JP2006216463A - Membrane electrode composite for fuel cell - Google Patents

Membrane electrode composite for fuel cell Download PDF

Info

Publication number
JP2006216463A
JP2006216463A JP2005029653A JP2005029653A JP2006216463A JP 2006216463 A JP2006216463 A JP 2006216463A JP 2005029653 A JP2005029653 A JP 2005029653A JP 2005029653 A JP2005029653 A JP 2005029653A JP 2006216463 A JP2006216463 A JP 2006216463A
Authority
JP
Japan
Prior art keywords
conductive wire
electrode layer
current collector
membrane electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005029653A
Other languages
Japanese (ja)
Inventor
Masahiro Imanishi
雅弘 今西
Harumichi Nakanishi
治通 中西
Naruaki Murata
成亮 村田
Yoshihisa Tamura
佳久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005029653A priority Critical patent/JP2006216463A/en
Publication of JP2006216463A publication Critical patent/JP2006216463A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode composite for a fuel cell in which a gas easily flows at outside of the membrane electrode composite for the fuel cell, and in which a current collection function to the axial direction is high. <P>SOLUTION: The membrane electrode composite for the fuel cell comprises a tubular solid electrolyte membrane, an outside catalyst electrode layer formed at the outer peripheral face of the solid electrolyte membrane, an inside catalyst electrode layer formed at the inner peripheral face of the solid electrolyte membrane, an outside current collector arranged at the outer peripheral face of the outside catalyst electrode layer, and an inside current collector arranged at the inner peripheral face of the inside catalyst electrode layer. The outside current collector is constituted of a plurality of conductive wires formed in spiral shape in the axial direction of the membrane electrode composite for the fuel cell, the direction for winding the conductive wires in spiral shape are two kinds of clockwise and counterclockwise, the outside current collector has at least the inside conductive wire and outside conductive wire formed at the outside of the inside conductive wire, and the spiral pitches of the inside conductive wire are larger than those of the outside conductive wire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チューブ状または円柱状に形成することにより、コストを低減し、かつ小型化が可能な燃料電池に用いられる燃料電池用膜電極複合体に関する。   The present invention relates to a membrane electrode assembly for a fuel cell that is used in a fuel cell that can be reduced in cost and formed in a tube shape or a cylindrical shape.

従来の平板構造の固体高分子電解質型燃料電池(以下、単に燃料電池と称する場合がある。)の最小発電単位である単位セルは、一般に固体電解質膜の両側に触媒電極層が接合されている膜電極複合体を有し、この膜電極複合体の両側にはガス拡散層が配されている。さらに、その外側にはガス通路を備えたセパレータが配されており、ガス拡散層を介して膜電極複合体の触媒電極層へと供給される燃料ガスおよび酸化剤ガスを通流させるとともに、発電により得られた電流を外部に伝える働きをしている。   A unit cell which is the minimum power generation unit of a conventional solid polymer electrolyte fuel cell having a flat plate structure (hereinafter sometimes simply referred to as a fuel cell) generally has a catalyst electrode layer bonded to both sides of the solid electrolyte membrane. A membrane electrode assembly is provided, and gas diffusion layers are disposed on both sides of the membrane electrode assembly. In addition, a separator having a gas passage is arranged on the outside thereof, and the fuel gas and the oxidant gas supplied to the catalyst electrode layer of the membrane electrode composite are passed through the gas diffusion layer, and power generation is performed. It works to convey the current obtained by the outside.

上記燃料電池の小型化のため、および、単位体積当たりの発電反応面積を大きくするためには、燃料電池の上記構成部材の厚さを薄くする必要がある。しかしながら、このような従来の平板構造の燃料電池においては、各構成部材の厚さをある一定以下の値にすることは、機能面や強度面から好ましくなく、設計限界に近づきつつある。そこで、同軸上に上記膜電極複合体の各層が積層されたチューブ形状または円柱形状の膜電極複合体が開発されている。   In order to reduce the size of the fuel cell and increase the power generation reaction area per unit volume, it is necessary to reduce the thickness of the constituent members of the fuel cell. However, in such a conventional flat plate structure fuel cell, setting the thickness of each constituent member to a certain value or less is not preferable in terms of function and strength, and is approaching the design limit. In view of this, a tube-shaped or columnar membrane electrode assembly in which the layers of the membrane electrode assembly are stacked on the same axis has been developed.

例えば、特許文献1には、同軸上に内側から順に、内部電極、触媒層、電解質層、触媒層、および外部電極が設けられた膜電極複合体が開示されており、上記内部電極の外周面および外部電極の内周面には複数の溝からなるガス通路が形成されている。このような膜電極複合体はその径を細く形成することにより、一定の空間に対し密に配置することができるため、単位体積当たりの電極面積を従来のものよりも大幅に増加することができる。   For example, Patent Document 1 discloses a membrane electrode complex in which an internal electrode, a catalyst layer, an electrolyte layer, a catalyst layer, and an external electrode are provided on the same axis in order from the inside, and the outer peripheral surface of the internal electrode is disclosed. A gas passage formed of a plurality of grooves is formed on the inner peripheral surface of the external electrode. By forming such a membrane electrode composite with a small diameter, it can be densely arranged in a certain space, so that the electrode area per unit volume can be greatly increased as compared with the conventional one. .

上記のようなチューブ形状や円柱形状の膜電極複合体を用いた燃料電池において、発電に必要な燃料ガスおよび酸化剤ガスは、膜電極複合体の中心部の空間、または膜電極複合体の外側、つまり膜電極複合体と他の膜電極複合体との間の空間を用いて通流される。上述したように、膜電極複合体の径は細く、密に配されているため、ガスが通流される膜電極複合体の外側の空間は極めて狭い空間である。このため、通流するガスの流れが滞ってしまう可能性がある。そうするとガスが十分に供給されないため、触媒電極層内に発電反応に寄与しない領域が生じる場合がある。   In the fuel cell using the tube-shaped or cylindrical membrane electrode assembly as described above, the fuel gas and the oxidant gas necessary for power generation are in the space in the center of the membrane electrode assembly or outside the membrane electrode assembly. That is, it is made to flow using the space between the membrane electrode assembly and another membrane electrode assembly. As described above, since the membrane electrode assembly has a small diameter and is densely arranged, the space outside the membrane electrode assembly through which the gas flows is a very narrow space. For this reason, there is a possibility that the flow of the flowing gas will be delayed. As a result, the gas is not sufficiently supplied, and a region that does not contribute to the power generation reaction may occur in the catalyst electrode layer.

また、上記の燃料電池においては、電極反応により発生した電気はチューブや円柱の軸方向に流れて集電されるため、軸方向に効率よく集電することが求められている。   Further, in the above fuel cell, electricity generated by the electrode reaction flows in the axial direction of the tube or cylinder and is collected. Therefore, it is required to collect current efficiently in the axial direction.

特開2002−124273公報JP 2002-124273 A 特表平8−507896公報JP-T 8-507896

本発明は、上記問題点に鑑みてなされたものであり、燃料電池用膜電極複合体の外側においてガスが通流しやすく、軸方向の集電機能が高い燃料電池用膜電極複合体を提供することを主目的とするものである。   The present invention has been made in view of the above-mentioned problems, and provides a fuel cell membrane electrode assembly having a high axial current collecting function and allowing gas to easily flow outside the fuel cell membrane electrode assembly. This is the main purpose.

上記目的を達成するために、本発明は、チューブ形状の固体電解質膜と、上記固体電解質膜の外周面に形成された外側触媒電極層と、上記固体電解質膜の内周面に形成された内側触媒電極層と、上記外側触媒電極層の外周面に配置された外側集電体と、上記内側触媒電極層の内周面に配置された内側集電体とを有する燃料電池用膜電極複合体であって、上記外側集電体が上記燃料電池用膜電極複合体の軸方向に螺旋状に形成された複数の導電線からなり、上記導電線の螺旋を巻く方向が右巻きおよび左巻きの2種類であり、上記外側集電体が、内側導電線と上記内側導電線の外側に形成された外側導電線とを少なくとも有し、上記内側導電線の螺旋ピッチが上記外側導電線の螺旋ピッチよりも大きいことを特徴とする燃料電池用膜電極複合体を提供する。   To achieve the above object, the present invention provides a tube-shaped solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, and an inner surface formed on the inner peripheral surface of the solid electrolyte membrane. A fuel cell membrane electrode assembly comprising a catalyst electrode layer, an outer current collector disposed on the outer peripheral surface of the outer catalyst electrode layer, and an inner current collector disposed on the inner peripheral surface of the inner catalyst electrode layer The outer current collector is composed of a plurality of conductive wires formed in a spiral shape in the axial direction of the membrane electrode assembly for a fuel cell, and the direction in which the spiral of the conductive wires is wound is clockwise or counterclockwise 2 The outer current collector has at least an inner conductive wire and an outer conductive wire formed outside the inner conductive wire, and the spiral pitch of the inner conductive wire is greater than the spiral pitch of the outer conductive wire. Membrane electrode composite for fuel cell, characterized in that To provide.

本発明によれば、外側集電体が燃料電池用膜電極複合体(以下、単に膜電極複合体と称する場合がある。)の軸方向に螺旋状に形成された複数の導電線からなり、これらの導電線の螺旋を巻く方向が右巻きおよび左巻きの2種類であるので、導電線が交差する部位が必ず存在することになる。この導電線が交差した部位は厚みがでるので、本発明の膜電極複合体を密に配置した場合に膜電極複合体と他の膜電極複合体との間の空間を広くすることができる。したがって、ガスを十分に通流させることができ、発電に寄与する外側触媒電極層の面積を広くすることができる。また、複数の導電線は、互いに逆巻きに螺旋状に形成されているので外側触媒電極層と複雑に接触しており、複数の導電線が交差した部位では導電線の接触圧により外側触媒電極層と密着するため、電子の移動を円滑にすることができる。さらに、導電線が膜電極複合体の軸方向に形成されているので、膜電極複合体の軸方向の集電機能を向上させることができる。したがって本発明においては、電極反応により発生した電気を効率よく集電することが可能である。
また本発明においては、外側集電体が内側導電線とこの内側導電線の外側に形成された外側導電線とを少なくとも有しており、この内側導電線は外側導電線よりも外側触媒電極層側に形成されるものであるので、外側触媒電極層の有効面積を広くし、フラッディングを防止するためにその螺旋ピッチが比較的大きい方がよい。一方、外側導電線は内側導電線の外側に形成されるものであるので、内側導電線を固定するためにその螺旋ピッチが比較的小さい方がよい。このため本発明においては、内側導電線および外側導電線の螺旋ピッチが上記のように調整されているのである。
According to the present invention, the outer current collector is composed of a plurality of conductive wires formed in a spiral shape in the axial direction of a membrane electrode assembly for a fuel cell (hereinafter sometimes simply referred to as a membrane electrode assembly), Since there are two types of winding directions of these conductive wires, right-handed and left-handed, there are always portions where the conductive wires intersect. Since the portion where the conductive wires intersect each other is thick, when the membrane electrode assembly of the present invention is densely arranged, a space between the membrane electrode assembly and another membrane electrode assembly can be widened. Therefore, the gas can be sufficiently passed, and the area of the outer catalyst electrode layer contributing to power generation can be increased. In addition, since the plurality of conductive wires are spirally wound in the opposite directions, they are in intricate contact with the outer catalyst electrode layer, and at the portion where the plurality of conductive wires intersect, the outer catalyst electrode layer is caused by the contact pressure of the conductive wires. Because of the close contact, electrons can be moved smoothly. Furthermore, since the conductive wire is formed in the axial direction of the membrane electrode assembly, the current collecting function in the axial direction of the membrane electrode assembly can be improved. Therefore, in the present invention, it is possible to efficiently collect electricity generated by the electrode reaction.
In the present invention, the outer current collector has at least an inner conductive wire and an outer conductive wire formed outside the inner conductive wire, and the inner conductive wire is located on the outer catalytic electrode layer than the outer conductive wire. Therefore, it is preferable that the spiral pitch is relatively large in order to increase the effective area of the outer catalyst electrode layer and prevent flooding. On the other hand, since the outer conductive wire is formed outside the inner conductive wire, it is preferable that the helical pitch is relatively small in order to fix the inner conductive wire. For this reason, in this invention, the helical pitch of an inner side conductive wire and an outer side conductive wire is adjusted as mentioned above.

本発明においては、外側触媒電極層にガスを十分に供給することができ、また電子の移動を円滑にし、膜電極複合体の軸方向の集電機能を向上させることができるという効果を奏する。   In the present invention, it is possible to sufficiently supply a gas to the outer catalyst electrode layer, to smoothly move electrons, and to improve the current collecting function in the axial direction of the membrane electrode assembly.

本発明は、膜電極複合体に関するものである。以下、本発明の膜電極複合体について詳細に説明する。   The present invention relates to a membrane electrode assembly. Hereinafter, the membrane electrode assembly of the present invention will be described in detail.

本発明の膜電極複合体は、チューブ形状の固体電解質膜と、上記固体電解質膜の外周面に形成された外側触媒電極層と、上記固体電解質膜の内周面に形成された内側触媒電極層と、上記外側触媒電極層の外周面に配置された外側集電体と、上記内側触媒電極層の内周面に配置された内側集電体とを有する燃料電池用膜電極複合体であって、上記外側集電体が上記燃料電池用膜電極複合体の軸方向に螺旋状に形成された複数の導電線からなり、上記導電線の螺旋を巻く方向が右巻きおよび左巻きの2種類であり、上記外側集電体が、内側導電線と上記内側導電線の外側に形成された外側導電線とを少なくとも有し、上記内側導電線の螺旋ピッチが上記外側導電線の螺旋ピッチよりも大きいことを特徴とするものである。
以下、このような本発明の膜電極複合体について、図を用いて具体的に説明する。
The membrane electrode assembly of the present invention includes a tube-shaped solid electrolyte membrane, an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane, and an inner catalyst electrode layer formed on the inner peripheral surface of the solid electrolyte membrane. A membrane electrode assembly for a fuel cell, comprising: an outer current collector disposed on the outer peripheral surface of the outer catalyst electrode layer; and an inner current collector disposed on the inner peripheral surface of the inner catalyst electrode layer. The outer current collector is composed of a plurality of conductive wires spirally formed in the axial direction of the fuel cell membrane electrode assembly, and the spiral direction of the conductive wires is of two types: right-handed and left-handed The outer current collector has at least an inner conductive wire and an outer conductive wire formed outside the inner conductive wire, and the spiral pitch of the inner conductive wire is larger than the spiral pitch of the outer conductive wire. It is characterized by.
Hereinafter, such a membrane electrode assembly of the present invention will be specifically described with reference to the drawings.

図1は、本発明の膜電極複合体の一例を示す概略斜視図である。図1に示すように、本発明の膜電極複合体は、円柱形状を有しており、円柱形状の最内面に内側集電体2が設けられており、その外側面上に内側触媒電極層3、固体電解質膜4、外側触媒電極層5、および外側集電体6がこの順に積層された構造を有する。外側集電体6は、膜電極複合体の軸方向に螺旋状に形成された2本の導電線からなるものである。   FIG. 1 is a schematic perspective view showing an example of the membrane electrode assembly of the present invention. As shown in FIG. 1, the membrane electrode assembly of the present invention has a cylindrical shape, and an inner current collector 2 is provided on the innermost inner surface of the cylindrical shape, and an inner catalytic electrode layer is formed on the outer surface. 3, the solid electrolyte membrane 4, the outer catalyst electrode layer 5, and the outer current collector 6 are stacked in this order. The outer current collector 6 is composed of two conductive wires formed in a spiral shape in the axial direction of the membrane electrode assembly.

外側集電体6を構成する2本の導電線は、互いに逆巻き(右巻きおよび左巻き)に螺旋状に巻いている。2本の導電線が交差する部位は厚みがでるので、本発明の膜電極複合体を密に配置した場合に、膜電極複合体の外側、すなわち膜電極複合体と他の膜電極複合体との間の空間を広くすることができる。また、2本の導電線は所定の螺旋ピッチで膜電極複合体の軸方向に螺旋状に形成されるものであり、外側集電体6はガスが透過することが可能な程度の隙間を有する。よって、外側触媒電極層5にガスを十分に供給することができる。したがって、外側触媒電極層の広域において発電反応が行なわれることとなり、発電に寄与する外側触媒電極層の面積を広くすることができる。   The two conductive wires constituting the outer current collector 6 are spirally wound in the opposite directions (right-handed and left-handed). Since the portion where the two conductive wires intersect with each other is thick, when the membrane electrode assembly of the present invention is densely arranged, the outside of the membrane electrode assembly, that is, the membrane electrode assembly and other membrane electrode assemblies The space between can be widened. The two conductive wires are formed in a spiral shape in the axial direction of the membrane electrode assembly at a predetermined spiral pitch, and the outer current collector 6 has a gap that allows gas to pass therethrough. . Therefore, the gas can be sufficiently supplied to the outer catalyst electrode layer 5. Therefore, the power generation reaction is performed in a wide area of the outer catalyst electrode layer, and the area of the outer catalyst electrode layer contributing to power generation can be increased.

また、外側集電体6を構成する2本の導電線は、互いに逆巻きに螺旋状に巻いているので外側触媒電極層5と複雑に接触しており、2本の導電線が交差する部位では、2本の導電線の接触圧により導電線が外側触媒電極層と密着している。したがって、電子の移動が円滑になり、集電機能を向上させることができる。特に、2本の導電線が膜電極複合体の軸方向に螺旋状に形成されているので、軸方向の集電機能が高まり、電極反応により発生した電気を効率よく集電することが可能である。   In addition, the two conductive wires constituting the outer current collector 6 are spirally wound in the opposite directions so that they are in intricate contact with the outer catalyst electrode layer 5, and at the portion where the two conductive wires intersect. The conductive wire is in close contact with the outer catalyst electrode layer due to the contact pressure of the two conductive wires. Therefore, the movement of electrons becomes smooth and the current collecting function can be improved. In particular, since the two conductive wires are spirally formed in the axial direction of the membrane electrode assembly, the current collecting function in the axial direction is enhanced, and the electricity generated by the electrode reaction can be collected efficiently. is there.

本発明における外側集電体は、内側導電線とこの内側導電線の外側に形成された外側導電線とを少なくとも有するものである。すなわち、本発明の外側集電体は、内側導電線および外側導電線が別々に螺旋状に巻かれたものであり、さらに換言すれば導電線が少なくとも2回以上巻かれたものである。   The outer current collector in the present invention has at least an inner conductive wire and an outer conductive wire formed outside the inner conductive wire. That is, the outer current collector of the present invention is one in which the inner conductive wire and the outer conductive wire are separately spirally wound, and in other words, the conductive wire is wound at least twice or more.

また本発明においては、内側導電線の螺旋ピッチ(導電線が巻く螺旋の1ピッチ当たりの長さ)が外側導電線の螺旋ピッチよりも大きくなるように螺旋ピッチが調整されている。例えば内側導電線が最も外側触媒電極層側に形成された導電線である場合は、他の導電線と比較して外側触媒電極層と接触する面積が大きいので、内側導電線の螺旋ピッチを比較的大きくすることにより、外側触媒電極層の有効面積を広くするとともに、発電反応により生成された生成水が排出される流路を確保してフラッディングを防止することができる。一方、例えば外側導電線が最も外側に形成された導電線である場合は、外側導電線の螺旋ピッチを比較的小さくすることにより、内側導電線などの他の導電線を固定することができる。このように本発明においては、内側導電線と外側導電線とで機能を分担させることができるのである。   In the present invention, the spiral pitch is adjusted so that the spiral pitch of the inner conductive wire (the length per one pitch of the spiral wound by the conductive wire) is larger than the spiral pitch of the outer conductive wire. For example, when the inner conductive wire is a conductive wire formed on the outermost catalyst electrode layer side, the contact area with the outer catalyst electrode layer is larger than the other conductive wires, so the spiral pitch of the inner conductive wire is compared. By increasing the target size, the effective area of the outer catalyst electrode layer can be widened, and a flow path through which the generated water generated by the power generation reaction is discharged can be secured to prevent flooding. On the other hand, for example, when the outer conductive wire is the outermost conductive wire, other conductive wires such as the inner conductive wire can be fixed by relatively reducing the helical pitch of the outer conductive wire. Thus, in the present invention, the function can be shared between the inner conductive wire and the outer conductive wire.

なお、本発明において「膜電極複合体の軸方向」とは、チューブ形状または円柱形状の膜電極複合体の軸方向をいう。
以下、本発明の膜電極複合体の各構成について説明する。
In the present invention, the “axial direction of the membrane electrode assembly” refers to the axial direction of the tube electrode or columnar membrane electrode assembly.
Hereinafter, each structure of the membrane electrode assembly of the present invention will be described.

1.外側集電体
本発明に用いられる外側集電体は、膜電極複合体の軸方向に螺旋状に形成された複数の導電線からなり、この導電線の螺旋を巻く方向が右巻きおよび左巻きの2種類であり、内側導電線とこの内側導電線の外側に形成された外側導電線とを少なくとも有し、内側導電線の螺旋ピッチが外側導電線の螺旋ピッチよりも大きいものであれば特に限定されるものではない。
1. Outer current collector The outer current collector used in the present invention is composed of a plurality of conductive wires formed in a spiral shape in the axial direction of the membrane electrode assembly, and the direction in which the spiral of the conductive wire is wound is right-handed and left-handed. There are two types, and it is particularly limited as long as it has at least an inner conductive line and an outer conductive line formed outside the inner conductive line, and the spiral pitch of the inner conductive line is larger than the spiral pitch of the outer conductive line. Is not to be done.

本発明においては、上述したように複数の導電線が交差する部位の厚みによりガスが流れる空間を広くすることができる。この複数の導電線が交差する部位の厚みとしては、ガスが流れるのに必要な空間を確保することができれば特に限定されるものではない。具体的には、導電線の径、数等により異なるものであるが、複数の導電線が交差する部位の厚みは、通常0.05mm以上とされ、好ましくは0.2mm以上である。また、本発明の膜電極複合体は、その径を細く形成することにより一定の空間に対し密に配置することができ、単位体積当たりの電極面積を大幅に増加することができることから、複数の導電線が交差する部位の厚みが厚すぎると、単位体積当たりの電極面積を増加させる効果が得られにくい。よって、複数の導電線が交差する部位の厚みは、2mm以下とされ、好ましくは0.5mm以下である。   In the present invention, as described above, the space through which the gas flows can be widened by the thickness of the portion where the plurality of conductive lines intersect. The thickness of the portion where the plurality of conductive lines intersect is not particularly limited as long as a space necessary for the gas to flow can be secured. Specifically, although it varies depending on the diameter and number of the conductive wires, the thickness of the portion where the plurality of conductive wires intersect is usually 0.05 mm or more, and preferably 0.2 mm or more. In addition, the membrane electrode assembly of the present invention can be densely arranged in a certain space by forming its diameter narrow, and the electrode area per unit volume can be greatly increased. If the thickness of the portion where the conductive lines intersect is too thick, it is difficult to obtain the effect of increasing the electrode area per unit volume. Therefore, the thickness of the part where the plurality of conductive lines intersect is 2 mm or less, preferably 0.5 mm or less.

この際の内側導電線の螺旋ピッチは、外側触媒電極層の有効面積、および発電反応により生成された生成水の流路等を考慮して適宜調整される。具体的な内側導電線の螺旋ピッチとしては、通常0.1mm〜100mm程度であり、好ましくは20mm〜50mmの範囲内である。
一方、外側導電線の螺旋ピッチは、外側集電体を構成する複数の導電線がばらけないように、また外側触媒電極層の有効面積、および発電反応により生成された生成水の流路等を考慮して適宜調整される。具体的な外側導電線の螺旋ピッチとしては、通常0.01mm〜100mm未満であり、好ましくは20mm〜50mm未満である。
またこの際、内側導電線および外側導電線の螺旋ピッチの比としては、内側導電線の螺旋ピッチを1としたとき、外側導電線の螺旋ピッチが0.01〜1未満であることが好ましく、より好ましくは0.5〜1未満である。
The spiral pitch of the inner conductive wire at this time is appropriately adjusted in consideration of the effective area of the outer catalyst electrode layer, the flow path of the generated water generated by the power generation reaction, and the like. The specific helical pitch of the inner conductive wire is usually about 0.1 mm to 100 mm, preferably 20 mm to 50 mm.
On the other hand, the spiral pitch of the outer conductive wire is such that the plurality of conductive wires constituting the outer current collector are not scattered, the effective area of the outer catalyst electrode layer, the flow path of the generated water generated by the power generation reaction, etc. Is adjusted as appropriate. The specific helical pitch of the outer conductive wire is usually 0.01 mm to less than 100 mm, preferably 20 mm to less than 50 mm.
At this time, as a ratio of the spiral pitch of the inner conductive line and the outer conductive line, when the spiral pitch of the inner conductive line is 1, the spiral pitch of the outer conductive line is preferably 0.01 to less than 1, More preferably, it is less than 0.5-1.

本発明における導電線の径としては、上記複数の導電線が交差する部位の厚み、および外側触媒電極層の有効面積等を考慮して適宜調整される。具体的には導電線の径が0.02mm〜1mm程度であり、好ましくは0.1mm〜0.2mmの範囲内である。   The diameter of the conductive wire in the present invention is appropriately adjusted in consideration of the thickness of the portion where the plurality of conductive wires intersect, the effective area of the outer catalyst electrode layer, and the like. Specifically, the diameter of the conductive wire is about 0.02 mm to 1 mm, preferably 0.1 mm to 0.2 mm.

また本発明においては、外側導電線の径が内側導電線の径より小さくてもよい。上述したように、外側導電線の螺旋ピッチは内側導電線の螺旋ピッチより小さいので、外側導電線の径を内側導電線の径よりも小さくすることにより、ガスの流路、および発電反応により生成された生成水の流路を十分に確保することができるからである。
この際の内側導電線の径としては、内側導電線や外側導電線が交差する部位の厚み、および外側触媒電極層の有効面積等により異なるものであり適宜調整される。具体的には内側導電線の径が0.1mm〜100mm程度であり、好ましくは0.5mm〜3mmの範囲内である。
一方、外側導電線の径としては、内側導電線や外側導電線が交差する部位の厚み、および外側触媒電極層の有効面積等により異なるものであり適宜調整される。具体的には外側導電線の径が2×10−5mm〜50mm程度であり、好ましくは0.05mm〜0.2mmの範囲内である。
またこの際、内側導電線および外側導電線の径の比としては、内側導電線の径を1としたとき、外側導電線の径が2×10−4〜0.5であることが好ましく、より好ましくは0.1〜0.2の範囲内である。
In the present invention, the diameter of the outer conductive wire may be smaller than the diameter of the inner conductive wire. As described above, since the spiral pitch of the outer conductive wire is smaller than the spiral pitch of the inner conductive wire, the diameter of the outer conductive wire is made smaller than the diameter of the inner conductive wire to generate the gas flow path and the power generation reaction. This is because a sufficient flow path of the produced water can be secured.
The diameter of the inner conductive wire at this time varies depending on the thickness of the portion where the inner conductive wire and the outer conductive wire intersect, the effective area of the outer catalytic electrode layer, and the like, and is adjusted as appropriate. Specifically, the diameter of the inner conductive wire is about 0.1 mm to 100 mm, preferably 0.5 mm to 3 mm.
On the other hand, the diameter of the outer conductive wire varies depending on the thickness of the portion where the inner conductive wire and the outer conductive wire intersect, the effective area of the outer catalytic electrode layer, and the like, and is adjusted as appropriate. Specifically, the diameter of the outer conductive wire is about 2 × 10 −5 mm to 50 mm, preferably 0.05 mm to 0.2 mm.
At this time, as a ratio of the diameter of the inner conductive wire and the outer conductive wire, when the diameter of the inner conductive wire is 1, it is preferable that the diameter of the outer conductive wire is 2 × 10 −4 to 0.5, More preferably, it exists in the range of 0.1-0.2.

さらに、外側集電体を膜電極複合体の径方向に切断したときの断面積が、6×10−4mm〜6.4mm程度であることが好ましく、より好ましくは0.05mm〜1.6mmの範囲内である。 Furthermore, the cross-sectional area of a cutaway of the outer current collector in the radial direction of the membrane electrode assembly is preferably 6 × 10 -4 mm 2 ~6.4mm 2, more preferably about 0.05 mm 2 ~ Within the range of 1.6 mm 2 .

導電線の数は、複数、すなわち2本以上であれば特に限定されるものではない。通常、導電線は2本〜100本程度形成され、好ましくは6本〜8本程度形成される。   The number of conductive lines is not particularly limited as long as it is plural, that is, two or more. Usually, about 2 to 100 conductive lines are formed, preferably about 6 to 8 conductive lines.

導電線が3本以上形成されている場合は、最も外側触媒電極層側に形成されている導電線と最も外側に形成されている導電線とが、上述した内側導電線と外側導電線との関係を満たせばよい。よってこの場合、内側導電線と外側導電線との間に形成された導電線は、螺旋を巻く方向が内側導電線の螺旋を巻く方向と同じであってもよく、外側導電線の螺旋を巻く方向と同じであってもよい。また、内側導電線と外側導電線との間に形成された導電線の螺旋ピッチとしては、外側触媒電極層の有効面積、および発電反応により生成された生成水の流路等により適宜調整される。   When three or more conductive lines are formed, the conductive line formed on the outermost catalyst electrode layer side and the conductive line formed on the outermost side are the above-described inner conductive line and outer conductive line. Satisfy the relationship. Therefore, in this case, the conductive wire formed between the inner conductive wire and the outer conductive wire may have the same spiral winding direction as the inner conductive wire spiral, and the outer conductive wire spiral. It may be the same as the direction. Further, the helical pitch of the conductive wire formed between the inner conductive wire and the outer conductive wire is appropriately adjusted depending on the effective area of the outer catalytic electrode layer, the flow path of the generated water generated by the power generation reaction, and the like. .

本発明においては、上述したように導電線の径、螺旋ピッチおよび外側集電体の径方向の断面積を所定の範囲とすることにより、発電に寄与する外側触媒電極層の面積を減らすことなく、電気容量を増加させることができるのである。   In the present invention, as described above, the diameter of the conductive wire, the helical pitch, and the radial cross-sectional area of the outer current collector are set within a predetermined range without reducing the area of the outer catalyst electrode layer that contributes to power generation. The electric capacity can be increased.

また、導電線の断面形状としては特に限定されるものではなく、矩形、多角形、円形、楕円形などを例示することができる。   Further, the cross-sectional shape of the conductive wire is not particularly limited, and examples thereof include a rectangle, a polygon, a circle, and an ellipse.

このような導電線を形成する材料としては、例えば、カーボンまたは、ステンレス鋼、チタン、白金、金、TiC、TiSi、SiO、B、NdO、TiBなどの金属等を挙げることができる。 As a material for forming such a conductive wire, for example, carbon or a metal such as stainless steel, titanium, platinum, gold, TiC, TiSi 2 , SiO 2 , B 2 O 3 , Nd 2 O, and TiB 2 is used. Can be mentioned.

本発明における外側集電体は、少なくともその一部が外側触媒電極層の外周面に密着するように形成される。そのため、外側集電体の内径は、外側触媒電極層の外径により決定される。通常、外側集電体の内径は、0.1mm〜100mmの範囲内で設定され、好ましくは0.5mm〜3mmの範囲内である。   The outer current collector in the present invention is formed so that at least a part thereof is in close contact with the outer peripheral surface of the outer catalyst electrode layer. Therefore, the inner diameter of the outer current collector is determined by the outer diameter of the outer catalyst electrode layer. Usually, the inner diameter of the outer current collector is set within a range of 0.1 mm to 100 mm, and preferably within a range of 0.5 mm to 3 mm.

また、上記外側集電体の軸方向の長さは、本発明の膜電極複合体を構成する他の部材や、本発明の膜電極複合体が適用される燃料電池が設置される空間の寸法等により適宜調整される。   In addition, the axial length of the outer current collector is the size of the space in which the other members constituting the membrane electrode composite of the present invention and the fuel cell to which the membrane electrode composite of the present invention is applied are installed. It adjusts suitably by etc.

2.固体電解質膜
本発明に用いられる固体電解質膜としては、チューブ形状の形態を有し、プロトン伝導性に優れ、かつ電流を流さない材料からなるものであれば特に限定されるものではない。このような固体電解質膜を形成する電解質材料としては、ナフィオン(商品名:Nafion、デュポン株式会社製)などに代表されるようなフッ素系樹脂、アミド系樹脂に代表されるような炭化水素系樹脂等有機系のもの、または、ケイ素酸化物を主成分とするものなどの無機系のもの等を挙げることができる。
2. Solid Electrolyte Membrane The solid electrolyte membrane used in the present invention is not particularly limited as long as it has a tube shape, is excellent in proton conductivity, and is made of a material that does not flow current. Examples of the electrolyte material for forming such a solid electrolyte membrane include fluorine resins such as Nafion (trade name: Nafion, manufactured by DuPont) and hydrocarbon resins such as amide resins. Examples thereof include organic materials such as organic materials, and inorganic materials such as those containing silicon oxide as a main component.

上記無機系の電解質材料を用いた固体電解質膜としては、多孔質ガラスをチューブ形状に成形し、そのナノ細孔内の表面を改質して、プロトン導電性を付与したチューブ形状の固体電解質膜や、チューブ形状のリン酸ガラスを応用したもの等を挙げることができる。上記多孔質ガラスを用いたものとしては、例えば多孔質ガラスの細孔内表面のOH基にメルカプトプロピルトリメトキシシランのシランカップリング剤を反応させ、その後にメルカプト基の−SHを酸化することにより、プロトン伝導性を有するスルホン酸基を導入する方法(化学と工業 第57巻 第1号(2004年)p41〜p44)等を挙げることができる。また、リン酸ガラスを応用したものとしては、燃料電池 Vol.3 No.3 2004 p69〜p71に報告された例等を挙げることができる。   As the solid electrolyte membrane using the inorganic electrolyte material, a tube-shaped solid electrolyte membrane in which porous glass is formed into a tube shape, the surface inside the nanopore is modified, and proton conductivity is imparted. And those using tube-shaped phosphate glass. As the above-mentioned porous glass, for example, by reacting a silane coupling agent of mercaptopropyltrimethoxysilane with an OH group on the pore inner surface of the porous glass, and then oxidizing -SH of the mercapto group. And a method of introducing a sulfonic acid group having proton conductivity (Chemical and Industrial Vol. 57 No. 1 (2004) p41 to p44) and the like. In addition, as an application of phosphate glass, fuel cell Vol. 3 No. 3 2004 p69 to p71 can be mentioned.

3.内側触媒電極層および外側触媒電極層
本発明に用いられる内側触媒電極層および外側触媒電極層は、特に限定されるものではなく、通常の平面構造の燃料電池用膜電極複合体に用いられている材料をチューブ形状に成形したものを用いることが可能である。具体的には、パーフルオロスルホン酸系ポリマー(商品名:Nafion、デュポン株式会社製)等のプロトン伝導材、カーボンブラックやカーボンナノチューブ等の導電性材料、および上記導電性材料に担持された白金等の触媒を含むものである。
3. Inner catalyst electrode layer and outer catalyst electrode layer The inner catalyst electrode layer and outer catalyst electrode layer used in the present invention are not particularly limited, and are used in a membrane electrode assembly for a fuel cell having a normal planar structure. A material formed into a tube shape can be used. Specifically, proton conductive materials such as perfluorosulfonic acid polymers (trade name: Nafion, manufactured by DuPont), conductive materials such as carbon black and carbon nanotubes, platinum supported on the conductive materials, and the like The catalyst is included.

4.内側集電体
本発明の膜電極複合体の内側の集電の方法は特に限定されるものではなく、通常の膜電極複合体における集電の方法により行うことができる。例えば、上記内側触媒電極層が内側集電体としての機能を兼ねていてもよく、上記内側触媒電極層の内周面に内側集電体が配置されていてもよい。中でも本発明においては、上記内側触媒電極層の内周面に内側集電体が配置されていることが好ましい。内側触媒電極層に導電性の高い内側集電体を密着させて集電を行うことにより、電子の移動を円滑にし、効率よく集電を行うことができるからである。
4). Inner Current Collector The method of collecting current inside the membrane electrode assembly of the present invention is not particularly limited, and can be performed by a current collecting method in a normal membrane electrode complex. For example, the inner catalyst electrode layer may also function as an inner current collector, and the inner current collector may be disposed on the inner peripheral surface of the inner catalyst electrode layer. Especially in this invention, it is preferable that the inner side electrical power collector is arrange | positioned at the internal peripheral surface of the said inner side catalyst electrode layer. This is because by collecting the inner current collector with high conductivity in close contact with the inner catalyst electrode layer, electrons can move smoothly and the current can be collected efficiently.

本発明に用いられる内側集電体としては、導電性が高く、膜電極複合体のチューブ形状または円柱形状の径方向にガスを透過するものであれば特に限定されるものではない。   The inner current collector used in the present invention is not particularly limited as long as it has high conductivity and allows gas to pass through in the radial direction of the tube shape or columnar shape of the membrane electrode assembly.

このような内側集電体の形状の例としては、バネ形状のもの、複数の直線状の導電体がチューブ形状または円柱形状の軸方向に配置されたもの、管の壁面部にその壁面を貫通する孔を多数有するもの、管の壁面部が網目構造のもの、円柱形状の外周面にその円柱形状の軸方向に形成された溝を多数有するもの等を挙げることができる。例えば図1においては、内側集電体2が円柱形状の外周面にその円柱形状の軸方向に形成された溝を多数有するものとなっている。   Examples of the shape of such an inner current collector include a spring shape, a plurality of linear conductors arranged in the axial direction of a tube shape or a cylindrical shape, and the wall surface of the tube penetrates the wall surface. And a tube having a mesh wall structure, and a cylindrical outer peripheral surface having a large number of grooves formed in the axial direction of the columnar shape. For example, in FIG. 1, the inner current collector 2 has a large number of grooves formed in the axial direction of the cylindrical shape on the cylindrical outer peripheral surface.

また、このような形状の内側集電体を形成する材料としては、例えば、カーボンまたは、ステンレス鋼、チタン、白金、金、TiC、TiSi、SiO、B、NdO、TiBなどの金属等を挙げることができる。 Examples of the material forming the inner current collector having such a shape include carbon, stainless steel, titanium, platinum, gold, TiC, TiSi 2 , SiO 2 , B 2 O 3 , Nd 2 O, and TiB. 2 or the like.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

本発明の膜電極複合体の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the membrane electrode assembly of this invention.

符号の説明Explanation of symbols

2…内側集電体
3…内側触媒電極層
4…固体電解質膜
5…外側触媒電極層
6…外側集電体
DESCRIPTION OF SYMBOLS 2 ... Inner collector 3 ... Inner catalyst electrode layer 4 ... Solid electrolyte membrane 5 ... Outer catalyst electrode layer 6 ... Outer collector

Claims (1)

チューブ形状の固体電解質膜と、前記固体電解質膜の外周面に形成された外側触媒電極層と、前記固体電解質膜の内周面に形成された内側触媒電極層と、前記外側触媒電極層の外周面に配置された外側集電体と、前記内側触媒電極層の内周面に配置された内側集電体とを有する燃料電池用膜電極複合体であって、
前記外側集電体が前記燃料電池用膜電極複合体の軸方向に螺旋状に形成された複数の導電線からなり、前記導電線の螺旋を巻く方向が右巻きおよび左巻きの2種類であり、前記外側集電体が、内側導電線と前記内側導電線の外側に形成された外側導電線とを少なくとも有し、前記内側導電線の螺旋ピッチが前記外側導電線の螺旋ピッチよりも大きいことを特徴とする燃料電池用膜電極複合体。
A tube-shaped solid electrolyte membrane; an outer catalyst electrode layer formed on the outer peripheral surface of the solid electrolyte membrane; an inner catalyst electrode layer formed on the inner peripheral surface of the solid electrolyte membrane; and an outer periphery of the outer catalyst electrode layer A fuel cell membrane electrode assembly having an outer current collector disposed on a surface and an inner current collector disposed on an inner peripheral surface of the inner catalyst electrode layer,
The outer current collector is composed of a plurality of conductive wires spirally formed in the axial direction of the fuel cell membrane electrode assembly, and the direction of winding the conductive wire is of two types, right-handed and left-handed, The outer current collector has at least an inner conductive line and an outer conductive line formed outside the inner conductive line, and the helical pitch of the inner conductive line is larger than the helical pitch of the outer conductive line. A membrane electrode assembly for a fuel cell.
JP2005029653A 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell Pending JP2006216463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029653A JP2006216463A (en) 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029653A JP2006216463A (en) 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell

Publications (1)

Publication Number Publication Date
JP2006216463A true JP2006216463A (en) 2006-08-17

Family

ID=36979489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029653A Pending JP2006216463A (en) 2005-02-04 2005-02-04 Membrane electrode composite for fuel cell

Country Status (1)

Country Link
JP (1) JP2006216463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014800B1 (en) 2008-06-09 2011-02-15 재단법인서울대학교산학협력재단 Cylinder-type Polymer Electrolyte Membrane Fuel Cell with Flowfield
KR101142685B1 (en) 2010-04-29 2012-07-11 삼성에스디아이 주식회사 An Anode Supported Solid Oxide Fuel Cell
WO2014060573A1 (en) * 2012-10-19 2014-04-24 Robert Bosch Gmbh Electrochemical cell with tubular support grid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229933A (en) * 2000-02-16 2001-08-24 Hitachi Cable Ltd Fuel cell and its production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229933A (en) * 2000-02-16 2001-08-24 Hitachi Cable Ltd Fuel cell and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014800B1 (en) 2008-06-09 2011-02-15 재단법인서울대학교산학협력재단 Cylinder-type Polymer Electrolyte Membrane Fuel Cell with Flowfield
KR101142685B1 (en) 2010-04-29 2012-07-11 삼성에스디아이 주식회사 An Anode Supported Solid Oxide Fuel Cell
WO2014060573A1 (en) * 2012-10-19 2014-04-24 Robert Bosch Gmbh Electrochemical cell with tubular support grid

Similar Documents

Publication Publication Date Title
EP1776729B1 (en) Membrane electrode assembly for a tube-shaped fuel cell and tube-shaped fuel cell
JP2006179463A (en) Solid polymer fuel cell
WO2006083037A1 (en) Membrane electrode assembly for hollow fuel cell and hollow fuel cell
JP2011151000A (en) Fuel cell module
JP4915045B2 (en) Membrane electrode composite for tube fuel cell and tube fuel cell
JP2006216463A (en) Membrane electrode composite for fuel cell
JP2006286474A (en) Electrode structure for fuel cell and manufacturing method of electrode for fuel cell
JP4768261B2 (en) Basic fuel cell element to limit methanol passing through the electrolyte layer
JP2005294115A (en) Fuel cell structure
JP2006216421A (en) Membrane electrode composite for fuel cell
JP2009272052A (en) Membrane electrode assembly, and fuel cell
JP2010092699A (en) Fuel cell
JP2006216419A (en) Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP2023502895A (en) MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL INCLUDING THE SAME, WHICH CAN MEET THE REQUIREMENTS OF HIGH PERFORMANCE AND HIGH DURABILITY
JP4934967B2 (en) Membrane electrode composite for fuel cell
JP4720185B2 (en) Membrane electrode composite for tubular fuel cell with heat insulation tube
JP2008004390A (en) Tube type fuel cell
JP2006216416A (en) Membrane electrode assembly bundle for tube type fuel cell
JP4674452B2 (en) Membrane electrode composite for tube fuel cell
JP2007134180A (en) Fuel cell
JP2006216418A (en) Inside current collector used for membrane electrode composite for fuel cell, and membrane electrode composite for fuel cell
JP2006216417A (en) Membrane electrode assembly for tube type fuel cell, and tube type fuel cell
JP2008140563A (en) Fuel cell
JP4649885B2 (en) Tube fuel cell
JP4752216B2 (en) Membrane electrode composite for tube fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802