of.

治具120に保持された被加工物Wo と、弾性工具本体部である球状の弾性体101とのニップ部における間隔は通常数μm以下であるため、弾性体101の真球度は前記間隔以下に加工する必要がある。   Since the distance between the workpiece Wo held by the jig 120 and the spherical elastic body 101, which is the elastic tool main body, at the nip is usually several μm or less, the sphericity of the elastic body 101 is equal to or less than the above-mentioned distance. Need to be processed.

中実の弾性工具も、内部に気体を封入した中空の工具もそれぞれの回転により発生するそれぞれの工具表面と非加工物Wo で構成される数ミクロン厚さの隙間に研摩液及び研摩砥粒が流入し通過する際に研摩砥粒が非加工物Wo に弾性接触し、表面のごく微量の原子を化学的に除去する構成となっている。   In both solid elastic tools and hollow tools filled with gas, the polishing liquid and abrasive grains are placed in a gap of several microns thickness composed of each tool surface and non-workpiece Wo generated by each rotation. The abrasive grains are elastically contacted with the non-workpiece Wo when flowing in and pass, and a very small amount of atoms on the surface is chemically removed.

特公平2−025745号公報Japanese Patent Publication No. 2-25745 特公平6−023663号公報Japanese Patent Publication No. 6-023663

しかしながら、上記従来の技術によれば、ポリウレタン等の弾性球体を用いた中実の回転工具は、弾性球体の連れ回りにより研摩液の流れが発生しているが、回転と直交する方向が開放されており、最も除去加工が進行する最小隙間部分で研摩液の流れが回転方向から側面の開放方向にずれてしまう。その結果、最小隙間部の直前で研摩液及び砥粒の一部が最小隙間部を通過しないで側面方向に流出することになり本来供給される筈の砥粒数が減少し、結果的に除去効率が低下することになるという問題があった。   However, according to the above conventional technique, in the solid rotary tool using an elastic sphere such as polyurethane, the flow of the polishing liquid is generated by the rotation of the elastic sphere, but the direction orthogonal to the rotation is released. Therefore, the flow of the polishing liquid is shifted from the rotation direction to the opening direction of the side surface at the smallest gap portion where the removal process proceeds most. As a result, the polishing liquid and a part of the abrasive grains flow out in the lateral direction without passing through the minimum gap portion immediately before the minimum gap portion, and the number of abrasive grains that are originally supplied is reduced, resulting in removal. There was a problem that efficiency would decrease.

又、原子的除去機構故に除去量は非常に少なく加工時間が膨大に掛かり、非能率的なため、弾性回転工具の回転数を高速にしたいが、回転数を高速にするとキャビテーションが発生し、加工を阻害するという問題もあった。   Also, because of the atomic removal mechanism, the removal amount is very small, the processing time is enormous, and the inefficiency makes it necessary to increase the rotational speed of the elastic rotary tool. However, if the rotational speed is increased, cavitation occurs and the machining is performed. There was also a problem of obstructing.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、加工領域部である最小隙間部の側面近傍に障害物を設けて工具回転方向と直交する方向に漏れていた研摩液及び砥粒を最小隙間部に導くことで、効率良く研磨することができる研磨工具、研磨装置及び研磨方法を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and an obstacle was provided near the side surface of the minimum gap portion, which is a processing region portion, and leaked in a direction perpendicular to the tool rotation direction. An object of the present invention is to provide a polishing tool, a polishing apparatus, and a polishing method that can efficiently polish the polishing liquid and abrasive grains to the minimum gap.

又、本発明は、弾性回転球の回転速度を上げることで発生するキャビテーションを防止し、単位時間当りの除去量を増加させて加工効率の改善を行うことができる研磨工具、研磨装置及び研磨方法を提供することを目的とするものである。   The present invention also provides a polishing tool, a polishing apparatus, and a polishing method capable of preventing cavitation generated by increasing the rotation speed of an elastic rotating sphere and increasing the removal amount per unit time to improve the processing efficiency. Is intended to provide.

上記目的を達成するため、本発明の研磨工具は、円柱形状の円筒面に曲率を有したシリンドリカル面を有する弾性回転工具で、非加工物と弾性回転工具の曲率を有したシリンドリカル面とで構成する最小隙間部である加工領域の回転方向と直角方向の回転工具側面に、非加工物表面の粗さを悪化させることのない剛性を有した弾性体を設置することにより、加工領域内部からの研摩液及び砥粒の流出を防止することを特徴とする。   In order to achieve the above object, the polishing tool of the present invention is an elastic rotary tool having a cylindrical surface having a curvature on a cylindrical cylindrical surface, and is composed of a non-workpiece and a cylindrical surface having a curvature of the elastic rotary tool. By installing an elastic body with rigidity that does not deteriorate the roughness of the non-workpiece surface on the side surface of the rotary tool in the direction perpendicular to the rotation direction of the machining area, which is the smallest gap, It is characterized by preventing the polishing liquid and abrasive grains from flowing out.

MR流体(磁性粘性流体)を保持するための磁力発生源としては、コイルを配した電磁石であっても良い。   An electromagnet provided with a coil may be used as a magnetic force generation source for holding the MR fluid (magnetic viscous fluid).

本発明の研磨工具は、円柱形状の円筒面に曲率を有したシリンドリカル面を有する弾性回転工具で、非加工物と弾性回転工具の曲率を有したシリンドリカル面とで構成する最小隙間部である加工領域の回転方向と直角方向の回転工具側面部に加工領域及び加工領域の流れ下流部でキャビテーションが発生する領域に研摩液を噴出し、噴出した研摩液圧力により加工領域内部からの研摩液及び砥粒の流出を防止するとともにキャビテーション発生個所の圧力を上昇させてキャビテーションの発生を防止し、工具回転数を高速にして加工効率を増大することを特徴とする。   The polishing tool of the present invention is an elastic rotary tool having a cylindrical surface having a curvature on a cylindrical cylindrical surface, and is a minimum gap portion formed by a non-workpiece and a cylindrical surface having a curvature of the elastic rotary tool. The polishing liquid is jetted to the machining area and the area where cavitation occurs in the downstream part of the machining area on the side surface of the rotary tool in the direction perpendicular to the rotation direction of the area. It is characterized by preventing the outflow of grains and increasing the pressure at the location where cavitation occurs to prevent the occurrence of cavitation, increasing the tool rotation speed and increasing the machining efficiency.

本発明の研摩装置によれば、ヨークの凹形状部分に保持させた磁性粘性流体により、回転弾性体側面に加工領域から流出する研摩液及び砥粒を遮断し、流出を防止し、より多くの砥粒を加工領域に送り込むことができるので単位時間当たりの除去量を増加することが可能となる。   According to the polishing apparatus of the present invention, the magnetic viscous fluid held in the concave portion of the yoke blocks the polishing liquid and abrasive grains flowing out from the processing region on the side of the rotary elastic body, prevents the outflow, and more Since the abrasive grains can be fed into the processing area, the removal amount per unit time can be increased.

又、回転弾性体の両側面に研摩液吐出口を設け、そこから研摩液を吐出することで吐出した研摩液の圧力により加工領域内から流出する研摩液及び研摩吐粒を加工領域内に封じこめて加工領域内からの流出を防止することで、加工領域内により多くの研摩砥粒を供給し非加工物と砥粒との接触頻度を上げることで除去量を増大し、加工効率を向上することが可能となる。   Also, polishing liquid discharge ports are provided on both sides of the rotating elastic body, and the polishing liquid discharged from the polishing area and the abrasive particles discharged from the processing area are sealed in the processing area. By preventing the outflow from the machining area, more abrasive abrasive grains are supplied to the machining area and the contact frequency between the non-processed material and the abrasive grains is increased, thereby increasing the removal amount and improving the machining efficiency. It becomes possible to do.

又、回転弾性体と非加工物とで構成する隙間の加工領域下流部に一定圧力の研摩液を吐出することで、キャビテーションを防止することが可能となり、回転弾性体の回転数を上げることができるので、単位時間当りの除去量を増大させ、加工効率を向上することが可能となる。   Also, by discharging the polishing liquid at a constant pressure to the downstream part of the machining area of the gap formed by the rotary elastic body and the non-workpiece, it becomes possible to prevent cavitation and increase the rotational speed of the rotary elastic body. Therefore, the removal amount per unit time can be increased, and the processing efficiency can be improved.

本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

<実施の形態1>
図1は本発明の特徴を最も良く表す図面で、一実施の形態による研磨ヘッドを示すもので、図7に示す研摩装置に取り付けてレンズ、ミラー等の光学部品の研磨加工を行うものである。研磨ヘッドは、SUS410製の円柱コアの外周部にウレタンゴムを装着した弾性回転工具1を研磨装置100への取り付けベース8に接続された回転モータ7、不図示の動力伝達軸、回転モータ7の動力を弾性回転工具1に伝達するためのギアボックス6を介して弾性工具回転軸18に伝えられた回転力により回転させる構造となっている。弾性回転工具1は、外周面断面がR30mmの曲率を有した球面で幅は20mm、ウレタンゴム層の厚さは最外周から5mmとなっている。弾性回転工具1は回転数は通常2400rpmで回転させている。
<Embodiment 1>
FIG. 1 is a drawing that best represents the features of the present invention. FIG. 1 shows a polishing head according to an embodiment, which is attached to the polishing apparatus shown in FIG. 7 and polishes optical components such as lenses and mirrors. . The polishing head includes a rotary motor 7 connected to a base 8 for mounting an elastic rotary tool 1 having urethane rubber attached to the outer periphery of a cylindrical core made of SUS410, a power transmission shaft (not shown), and a rotary motor 7. The power is rotated by the rotational force transmitted to the elastic tool rotating shaft 18 via the gear box 6 for transmitting the power to the elastic rotating tool 1. The elastic rotary tool 1 has a spherical surface with a curvature of an outer peripheral surface of R30 mm, a width of 20 mm, and a urethane rubber layer thickness of 5 mm from the outermost periphery. The elastic rotary tool 1 is normally rotated at a rotational speed of 2400 rpm.

弾性回転工具1が回転することにより、被加工物20と弾性回転工具1の円周面との間で楔効果による研磨液の流体圧力が発生する。この流体圧力による浮上力とボイスコイル8による押し付け荷重が釣りあった位置で弾性回転工具1は浮上し、被加工物20との間に1μm前後の隙間を形成する。この隙間に研磨砥粒が精製水の流れにより供給され被加工物20の表面に弾性的に接触することで研磨砥粒との間の化学的作用により原子単位の除去が進行するものである。   As the elastic rotary tool 1 rotates, a fluid pressure of the polishing liquid is generated between the workpiece 20 and the circumferential surface of the elastic rotary tool 1 due to the wedge effect. The elastic rotary tool 1 floats at a position where the floating force due to the fluid pressure and the pressing load by the voice coil 8 are balanced, and a gap of about 1 μm is formed between the workpiece 20 and the workpiece. Abrasive grains are supplied to the gaps by the flow of purified water and elastically contact the surface of the workpiece 20, whereby the removal of atomic units proceeds by chemical action with the abrasive grains.

本実施の形態では、砥粒としては酸化セリウム(CeO2)を使用し、被加工物は石英(SiO2)を使用している。 In the present embodiment, cerium oxide (CeO 2 ) is used as abrasive grains, and quartz (SiO 2 ) is used as a workpiece.

更に、本実施の形態では、弾性回転工具1と被加工物20とで構成される隙間により多くの砥粒を供給するために、隙間内部の加工領域から側面に流出する砥粒を遮断するために図3−a及び図3−bに示すようにMR流体(磁気粘性流体)による遮断壁を設けている。遮断壁の構成は、弾性回転工具1と被加工物20とで構成される最小隙間部近傍で弾性回転工具1の両側面に第1の磁石12、第1のヨーク4を保持するための第1のホルダー2及び第2の磁石11、第2のヨーク13を保持するための第2のホルダー3を設けている。   Furthermore, in this embodiment, in order to supply more abrasive grains to the gap formed by the elastic rotary tool 1 and the workpiece 20, the abrasive grains flowing out from the machining area inside the gap to the side surface are blocked. As shown in FIGS. 3A and 3B, a blocking wall made of MR fluid (magnetic viscous fluid) is provided. The configuration of the blocking wall is the first for holding the first magnet 12 and the first yoke 4 on both side surfaces of the elastic rotary tool 1 in the vicinity of the minimum gap formed by the elastic rotary tool 1 and the workpiece 20. A first holder 2, a second magnet 11, and a second holder 3 for holding the second yoke 13 are provided.

更に、第1のヨーク3及び第2のヨーク4の先端凹部にMR流体が第1、第2の磁石3,4の磁力により保持される構成となっている。保持されたMR流体(磁性粘性流体)は、弾性回転工具1よりも径方向で 非加工物20側に飛び出しており、非加工物20と柔軟に接触する構成となっている。   Further, the MR fluid is held by the magnetic forces of the first and second magnets 3 and 4 in the recesses at the front ends of the first yoke 3 and the second yoke 4. The held MR fluid (magnetic viscous fluid) protrudes to the non-workpiece 20 side in the radial direction from the elastic rotary tool 1 and is configured to flexibly contact the non-workpiece 20.

弾性回転工具1の回転方向と直角方向から見た図3−bで構成を説明する。第1のホルダー内には、第1の永久磁石12と第3の永久磁石16が対向して保持されている。第1の永久磁石12はN極を被加工物20側に、S極を取り付けベース11側にして固定されてSUS410製のヨーク4と接している。第3の永久磁石16はS極を被加工物20側に、S極を取り付けベース11側にして固定されてSUS410製のヨーク4と接している。本実施の形態では、永久磁石としてSm−Co系磁石を使用している。   The configuration will be described with reference to FIG. 3B viewed from a direction perpendicular to the rotation direction of the elastic rotary tool 1. In the first holder, the first permanent magnet 12 and the third permanent magnet 16 are held facing each other. The first permanent magnet 12 is fixed with the north pole on the workpiece 20 side and the south pole on the mounting base 11 side, and is in contact with the yoke 4 made of SUS410. The third permanent magnet 16 is fixed with the south pole on the workpiece 20 side and the south pole on the mounting base 11 side, and is in contact with the yoke 4 made of SUS410. In this embodiment, an Sm—Co based magnet is used as the permanent magnet.

以上の構成にすることで、弾性回転工具1と被加工物20とで構成される隙間から図6に示すように側面に流出する流れを防止することが可能となり、従来は、加工領域外に流出していた研摩砥粒を加工領域内に供給することができ、従来よりも加工効率を上げることが可能となる。   With the above configuration, it is possible to prevent the flow that flows out to the side surface as shown in FIG. 6 from the gap formed by the elastic rotary tool 1 and the workpiece 20. The abrasive grains that have flowed out can be supplied into the processing region, and the processing efficiency can be increased as compared with the prior art.

又、本実施の形態によれば、工具回転の変動や非加工面の形状変動により工具浮上力が低下するような自体が発生して隙間が減少するような事態になっても、MR流体の存在により被加工物20に弾性回転工具20が接触することはなく、非接触の状態を維持できるので研摩傷等の不良発生を回避することができる。   In addition, according to the present embodiment, even if the tool levitation force is reduced due to fluctuations in tool rotation or non-machined surface shape and the gap is reduced, the MR fluid is Due to the presence, the elastic rotary tool 20 does not come into contact with the workpiece 20, and a non-contact state can be maintained, so that occurrence of defects such as abrasive scratches can be avoided.

<実施の形態2>
図4は本発明の実施の形態2を示すもので、図7に示す研磨装置に取り付けてレンズ、ミラー等の光学部品の研磨加工を行うものである。研磨ヘッドは、SUS410製の円柱コアの外周部にウレタンゴムを装着した弾性回転工具21を研磨装置100への取り付けベース31に接続された回転モータ27、不図示の動力伝達軸、回転モータ27の動力を弾性回転工具21に伝達するためのギアボックス26を介して弾性工具回転軸28に伝えられた回転力により回転させる構造となっている。
<Embodiment 2>
FIG. 4 shows a second embodiment of the present invention, which is attached to the polishing apparatus shown in FIG. 7 and polishes optical components such as lenses and mirrors. The polishing head includes a rotary motor 27, a power transmission shaft (not shown), and a rotary motor 27 connected to a base 31 for mounting an elastic rotary tool 21 having urethane rubber attached to the outer periphery of a cylindrical core made of SUS410 to the polishing apparatus 100. The power is rotated by the rotational force transmitted to the elastic tool rotating shaft 28 via the gear box 26 for transmitting the power to the elastic rotating tool 21.

弾性回転工具21は、外周面断面がR30mmの曲率を有した球面で幅は20mm、ウレタンゴム層の厚さは最外周から5mmとなっている。弾性回転工具21は、回転数は通常2400rpmで回転させている。   The elastic rotary tool 21 has a spherical surface with a curvature of an outer peripheral surface of R30 mm, a width of 20 mm, and a urethane rubber layer thickness of 5 mm from the outermost periphery. The elastic rotary tool 21 is normally rotated at a rotational speed of 2400 rpm.

弾性回転工具21が回転することにより、被加工物20と弾性回転工具21の円周面との間で楔効果による研磨液の流体圧力が発生する。この流体圧力による浮上力とボイスコイル28による押し付け荷重が釣り合った位置で弾性回転工具21は浮上し、被加工物20との間に1μm前後の隙間を形成する。この隙間に研磨砥粒が精製水の流れにより供給され被加工物20の表面に弾性的に接触することで研磨砥粒との間の化学的作用により原子単位の除去が進行するものである。   As the elastic rotary tool 21 rotates, a fluid pressure of the polishing liquid is generated between the workpiece 20 and the circumferential surface of the elastic rotary tool 21 due to the wedge effect. The elastic rotary tool 21 floats at a position where the floating force due to the fluid pressure and the pressing load by the voice coil 28 are balanced, and a gap of about 1 μm is formed between the workpiece 20 and the workpiece. Abrasive grains are supplied to the gaps by the flow of purified water and elastically contact the surface of the workpiece 20, whereby the removal of atomic units proceeds by chemical action with the abrasive grains.

本実施の形態では、砥粒としては酸化セリウム(CeO2)を使用し、被加工物は石英(SiO2)を使用している。 In the present embodiment, cerium oxide (CeO 2 ) is used as abrasive grains, and quartz (SiO 2 ) is used as a workpiece.

更に、本実施の形態では、弾性回転工21と被加工物20とで構成される隙間に、より多くの砥粒を供給するために、隙間内部の加工領域から側面に流出する砥粒を遮断する構成とした。具体的には、図4に示すように、弾性回転工具21の回転方向側面部に研磨液噴射ノズル22及び24を加工領域近傍の側面に相対するように配置し、弾性回転工具21の加工領域側面に向かって流量500ml/minで研磨液を噴射する構成となっている。研磨液噴射ノズル22及び24の研磨液噴射口23,25は5mm×0.3mmの矩形形状をしている。研磨液噴射ノズル22及び24への研磨液供給は、研磨液供給ホース32を通じて不図示の研磨液循環供給装置から供給される。研磨液噴射ノズル22,24に研磨液供給ホース32から供給された研磨液は、研磨液噴射ノズル内の空間で均一圧力にした後、研磨液噴射口23,25から均一に噴射される構造となっている。   Furthermore, in this embodiment, in order to supply more abrasive grains to the gap formed by the elastic rotating work 21 and the workpiece 20, the abrasive grains flowing out from the machining area inside the gap to the side surface are blocked. It was set as the structure to do. Specifically, as shown in FIG. 4, the polishing liquid injection nozzles 22 and 24 are arranged on the side surface portion in the rotational direction of the elastic rotary tool 21 so as to face the side surface in the vicinity of the processing area, and the processing area of the elastic rotary tool 21 is The polishing liquid is jetted at a flow rate of 500 ml / min toward the side surface. The polishing liquid injection ports 23 and 25 of the polishing liquid injection nozzles 22 and 24 have a rectangular shape of 5 mm × 0.3 mm. The polishing liquid supply to the polishing liquid injection nozzles 22 and 24 is supplied from a polishing liquid circulation supply device (not shown) through the polishing liquid supply hose 32. The polishing liquid supplied from the polishing liquid supply hose 32 to the polishing liquid injection nozzles 22 and 24 is uniformly injected from the polishing liquid injection ports 23 and 25 after being made uniform pressure in the space in the polishing liquid injection nozzle. It has become.

研磨液噴射ノズル22,24の研磨液噴射口23,25から噴射される研磨液により弾性回転工具21と非加工物20との間に構成される隙間の加工領域内部から弾性回転工具21の回転方向と直交する方向の側面方向に流出する砥粒の運動を抑制し、加工領域外部へ流出する砥粒を加工領域を通過させることによって、被加工物20と研磨砥粒との接触機会を増加させることで確実に加工効率を向上することが可能となる。   The rotation of the elastic rotary tool 21 from the inside of the machining area of the gap formed between the elastic rotary tool 21 and the non-workpiece 20 by the polishing liquid injected from the polishing liquid injection ports 23 and 25 of the polishing liquid injection nozzles 22 and 24. By suppressing the movement of the abrasive grains flowing in the side direction perpendicular to the direction, and passing the abrasive grains flowing out of the machining area through the machining area, the opportunity for contact between the workpiece 20 and the abrasive grains is increased. By doing so, it becomes possible to improve the processing efficiency reliably.

又、図5に示すように、加工領域下流部の出口付近に研磨液を供給する研磨液供給ノズル35を設けることで、出口部分の圧力を上昇させることができ、弾性回転工具21の回転数を上げることで発生するキャビテーションを抑止することができる。従って、出口付近に新たに研磨液供給ノズル35を設けることによって、キャビテーションを抑止できるので、弾性回転工具21の回転数を上げることができ、被加工物20への砥粒の接触回数と接触力を増大でき、加工効率の向上を図ることができる。   Further, as shown in FIG. 5, by providing a polishing liquid supply nozzle 35 for supplying a polishing liquid near the outlet of the downstream portion of the processing region, the pressure at the outlet can be increased, and the rotational speed of the elastic rotary tool 21 is increased. The cavitation generated by raising the value can be suppressed. Therefore, since the cavitation can be suppressed by newly providing the polishing liquid supply nozzle 35 in the vicinity of the outlet, the number of rotations of the elastic rotary tool 21 can be increased, and the number of contact times and the contact force of the abrasive grains with the workpiece 20. And the processing efficiency can be improved.

本発明の実施の形態1による研磨ヘッドを示す断面図である。It is sectional drawing which shows the grinding | polishing head by Embodiment 1 of this invention. 弾性回転工具による加工領域の研摩液の流れ状態を説明する図である。It is a figure explaining the flow state of the polishing liquid of the process area | region by an elastic rotary tool. 本発明の実施の形態1における構造を示す図である。It is a figure which shows the structure in Embodiment 1 of this invention. 本発明の実施の形態1における構造を示す図である。It is a figure which shows the structure in Embodiment 1 of this invention. 本発明の実施の形態2による研摩ヘッドを示す断面図である。It is sectional drawing which shows the polishing head by Embodiment 2 of this invention. 本発明の実施の形態2による変形形態を示す構成図である。It is a block diagram which shows the modification by Embodiment 2 of this invention. 従来の加工領域における研摩液の流れ状態を示す図である。It is a figure which shows the flow state of the polishing liquid in the conventional process area | region. 本提案の研摩ヘッドを装着する研摩装置の外観図である。It is an external view of the polishing apparatus which mounts the polishing head of this proposal. 従来例を示す模式断面図である。It is a schematic cross section which shows a prior art example.

符号の説明Explanation of symbols

1 弾性回転工具
2,3 第1、第2のホルダー
4,5 磁性流体
6 動力伝達ギア
7 回転モータ
8 荷重負荷用ボイスコイル
9 研摩ヘッド筐体
10 弾性回転工具支持プレート
11 第2の永久磁石
12 第1の永久磁石
13 第2のヨーク
14 第1のヨーク
15 取り付けベースプレート
16 第3の永久磁石
17 弾性回転工具支持プレート
18 弾性回転工具回転軸
19 弾性回転工具コア
20 被加工物
21 弾性回転工具
22 第1の研摩液吐出ユニット
23 第1の研摩液吐出口
24 第2の研摩液吐出ユニット
25 第2の研摩液吐出口
26 動力伝達ギア
27 回転モータ
28 荷重負荷用ボイスコイル
29 研摩ヘッド筐体
30 弾性回転工具支持プレート
31 取り付けベースプレート
32 研摩液供給ホース
33 研摩液供給ホース
34 研摩液供給ホース
35 研摩液吐出ノズル
DESCRIPTION OF SYMBOLS 1 Elastic rotary tool 2,3 1st, 2nd holder 4,5 Magnetic fluid 6 Power transmission gear 7 Rotating motor 8 Voice coil for load 9 Polishing head housing | casing 10 Elastic rotary tool support plate 11 2nd permanent magnet 12 First permanent magnet 13 Second yoke 14 First yoke 15 Mounting base plate 16 Third permanent magnet 17 Elastic rotating tool support plate 18 Elastic rotating tool rotating shaft 19 Elastic rotating tool core 20 Workpiece 21 Elastic rotating tool 22 First polishing liquid discharge unit 23 First polishing liquid discharge port 24 Second polishing liquid discharge unit 25 Second polishing liquid discharge port 26 Power transmission gear 27 Rotating motor 28 Load load voice coil 29 Polishing head housing 30 Elastic rotating tool support plate 31 Mounting base plate 32 Abrasive fluid supply hose 33 Abrasive fluid supply hose 34 Abrasive liquid supply hose 35 Abrasive liquid discharge nozzle

Claims (7)

弾性回転体を研磨液中で非加工物と相対する位置で回転させ、弾性回転工具と非加工物との間を通過する研磨液により非加工物の表面粗さを改善する加工方法において、
弾性回転体と非加工面で形成される最小隙間近傍の弾性回転体の回転方向と一致しない研磨液の流れを抑止する手段を有することを特徴とする研磨工具。
In the processing method of rotating the elastic rotating body at a position facing the non-working object in the polishing liquid, and improving the surface roughness of the non-working object with the polishing liquid passing between the elastic rotating tool and the non-working object,
A polishing tool comprising means for suppressing a flow of a polishing liquid that does not coincide with a rotation direction of an elastic rotating body in the vicinity of a minimum gap formed between the elastic rotating body and a non-machined surface.
研磨液の流れを抑止する手段が弾性体であることを特徴とする請求項1記載の研磨工具。   2. The polishing tool according to claim 1, wherein the means for suppressing the flow of the polishing liquid is an elastic body. 弾性体を磁性粘性流体で構成することを特徴とする請求項2記載の研磨工具。   The polishing tool according to claim 2, wherein the elastic body is made of a magnetic viscous fluid. 研磨液の流れを抑止する手段が研磨液による流体圧であることを特徴とする請求項1記載の研磨工具。   The polishing tool according to claim 1, wherein the means for suppressing the flow of the polishing liquid is a fluid pressure by the polishing liquid. 弾性回転体を回転させる手段と、弾性回転体に非加工物方向の圧縮力を負荷する手段と、弾性回転体と非加工面で形成される最小隙間近傍の弾性回転体の回転方向と一致しない研磨液の流れを抑止する手段を有する研磨装置。   Means for rotating the elastic rotor, means for applying a compressive force in the non-workpiece direction to the elastic rotor, and the rotational direction of the elastic rotor in the vicinity of the minimum gap formed by the elastic rotor and the non-machined surface do not match A polishing apparatus having means for suppressing the flow of polishing liquid. 弾性回転体を研磨液中で非加工物と相対する位置で回転させ、弾性回転工具と非加工物との間を通過する研磨液により非加工物の表面粗さを改善する加工方法であって、回転弾性体側面に弾性体を設置して、弾性回転体と非加工面で形成される最小隙間近傍の弾性回転体の回転方向と一致しない研磨液の流れを抑止することを特徴とする研磨方法。   A processing method in which an elastic rotating body is rotated at a position facing a non-working object in a polishing liquid, and the surface roughness of the non-working object is improved by a polishing liquid passing between the elastic rotating tool and the non-working object. Polishing characterized in that an elastic body is installed on the side of the rotary elastic body to suppress the flow of the polishing liquid that does not coincide with the rotation direction of the elastic rotary body in the vicinity of the minimum gap formed between the elastic rotary body and the non-machined surface Method. 弾性回転体を研磨液中で非加工物と相対する位置で回転させ、弾性回転工具と非加工物との間を通過する研磨液により非加工物の表面粗さを改善する加工方法であって、回転弾性体側面に研磨液を噴射して、弾性回転体と非加工面で形成される最小隙間近傍の弾性回転体の回転方向と一致しない研磨液の流れを抑止することを特徴とする研磨方法。   A processing method in which an elastic rotating body is rotated at a position facing a non-working object in a polishing liquid, and the surface roughness of the non-working object is improved by a polishing liquid passing between the elastic rotating tool and the non-working object. The polishing is characterized in that the polishing liquid is sprayed onto the side surface of the rotating elastic body to suppress the flow of the polishing liquid that does not coincide with the rotation direction of the elastic rotating body in the vicinity of the minimum gap formed between the elastic rotating body and the non-processed surface. Method.
JP2005032750A 2005-02-09 2005-02-09 Polishing tool, polishing device, and polishing method Withdrawn JP2006218558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032750A JP2006218558A (en) 2005-02-09 2005-02-09 Polishing tool, polishing device, and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032750A JP2006218558A (en) 2005-02-09 2005-02-09 Polishing tool, polishing device, and polishing method

Publications (1)

Publication Number Publication Date
JP2006218558A true JP2006218558A (en) 2006-08-24

Family

ID=36981206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032750A Withdrawn JP2006218558A (en) 2005-02-09 2005-02-09 Polishing tool, polishing device, and polishing method

Country Status (1)

Country Link
JP (1) JP2006218558A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672549A (en) * 2012-03-23 2012-09-19 辽宁科技大学 Magnetic grinding and polishing device for large curved surface
CN103801991A (en) * 2012-11-12 2014-05-21 中国科学院沈阳自动化研究所 Free-form surface grinding device
CN114505755A (en) * 2022-03-10 2022-05-17 中国科学院光电技术研究所 Flexible tool wheel for ultra-smooth polishing
JP7487932B2 (en) 2020-07-06 2024-05-21 株式会社ジェイテックコーポレーション Nozzle-type processing head type EEM processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672549A (en) * 2012-03-23 2012-09-19 辽宁科技大学 Magnetic grinding and polishing device for large curved surface
CN103801991A (en) * 2012-11-12 2014-05-21 中国科学院沈阳自动化研究所 Free-form surface grinding device
JP7487932B2 (en) 2020-07-06 2024-05-21 株式会社ジェイテックコーポレーション Nozzle-type processing head type EEM processing method
CN114505755A (en) * 2022-03-10 2022-05-17 中国科学院光电技术研究所 Flexible tool wheel for ultra-smooth polishing

Similar Documents

Publication Publication Date Title
WO2017211082A1 (en) Double-sided polishing device and method having polishing pad with stiffness controlled by dynamic cluster magnetic field
CN110340736B (en) Magnetorheological polishing device and method based on flow field focusing
KR20060024781A (en) Vacuum-assisted pad conditioning system and method utilizing an apertured conditioning disk
JP2006218558A (en) Polishing tool, polishing device, and polishing method
CN101564824A (en) Method and device for polishing magneto-rheological inclined shaft
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
JP2008264929A (en) Electrolytic polishing device
JP2006224227A (en) Magnetic polishing method
JP3119358B1 (en) Edge polishing equipment for semiconductor wafers
JP2009260142A (en) Wafer-polishing apparatus and wafer-polishing method
CN105263674B (en) Vibrate the work holding fixture.In and vibration grinding process of barreling
JP2005081523A (en) Grinding device, grinding tool and grinding base
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP2005050501A (en) Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP5982427B2 (en) Carrier plate used for double-sided processing equipment
JP2004098267A (en) Polishing tool, polishing device, and polishing precess
JP5613723B2 (en) Carrier plate and disk-shaped substrate manufacturing method, disk-shaped substrate double-sided processing apparatus
KR101506779B1 (en) Polishing system
JP2007048780A (en) Wafer chamfering device
JP2010194692A (en) Surface plate and polishing device
JP2016143883A (en) Polishing device, polishing method and semiconductor manufacturing method
JP2011255486A (en) Method of washing tool and workpiece machined by the tool
KR101591569B1 (en) Polishing apparatus for the aspheric lens
JP2010082700A (en) Apparatus for manufacturing glass substrate for information recording medium
JP2006142391A (en) Centering device for optical lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513