JP2006216239A - Hydrogen storage alloy powder, method of treating the same, and alkaline storage battery using the same - Google Patents

Hydrogen storage alloy powder, method of treating the same, and alkaline storage battery using the same Download PDF

Info

Publication number
JP2006216239A
JP2006216239A JP2005024737A JP2005024737A JP2006216239A JP 2006216239 A JP2006216239 A JP 2006216239A JP 2005024737 A JP2005024737 A JP 2005024737A JP 2005024737 A JP2005024737 A JP 2005024737A JP 2006216239 A JP2006216239 A JP 2006216239A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy powder
storage alloy
aqueous solution
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005024737A
Other languages
Japanese (ja)
Other versions
JP4997702B2 (en
Inventor
Hideaki Oyama
秀明 大山
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005024737A priority Critical patent/JP4997702B2/en
Publication of JP2006216239A publication Critical patent/JP2006216239A/en
Application granted granted Critical
Publication of JP4997702B2 publication Critical patent/JP4997702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydrogen storage alloy powder equipped with intended activity by easily removing oxide and hydroxide deposited on the surface thereof at an alkali treatment process within a short period, and to provide an alkaline storage battery excellent in characteristics. <P>SOLUTION: The method of treating the hydrogen storage alloy powder for the alkaline storage battery comprises a first process stirring the hydrogen storage alloy powder in aqueous solution of potassium hydroxide, and a second process stirring the hydrogen storage alloy powder treated at the first process in aqueous solution of sodium hydroxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気化学的に水素の吸蔵・放出が可能な水素吸蔵合金を具備したアルカリ蓄電池に関し、より詳しくは水素吸蔵合金の表面処理条件の適正化による電池特性の向上に関する。   The present invention relates to an alkaline storage battery including a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, and more particularly to improving battery characteristics by optimizing the surface treatment conditions of the hydrogen storage alloy.

水素吸蔵合金は、電気化学的に水素を吸蔵・放出させることができる金属間化合物であり、主にアルカリ蓄電池の負極用電極材料として利用されている。通常この合金は、電池作製後に充放電時による体積の膨張収縮の繰り返しによって活性化され、活物質表面で水素の吸蔵・放出が容易となる。   A hydrogen storage alloy is an intermetallic compound capable of electrochemically storing and releasing hydrogen, and is mainly used as an electrode material for a negative electrode of an alkaline storage battery. Normally, this alloy is activated by repeated expansion and contraction of the volume during charge and discharge after the battery is produced, and hydrogen can be easily stored and released on the active material surface.

そこで電池特性を向上させることを目的として、電池作製時に水素吸蔵合金を活性化し、初期から水素の吸蔵・放出を容易化する試みがなされている。一般的には、アルカリ水溶液、酸性水溶液および高温水などを用いて水素吸蔵合金の表面を活性化させることが有効とされている。   Therefore, for the purpose of improving battery characteristics, attempts have been made to activate a hydrogen storage alloy at the time of manufacturing a battery to facilitate the storage and release of hydrogen from the beginning. In general, it is effective to activate the surface of the hydrogen storage alloy using an alkaline aqueous solution, an acidic aqueous solution, high-temperature water, or the like.

一般的には、水酸化カリウムや水酸化ナトリウムなどの高濃度溶液を用いて水素吸蔵合金の構成元素を溶出させ、表面を活性化させる方法が採られる。しかしこの方法では、合金表面に絶縁性の希土類元素の水和物が生成する。したがってこの水和物を除去するために、酸性水溶液あるいはまたは酸性緩衝液中に浸漬させる手法が提案されている(例えば、特許文献1)。高比重・高温のアルカリ水溶液中にて処理した合金を、低pH・高温の酸性水溶液または酸性緩衝液中に所定時間浸漬することにより、合金最表面の希土類元素の水酸化物を除去して、水酸化物下のNi凝縮層を露出させ、大電流充電、大電流放電特性を向上させるというものである。   Generally, a method of activating the surface by eluting the constituent elements of the hydrogen storage alloy using a high concentration solution such as potassium hydroxide or sodium hydroxide is employed. However, this method produces an insulating rare earth element hydrate on the alloy surface. Therefore, in order to remove this hydrate, a method of immersing in an acidic aqueous solution or acidic buffer has been proposed (for example, Patent Document 1). By immersing the alloy treated in the high specific gravity / high temperature alkaline aqueous solution for a predetermined time in the low pH / high temperature acidic aqueous solution or acidic buffer solution, the rare earth element hydroxide on the outermost surface of the alloy is removed, The Ni condensation layer under the hydroxide is exposed to improve the large current charge and large current discharge characteristics.

他の方法として、水素吸蔵合金表面を電池反応に対して適した表面にするため、電池構成後に活性化充放電を行う方法が採られる。この方法は時間を要するので、これに代わって電解液と同様な成分のアルカリ水溶液(水酸化カリウムと水酸化リチウムおよび/または水酸化ナトリウムの混合溶液)を用いて、合金を浸漬して攪拌することにより、水素吸蔵合金の活性化を行う方法が提案されている(例えば、特許文献2および3)。
特許3414172号公報 特開2000−021400号公報 特開平07−029568号公報
As another method, in order to make the surface of the hydrogen storage alloy suitable for the battery reaction, a method of performing activation charge / discharge after the battery configuration is adopted. This method requires time, and instead, an alkaline aqueous solution (mixed solution of potassium hydroxide and lithium hydroxide and / or sodium hydroxide) having the same components as the electrolytic solution is used and the alloy is immersed and stirred. Thus, methods for activating the hydrogen storage alloy have been proposed (for example, Patent Documents 2 and 3).
Japanese Patent No. 3414172 JP 2000-021400 A Japanese Patent Laid-Open No. 07-029568

しかしながら特許文献1の方法では、酸性水溶液あるいはまたは酸性緩衝液により、水素吸蔵合金表面に付着した酸化物および水酸化物だけでなく、合金自身の溶出が生じ、容量の低下、比表面積の増加に伴う耐久性の劣化を生じる恐れがある。   However, in the method of Patent Document 1, the acidic aqueous solution or the acidic buffer solution causes not only oxides and hydroxides adhering to the surface of the hydrogen storage alloy, but also dissolution of the alloy itself, resulting in a decrease in capacity and an increase in specific surface area. There is a risk of deteriorating durability.

また特許文献2および3の方法では、電池の活性化のみならず、劣化要因となる腐食、割れも誘発し、電池を短寿命化することになる。また電気化学反応を伴わない溶解反応では、所望の表面活性化状態に達しない場合が多い。さらに堆積した水和物は完全に除去されないので、電池反応の阻害要因が残るため放電特性が十分には向上できない。   In the methods of Patent Documents 2 and 3, not only activation of the battery, but also corrosion and cracking, which cause deterioration, are induced, and the life of the battery is shortened. In addition, a dissolution reaction that does not involve an electrochemical reaction often does not reach the desired surface activation state. Further, since the deposited hydrate is not completely removed, the battery reaction inhibition factor remains, so that the discharge characteristics cannot be sufficiently improved.

本発明は上述した課題を鑑みてなされたものであり、アルカリ処理工程において水素吸
蔵合金表面に析出した酸化物および水酸化物を容易かつ短時間に除去することにより、所望の活性度を有する水素吸蔵合金粉末および特性に優れたアルカリ蓄電池を提供することを目的とする。
The present invention has been made in view of the above-described problems, and easily and quickly removes oxides and hydroxides deposited on the surface of the hydrogen storage alloy in the alkali treatment step, thereby providing hydrogen having a desired activity. An object of the present invention is to provide a storage alloy powder and an alkaline storage battery excellent in characteristics.

上記課題を解決するために、本発明のアルカリ蓄電池用の水素吸蔵合金粉末の処理方法は、水素吸蔵合金粉末を水酸化カリウム水溶液中で攪拌する第1の工程と、第1の工程を経た水素吸蔵合金粉末を水酸化ナトリウム水溶液中で攪拌する第2の工程とを有することを特徴とする。電離度の高い水酸化カリウム(以下、KOHと略記)水溶液にて初期に表面処理を行い、引続いて再析出物の除去効果の高い水酸化ナトリウム(以下、NaOHと略記)水溶液にて表面処理を行うことにより、短時間で十分な活性化を水素吸蔵合金に施すことができ、放電特性に優れたアルカリ蓄電池を提供することができる。   In order to solve the above problems, the method for treating a hydrogen storage alloy powder for an alkaline storage battery according to the present invention includes a first step of stirring the hydrogen storage alloy powder in a potassium hydroxide aqueous solution, and hydrogen that has undergone the first step. And a second step of stirring the storage alloy powder in an aqueous sodium hydroxide solution. Surface treatment is first performed with an aqueous solution of potassium hydroxide (hereinafter abbreviated as KOH) having a high degree of ionization, followed by a surface treatment with an aqueous solution of sodium hydroxide (hereinafter abbreviated as NaOH) having a high effect of removing re-precipitates. By performing the above, sufficient activation can be applied to the hydrogen storage alloy in a short time, and an alkaline storage battery having excellent discharge characteristics can be provided.

以上のように本発明によれば、アルカリ処理工程において水素吸蔵合金表面に析出する酸化物および水酸化物の殆どを除去できるので、放電特性に優れたアルカリ蓄電池を提供することができる。   As described above, according to the present invention, since most of oxides and hydroxides precipitated on the surface of the hydrogen storage alloy in the alkali treatment step can be removed, an alkaline storage battery having excellent discharge characteristics can be provided.

以下に本発明を実施するための最良の形態について、詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

上述したように、本発明のアルカリ蓄電池用の水素吸蔵合金粉末の処理方法は、水素吸蔵合金粉末をKOH水溶液中で攪拌する第1の工程と、第1の工程を経た水素吸蔵合金粉末をNaOH水溶液中で攪拌する第2の工程とからなる。上述した過程を経ることで、アルカリ処理工程において水素吸蔵合金表面に析出した酸化物および水酸化物を容易に除去し、さらに所望の活性度をより短時間に得ることができるというものである。   As described above, the method for treating a hydrogen storage alloy powder for an alkaline storage battery according to the present invention includes the first step of stirring the hydrogen storage alloy powder in a KOH aqueous solution, and the hydrogen storage alloy powder that has passed through the first step is treated with NaOH. A second step of stirring in an aqueous solution. Through the above-described process, oxides and hydroxides deposited on the surface of the hydrogen storage alloy in the alkali treatment step can be easily removed, and a desired activity can be obtained in a shorter time.

第1の工程において、イオン化傾向が高いカリウムを含むKOHは、容易に水溶液中で電離し、水素吸蔵合金の一部成分を短時間で溶解させることができる。溶出物は水素吸蔵合金の組成によって異なるが、例えば一般的なMmNi5-XX(ここでMmは軽希土類金属の混合物、M=Co、Mn、Al、Fe、Cuなど)の場合では、軽希土類金属イオン(例えばLa3+、Nd3+など)や錯陰イオン(例えばCoO2 -、AlO2 -など)である。この溶解反応により、合金粉末の比表面積が増加して活性化が進む一方、合金を構成する元素の一部が溶出した廃液が生成される。この廃液の中から、主にCe(OH)3やLa(OH)3などの軽希土類金属の水酸化物、Mnなどの複合酸化物が、合金粉末の表面に再析出する。これらが堆積することにより、上述した金属の溶解速度が急激に落ちる。 In the first step, KOH containing potassium having a high ionization tendency can be easily ionized in an aqueous solution, and some components of the hydrogen storage alloy can be dissolved in a short time. The eluate varies depending on the composition of the hydrogen storage alloy. For example, in the case of a general MmNi 5-X M X (where Mm is a mixture of light rare earth metals, M = Co, Mn, Al, Fe, Cu, etc.), Light rare earth metal ions (such as La 3+ and Nd 3+ ) and complex anions (such as CoO 2 and AlO 2 ). By this dissolution reaction, the specific surface area of the alloy powder increases and the activation proceeds, while a waste liquid in which a part of the elements constituting the alloy is eluted is generated. From this waste liquid, hydroxides of light rare earth metals such as Ce (OH) 3 and La (OH) 3 and complex oxides such as Mn are reprecipitated on the surface of the alloy powder. As these deposit, the dissolution rate of the above-mentioned metal rapidly drops.

第2の工程において、NaOHはKOHに比べて電離度が低く、上述した金属の溶解速度は低下するが、堆積した再析出物を溶解したり合金表面から除去する能力が高い。したがって、第1の工程の後に第2の工程を行うことにより、表面処理と再析出物の除去とを平行して進めることができる。第2の工程における表面処理は、上述のように第1の工程におけるそれよりは遅いものの、温度や濃度、および処理時間との相関が高いので、工程管理が容易であるという副次効果をももたらすことができる。   In the second step, NaOH has a lower ionization degree than KOH, and the dissolution rate of the metal described above decreases, but it has a high ability to dissolve and remove the deposited reprecipitate from the alloy surface. Therefore, by performing the second step after the first step, the surface treatment and the removal of the re-precipitate can be performed in parallel. The surface treatment in the second step is slower than that in the first step as described above, but has a secondary effect that the process management is easy because the correlation with the temperature, concentration and treatment time is high. Can bring.

上述した過程を経ることで、表面処理工程において水素吸蔵合金表面上の再析出物を容易に除去し、さらに所望の活性度をより短時間に得ることができる。   By passing through the process mentioned above, the reprecipitate on the surface of a hydrogen storage alloy can be easily removed in the surface treatment step, and a desired activity can be obtained in a shorter time.

ここでKOH水溶液の塩基モル濃度は3〜20mol/L、NaOH水溶液の塩基モル濃度は10〜20mol/Lであることが好ましい。KOHの塩基モル濃度が3mol/L未満の場合、表面処理が思うように進まず、20mol/Lを超える場合、室温であっ
ても、溶液自身で部分的にKOHの析出が生じ生産性が著しく低下し、工程の再現性がなくなる。またNaOH水溶液の塩基モル濃度が10mol/L未満の場合、再析出物の除去が進まないので表面処理能力が低下し、20mol/Lを超える場合、室温であっても、溶液自身で部分的にNaOHの析出が生じ生産性が著しく低下し、工程の再現性がなくなる。さらには第1の工程および第2の工程における処理温度は80〜150℃であることが好ましい。80℃未満の場合、所望する反応が起こりにくくなり、150℃を超える領域は、KOH水溶液およびNaOH水溶液が濃度に関わらず沸点近くとなるため、突沸などによる不具合が起こりやすくなる。表面処理設備の材質および構造を考えると、現実的な最適範囲は80〜120℃である。
Here, the base molar concentration of the KOH aqueous solution is preferably 3 to 20 mol / L, and the basic molar concentration of the NaOH aqueous solution is preferably 10 to 20 mol / L. When the base molar concentration of KOH is less than 3 mol / L, the surface treatment does not proceed as expected, and when it exceeds 20 mol / L, even at room temperature, KOH partially precipitates at the room temperature and the productivity is remarkably high. The process is not reproducible. In addition, when the base molar concentration of the NaOH aqueous solution is less than 10 mol / L, the removal of re-precipitate does not proceed, so that the surface treatment ability is reduced. When it exceeds 20 mol / L, even at room temperature, the solution itself is partially Precipitation of NaOH occurs and productivity is remarkably lowered, and process reproducibility is lost. Furthermore, it is preferable that the process temperature in a 1st process and a 2nd process is 80-150 degreeC. When the temperature is lower than 80 ° C., a desired reaction is less likely to occur, and in the region exceeding 150 ° C., the KOH aqueous solution and the NaOH aqueous solution are close to the boiling point regardless of the concentration, and thus problems such as bumping are likely to occur. Considering the material and structure of the surface treatment equipment, the practical optimum range is 80 to 120 ° C.

本発明に用いられる水素吸蔵合金には以下に示す2タイプがあるが、より好ましいのは(2)のタイプである。
(1)Laves相合金
主たる合金相がジルコニウムやニッケルを主体とした合金。これは合金(金属間化合物)の中で原子径の比が,1.225、又はこれに近い最密充填構造を持つ合金である。主なものにTi−Mn系,Ti−Cr系,Zr−Mn系等がある。例えばTi−Zr−V−Ni,Cr2ZrV0.41Ni1.6,ZrMn0.6Cr0.2Ni1.2などがある。
(2)AB5型(希土類系)
CaCu5型構造、Aサイトに希土類やニオブ、ジルコニウム等、Bサイトにニッケルやコバルト、アルミニウム等用いるタイプである.実際に利用される合金はMmNi5を基本組成とした合金である。なお,Mmはミッシュメタルで、Ce(40〜50%),La(20〜40%),Pr,Ndを主要構成元素とした希土類の混合物である。例えばLa0.8Nb0.2Ni2.5Co2.4Al0.1,La0.8Nb0.2Zr0.03Ni3.8Co0.7Al0.5,MmNi3.65Co0.75Mn0.4Al0.3,MmNi2.5Co0.7Al0.8,Mm0.85Zr0.15Ni1.0Al0.80.2等がある。
There are the following two types of hydrogen storage alloys used in the present invention, but the type (2) is more preferable.
(1) Laves phase alloy An alloy whose main alloy phase is mainly composed of zirconium or nickel. This is an alloy having a close-packed structure in which the ratio of atomic diameters in the alloy (intermetallic compound) is 1.225 or close thereto. The main ones are Ti-Mn, Ti-Cr, Zr-Mn, and the like. For example Ti-ZrV-Ni, Cr 2 ZrV 0.41 Ni 1.6, and the like ZrMn 0.6 Cr 0.2 Ni 1.2.
(2) AB 5 type (rare earth)
CaCu 5 type structure, which uses rare earth, niobium, zirconium, etc. for the A site, nickel, cobalt, aluminum, etc. for the B site. The alloy actually used is an alloy having MmNi 5 as a basic composition. Mm is a misch metal, which is a rare earth mixture containing Ce (40 to 50%), La (20 to 40%), Pr and Nd as main constituent elements. For example La 0.8 Nb 0.2 Ni 2.5 Co 2.4 Al 0.1, La 0.8 Nb 0.2 Zr 0.03 Ni 3.8 Co 0.7 Al 0.5, MmNi 3.65 Co 0.75 Mn 0.4 Al 0.3, MmNi 2.5 Co 0.7 Al 0.8, Mm 0.85 Zr 0.15 Ni 1.0 Al 0.8 V There is 0.2 mag.

これらの水素吸蔵合金粉末は、上述した本発明の処理を行うことにより、JIS―Z―2613記載の酸素濃度測定法(赤外線吸収法)により求めた酸素濃度を0.9重量%以下とすることができる。ここで言及する酸素濃度とは、水素吸蔵合金粉末上に堆積した析出物としての酸化物・水酸化物に対応する。本発明の処理方法を用いることにより、酸素濃度を上述した範囲にまで減少でき、放電特性の向上が可能となる。   These hydrogen storage alloy powders should have an oxygen concentration of 0.9% by weight or less determined by the oxygen concentration measurement method (infrared absorption method) described in JIS-Z-2613 by performing the above-described treatment of the present invention. Can do. The oxygen concentration mentioned here corresponds to oxides / hydroxides as precipitates deposited on the hydrogen storage alloy powder. By using the treatment method of the present invention, the oxygen concentration can be reduced to the above-described range, and the discharge characteristics can be improved.

この合金粉末を用い、導電剤、増粘剤さらに結着剤を加えてアルカリ蓄電池用負極を作製する。負極に用いる導電剤は、電子伝導性を有する材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類や、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などを用いればよい。中でも人造黒鉛、ケッチェンブラック、炭素繊維が好ましいが、これらの材料を混合して用いてもよい。また、電極材料に対してこれらの材料を機械的に表面被覆させてもよい。上記導電剤の添加量は特に限定されず、例えば電極材料100重量部に対して1〜50重量部の範囲が好ましく、1〜30重量部の範囲がより好ましい。   Using this alloy powder, a conductive agent, a thickener, and a binder are added to produce a negative electrode for an alkaline storage battery. The conductive agent used for the negative electrode is not particularly limited as long as it is a material having electronic conductivity. For example, graphite such as natural graphite (such as flake graphite), artificial graphite, expanded graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber Conductive fibers such as metal fibers, metal powders such as copper, and organic conductive materials such as polyphenylene derivatives may be used. Among them, artificial graphite, ketjen black, and carbon fiber are preferable, but these materials may be mixed and used. Further, these materials may be mechanically coated on the electrode material. The addition amount of the said electrically conductive agent is not specifically limited, For example, the range of 1-50 weight part is preferable with respect to 100 weight part of electrode materials, and the range of 1-30 weight part is more preferable.

負極に用いる増粘剤は、電極合剤ペーストに粘性を付与できるものを用いることができる。一例として、カルボキシメチルセルロース(以下、CMCと略記)およびその変性体、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシドなどが挙げられる。   As the thickener used for the negative electrode, those capable of imparting viscosity to the electrode mixture paste can be used. Examples include carboxymethylcellulose (hereinafter abbreviated as CMC) and modified products thereof, polyvinyl alcohol, methylcellulose, polyethylene oxide, and the like.

負極に用いる結着剤は、電極合剤が集電体に結着した状態を維持できる限り、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。例えば、スチレン−ブタジエン共重合ゴム(以下、SBRと略記)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン
、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Na+イオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Na+イオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Na+イオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Na+イオン架橋体などを、単独あるいは混合して用いることができる。
As the binder used for the negative electrode, any of a thermoplastic resin and a thermosetting resin may be used as long as the electrode mixture can maintain the state of being bound to the current collector. For example, styrene-butadiene copolymer rubber (hereinafter abbreviated as SBR), polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer , Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene , Vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-he Sa hexafluoropropylene - tetrafluoroethylene copolymer, vinylidene fluoride - perfluoromethyl vinyl ether - tetrafluoroethylene copolymer, ethylene - acrylic acid copolymer, ethylene - acrylic acid copolymer Na + ion crosslinking body, an ethylene - Methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + ion crosslinked product, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + ion crosslinked product, ethylene-methyl methacrylate copolymer Ethylene-methyl methacrylate copolymer Na + ion cross-linked body can be used alone or in combination.

次に、本発明の具体例について説明する。   Next, specific examples of the present invention will be described.

(実施例1)
組成式MmNi3.55Co0.75Mn0.4Al0.3で表される水素吸蔵合金を用い、これを湿式ボールミルにより水中で平均粒径30μmに粉砕して水素吸蔵合金粉末を得た。ここで第1の工程として、この粉末10kgを攪拌槽に投入した後、備蓄タンクに蓄えられた8mol/LのKOH水溶液3kgを攪拌槽に投入した。その後加熱手段によって水素吸蔵合金粉末とKOH水溶液との混合物の温度が90℃一定となるように温度制御しつつ、攪拌羽を用いてこの混合物を10分間攪拌し、第1の工程を完了させた。
Example 1
A hydrogen storage alloy represented by the composition formula MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 was used, and this was pulverized to a mean particle size of 30 μm in water by a wet ball mill to obtain a hydrogen storage alloy powder. Here, as a first step, 10 kg of this powder was put into a stirring tank, and then 3 kg of an 8 mol / L KOH aqueous solution stored in a storage tank was put into the stirring tank. Thereafter, the temperature was controlled so that the temperature of the mixture of the hydrogen storage alloy powder and the aqueous KOH solution was kept constant at 90 ° C. by heating means, and this mixture was stirred for 10 minutes using a stirring blade to complete the first step. .

第1の工程の後、混合物を静置し、上澄みであるKOH水溶液を除去した。この後、備蓄タンクに蓄えられた18mol/LのNaOH水溶液6kgを攪拌槽に投入した。その後加熱手段によって水素吸蔵合金粉末と第一および第二のアルカリ水溶液との混合物の温度が90℃一定となるように温度制御しつつ、攪拌羽を用いてこの混合物を10分間攪拌し、第2の工程を完了させた。   After the first step, the mixture was allowed to stand and the supernatant KOH aqueous solution was removed. Thereafter, 6 kg of 18 mol / L NaOH aqueous solution stored in the storage tank was put into the stirring tank. Thereafter, the temperature of the mixture of the hydrogen storage alloy powder and the first and second alkaline aqueous solutions is controlled to be constant at 90 ° C. by a heating means, and the mixture is stirred for 10 minutes using a stirring blade. The process was completed.

続いて排出バルブを開いてこの混合物を加圧濾過槽に導入し、5kgf/cm2の加圧力でNaOH水溶液を排出し、多量の水を用いて水洗することにより、表面処理後の水素吸蔵合金粉末を得た。 Subsequently, the discharge valve is opened, the mixture is introduced into a pressure filtration tank, the NaOH aqueous solution is discharged with a pressurizing force of 5 kgf / cm 2 , and the surface is treated with a large amount of water. A powder was obtained.

表面処理後の水素吸蔵合金粉末10kgに対し、1.5重量%のCMC水溶液1kgおよびケッチェンブラック40gを加えて混練した後、固形分比40%のSBR水溶液175gを加えて攪拌することにより、負極合剤ペーストを作製した。   By adding 1 kg of 1.5 wt% CMC aqueous solution and 40 g of ketjen black to 10 kg of hydrogen storage alloy powder after the surface treatment and kneading, 175 g of SBR aqueous solution having a solid content ratio of 40% is added and stirred, A negative electrode mixture paste was prepared.

このペーストを厚さ60μm、パンチング孔径1mm、開孔率42%のニッケルめっきを施した鉄製パンチングメタルの両面に塗布し、乾燥および加圧を行ない、幅35mm、厚さ0.4mm、容量2200mAhの水素吸蔵合金負極を作製した。   This paste was applied to both sides of a nickel-plated iron punching metal having a thickness of 60 μm, a punching hole diameter of 1 mm, and a hole area ratio of 42%, dried and pressed, and a width of 35 mm, a thickness of 0.4 mm, and a capacity of 2200 mAh. A hydrogen storage alloy negative electrode was produced.

この負極と電気容量が1500mAhである公知の焼結式のニッケル正極およびポリプロピレン製不織布セパレータとを組み合わせて渦巻き状に巻回させて電極群を構成し、この電極群を金属ケースに挿入後、比重1.30の水酸化カリウム水溶液に40g/Lの水酸化リチウムを溶解させた電解液を注液し、ケースの上部を封口板で密閉し、4/5Aサイズで公称容量1500mAhのニッケル−水素蓄電池を構成した。これを実施例1の電池とする。   This negative electrode and a known sintered nickel positive electrode having an electric capacity of 1500 mAh and a nonwoven fabric separator made of polypropylene are combined and wound in a spiral shape to form an electrode group. After inserting this electrode group into a metal case, the specific gravity An electrolytic solution in which 40 g / L lithium hydroxide is dissolved in a 1.30 potassium hydroxide aqueous solution is poured, the upper part of the case is sealed with a sealing plate, and a nickel-hydrogen storage battery having a nominal capacity of 1500 mAh in a 4 / 5A size. Configured. This is referred to as the battery of Example 1.

(実施例2〜5)
実施例1に対し、第1の工程におけるKOHの塩基モル濃度をそれぞれ1.5、3、15、20mol/Lとした以外は、実施例1と同様の電池を作製した。これを実施例2〜5の電池とする。
(Examples 2 to 5)
A battery similar to that of Example 1 was prepared, except that the basic molar concentration of KOH in the first step was 1.5, 3, 15, and 20 mol / L, respectively. This is designated as batteries of Examples 2 to 5.

(実施例6〜8)
実施例1に対し、第2の工程におけるNaOHの塩基モル濃度をそれぞれ7、10、20mol/Lとした以外は、実施例1と同様の電池を作製した。これを実施例6〜8の電池とする。
(Examples 6 to 8)
A battery similar to that of Example 1 was produced, except that the basic molar concentration of NaOH in the second step was changed to 7, 10, and 20 mol / L, respectively, in Example 1. This is designated as batteries of Examples 6-8.

(実施例9〜12)
実施例1に対し、第1および第2の工程における処理温度をそれぞれ70、80、120、150℃とした以外は、実施例1と同様の電池を作製した。これを実施例9〜12の電池とする。
(Examples 9 to 12)
A battery similar to that of Example 1 was manufactured, except that the processing temperatures in the first and second steps were set to 70, 80, 120, and 150 ° C., respectively. This is designated as batteries of Examples 9-12.

(比較例1)
実施例1に対し、第1の工程における処理時間を20分とし、第2の工程を行わなかった以外は、実施例1と同様の電池を作製した。これを比較例1の電池とする。
(Comparative Example 1)
A battery similar to that of Example 1 was manufactured, except that the processing time in the first step was 20 minutes and that the second step was not performed. This is referred to as the battery of Comparative Example 1.

(比較例2)
実施例1に対し、第1の工程を行わず、第2の工程における処理時間を20分とした以外は、実施例1と同様の電池を作製した。これを比較例2の電池とする。
(Comparative Example 2)
A battery similar to that of Example 1 was manufactured except that the first step was not performed and the processing time in the second step was set to 20 minutes. This is referred to as the battery of Comparative Example 2.

上述した各例に対し、以下の評価を行った。   The following evaluation was performed on each of the examples described above.

(磁性体量測定)
表面処理した合金粉末を乾燥させて、振動試料磁気測定装置(VSM装置)により、アルカリ処理によって生成された金属状態の磁性体の濃度を測定した。得られた値を水素吸蔵合金粉末中の重量%として(表1)に示す。
(Magnetic quantity measurement)
The surface-treated alloy powder was dried, and the concentration of the magnetic material in the metallic state produced by the alkali treatment was measured with a vibrating sample magnetometer (VSM device). The obtained values are shown in Table 1 as weight percent in the hydrogen storage alloy powder.

(酸素濃度測定)
表面処理後の合金粉末に対し、JIS―Z―2613記載の酸素濃度測定法に則り、試料(水素吸蔵合金粉末)から抽出されたガスを赤外線吸収セルに送り、赤外線の吸収量の変化を測定して酸素量を求めた。得られた値を水素吸蔵合金粉末中の重量%として(表1)に示す。
(Oxygen concentration measurement)
In accordance with the oxygen concentration measurement method described in JIS-Z-2613, the gas extracted from the sample (hydrogen storage alloy powder) is sent to the infrared absorption cell to measure the change in the amount of infrared absorption. Then, the amount of oxygen was determined. The obtained values are shown in Table 1 as weight percent in the hydrogen storage alloy powder.

(低温放電特性)
作製した電池を20℃、電流値1.5Aで理論容量の120%まで充電し、20℃、電流値3.0Aで電池電圧が1.0Vに低下するまでの容量(初期放電容量)を測定した。さらに電池を20℃、電流値1.5Aで理論容量の120%まで充電し、0℃、電流値3.0Aで電池電圧が1.0Vに低下するまでの容量(低温放電容量)を測定した。低温放電容量を初期放電容量で除した値を低温放電特性の指標として、その百分率を(表1)に示す。
(Low temperature discharge characteristics)
The prepared battery is charged to 120% of the theoretical capacity at 20 ° C. and a current value of 1.5 A, and the capacity (initial discharge capacity) until the battery voltage drops to 1.0 V at 20 ° C. and a current value of 3.0 A is measured. did. Furthermore, the battery was charged to 120% of the theoretical capacity at 20 ° C. and a current value of 1.5 A, and the capacity (low temperature discharge capacity) until the battery voltage decreased to 1.0 V at 0 ° C. and a current value of 3.0 A was measured. . The value obtained by dividing the low-temperature discharge capacity by the initial discharge capacity is used as an index of the low-temperature discharge characteristics, and the percentage is shown in (Table 1).

Figure 2006216239
比較例1および2は、表面処理により得られた合金粉末中の磁性体量が実施例1に対して少なかった。これに反比例して、比較例1および2の合金粉末中の酸素濃度は、実施例1よりも大きな値となった。その結果、磁性体量に反比例して初期放電容量が低下し、酸素濃度に比例して低温放電特性が低下することとなった。
Figure 2006216239
In Comparative Examples 1 and 2, the amount of magnetic substance in the alloy powder obtained by the surface treatment was smaller than that in Example 1. In inverse proportion to this, the oxygen concentration in the alloy powders of Comparative Examples 1 and 2 was larger than that of Example 1. As a result, the initial discharge capacity decreased in inverse proportion to the amount of magnetic material, and the low temperature discharge characteristics decreased in proportion to oxygen concentration.

そこで比較例1および2の合金粉末について、処理時間を延長して磁性体量を測定した結果、図1に示すように、比較例1(KOH水溶液のみで処理)の場合は初期こそ処理速度が高いものの短時間で処理量が飽和し、比較例2(NaOH水溶液のみで処理)の場合は処理量が飽和しないものの初期の処理速度が低いことがわかった。ここで合金粉末中の酸素濃度は、合金表面に堆積した水和物および酸化物の量と対応するものである。短い処理時間で酸素濃度を小さく(磁性体量を多く)し、低温放電特性に優れたアルカリ蓄電池を効率よく実現させるためには、実施例1のようにKOH水溶液の効果(高い初期処理速度)とNaOH水溶液の効果(飽和しない処理量)とを併用する必要がある。   Accordingly, as a result of measuring the amount of magnetic material for the alloy powders of Comparative Examples 1 and 2 while extending the treatment time, as shown in FIG. Although it was high, the processing amount was saturated in a short time, and in the case of Comparative Example 2 (processing only with aqueous NaOH solution), the processing amount was not saturated but the initial processing speed was low. Here, the oxygen concentration in the alloy powder corresponds to the amount of hydrate and oxide deposited on the alloy surface. In order to efficiently realize an alkaline storage battery with low oxygen concentration (large amount of magnetic material) and excellent low-temperature discharge characteristics in a short processing time, the effect of KOH aqueous solution (high initial processing speed) as in Example 1 And the effect of NaOH aqueous solution (the amount of treatment not saturated) must be used in combination.

さらに、KOH水溶液の塩基モル濃度が3mol/L未満の実施例2では、表面処理が思うように進まない。またNaOH水溶液の塩基モル濃度が10mol/L未満の実施例6では、再析出物の除去が進まないので表面処理能力が低下した。さらにはKOH水溶液の塩基モル濃度が20mol/Lの実施例5およびNaOH水溶液の塩基モル濃度が20mol/Lの実施例8では、表面処理こそ十分になされているが、攪拌槽の周辺に僅かながらKOHおよびNaOHが析出しているのが確認できた。また20mol/Lを超える濃度のアルカリ水溶液を作製しても、表面処理中に著しい量のアルカリ(KOHおよびNaOH)が析出することも確認できた。よって表面処理に用いるアルカリ水溶液の濃度は、KOH水溶液の場合は塩基モル濃度として3〜20mol/L、NaOH水溶液の場合は塩基モル濃度として10〜20mol/Lであることが好ましい。   Furthermore, in Example 2 where the base molar concentration of the KOH aqueous solution is less than 3 mol / L, the surface treatment does not proceed as expected. Moreover, in Example 6 whose base molar concentration of NaOH aqueous solution is less than 10 mol / L, since removal of a reprecipitation did not advance, surface treatment capability fell. Furthermore, in Example 5 in which the base molar concentration of the KOH aqueous solution is 20 mol / L and in Example 8 in which the basic molar concentration of the NaOH aqueous solution is 20 mol / L, the surface treatment is sufficiently performed, but there is a slight amount around the stirring tank. It was confirmed that KOH and NaOH were precipitated. Further, even when an alkaline aqueous solution having a concentration exceeding 20 mol / L was prepared, it was confirmed that a significant amount of alkali (KOH and NaOH) was precipitated during the surface treatment. Therefore, the concentration of the alkaline aqueous solution used for the surface treatment is preferably 3 to 20 mol / L as the base molar concentration in the case of the KOH aqueous solution, and 10 to 20 mol / L as the basic molar concentration in the case of the NaOH aqueous solution.

ここで、第1の工程および第2の工程における処理温度が80℃未満の実施例9では、表面処理反応が起こりにくくなるため、低温放電特性が若干低下している。なお処理温度が150℃である実施例12は、表面処理こそ十分になされているが、突沸により設備を破損しつつ実施した。これを踏まえ、150℃を超える表面処理は、実験としては可能だが量産としては不可能と判断した。よって処理温度は80℃〜150℃であることが好ましく、生産性を考慮すると現実的には80〜120℃であることがより好ましい。   Here, in Example 9 where the treatment temperature in the first step and the second step is less than 80 ° C., the surface treatment reaction is less likely to occur, so the low-temperature discharge characteristics are slightly degraded. In Example 12 where the treatment temperature was 150 ° C., the surface treatment was sufficient, but the treatment was carried out while damaging the equipment due to bumping. Based on this, it was judged that surface treatment over 150 ° C was possible as an experiment but not as a mass production. Therefore, the processing temperature is preferably 80 ° C. to 150 ° C., and more preferably 80 ° C. to 120 ° C. in view of productivity.

本発明により、低温放電特性に優れたアルカリ蓄電池を効率的に生産できるので、特にパワーツールや電気自動車用途など、高出力タイプのアルカリ蓄電池の電極製造技術として利用可能性が高く、かつ有用性も高い。   According to the present invention, an alkaline storage battery having excellent low-temperature discharge characteristics can be efficiently produced. Therefore, the present invention has high applicability and is useful as an electrode manufacturing technology for high-output type alkaline storage batteries, particularly for power tools and electric vehicles. high.

実施例1および比較例1〜2の処理時間と磁性体量との関係を示した図The figure which showed the relationship between the processing time of Example 1 and Comparative Examples 1-2 and the amount of magnetic bodies

Claims (5)

アルカリ蓄電池用の水素吸蔵合金粉末の処理方法であって、
水素吸蔵合金粉末を水酸化カリウム水溶液中で攪拌する第1の工程と、
前記第1の工程を経た水素吸蔵合金粉末を水酸化ナトリウム水溶液中で攪拌する第2の工程とを有する水素吸蔵合金粉末の処理方法。
A method for treating a hydrogen storage alloy powder for an alkaline storage battery, comprising:
A first step of stirring the hydrogen storage alloy powder in an aqueous potassium hydroxide solution;
And a second step of stirring the hydrogen storage alloy powder that has undergone the first step in an aqueous sodium hydroxide solution.
前記水酸化カリウム水溶液の塩基モル濃度が3〜20mol/Lであり、かつ前記水酸化ナトリウム水溶液の塩基モル濃度が10〜20mol/Lであることを特徴とする、請求項1に記載の水素吸蔵合金粉末の処理方法。 2. The hydrogen storage according to claim 1, wherein the basic molar concentration of the aqueous potassium hydroxide solution is 3 to 20 mol / L, and the basic molar concentration of the aqueous sodium hydroxide solution is 10 to 20 mol / L. Processing method of alloy powder. 前記第1の工程および第2の工程における処理温度が80〜150℃であることを特徴とする、請求項1に記載の水素吸蔵合金粉末の処理方法。 The processing temperature of the hydrogen storage alloy powder according to claim 1, wherein processing temperature in said 1st process and 2nd process is 80-150 ° C. 請求項1〜3のいずれかに記載の製造方法により得られた水素吸蔵合金粉末。 The hydrogen storage alloy powder obtained by the manufacturing method in any one of Claims 1-3. 請求項4に記載の水素吸蔵合金粉末を含んだ負極板を用いたアルカリ蓄電池。
An alkaline storage battery using a negative electrode plate containing the hydrogen storage alloy powder according to claim 4.
JP2005024737A 2005-02-01 2005-02-01 Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same Expired - Fee Related JP4997702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024737A JP4997702B2 (en) 2005-02-01 2005-02-01 Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024737A JP4997702B2 (en) 2005-02-01 2005-02-01 Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JP2006216239A true JP2006216239A (en) 2006-08-17
JP4997702B2 JP4997702B2 (en) 2012-08-08

Family

ID=36979309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024737A Expired - Fee Related JP4997702B2 (en) 2005-02-01 2005-02-01 Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP4997702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144873A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Hyrogen occluding alloy powder and method for surface treatment of same, negative pole for an alkali storage battery, and alkali storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513077A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH06290775A (en) * 1993-04-02 1994-10-18 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy pole for battery
JPH09171821A (en) * 1995-12-21 1997-06-30 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
JPH10162821A (en) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JP2000090920A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Alkaline storage battery, hydrogen storage alloy electrode and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513077A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH06290775A (en) * 1993-04-02 1994-10-18 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy pole for battery
JPH09171821A (en) * 1995-12-21 1997-06-30 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
JPH10162821A (en) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JP2000090920A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Alkaline storage battery, hydrogen storage alloy electrode and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144873A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Hyrogen occluding alloy powder and method for surface treatment of same, negative pole for an alkali storage battery, and alkali storage battery
JP2010007177A (en) * 2008-05-30 2010-01-14 Panasonic Corp Hydrogen storage alloy powder, surface treatment method therefor, negative electrode for alkali storage battery, and alkali storage battery
JP4667513B2 (en) * 2008-05-30 2011-04-13 パナソニック株式会社 Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery

Also Published As

Publication number Publication date
JP4997702B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5302890B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery using the same, and method for treating negative electrode active material for nickel metal hydride battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP5169050B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery, and method for treating negative electrode active material for nickel metal hydride battery
CN113166853B (en) Hydrogen storage material, negative electrode and nickel-hydrogen secondary battery
JPWO2015068331A1 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP5703468B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery
JP4997702B2 (en) Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2004269929A (en) Hydrogen storage alloy, and electrode using the same
JP4743997B2 (en) Hydrogen storage alloy electrode
WO2015136836A1 (en) Hydrogen-absorbing alloy, alloy powder for electrode, negative electrode for alkaline storage battery, and alkaline storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2007115672A (en) Alloy powder for electrode, and its manufacturing method
JP4442377B2 (en) Method for producing hydrogen storage alloy powder for alkaline storage battery, and hydrogen storage alloy powder and alkaline storage battery using the same
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP2019220276A (en) Method for producing negative electrode material for nickel metal hydride battery
JP2010182684A (en) Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery
WO2020179752A1 (en) Negative electrode active material powder, negative electrode and nickel hydrogen secondary battery
JP5125905B2 (en) Electrode material processing equipment for alkaline storage batteries
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3984668B2 (en) Method for activating hydrogen storage material
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees