JP2006216431A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006216431A
JP2006216431A JP2005028778A JP2005028778A JP2006216431A JP 2006216431 A JP2006216431 A JP 2006216431A JP 2005028778 A JP2005028778 A JP 2005028778A JP 2005028778 A JP2005028778 A JP 2005028778A JP 2006216431 A JP2006216431 A JP 2006216431A
Authority
JP
Japan
Prior art keywords
cooling medium
flow path
fuel cell
oxidant gas
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005028778A
Other languages
English (en)
Inventor
Masaru Idono
大 井殿
Ryoichi Shimoi
亮一 下井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005028778A priority Critical patent/JP2006216431A/ja
Publication of JP2006216431A publication Critical patent/JP2006216431A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の温度分布を均一にする燃料電池システムを提供する。
【解決手段】単位セル1を冷却するための冷媒が流れる冷媒流路12を空気流路11と交差するように設け、冷媒流路12に冷媒を導入する冷媒内部導入マニホールド13を可動部24によって、空気流路11の上流側となる冷媒内部導入マニホールド13a、と下流側となる冷媒内部導入マニホールド13bに分割し、流量制御弁39、40によって冷媒内部導入マニホールド13a、13bへ導入する冷媒流量を制御する。
【選択図】 図5

Description

本発明は燃料電池システムに関するものであり、特に燃料電池の冷却に関するものである。
燃料電池は、燃料の供給と燃焼性生物の排出とを連続的に行い、燃料の持つ化学エネルギーを直接電気エネルギーに変化する装置であり、発電効率の高さ、大気汚染物質の少なさ、騒音の少なさ等を特徴としている。
燃料電池の発電単位となる単電池(単位セル)は、電解質の両面にガス拡散電極を接合し、その両面にガス流路を備えたセパレータで狭持した構造をとる。燃料電池の発電原理は、このような構造を有する単電池の一方のガス拡散電極(燃料極)側に水素のような燃料ガスを、他方のガス拡散電極(酸素極)側に空気のような酸素を含む酸化剤ガスを流すことにより、燃料を酸化させ、その際の自由エネルギーの変化を単電池の両端に配したセパレータを介して、電気エネルギーとして取り出すものである。
このような燃料電池の出力とセル温度には密接な関係があり、最大出力を得るにはセル温度を最適に維持する必要があることはよく知られている。例えば、燃料ガスとして純水素ではなく改質ガスを用いる固体高分子型燃料電池の場合、セル温度が低すぎると、ガス拡散電極中の電極触媒が改質ガス中の一酸化炭素により被毒され、発電性能が低下する。また、セル温度が固体高分子電解質膜に含まれる加湿水の沸点以上の温度になると、水蒸気挙動が変化し、発電性能が低下する。また、セル温度が固体高分子電解質膜のガラス転移点以上の温度になると、電解質膜が変成し、発電性能が低下する。さらに、セル面内において、酸化剤ガスの出口側の温度が入口側に対して高くなる現象が確認されており、単電池内においても温度のばらつきが生じていることがよく知られている。また、劣化に伴い、温度分布のばらつき方が変化することが明らかとなっている。
従って、燃料電池では各単電池を最適温度に維持する必要があり、その冷却方法として、燃料ガス/酸化剤ガス流路に平行な冷却面を設け、そこに冷媒を流通させ、セパレータを介して冷却する方法がよく用いられている。特許文献1に開示されている燃料電池の構成では、セル面内における冷媒流路を複数系統備え、そこに流れる冷媒の流量及び流れ方向を制御することで、セル面内に生じる温度勾配を均一化している。
特開平8−329960号公報
しかし、上記の発明では、冷媒流域が固定されており、種々の運転モード、つまり燃料電池の出力変化に伴う温度分布の変化に対応できない、といった問題点がある。
本発明ではこのような問題点を解決するために発明されたもので、種主の運転モードに応じて、冷却媒体が流れる領域を変化させ、燃料電池の温度均一にすることを目的とする。
本発明では、酸化剤ガスが流れる酸化剤ガス流路を有する酸化剤ガスセパレータと、燃料ガスが流れる燃料ガス流路を有する燃料ガスセパレータと、酸化剤ガスセパレータと燃料ガスセパレータとに挟持された電解質膜と、酸化剤ガスセパレータと燃料ガスセパレータと電解質膜から構成された単位セルを冷却する冷却媒体が流れ、酸化剤ガスの流れ方向と交差するように配設した冷却媒体流路を有する冷却媒体セパレータと、冷却媒体流路と連通し、冷却媒体流路に冷却媒体を導入する冷却媒体導入マニホールドと、を備えた燃料電池を有する燃料電池システムにおいて、冷却媒体導入マニホールド内を酸化剤ガスの流れ方向と交差する方向に分割し、かつ冷却媒体導入マニホールド内を燃料電池の運転状態に基づいて移動可能な分割手段と、分割手段によって分割された冷却媒体導入マニホールドに導入する冷却冷媒の流量を燃料電池の運転状態に基づいてそれぞれ制御する冷却媒体流量制御手段と、を備える。
本発明によると、冷却媒体流路が空気流路と交差するように設けた燃料電池を有する燃料電池システムにおいて、冷却媒体導入マニホールドを移動可能な分割手段によって分割し、分割された冷却媒体導入マニホールドに導入する冷却媒体の流量を制御するので、空気流路の上流側と下流側に冷却媒体の流れる領域を例えば燃料電池の出力に応じて変更し、冷媒流量を制御することで、燃料電池の温度を均一にすることができる。
本発明の第1実施形態で用いる燃料電池スタック30を構成する単位セル1について図1の概略構成図を用いて説明する。
単位セル1は、電解質膜2と、電解質膜2を挟持するアノード触媒層3aとカソード触媒層3bと、アノード触媒層3aとカソード触媒層3bの外側に設けたアノードガス拡散層4aとカソードガス拡散層4bから構成される膜電極複合体5(MEA:Membrane Electorode Assembly)を備える。また、アノードガス拡散層4aの外側に設けられたアノードセパレータ(燃料ガスセパレータ)6と、カソードガス拡散層4bの外側に設けられたカソードセパレータ(酸化剤ガスセパレータ)7を備える。また、カソードセパレータ7の外側に冷媒セパレータ(冷却媒体セパレータ)8を備える。さらにMEA5から水素または空気がリークしないようにエッジシール9を備える。
アノードセパレータ6は、アノードガス拡散層4aに水素(燃料ガス)を拡散するための水素流路(燃料ガス流路)10を備え、カソードセパレータ7は、カソードガス拡散層4bに空気(酸化剤ガス)を拡散するための空気流路(酸化剤ガス流路)11を備える。水素流路10と空気流路11は直線状の流路であり、水素流路10と空気流路11は平行となるように配設され、単位セル1においては水素流路10を流れる水素と空気流路11を流れる空気の流れは逆方向となる。なお、水素流路10と空気流路11が交差するように設けても良い。
冷媒セパレータ8について図2を用いて詳しく説明する。図2は冷媒セパレータ8をカソードセパレータ7から見た正面図である。
冷媒セパレータ8は単位セル1を冷却する冷媒が流れる冷媒流路12(図2中、12a、12bで示す)と、冷媒流路12を形成するリブ部12c(図2中、斜線部)と、冷媒流路12に冷媒を導入する冷媒内部導入マニホールド(冷却媒体導入マニホールド)13と、冷媒流路12から冷媒を排出する冷媒内部排出マニホールド14を備える。また水素流路10に水素を導入する水素導入マニホールド20と、水素流路10から単位セル1での発電反応で使用されなかった水素を排出する水素排出マニホールド21と、空気流路11に空気を導入する空気供給マニホールド22と、空気流路11から単位セル1での発電反応で使用されなかった空気などを排出する空気排出マニホールド23を備える。
冷媒流路12は例えば直線形状であり、空気流路11を流れる空気の流れに対して交差するように配設する。
冷媒内部導入マニホールド13(図2中、13a、13bで示す)、冷媒内部排出マニホールド14(図2中、14a、14bで示す)の内部には、後述する可動部(分割手段)24、25がそれぞれ配設される。
次に単位セル1を積層した燃料電池スタック30について図3、図4を用いて説明する。図3は燃料電池スタック30の斜視概略図であり、図4は図3のA平面での断面図である。
燃料電池スタック30は単位セル1を例えば100〜200枚積層したスタック部31の両側にエンドプレート32c、32dを備え、エンドプレート32c、32dの外側から加圧し、タイロッド(図示せず)やボルト(図示せず)によって締結して構成される。なお、スタック部31の面圧をバネなどによって一定となるようにしてもよい。また、燃料電池スタック30は冷媒内部導入マニホールド13内に冷媒を導入する冷媒導入マニホールド33と、冷媒内部排出マニホールド14から冷媒を排出する冷媒排出ホールド34を備える。さらに、冷媒内部導入マニホールド13を単位セル1の積層方向に分割する可動部24と、冷媒内部排出マニホールド14を単位セル1の積層方向に分割する可動部25を備える。
ここで、可動部24、25について図4、または図5の単位セル1の分解概略図を用いて説明する。なお図5においては説明ためMEA5、アノードセパレータ6、カソードセパレータ7、冷媒セパレータ8、可動部24、25のみを示し、アノードセパレータ6については水素流路11、カソードセパレータ7については空気流路12の形状については省略する。また、冷媒流路12の一部についても省略する。
可動部24は、一方の端部24cを一方のエンドプレート32cに連結し、端部24cはエンドプレート32cに対して移動可能とする。もう一方の端部24dを冷媒導入マニホールド33に設けた仕切部35の端部と伸縮性の連結部36によって連結する。詳しくは図示しないがモータなどによって可動部24の端部24dを移動させることで、冷媒内部導入マニホールド13を移動させることができる。なお、連結部36が伸縮することで、可動部24は滑らかに移動することができる。また可動部24は剛性の高い部材とすることが望ましい。更に、可動部24の幅は、隣り合う冷媒流路12間の幅、つまりリブ部12c(図5中、斜線部)の幅よりも小さくする。これによって冷媒流路12においてリブ部12cによる圧損により、冷媒が流れ難くなる冷媒流路12をなくすことができる。
この実施形態では可動部24の一方の端部24cをエンドプレート32cに対して移動可能となるようにエンドプレート32cに連結し、可動部24が冷媒内部導入マニホールド13内を空気流路11の空気の流れと交差する方向へ自由に移動できるようにしたが、端部24cをエンドプレート32cに固定しても良い。
以下では、分割された冷媒内部導入マニホールド13と冷媒内部排出マニホールド14、冷媒流路12において、空気流路11の上流側にあたる領域を添え字aで示し、空気流路11の下流側にあたる領域を添え字bで示す。
可動部24を冷媒内部導入マニホールド13内で空気の流れ方向に移動させることで、冷媒内部導入マニホールド13a、13bの領域、つまり冷媒流路12a、12bの領域を変更することができる。
また、冷媒導入マニホールド33は仕切部35によって分割され、冷媒導入マニホールド33a、33bに後述する流量制御弁39、40によって、異なる流量の冷媒を導入することで、空気流路11、または水素流路10の上流側と下流側を異なる流量の冷媒によって冷却することができ、空気流路11、または水素流路10の上流側と下流側の温度をそれぞれ制御することができる。
なお、可動部25についても可動部24と同様の構成であり、冷媒内部排出マニホールド14を分割し、冷媒流路12a、12bを通った冷媒を燃料電池スタック30内で混合することなく、燃料電池スタック30の外部へ排出する。また、可動部24と可動部25は冷媒内部導入マニホールド13と冷媒内部排出マニホールド14内において冷媒の流れ方向に対して略同一の位置となることが望ましい。冷媒の流れ方向に対して略同一の位置とすることで、冷媒流路12内での圧力の急激な変化を防ぐことができ、燃料電池スタック30の劣化を抑制することができる。
単位セル1を積層した燃料電池スタック30を備えた燃料電池システムについて図6を用いて説明する。燃料電池システムは、冷媒を環流させるポンプ37と、冷媒を冷却するラジエータ38と、冷媒内部導入マニホールド13aへ流れる冷媒流量を制御する流量制御弁39と、冷媒内部導入マニホールド13bへ流れる冷媒流量を制御する流量制御弁40と、を備える。また、燃料電池スタックに水素を供給する水素ボンベ41と、空気を供給するコンプレッサ42を備える。
また、燃料電池スタック30の出力に応じてポンプ37による冷媒の全体的な流量を制御し、流量制御弁39、40によって冷媒流路12a、12bを流れる冷媒流量を制御し、可動部24、25を移動させるモータ(図示せず)などを制御するコントローラ100を備える。
燃料電池スタック30は、燃料電池スタック30の出力によって、燃料電池スタック30内の温度分布に変化が生じる可能性があるが、可動部24、25を移動させることで、冷媒内部導入マニホールド13a、13bの領域を変化、つまり冷媒流路12a、12bの領域を変化させる。この実施形態では燃料電池スタック30の出力などに応じて予め設定したマップなどから可動部24、25を移動させて冷媒内部導入マニホールド13a、13b、冷媒内部排出マニホールド14a、14bの領域を変更する。また、可動部24、25は冷媒内部マニホールド13、冷媒内部排出マニホールド14内をリブ部12c間のみを移動し、可動部24、25が停止した際に可動部24、25が冷媒流路12a、12bの流路面積を小さくしないように移動する。これによって冷媒流路12a、12bにおいて圧損が大きくなることを防止することができ、燃料電池スタック30の劣化を抑制することができる。
また、燃料電池スタック30の出力などに基づいて流量制御弁39、40によって冷媒流路12a、12bを流れる冷媒流量を制御する。
例えば、空気流路11の下流側の温度が高くなると予想される場合には、予め設定したマップに基づいて可動部24、25を移動させ、冷媒内部導入マニホールド13b、冷媒内部排出マニホールド14bの領域を広くする。そして、冷媒流路12bに流れる冷媒流量を多くすることで、空気流路11の下流側の温度の上昇を抑制することができ、燃料電池スタック30の温度を均一にすることができる。
可動部24、25の移動量は、例えば、
(冷媒流路12a、12bの幅+リブ部12cの幅)×n 式(1)
とする。nは自然数であり、燃料電池スタック30の出力、冷媒を冷却するラジエータ(図示しない)の冷却能力、単位セル1の大きさ、温度分布などからマップによりnを設定し、可動部24、25の移動量を制御する。
燃料電池スタック30では、空気流路11の下流となるに従って発電反応によって生成された生成水によって空気流路11を塞ぐ、フラッディングが生じ易くなるが、このような場合に空気流路11の下流、つまり冷媒流路12bを流れる冷媒流量が少なくなるように可動部24、25を移動させ、また流量制御弁39、40によって流量を制御することで、空気流路11の下流の温度を高くし、空気流路11の下流におけるフラッディングを抑制する。
また、燃料電池システムの停止の後に再起動する場合には、空気流路11の下流において、特にフラッディングが生じ易くなる。そのためこの実施形態では、燃料電池システムの停止時に空気流路11の下流付近を冷却しないように、冷媒内部導入マニホールド13bを狭くし、流量制御弁40によって冷媒内部導入マニホールド13bに導入される流量を少なくする。これによって再起動時の空気流路11の下流におけるフラッディングを抑制し、次回の燃料電池システムの起動時に素早く起動させることができる。また、氷点下での燃料電池スタック30内での水の凍結を抑制することができる。
なお、冷媒を一時的に蓄える冷媒タンクを設けても良い。また、この実施形態では空気流路11は直線形状としたが、直線部と折り返し部から構成されるサーペンタイン形状としても良い。この場合、空気の全体的な流れと冷媒流路12とが交差するように冷媒流路12を配設する。
また、冷媒内部導入マニホールド13、冷媒内部排出マニホールド14に可動部24、25をそれぞれ1つ設けたが、可動部を複数設けても良い。
本発明の第1実施形態の効果について説明する。
燃料電池スタック30の冷媒内部導入マニホールド13、冷媒内部排出マニホールド14に冷媒内部導入マニホールド13、冷媒内部排出マニホールド14を空気流路11の空気流れ方向に交差する方向に分割する可動部24、25を設け、さらに可動部24、25を冷媒内部導入マニホールド13、冷媒内部排出マニホールド14内で移動可能とする。また、冷媒内部導入マニホールド13a、13bにそれぞれ異なる流量の冷媒を流量制御弁39、40によって導入する。これによって、冷媒内部導入マニホールド13a、13bの領域を変更することができ、さらに冷媒内部導入マニホールド13a、13b導入する冷媒流量を制御することで、冷媒流路12a、12bにおける冷却能力、つまり空気流路11の上流側と下流側でそれぞれ温度を制御することができ、燃料電池スタック30の温度を均一にすることができ、燃料電池スタック30の発電効率を向上することができる。
空気流路11の下流でフラッディングが生じ易い場合には、冷媒内部導入マニホールド13bの領域を狭くし、冷媒流路12bを流れる冷媒流量を少なくすることで、空気流路11の下流の温度を高くすることができ、フラッディングを抑制することができる。また、電解質膜2が乾燥し易い場合には、特に空気流路11の上流側の冷媒流量を多くすることで、電解質膜2の乾燥を抑制し、燃料電池スタック30の劣化を抑制することができる。
また、燃料電池システムの停止時に、冷媒内部導入マニホールド13bの領域を狭くし、冷媒流路12bを流れる冷媒流量を少なくすることで空気流路11の下流の温度が低下することを抑制し、次回の起動時に素早く起動することができる。また燃料電池スタック30が氷点下となると、燃料電池スタック30内で水が凍結する可能性があるが、停止時に空気流路11内に残る水を少なくすることで、空気流路11内での氷による閉塞を抑制し、氷点下起動時でも素早く燃料電池システムを起動させることができる。
次に本発明の第2実形態の燃料電池システムについて図7の概略図を用いて説明する。この実施形態は第1実施形態に加えて、冷媒導入マニホールド33と冷媒排出マニホールド34の上流、下流にそれぞれ冷媒の温度を検出する温度センサ43、44、45、46を備える。その他の構成については第1実施形態と同じ構成なので、ここでの説明は省略する。
この実施形態では、冷媒内部導入マニホールド13a、13b、冷媒内部排出マニホールド14a、14bのそれぞれ上流と下流の冷媒の温度を検出し、検出した温度、またはそれぞれの上流と下流の温度差に基づいて流量制御弁39、40を制御することで冷媒流路12a、12bの冷媒流量を制御し、燃料電池スタック30の温度を正確に制御することができる。
例えば、燃料電池スタック30の出力に応じて、可動部24、25によって冷媒内部導入マニホールド13a、13b、冷媒内部排出マニホールド14a、14bの領域を決定した場合に冷媒流路12aの温度センサ43、45によって検出した冷媒の温度が設定された温度であるが、冷媒流路12bの温度センサ44、46によって検出した冷媒の温度が設定温度よりも高い場合には、冷媒流路12bの冷却能力が不足していると判断し、流量制御弁40の開度を大きくし、冷媒流路12bへの冷媒流量を増加させる。
または、温度センサ45と温度センサ43との温度差、温度センサ46と温度センサ44の温度差が大きい場合には、冷媒の熱交換量が大きい、つまり燃料電池スタック30の温度が高いので、冷媒流量を増加させる。
また、温度センサ43、44、45、46によって検出した温度、または温度差から予め設定したマップに基づいて可動部24、25を移動させて、冷媒内部導入マニホールド13a、13b、冷媒内部排出マニホールド14a、14bの領域を変更し、冷媒流量を制御しても良い。
本発明の第2実施形態の効果について説明する。この実施形態では、第1実施形態の効果に加えて、以下の効果を得ることができる。
この実施形態では、冷媒内部導入マニホールド13a、13b、冷媒内部排出マニホールド14a、14bのそれぞれ上流と下流に温度センサ43、44、45、46を備える。これによって冷媒内部導入マニホールド13a、13bに導入、または冷媒内部排出マニホールド14a、14bから排出される冷媒温度、つまり燃料電池スタック30の温度分布を正確に検出することができ、燃料電池スタック30の温度分布に応じて、素早く温度調整を行うことができる。これによって燃料電池スタック30の温度をさらに均一にすることができ、燃料電池スタックの発電効率を更に向上することができる。
また、燃料電池スタック30の温度分布を正確に検出するので、検出した温度に基づいて可動部24、25を移動させて冷媒内部導入マニホールド13a、13b、冷媒内部排出マニホールド14a、14bの領域を変更し、冷媒流量を制御することで燃料電池スタック30の温度をさらに均一にすることができ、燃料電池スタックの発電効率を更に向上することができる。
また、燃料電池スタックの温度を正確に検出するので、検出した温度に基づいてフラッディングや電解質膜2の乾燥を更に抑制することができる。
次に本発明の第3実形態の燃料電池システムについて図8の概略図を用いて説明する。この実施形態は第2実施形態に加えて、空気流路11の上流と下流に湿度センサ(湿度検出手段)47、48を備える。その他の構成については第2実施形態と同じ構成なので、ここでの説明は省略する。この構成によって空気流路11の湿度を正確に検出することができる。
例えば、湿度センサ48の湿度が高い場合、つまり空気流路11の下流の湿度が高い場合には、空気流路11の下流でフラッディングが生じるので、湿度に基づいて予め設定したマップにより可動部24、25を移動させて、例えば湿度が高い程、冷媒内部導入マニホールド13bの領域を狭くし、流量制御弁39、40を制御し、冷媒流路12bを流れる冷媒流量を冷媒流路12aを流れる冷媒流量よりも少なくする。これによって、空気流路11の下流側の温度を高くすることができ、空気流路11の下流でのフラッディングを抑制することができる。なお、冷媒内部導入マニホールド13aへ導入する冷媒流量を流量制御弁39によって制御することで、空気流路11の上流側での温度、つまり湿度を制御することができ、燃料電池スタック30の温度を均一にし、フラッディングを抑制することができる。
また、湿度センサ47の湿度が低い場合には、空気が乾燥しており、電解質膜2が乾燥することで、電解質膜2の伝導性が低下し、燃料電池スタックの発電効率を低下させる恐れがあるが、この場合に湿度に基づいて予め設定したマップにより可動部24、25を移動させて、例えば湿度が低い程、冷媒内部導入マニホールド13aの領域を広くし、流量制御弁43、44を制御し、冷媒流路12aを流れる冷媒流量を冷媒流路12bを流れる冷媒流量よりも多くする。これによって、空気流路11の上流側の湿度を高くすることができ、電解質膜2の乾燥を抑制することができる。なお、冷媒内部導入マニホールド13bへ導入する冷媒流量を流量制御弁40によって制御することで、空気流路11の下流側での温度、つまり湿度を制御することができ、燃料電池スタック30の温度を均一にし、電解質膜2の乾燥を抑制することができる。
なお、湿度センサ47、48の代わりに露点センサを用いてもよい。
本発明の第3実施形態の効果について説明する。この実施形態では、第2実施形態の効果に加えて、以下の効果を得ることができる。
この実施形態では空気流路11の上流と下流に湿度センサ47、48を備える。これによって、空気流路11の湿度を検出し、その湿度に基づいて可動部24、25、流量制御弁39、40を制御することで、空気流路11の湿度を正確に制御することができる。そのため、空気流路11におけるフラッディングを更に抑制することができ、また電解質膜2の乾燥を更に抑制することができる。
本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。
燃料電池スタックの負荷変動が激しい、燃料電池スタックを搭載した自動車などに利用することができる。
本発明の単位セルの概略構成図である。 本発明の冷媒セパレータの概略図である。 本発明の燃料電池スタックの斜視概略図である。 図3のA平面での断面図である。 本発明の単位セルの分解図である。 本発明の第1実施形態の燃料電池システムである。 本発明の第2実施形態の燃料電池システムである。 本発明の第3実施形態の燃料電池システムである。
符号の説明
1 単位セル
2 電解質膜
6 アノードセパレータ(燃料ガスセパレータ)
7 カソードセパレータ(酸化剤ガスセパレータ)
8 冷媒セパレータ(冷却媒体セパレータ)
10 水素流路(燃料ガス流路)
11 空気流路(酸化剤ガス流路)
12 冷媒流路(冷却媒体流路)
13 冷媒内部導入マニホールド(冷却媒体導入マニホールド)
14 冷媒内部排出マニホールド
24、25 可動部(分割手段)
39、40 流量制御弁(冷却媒体流量制御手段)
43、44、45、46 温度センサ(温度検出手段)
47、48 湿度センサ(湿度検出手段)
100 コントローラ

Claims (6)

  1. 酸化剤ガスが流れる酸化剤ガス流路を有する酸化剤ガスセパレータと、
    燃料ガスが流れる燃料ガス流路を有する燃料ガスセパレータと、
    前記酸化剤ガスセパレータと前記燃料ガスセパレータとに挟持された電解質膜と、
    前記酸化剤ガスセパレータと前記燃料ガスセパレータと前記電解質膜から構成された単位セルを冷却する冷却媒体が流れ、前記酸化剤ガスの流れ方向と交差するように配設した冷却媒体流路を有する冷却媒体セパレータと、
    前記冷却媒体流路と連通し、前記冷却媒体流路に前記冷却媒体を導入する冷却媒体導入マニホールドと、を備えた燃料電池を有する燃料電池システムにおいて、
    前記冷却媒体導入マニホールド内を前記酸化剤ガスの流れ方向と交差する方向に分割し、かつ前記冷却媒体導入マニホールド内を前記燃料電池の運転状態に基づいて移動可能な分割手段と、
    前記分割手段によって分割された前記冷却媒体導入マニホールドに導入する冷却冷媒の流量を前記燃料電池の運転状態に基づいてそれぞれ制御する冷却媒体流量制御手段と、を備えたことを特徴とする燃料電池システム。
  2. 前記単位セルの温度を検出する温度検出手段を備え、
    前記分割手段は、前記温度検出手段で検出された前記単位セルの温度に基づいて前記冷却媒体導入マニホールド内を移動し、
    前記冷却媒体流量制御手段は、前記温度検出手段で検出された前記単位セルの温度に基づいて前記分割した冷却媒体導入マニホールドへ導入する冷却媒体の流量を制御することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記温度検出手段は、前記分割した冷却媒体導入マニホールドの上流と下流にそれぞれ設けられ、前記冷却媒体の温度を検出し、
    前記分割手段は、前記温度検出手段で検出された前記温度差に基づいて前記冷却媒体導入マニホールド内を移動し、
    前記冷却媒体流量制御手段は、前記温度差に基づいて前記分割した冷却媒体導入マニホールドへ導入する冷却媒体の流量を制御することを特徴とする請求項2に記載の燃料電池システム。
  4. 前記酸化剤ガスの湿度を検出する湿度検出手段を備え、
    前記分割手段は、前記湿度検出手段で検出された前記酸化剤ガスの湿度に基づいて前記冷却媒体導入マニホールド内を移動し、
    前記冷却媒体流量制御手段は、前記湿度検出手段で検出された前記酸化剤ガスの湿度に基づいて前記分割した冷却媒体導入マニホールドへ導入する冷却媒体の流量を制御することを特徴とする請求項1から3のいずれか一つに記載の燃料電池システム。
  5. 前記酸化剤ガスの湿度が低くなる程、前記分割手段は、前記酸化剤ガス流路の上流側の前記冷却媒体導入マニホールドの領域を前記酸化剤ガス流路の下流側の前記冷却媒体導入マニホールドの領域よりも広くし、
    前記酸化剤ガスの湿度が低くなる程、前記冷却媒体流量制御手段は、前記酸化剤ガス流路の上流側の前記冷却媒体導入マニホールドと連通する前記冷却媒体流路を流れる前記冷却媒体が、前記酸化剤ガス流路の下流側の前記冷却媒体導入マニホールドと連通する前記冷却媒体流路を流れる前記冷却媒体の流量よりも多くすることを特徴とする請求項4に記載の燃料電池システム。
  6. 前記燃料電池の停止時に前記分割手段は、前記酸化剤ガス流路の上流側の前記冷却媒体導入マニホールドの領域を前記酸化剤ガス流路の下流側の前記冷却媒体導入マニホールドの領域よりも狭くし、
    前記燃料電池の停止時に前記冷却媒体流量制御手段は、前記酸化剤ガス流路の上流側の前記冷却媒体導入マニホールドと連通する前記冷却媒体流路を流れる前記冷却媒体が、前記酸化剤ガス流路の下流側の前記冷却媒体導入マニホールドと連通する前記冷却媒体流路を流れる前記冷却媒体の流量よりも少なくすることを特徴とする請求項1から5のいずれか一つに記載の燃料電池システム。
JP2005028778A 2005-02-04 2005-02-04 燃料電池システム Pending JP2006216431A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028778A JP2006216431A (ja) 2005-02-04 2005-02-04 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028778A JP2006216431A (ja) 2005-02-04 2005-02-04 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2006216431A true JP2006216431A (ja) 2006-08-17

Family

ID=36979461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028778A Pending JP2006216431A (ja) 2005-02-04 2005-02-04 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2006216431A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125195A1 (de) * 2016-01-22 2017-07-27 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellenstapel
WO2021106433A1 (ja) * 2019-11-28 2021-06-03 株式会社デンソー 燃料電池システム
CN114614040A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种间隔冷却燃料电池电堆

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125195A1 (de) * 2016-01-22 2017-07-27 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellenstapel
WO2021106433A1 (ja) * 2019-11-28 2021-06-03 株式会社デンソー 燃料電池システム
JP2021086756A (ja) * 2019-11-28 2021-06-03 株式会社Soken 燃料電池システム
JP7124815B2 (ja) 2019-11-28 2022-08-24 株式会社Soken 燃料電池システム
CN114614040A (zh) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 一种间隔冷却燃料电池电堆

Similar Documents

Publication Publication Date Title
JP4770208B2 (ja) 空冷式燃料電池システム
JP5106867B2 (ja) 燃料電池システム
JP2006519469A (ja) 部分空気加湿を用いる常圧燃料電池システム
JP2004031135A (ja) 燃料電池およびその制御方法
JP5287184B2 (ja) 燃料電池システム
JP2005285682A (ja) 燃料電池スタック
JP2007103242A (ja) 固体高分子形燃料電池
US20130078543A1 (en) Operation method for fuel cell, and fuel cell system
JP2008010311A (ja) 燃料電池の運転方法
JP2006216431A (ja) 燃料電池システム
JP2010129482A (ja) 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム
JP5109284B2 (ja) 燃料電池システム
JP5310739B2 (ja) 燃料電池システム
JP5437089B2 (ja) 燃料電池システム
JP2005085531A (ja) 燃料電池システム
JP4678185B2 (ja) 燃料電池システム
JP2005259440A (ja) 燃料電池システム
JP2013157315A (ja) 燃料電池
WO2015145233A1 (en) Relief design for fuel cell plates
JP2006185617A (ja) 燃料電池システム
JP2020035644A (ja) 燃料電池システム
KR101876061B1 (ko) 연료전지 스택
JP2005032561A (ja) 固体高分子形燃料電池及び固体高分子形燃料電池の運転システム
JP2005149827A (ja) 燃料電池
JP2006073340A (ja) 燃料電池システム