JP2006214637A - Simulation device for thermal environment in dwelling room and for energy saving of air conditioner - Google Patents

Simulation device for thermal environment in dwelling room and for energy saving of air conditioner Download PDF

Info

Publication number
JP2006214637A
JP2006214637A JP2005027519A JP2005027519A JP2006214637A JP 2006214637 A JP2006214637 A JP 2006214637A JP 2005027519 A JP2005027519 A JP 2005027519A JP 2005027519 A JP2005027519 A JP 2005027519A JP 2006214637 A JP2006214637 A JP 2006214637A
Authority
JP
Japan
Prior art keywords
data
window
input
room
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005027519A
Other languages
Japanese (ja)
Inventor
Akihiro Yagawa
明弘 矢川
Takeyasu Shin
武康 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005027519A priority Critical patent/JP2006214637A/en
Publication of JP2006214637A publication Critical patent/JP2006214637A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively evaluate an interior thermal environment and an energy saving performance of an air conditioner depending on different regions, different orientations and sizes of windows, different windowpane materials, eaves, blinds, etc., in a short period of time. <P>SOLUTION: In a simulation device for the thermal environment of a dwelling room and the energy saving performance of the air conditioner, detailed input data as general design conditions of room temperature, humidity, a wearing amount assumed from how to use the room, an activity amount, air speed, density of the number of occupants, electric power of illumination, electric power of equipment, an intake amount of exterior air, starting/finishing times of operating the air conditioner are set for at least every application of a building (an application of the room). Detailed input data of designed exterior air temperatures of summer and winter, the latitude, the longitude, and the regional section are set for every region. The device has a data table in which detailed input data of a window heat transmission coefficient, a window shielding coefficient, a sunshine penetration rate, a sunshine absorption rate, and a sunshine transmission rate are set for every kind of the windowpane material and the blind. A data edit processing means reads the detailed input data set in the data table with respect to selective input of alternatives, edits data for calculation, calculates and outputs a thermal environmental index, a yearly thermal load and an energy saving index. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建物用途(室用途)、地域、方位、外壁種別、窓ガラス材料、ブラインド種類、ペリメータ空調方式、窓や庇の寸法、高さ、面積その他建物仕様を入力して温熱環境指標、年間熱負荷、省エネ指標を計算して出力する居室の温熱環境と空調省エネルギーシミュレーション装置に関する。   The present invention inputs building use (room use), area, orientation, outer wall type, window glass material, blind type, perimeter air conditioning method, window and fence dimensions, height, area and other building specifications, The present invention relates to a thermal environment of a living room that calculates and outputs an annual heat load and an energy saving index, and an air conditioning energy saving simulation device.

建物において、室内の空気温度、湿度、窓ガラス面からの輻射等を考慮して、例えば温熱環境の指標値PMVにより環境を評価する装置等が種々提案されている(例えば、特許文献1〜3参照)。これらの計算には、空間の温度、湿度、気流、輻射温度、建築物を構成する部材の特性データ建築物の熱負荷、熱損失等、数多くのデータが必要である。
特許第2869493号公報 特開平10−239161号公報 特開2004−334796号公報
In a building, various devices and the like for evaluating the environment based on an index value PMV of a thermal environment have been proposed in consideration of indoor air temperature, humidity, radiation from a window glass surface, and the like (for example, Patent Documents 1 to 3). reference). These calculations require a lot of data such as space temperature, humidity, air flow, radiation temperature, characteristic data of members constituting the building, heat load of the building, heat loss, and the like.
Japanese Patent No. 2869493 JP-A-10-239161 Japanese Patent Application Laid-Open No. 2004-334796

一方、設計積や入札条件の提案においては、短時間に温熱環境性能と空調省エネルギー性能を定量的に提案建物を評価して計画する必要がある。しかし、従来の設備設計用シミュレーションでは、詳細な評価検討は可能だが、数人工の作業が必要なために時間的余裕のある案件でなければ利用できなかった。また、従来は、温熱環境性能と空調省エネルギー性能では別々のシミュレーションソフトを使う必要があり、2重に入力しなければならない建物情報もあった。   On the other hand, in the proposal of design products and bidding conditions, it is necessary to evaluate the proposed building quantitatively and plan the thermal environment performance and air conditioning energy saving performance in a short time. However, in the conventional facility design simulation, detailed evaluation and examination are possible, but since several man-made work is required, it was not possible to use it unless there was enough time. Conventionally, it is necessary to use different simulation software for the thermal environment performance and the air conditioning energy saving performance, and there is also building information that has to be input twice.

近年のオフィスビル等の建物は、室内の解放感と外観のデザイン性の要求から大きなガラス窓を持つものが増えている。大きなガラス窓は、室内温熱環境の低下と空調エネルギー消費の増大をもたらす恐れがあるが、その度合いは、建設地の気象条件や窓の方位等によって異なり、ガラス材料や庇などの影響も大きいため定量的評価が難しい。   Buildings such as office buildings in recent years have been increasing in number with large glass windows due to demands for a sense of freedom in the interior and design of the exterior. Large glass windows may reduce the indoor thermal environment and increase air conditioning energy consumption, but the degree depends on the weather conditions of the construction site and the orientation of the window, and is also greatly affected by glass materials and fences. Quantitative evaluation is difficult.

本発明は、上記課題を解決するものであって、地域、窓の方位・大きさ、ガラス材料、庇・ブラインド等の違いによる、室内温熱環境や空調省エネルギー性能の定量的評価を企画設計段階に短時間で行うことができるシステムを提供できるようにするものである。   The present invention solves the above-mentioned problems, and quantitative evaluation of indoor thermal environment and air-conditioning energy-saving performance due to differences in areas, window orientations / sizes, glass materials, fences, blinds, etc. is in the planning and design stage. It is intended to provide a system that can be performed in a short time.

そのために本発明は、建物用途(室用途)、地域、方位、外壁種別、窓ガラス材料、ブラインド種類、ペリメータ空調方式、窓や庇の寸法、高さ、面積その他建物仕様を入力して温熱環境指標、年間熱負荷、省エネ指標を計算して出力する居室の温熱環境と空調省エネルギーシミュレーション装置であって、
1スパン入力と1フロア入力のいずれかの入力を選択可能とし、該選択にしたがって入力項目を編集して建物用途(室用途)、地域、方位、外壁種別、窓ガラス材料、ブラインド種類、ペリメータ空調方式その他建物仕様を入力する入力処理手段と、
前記入力処理手段により入力されたデータに基づき温熱環境指標、年間熱負荷、省エネ指標の計算用データを編集するデータ編集処理手段と、
前記データ編集処理手段により編集された計算用データに基づき温熱環境指標、年間熱負荷、省エネ指標を計算して出力する計算処理手段と
を備え、
前記入力処理手段は、少なくとも建物用途(室用途)、地域、窓ガラス材料、ブラインド種類に対し複数の選択肢を設定し、前記建物用途(室用途)毎に一般的な設計条件としての室温、湿度、室の使い方から想定される着衣量、活動量、気流速度、人員密度、照明電力、機器電力、外気取り入れ量、空調運転開始時刻・終了時刻の詳細入力データを設定し、前記地域毎に夏・冬の設計外気温度、緯度・経度、地域区分の詳細入力データを設定し、前記窓ガラス材料とブラインド種類毎に窓熱貫流率、窓遮蔽係数、日射侵入率、日射吸収率、日射透過率の詳細入力データを設定したデータテーブルを有し、前記データ編集処理手段は、前記選択肢の選択入力に対して前記データテーブルに設定した詳細入力データを読み出して計算用データを編集することを特徴とし、前記入力処理手段は、前記詳細入力データの一覧を表示して修正可能にし、前記1スパン入力では、窓面方位、スパン寸法、奥行き寸法の入力項目が付加されるのに対し、前記1フロア入力では、居室床面積、方位、外壁長さ、窓面積、空調・非空調選択、日当たり・日陰選択、PALペリメータゾーン形状の入力項目が付加されることを特徴とする。
For this purpose, the present invention inputs the building usage (room usage), area, orientation, exterior wall type, window glass material, blind type, perimeter air conditioning system, window and fence dimensions, height, area and other building specifications to enter the thermal environment. A thermal environment and air-conditioning energy-saving simulation device that calculates and outputs indicators, annual heat load, and energy-saving indicators,
Either one span input or one floor input can be selected, and input items are edited according to the selection, building use (room use), area, direction, exterior wall type, window glass material, blind type, perimeter air conditioning Input processing means for inputting the system and other building specifications;
Data editing processing means for editing data for calculation of thermal environment index, annual heat load, energy saving index based on data input by the input processing means;
Calculation processing means for calculating and outputting a thermal environment index, an annual heat load, and an energy saving index based on the calculation data edited by the data editing processing means,
The input processing means sets a plurality of options for at least building use (room use), area, window glass material, and blind type, and room temperature and humidity as general design conditions for each building use (room use). Set detailed input data for the amount of clothing, activity, air velocity, personnel density, lighting power, equipment power, outside air intake, air conditioning operation start time and end time assumed from how to use the room.・ Detailed input data for winter design outside temperature, latitude / longitude, and area classification is set, and the window heat transmissivity, window shielding coefficient, solar intrusion rate, solar absorption rate, solar radiation transmittance for each window glass material and blind type. The data editing processing means reads out the detailed input data set in the data table in response to the selection input of the option, and outputs the calculation data. The input processing means displays a list of the detailed input data so that the list can be corrected, and input items of window plane orientation, span dimension, and depth dimension are added in the one-span input. On the other hand, in the one-floor input, input items of a room floor area, a direction, an outer wall length, a window area, air-conditioning / non-air-conditioning selection, sun / shade selection, and a PAL perimeter zone shape are added.

本発明によれば、データテーブルを使って詳細入力データを取得するので、簡便な入力により建物用途(室用途)、地域、窓の方位・大きさ、窓ガラス材料、庇・ブラインド等の違いによる室内温熱環境や空調省エネルギー性能の定量的評価を企画設計段階に短時間で行うことができる。   According to the present invention, detailed input data is acquired using a data table, and therefore, by simple input, it depends on differences in building use (room use), area, window orientation / size, window glass material, fence / blind, etc. Quantitative evaluation of indoor thermal environment and energy saving performance of air conditioning can be performed in a short time in the planning and design stage.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係る居室の温熱環境と空調省エネルギーシミュレーション支援システムの実施の形態を説明する図、図2は図1に示す居室の温熱環境と空調省エネルギーシミュレーション支援システムによる処理の流れを説明する図である。図中、1は入力部、2は入力画面編集処理部、3は入力項目データ、4はデータ入力処理部、5はデータテーブル、6はPMV計算用データ編集部、7は年間熱負荷計算用データ編集部、8はPAL計算用データ編集部、9はPMV計算部、10は年間熱負荷計算部、11はPAL計算部を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of a thermal environment for a room and an energy-saving simulation support system for air conditioning according to the present invention, and FIG. 2 is a flowchart for explaining a processing flow by the thermal environment for the room and the energy-saving simulation support system for air conditioning shown in FIG. FIG. In the figure, 1 is an input unit, 2 is an input screen editing processing unit, 3 is input item data, 4 is a data input processing unit, 5 is a data table, 6 is a data editing unit for PMV calculation, and 7 is for annual heat load calculation. A data editing unit, 8 is a PAL calculation data editing unit, 9 is a PMV calculation unit, 10 is an annual heat load calculation unit, and 11 is a PAL calculation unit.

図1において、入力部1は、1スパンか1フロアかの検討単位、地域(東京、大阪、札幌、仙台、……)や建物用途・室用途(事務所:事務室、学校:教室、病院:病室、……)、建物仕様(階高、天井高、外壁種別、断熱厚さ、窓面方位、……)、その他検討に必要な情報の入力、指示を行い、入力画面編集処理部2は、検討単位に応じてデータの入力画面の編集を行うものであり、入力項目データ3は、入力画面編集処理部2で入力画面の編集を行うため、各検討単位で入力を必要とする項目のデータである。データ入力処理部4は、入力画面編集処理部2で編集された入力画面に基づき各項目データの入力処理を行うものであり、データテーブル5は、入力画面に基づき入力処理を行う各項目データのうち、所定の選択肢からの選択入力により、予め設定されたデータ、さらには関連する所定の計算用データの入力処理を行うためのものである。データテーブル5には、建物用途(室用途)、都市、方位、窓面方位、外壁種別、窓ガラス材料、ブラインド種類、外部庇の種類、空調・非空調選択、日当たり・日陰選択、PALペリメータゾーン形状、ペリメータゾーン空調方式、熱源方式(エネルギー単価)などのテーブルがあり、選択肢及び各選択肢に対応して、あるいは各選択肢の組み合わせに対応してデフォルト値(標準値)、さらにはデータファイルの参照情報を格納し、選択肢に応じて予め設定されたデータの入力処理を行う。PMV計算用データ編集部6は、データ入力処理部4により入力処理されたデータに基づきPMV計算用のデータを抽出して編集し、年間熱負荷計算用データ編集部7は、データ入力処理部4により入力処理されたデータに基づき年間熱負荷計算用のデータを抽出して編集し、PAL計算用データ編集部8は、データ入力処理部4により入力処理されたデータに基づきPAL計算用のデータを抽出して編集するものである。PMV計算部9は、窓廻り空間の温熱環境(PMV値、PPD値)の計算を行い、年間熱負荷計算部10は、空調エネルギー消費量・エネルギー費を含む年間熱負荷の計算を行い、PAL計算部11は、窓・外壁の省エネ性能(PAL値)の計算を行うものであり、温熱環境性能(PMV)評価結果、温熱環境不満足率(PPD)評価結果、空調省エネルギー性能、平均輻射温度、各種計算条件、月別年間冷暖房付加、ピーク日冷暖房負荷、形態係数計算結果、PAL値、年間空調エネルギー消費量、年間空調エネルギー非、年間仮想空気調和負荷その他各種の計算結果を出力する。   In Fig. 1, the input unit 1 is a study unit of 1 span or 1 floor, area (Tokyo, Osaka, Sapporo, Sendai, ...) and building use / room use (office: office, school: classroom, hospital) : Hospital room, ...), building specifications (floor height, ceiling height, outer wall type, insulation thickness, window orientation, ...), and other information required for examination, input screen editing processor 2 Edits the data input screen according to the examination unit, and the input item data 3 is an item that requires input in each examination unit because the input screen edit processing unit 2 edits the input screen. It is data of. The data input processing unit 4 performs input processing of each item data based on the input screen edited by the input screen editing processing unit 2, and the data table 5 stores each item data to be input processed based on the input screen. Of these, input of preset data and related predetermined calculation data is performed by selection input from predetermined options. The data table 5 includes building usage (room usage), city, direction, window orientation, exterior wall type, window glass material, blind type, external fence type, air conditioning / non-air conditioning selection, sun / shade selection, PAL perimeter zone There are tables for shape, perimeter zone air conditioning system, heat source system (unit price of energy), etc. Default values (standard values) corresponding to options and each option, or combinations of options, and data file reference Information is stored, and data input processing set in advance according to options is performed. The PMV calculation data editing unit 6 extracts and edits data for PMV calculation based on the data input by the data input processing unit 4, and the annual heat load calculation data editing unit 7 includes the data input processing unit 4. The data for annual heat load calculation is extracted and edited on the basis of the data input-processed by the data input unit, and the data editing unit for PAL calculation 8 edits the data for PAL calculation based on the data input-processed by the data input processing unit 4. Extract and edit. The PMV calculation unit 9 calculates the thermal environment (PMV value, PPD value) of the space around the window, and the annual heat load calculation unit 10 calculates the annual heat load including the air conditioning energy consumption and energy cost, and PAL The calculation unit 11 calculates the energy saving performance (PAL value) of the window / outer wall. The thermal environment performance (PMV) evaluation result, the thermal environment dissatisfaction rate (PPD) evaluation result, the air conditioning energy saving performance, the average radiation temperature, Various calculation conditions, monthly monthly heating / cooling addition, peak daily heating / cooling load, form factor calculation result, PAL value, annual air conditioning energy consumption, annual air conditioning energy non-existence, annual virtual air conditioning load and other various calculation results are output.

本実施形態に係る居室の温熱環境と空調省エネルギーシミュレーション支援システムでは、図2に示すようにまず、検討単位が1スパンか1フロアかの入力処理を行い(ステップS11)、その検討単位に応じて入力項目を編集し出力する(ステップS12)。入力画面に基づきそれぞれの項目が個別入力か、プルダウンメニューによる選択入力かにしたがって、各入力項目について入力処理を行い(ステップS13)、全項目の入力処理が終了すれば(ステップS14)、デフォルト値データ、個別入力データの確定、訂正・変更を行うため詳細入力データを編集して出力する(ステップS15)。   In the thermal environment and air-conditioning energy-saving simulation support system according to the present embodiment, first, as shown in FIG. 2, an input process is performed to determine whether the examination unit is one span or one floor (step S11), and according to the examination unit. The input item is edited and output (step S12). Based on the input screen, input processing is performed for each input item according to whether each item is an individual input or a selection input using a pull-down menu (step S13). When input processing for all items is completed (step S14), the default value is set. Detailed input data is edited and output in order to confirm, correct, and change data and individual input data (step S15).

出力された詳細入力データに対し確定の判定を行い(ステップS16)、データの訂正・変更があればその処理の後(ステップS17)、データの確定が指示されれば、PMV計算用のデータ、年間熱負荷計算用のデータ、PAL計算用のデータを抽出して編集を行って(ステップS18)、編集した各計算用データに基づきPMV、年間熱負荷、PALのシミュレーションを実行し(ステップS19)、それらの計算結果を出力する(ステップS20)。   A decision is made on the output detailed input data (step S16), and if there is a correction / change of the data, after that processing (step S17), if confirmation of the data is instructed, data for PMV calculation, Data for annual heat load calculation and data for PAL calculation are extracted and edited (step S18), and PMV, annual heat load, and PAL are simulated based on the edited data for calculation (step S19). The calculation results are output (step S20).

図3は入力項目データ及び入力画面の編集処理の例を説明する図、図4は詳細入力データの入力確定画面の例を示す図である。入力項目データ3は、例えば図3に示すように建物名称、ケース名に対して、それぞれ建物用途(室用途)、都市(地域)、さらに建物仕様として、階高、天井高、……(ア〜メ)があり、基本的に、入力欄が「1」で建物名称、ケース名以外の項目には、数値が入力され、入力欄が「A1」〜「A13」の項目には、データテーブルの設定にしたがってプルダウンメニューから選択肢が選択入力される。なお、PAL地域区分の入力欄の「エ)」は、都市が選択されると都市に連動して一義的に地域区分が決定されることを示している。同様に、ヘ)の外壁熱貫流率は外壁種別に、ホ)の窓熱貫流率とマ)の窓遮蔽係数は窓ガラス材料とブラインド種類に、メ)のCEC/AC値は都市にそれぞれ連動して一義的に入力値が決定される。   FIG. 3 is a diagram illustrating an example of input item data and input screen editing processing, and FIG. 4 is a diagram illustrating an example of an input confirmation screen for detailed input data. For example, as shown in FIG. 3, the input item data 3 includes a building use (room use), a city (region), and a building specification such as a floor height, a ceiling height,. Basically, the input field is “1” and numerical values are entered for items other than the building name and case name, and the input fields are “A1” to “A13” for the data table. The choices are selected and input from the pull-down menu according to the setting. Note that “D” in the input column for the PAL region classification indicates that when a city is selected, the region classification is uniquely determined in conjunction with the city. Similarly, f) outer wall heat transmissivity is linked to the outer wall type, e) window heat transmissivity and ma) window shielding coefficient are linked to the window glass material and blind type, and c) CEC / AC value is linked to the city. Thus, the input value is uniquely determined.

選択入力される建物用途(室用途)の項目では、データテーブルA1に基づき、例えば事務所(事務室)、物販店舗(売場)、ホテル(客室)、病院(病室)、学校(教室)等が選択肢として示され、都市の項目では、データテーブルA2に基づき、例えば東京、名古屋、大阪、旭川、札幌、盛岡、仙台、前橋、松本、新潟、金沢、静岡、高松、広島、福岡、鹿児島、那覇等が選択肢として示される。同様に、方位、窓面方位の項目では、データテーブルA3、A4に基づき、例えば南、南南西、南西、西南西、西、西北西、……が選択肢として、外壁種別の項目では、データテーブルA5に基づき、例えばRC壁、PCカーテンウォール、ガラスカーテンウォール、金属カーテンウォール、ALC壁、金属壁が選択肢として、窓ガラス材料の項目では、データテーブルA6に基づき、例えば透明8mm、熱線吸収8mm、熱線反射クリア8、熱線反射グレー8、……、熱反SS20+透明8、……等選択肢としてが、ブラインド種類の項目では、データテーブルA7に基づき、例えば無し、明色、中間色などが選択肢として、外部庇の種類の項目では、データテーブルA8に基づき、例えば無し、水平庇(FL位置)、水平庇(窓上端)、垂直庇、水平庇(FL位置)+垂直庇、水平庇(窓上端)+垂直庇、ポツ窓のだきなどが選択肢として、それぞれ示される。また、PALペリメータゾーン形状の項目では、データテーブルA11に基づき、例えば各種の代表的な形状が選択肢として、ペリメータゾーン空調方式の項目では、データテーブルA12に基づき、例えば計算に考慮しない、天井吹き出し、ペリカウンター吹き出し、天井吹き出し+窓下吸い込み、プッシュプル方式、エアフローウインドウなどが選択肢として示される。   In the building use (room use) item to be selected and input, based on the data table A1, for example, an office (office room), a merchandise store (sales department), a hotel (guest room), a hospital (hospital room), a school (classroom), etc. In the city item, for example, Tokyo, Nagoya, Osaka, Asahikawa, Sapporo, Morioka, Sendai, Maebashi, Matsumoto, Niigata, Kanazawa, Shizuoka, Takamatsu, Hiroshima, Fukuoka, Kagoshima, Naha. Etc. are shown as options. Similarly, in the items of orientation and window orientation, based on the data tables A3 and A4, for example, south, south-southwest, southwest, west-southwest, west, west-northwest,... For example, RC wall, PC curtain wall, glass curtain wall, metal curtain wall, ALC wall, metal wall are options, and in the item of window glass material, based on data table A6, for example, transparent 8 mm, heat ray absorption 8 mm, heat ray reflection Clear 8, heat-reflective gray 8, .., thermal anti-SS20 + transparent 8, etc. As an option, in the blind type item, based on the data table A7, for example, none, light color, intermediate color, etc. are options. In the type of item, based on the data table A8, for example, none, horizontal tile (FL position), horizontal tile (top of window), Straight eaves, a horizontal eaves (FL position) + vertical eaves, a horizontal eaves (window upper) + vertical eaves, as fired and choices peppers windows are shown, respectively. In addition, in the item of the PAL perimeter zone shape, for example, various representative shapes are options based on the data table A11, and in the item of the perimeter zone air conditioning method, for example, the ceiling blowout, which is not considered in the calculation, based on the data table A12. Peri counter blowout, ceiling blowout + under-window suction, push-pull method, airflow window, etc. are shown as options.

データテーブルには、後述するように例えば建物用途(室用途)では、一般的な設計条件としての室温、湿度、室の使い方から想定される着衣量、活動量、気流速度、人員密度、照明電力、機器電力、外気取り入れ量、空調運転開始時刻・終了時刻の詳細入力データが設定されている。これらの詳細入力データは、図4に示すように入力確定画面として一覧表示することにより、修正可能にし確認の上確定される。   In the data table, as will be described later, for building applications (room applications), for example, room temperature and humidity as general design conditions, the amount of clothing assumed from the usage of the room, the amount of activity, the airflow velocity, the personnel density, and the lighting power Detailed input data of the device power, the outside air intake amount, and the air conditioning operation start time / end time are set. These detailed input data are displayed in a list as an input confirmation screen as shown in FIG. 4 so that they can be corrected and confirmed after confirmation.

これらの入力項目は、例えば図3に示すように検討単位によって、採用されるものが一部異なり、採用されるものと採用されないものがある。居室床面積、方位、外壁長さ、窓面積、空調・非空調選択、日当たり・日陰選択、PALペリメータゾーン形状の入力項目は、1フロアの場合にのみ付加されるのに対し、窓面方位、スパン寸法、奥行き寸法の入力項目は1スパンの場合にのみ付加される。この場合、1フロアを検討単位としたときのそのフロアの奥行き寸法は、居室床面積と外壁長さから求められ、1スパンを検討単位としたときのそのスパンの床面積は、スパン寸法、奥行き寸法から求められる。また、1フロアを検討単位とする場合、居室と居室以外により入力項目が一部異なる。それらは、窓(開口)幅、窓(開口)高さ、窓面積、腰壁高さ、外部庇、庇の出寸法、垂直庇の設置間隔、空調・非空調選択、ペリメータ空調方式、熱源方式(エネルギー単価)、CEC/AC値である。   For example, as shown in FIG. 3, some of these input items are adopted depending on the examination unit, and some are adopted and others are not adopted. Living room floor area, orientation, outer wall length, window area, air conditioning / non-air conditioning selection, sun / shade selection, PAL perimeter zone input items are added only for 1 floor, window surface orientation, The span dimension and depth dimension input items are added only for one span. In this case, the depth dimension of the floor when one floor is considered as the examination unit is obtained from the floor area of the living room and the outer wall length, and the floor area of the span when one span is regarded as the examination unit is the span dimension and depth. Calculated from dimensions. In addition, when one floor is used as an examination unit, some of the input items differ depending on whether the room is a room or not. They are: window (opening) width, window (opening) height, window area, waist wall height, external heel, heel projection, vertical heel installation interval, air conditioning / non-air conditioning selection, perimeter air conditioning system, heat source system (Unit price of energy) and CEC / AC value.

次に、それぞれの計算用データとデータテーブルについて説明する。図5は計算用データの編集処理の例を説明するための図、図6は建物用途(室用途)別のデータテーブルの構成例を示す図、図7は都市別のデータテーブルの構成例を示す図、図8は補正係数のデータテーブルの構成例を示す図、図9は外壁種別のデータテーブルの構成例を示す図、図10は窓ガラス材料のデータテーブルの構成例を示す図、図11はペリメータ空調方式のデータテーブルの構成例を示す図である。   Next, each calculation data and data table will be described. FIG. 5 is a diagram for explaining an example of calculation data editing processing, FIG. 6 is a diagram showing a configuration example of a data table for each building use (room usage), and FIG. 7 is a configuration example of a data table for each city. FIG. 8 is a diagram showing a configuration example of the correction coefficient data table, FIG. 9 is a diagram showing a configuration example of the outer wall type data table, and FIG. 10 is a diagram showing a configuration example of the window glass material data table. 11 is a diagram showing a configuration example of a data table of the perimeter air conditioning system.

PMV計算用のデータとして、例えば設定室温や設定湿度、気流速度、着衣量、活動量についてそれぞれ夏季冷房時、冬季暖房時のデータが必要になるが、本実施形態において、これらのデータは、図5に示すように建物用途(室用途)に応じて標準値(デフォルト値)が設定されている。同様に図5に示すように、冬季暖房時の室温補正のデータは、窓ガラス材料とペリメータ空調方式に応じて、PMV計算用夏/冬の外気温のデータは、都市に応じて、夏の外壁面日射量のデータは、都市と窓面方位に応じて、それぞれ標準値(デフォルト値)が設定されている。   As data for PMV calculation, for example, data for summer cooling and winter heating are required for set room temperature, set humidity, airflow speed, clothing amount, and activity amount, respectively. In the present embodiment, these data are shown in FIG. As shown in FIG. 5, a standard value (default value) is set according to the building use (room use). Similarly, as shown in FIG. 5, room temperature correction data during winter heating is based on the window glass material and perimeter air conditioning system, and summer / winter outside air temperature data for PMV calculation is summer, depending on the city. As for the data of solar radiation amount on the outer wall surface, standard values (default values) are respectively set according to the city and the window surface orientation.

また、年間熱負荷計算用のデータとして必要な、例えば夏ピーク、冬ピーク、年間の各人員密度、照明電力、機器電力、さらに空調運転開始・終了時刻、人員や照明、機器発熱の各日スケジュール、外気取り入れ開始時刻・量等のデータは、図5に示すように建物用途(室用途)に応じて標準値(デフォルト値)が設定され、また、夏季、冬季、中間における室温、湿度の上下限のデータは、PMV計算用のデータとして使用される設定室温や設定湿度に連動して標準値(デフォルト値)が設定されている。さらに、PAL計算用のデータとして必要な取り入れ外気量、内部発熱量、補正係数kc、kH等のデータも建物用途(室用途)、都市に応じて標準値(デフォルト値)が設定されている。   In addition, for example, summer peak, winter peak, annual personnel density, lighting power, equipment power, air conditioning operation start / end time, daily schedule of personnel, lighting, equipment heat generation necessary for data for calculating annual heat load As shown in Fig. 5, standard values (default values) are set for outside air intake start time / volume, etc., depending on the building application (room use). As the lower limit data, a standard value (default value) is set in conjunction with the set room temperature and set humidity used as data for PMV calculation. Furthermore, standard values (default values) are also set for data such as intake outside air amount, internal heat generation amount, correction coefficients kc and kH necessary as data for PAL calculation according to the building use (room use) and city.

建物用途(室用途)の選択肢として、事務所(事務室)、物販店舗(売場)、ホテル(客室)、病院(病室)、学校(教室)を有するデータテーブルの例を示したのが図6である。建物用途(室用途)のデータテーブルA1には、図6に示すように各選択肢に対応してOPCO名称、人員スケジュール名称、人員作業指数、照明スケジュール名称、機器スケジュール名称についてその詳細入力データを参照する索引情報を有し、その索引に基づきそれぞれのデータを読み出し、さらにPMV計算用に夏季冷房、冬季暖房時のそれぞれ設定室温、設定湿度、気流速度、着衣量、活動量の値、年間熱負荷計算用に、夏ピーク、冬ピーク、年間の各人員密度、照明電力、機器電力、さらに年間熱負荷計算用、PAL計算用に、空調運転開始・終了時刻、取り入れ外気量、内部発熱密度の値を具体的に格納したものである。   FIG. 6 shows an example of a data table having an office (office room), a merchandise store (sales floor), a hotel (guest room), a hospital (hospital room), and a school (classroom) as options for building use (room use). It is. In the building use (room use) data table A1, refer to the detailed input data for the OPCO name, personnel schedule name, personnel work index, lighting schedule name, and equipment schedule name corresponding to each option as shown in FIG. Index information to be read, and each data is read based on the index, and for PMV calculation, each set room temperature, set humidity, air flow rate, clothing amount, activity amount value, annual heat load during summer cooling and winter heating For calculation, summer peak, winter peak, annual personnel density, lighting power, equipment power, and annual heat load calculation, PAL calculation, air conditioning start / end time, intake outside air volume, internal heat generation density Is specifically stored.

都市のデータテーブルA2には、例えば図7に示すように東京、名古屋、大阪、……、那覇の17都市の選択肢が用意され、それぞれの都市のPAL地域区分、緯度経度、気象データファイル名、PMV計算用外気温,外気温出展のデータを有し、さらに補正係数kc、kHのデータテーブルとして、図8に示すようにPAL地域区分と建物用途(室用途)による補正係数kc、kHのデータを有する。   In the city data table A2, for example, as shown in FIG. 7, 17 choices of Tokyo, Nagoya, Osaka,..., Naha are prepared, and the PAL area classification, latitude / longitude, weather data file name of each city, As shown in Fig. 8, the correction coefficient kc, kH data for PAL area classification and building use (room use) as shown in Fig. 8 as the data table of correction coefficient kc, kH. Have

外壁種別のデータテーブルA5には、図9に示すように6種類の選択肢が用意され、それぞれの外壁種別について外壁断熱厚さ、材料構成、外壁熱貫流率、外壁伝熱係数のデータを有し、窓ガラス材料のデータテーブルA6には、図10に示すように18の選択肢が用意され、それぞれの窓ガラス材料についてブラインド無し、明色ブラインド、中間色ブラインドでの窓熱貫流率、窓遮蔽係数、日射侵入率、日射吸収率、日射透過率のデータを有している。   In the outer wall type data table A5, six types of options are prepared as shown in FIG. 9, and the outer wall heat insulation thickness, material configuration, outer wall thermal conductivity, and outer wall heat transfer coefficient data are provided for each outer wall type. In the window glass material data table A6, 18 options are prepared as shown in FIG. 10, and for each window glass material, there is no blind, light color blind, intermediate color blind window heat transmissivity, window shielding coefficient, It has data on solar penetration rate, solar absorption rate, and solar transmittance.

ペリメータ空調方式のデータテーブルA12には、図11に示すように6の選択肢が用意され、それぞれのペリメータ空調方式でシングルガラスの場合とペアガラスの場合について窓面からの距離に応じた室温補正値を有している。   In the perimeter air conditioning system data table A12, six options are prepared as shown in FIG. 11, and the room temperature correction value corresponding to the distance from the window surface in the case of single glass and pair glass in each perimeter air conditioning system. have.

本実施形態では、図3に示す入力項目と図6〜図11に示すデータテーブルとの組み合わせにより少ない入力項目で膨大なPMV計算用データ、年間熱負荷計算用データ、PAL計算用データを取得できるようにしている。それぞれのデータは、まず、1スパン、1フロアに関係なく次の詳細データを取得する。   In the present embodiment, a large amount of PMV calculation data, annual heat load calculation data, and PAL calculation data can be acquired with a small number of input items by combining the input items shown in FIG. 3 and the data tables shown in FIGS. I am doing so. For each data, first, the next detailed data is acquired regardless of one span or one floor.

PMV計算用データでは、建物用途(室用途)から夏季冷房時・冬季暖房時の設定室温、設定湿度、気流速度、着衣量、活動量を取得するが、対象とする室用途毎に、一般的な設計条件として室温、湿度は定められ、着衣量、活動量は室の使い方の想定から定められる。気流速度は空調設計では人が感じない適度を目標値とするので、共通で0.2m/sとしている。また、ペリメータ空調方式、窓ガラス材料(シングルガラスかペアガラス)から冬季暖房時の室温補正を行うが、冬季暖房時は窓面でのコールドドラフトにより窓近傍の人の高さの室温は室内奥より低くなり、コールドドラフトの起き方は、ペリメータ空調方式と窓ガラス材料(シングルガラスかペアガラス)によって傾向が異なるので、その条件別の詳細シミュレーションで得られた窓からの距離に応じた室温分布を基に室温補正値を決めておき、設定室温を補正する。なお、夏季冷房時はブラインドを閉じていることを前提としているので、室温の分布は少ない。都市から夏冬のPMV計算用外気温を取得するが、都市毎の夏・冬の設計用外気温度(2.5%の危険率を含んだ最高(夏)最低(冬)温度)をあらかじめテーブルにしておき、該当する値を詳細入力データに設定している。都市と窓面方位からは夏の外壁面日射量を取得するが、各都市の標準年気象データをもとに、方位別の夏の外壁面日射量の最大値をあらかじめテーブルにしておき、該当する値を詳細入力データに設定している。   In PMV calculation data, the set room temperature, set humidity, airflow speed, clothing amount, and activity amount are acquired from building use (room use) to summer cooling / winter heating. As design conditions, room temperature and humidity are determined, and the amount of clothes and activity are determined based on the assumption of how to use the room. The air flow speed is set to 0.2 m / s in common since the air conditioning design is set to a target value that is not perceived by humans. In addition, the room temperature during winter heating is corrected from the perimeter air conditioning system and window glass material (single glass or paired glass). During winter heating, the room temperature at the height of the person near the window is reduced by the cold draft on the window surface. The tendency of cold draft to occur is different depending on the perimeter air conditioning method and window glass material (single glass or pair glass), so room temperature distribution according to the distance from the window obtained by detailed simulation according to the conditions The room temperature correction value is determined based on the above, and the set room temperature is corrected. It is assumed that the blinds are closed during summer cooling, so the room temperature distribution is small. The outside temperature for summer / winter PMV calculation is acquired from the city, but the outdoor temperature for summer / winter design (maximum (summer) minimum (winter) temperature including 2.5% risk factor) for each city is pre-table. The corresponding value is set in the detailed input data. The amount of solar radiation on the outer wall surface in summer is obtained from the city and window orientation. Based on the standard year meteorological data for each city, the maximum value of the amount of solar radiation on the outer wall surface in summer is tabulated in advance. Value to be set in the detailed input data.

年間熱負荷計算用データでは、建物用途(室用途)から夏季・冬季・中間期の室温上下限、湿度上下限を取得し、夏ピーク、冬ピーク、年間計算の人員密度、照明電力、機器電力を取得し、さらに空調運転開始時刻・終了時刻、人員の日スケジュール、照明の日スケジュール、機器発熱の日スケジュール、外気取り入れ開始時刻、外気取り入れ量、人員作業指数を取得するが、対象とする室用途毎に一般的な設計条件として室温、湿度、人員密度、照明電力、機器電力、外気取り入れ量、人員作業指数が定められ、空調運転開始時刻・終了時刻、人員・照明・機器発熱の日スケジュールは室の使い方の想定から定められる。都市から緯度・経度が取得される。   In the annual heat load calculation data, the room temperature upper and lower limits and the humidity upper and lower limits are obtained from building use (room use) in summer, winter, and interim periods, and summer peak, winter peak, annual calculation personnel density, lighting power, and equipment power. In addition, the air conditioning operation start / end time, personnel day schedule, lighting day schedule, equipment heat generation day schedule, outside air intake start time, outside air intake amount, and personnel work index are acquired. General design conditions for each application include room temperature, humidity, personnel density, lighting power, equipment power, outside air intake, personnel work index, and air conditioning operation start / end times, daily schedule for personnel / lighting / equipment heat generation Is determined from the assumption of how to use the room. Latitude and longitude are obtained from the city.

PAL計算用データでは、建物用途(室用途)からPAL計算用取り入れ外気量、PAL計算用内部発熱密度の基準値を、都市から都市に該当するPAL地域区分を、建物用途(室用途)と都市に応じた補正係数kc、kHの基準値をそれぞれ取得している。   In PAL calculation data, from building use (room use) to PAL calculation intake air volume, PAL calculation internal heat density standard value, city to city PAL region classification, building use (room use) and city The reference values of the correction coefficients kc and kH corresponding to each are acquired.

また、1スパン入力の場合には次の計算用データを取得している。
PMV計算用データでは、外壁種別及び断熱厚さから熱貫流率、外壁伝熱係数を取得し、窓ガラス材料ブラインド種類から窓熱貫流率、日射吸収率、日射透過率を取得し、スパン寸法、窓個数から窓幅、計算窓数を取得している。窓近傍のPMVを計算するにあたり1スパン(一般的に6〜8m)だけで計算すると窓・外壁の影響を過小評価してしまう。窓・外壁の影響が現れるのは窓から奥行き5m程度までであり、窓・外壁としては15m程度を考慮すれば計算精度は十分である。入力値から、窓1個分の幅を1ユニットとして、幅15m以上となるユニットの個数を求め、そのユニット個数分の外壁幅を室幅としてPMV計算する。また、スパン寸法、窓(開口)幅、窓個数から窓幅、袖壁幅、窓間壁の幅を取得し、天井高さ、窓(開口)高さ、腰壁高さから窓高さ、腰壁高さ、垂壁高さを取得し、外部庇の種類、庇の出寸法、垂直庇の設置間隔から窓関係の寸法の他に水平庇から窓上端までの高さ、庇の出寸法を取得している。
In the case of 1 span input, the following calculation data is acquired.
In the PMV calculation data, the heat transmissibility and outer wall heat transfer coefficient are obtained from the outer wall type and insulation thickness, the window heat transmissivity, solar absorption rate and solar transmittance are obtained from the window glass blind type, The window width and the number of calculation windows are obtained from the number of windows. In calculating the PMV in the vicinity of the window, if only one span (generally 6 to 8 m) is calculated, the influence of the window / outer wall is underestimated. The influence of the window / outer wall appears up to a depth of about 5 m from the window. If the window / outer wall is about 15 m, the calculation accuracy is sufficient. From the input value, the width of one window is set as one unit, the number of units having a width of 15 m or more is obtained, and PMV calculation is performed using the outer wall width corresponding to the number of units as the room width. Also, obtain the window width, sleeve wall width, and window wall width from the span dimensions, window (opening) width, number of windows, ceiling height, window (opening) height, waist wall height to window height, Acquire waist wall height and vertical wall height, outside heel type, heel protrusion dimension, vertical heel installation interval to window related dimension, height from horizontal heel to top edge of window, heel protrusion dimension Is getting.

年間熱負荷計算用データでは、外壁種別、断熱厚さから材料の熱伝導率、材料の容積比熱、材料厚さを取得し、窓ガラス材料、ブラインド種類から窓の熱貫流率、窓の対流遮蔽係数、窓の輻射遮蔽係数を取得し、スパン寸法、奥行き寸法から床面積を取得し、窓(開口)幅、窓個数、窓(開口)高さから窓面積を取得し、階高、スパン寸法、窓面積から外壁面積(階高×スパン寸法−窓面積)を取得し、スパン寸法、窓(開口)幅、窓個数、窓(開口)高さ、天井高さ、腰壁高さ、外部庇の種類、庇の出寸法、垂直庇の設置間隔から窓幅、袖壁幅、窓高さ、腰壁高さ、水平庇から窓上端までの高さ、庇の出寸法を取得している。   In the annual heat load calculation data, the thermal conductivity of the material, the specific heat capacity of the material, and the material thickness are obtained from the outer wall type and insulation thickness, and the thermal conductivity of the window and the convection shielding of the window from the window glass material and blind type. Coefficient, window radiation shielding coefficient, floor area from span dimensions and depth dimensions, window area from window (opening) width, number of windows, window (opening) height, floor height, span dimensions , Get the outer wall area (floor height x span dimension-window area) from the window area, span dimensions, window (opening) width, number of windows, window (opening) height, ceiling height, waist wall height, external wall The window width, sleeve wall width, window height, waist wall height, height from the horizontal heel to the top edge of the window, and heel protrusion dimensions are obtained from the type of heel, the heel protrusion size, the vertical heel installation interval.

PAL計算用データでは、外壁種別、断熱厚さから熱貫流率を取得し、窓ガラス材料、ブラインド種類から窓の熱貫流率、窓の日射侵入率を取得し、階高、スパン寸法から外壁面積(階高×スパン寸法−窓面積)、ペリメータ床面積(スパン寸法×5m)、窓(開口)幅、窓個数、窓(開口)高さから窓面積を取得し、スパン寸法、窓(開口)幅、窓個数、窓(開口)高さ、天井高さ、腰壁高さ、外部庇の種類、庇の出寸法、垂直庇の設置間隔から窓幅、袖壁幅、窓高さ、腰壁高さ、水平庇から窓上端までの高さ、庇の出寸法を取得している。   In PAL calculation data, the heat transmissivity is obtained from the outer wall type and insulation thickness, the window glass material, the heat transmissivity of the window and the window solar penetration rate are obtained from the blind type, and the outer wall area is obtained from the floor height and span dimensions. (Window height x span dimension-window area), perimeter floor area (span dimension x 5m), window (opening) width, number of windows, window (opening) height, window area is obtained, span size, window (opening) Width, number of windows, window (opening) height, ceiling height, waist wall height, external heel type, heel protrusion size, vertical heel installation interval, window width, sleeve wall width, window height, waist wall The height, the height from the horizontal ridge to the top edge of the window, and the protruding size of the ridge are obtained.

1フロア入力の場合には次の計算用データを取得している。
PMV計算用データでは、外壁種別及び断熱厚さから熱貫流率、外壁伝熱係数を取得し、窓ガラス材料ブラインド種類から窓熱貫流率、日射吸収率、日射透過率を取得し、外壁長さ、窓個数から窓幅=外積長さ、計算窓数=窓個数を取得している。1フロア版では、1室全体を入力するので、外壁長さが室幅そのものになる。また、外壁長さ、窓(開口)幅、窓個数から窓幅、袖壁幅、窓間壁の幅を取得し、天井高さ、窓(開口)高さ、腰壁高さから窓高さ、腰壁高さ、垂壁高さを取得し、外部庇の種類、庇の出寸法、垂直庇の設置間隔から窓関係の寸法の他に水平庇から窓上端までの高さ、庇の出寸法を取得している。
In the case of one floor input, the following calculation data is acquired.
In the PMV calculation data, the heat flow rate and heat transfer coefficient are obtained from the outer wall type and insulation thickness, and the window heat flow rate, solar absorption rate, and solar light transmittance are obtained from the window glass blind type, and the outer wall length. From the number of windows, window width = outer product length and calculation window number = window number are obtained. In the 1 floor version, the entire room is input, so the outer wall length is the room width itself. Also, obtain the window width, sleeve wall width, and window wall width from the outer wall length, window (opening) width, number of windows, and window height from ceiling height, window (opening) height, waist wall height. Obtain the height of the waist wall, the height of the vertical wall, the type of external heel, the heel protrusion dimension, the vertical heel installation interval to the window-related dimensions, as well as the height from the horizontal heel to the top edge of the window, the heel protrusion. The dimensions are acquired.

年間熱負荷計算用データでは、外壁種別、断熱厚さから材料の熱伝導率、材料の容積比熱、材料厚さを取得し、窓ガラス材料、ブラインド種類から窓の熱貫流率、窓の対流遮蔽係数、窓の輻射遮蔽係数を取得し、また、階高、外壁長さ、居室床面積、窓(開口)幅、窓個数、窓(開口)高さを含む入力データから外壁面積(階高×外壁長さ−窓面積)、床面積=居室床面積、窓面積を取得し、さらに、外壁長さ、窓(開口)幅、窓個数、窓(開口)高さ、天井高さ、腰壁高さ、外部庇の種類、庇の出寸法、垂直庇の設置間隔から窓幅、袖壁幅、窓高さ、腰壁高さ、水平庇から窓上端までの高さ、庇の出寸法を取得している。   In the annual heat load calculation data, the thermal conductivity of the material, the specific heat capacity of the material, and the material thickness are obtained from the outer wall type and insulation thickness, and the thermal conductivity of the window and the convection shielding of the window from the window glass material and blind type. Coefficient, window radiation shielding coefficient, floor height, outer wall length, room floor area, window (opening) width, number of windows, window (opening) height from the input data (outer wall area x floor height x (Outer wall length-window area), floor area = living room floor area, window area are obtained, and further, outer wall length, window (opening) width, number of windows, window (opening) height, ceiling height, waist wall height Get the window width, sleeve wall width, window height, waist wall height, height from the horizontal collar to the top edge of the window, and the dimension of the collar. is doing.

PAL計算用データでは、外壁種別、断熱厚さから熱貫流率を取得し、窓ガラス材料、ブラインド種類から窓の熱貫流率、窓の日射侵入率を取得し、階高、外壁長さ、PALペリメータゾーン形状から外壁面積(階高×外壁長さ−窓面積)、ペリメータ床面積(5種類のPALペリメータゾーン形状に応じて計算で求める)、窓(開口)幅、窓個数、窓(開口)高さから窓面積を取得し、外壁長さ、窓(開口)幅、窓個数、窓(開口)高さ、天井高さ、腰壁高さ、外部庇の種類、庇の出寸法、垂直庇の設置間隔から窓幅、袖壁幅、窓高さ、腰壁高さ、水平庇から窓上端までの高さ、庇の出寸法を取得している。   In the data for PAL calculation, the heat transmissivity is obtained from the outer wall type and insulation thickness, the window glass material, the heat transmissivity of the window and the window solar intrusion rate are obtained from the blind type, and the floor height, outer wall length, PAL Perimeter zone shape to outer wall area (floor height x outer wall length-window area), perimeter floor area (calculated according to five types of PAL perimeter zone shapes), window (opening) width, number of windows, window (opening) Obtain the window area from the height, outer wall length, window (opening) width, number of windows, window (opening) height, ceiling height, waist wall height, external heel type, heel projection, vertical heel The window width, sleeve wall width, window height, waist wall height, the height from the horizontal heel to the top edge of the window, and the heel protrusion size are obtained from the installation interval.

本発明に係る居室の温熱環境と空調省エネルギーシミュレーション支援システムの実施の形態を説明する図である。It is a figure explaining embodiment of the thermal environment of the living room which concerns on this invention, and an air-conditioning energy-saving simulation support system. 図1に示す居室の温熱環境と空調省エネルギーシミュレーション支援システムによる処理の流れを説明する図である。It is a figure explaining the flow of a process by the thermal environment of the living room shown in FIG. 1, and an air-conditioning energy-saving simulation support system. 入力項目データ及び入力画面の編集処理の例を説明する図である。It is a figure explaining the example of an edit process of input item data and an input screen. 詳細入力データの入力確定画面の例を示す図である。It is a figure which shows the example of the input confirmation screen of detailed input data. 計算用データの編集処理の例を説明するための図である。It is a figure for demonstrating the example of the edit process of the data for calculation. 建物用途(室用途)別のデータテーブルの構成例を示す図である。It is a figure which shows the structural example of the data table according to a building use (room use). 都市別のデータテーブルの構成例を示す図である。It is a figure which shows the structural example of the data table according to city. 補正係数のデータテーブルの構成例を示す図である。It is a figure which shows the structural example of the data table of a correction coefficient. 外壁種別のデータテーブルの構成例を示す図である。It is a figure which shows the structural example of the data table of an outer wall classification. 窓ガラス材料のデータテーブルの構成例を示す図である。It is a figure which shows the structural example of the data table of a window glass material. ペリメータ空調方式のデータテーブルの構成例を示す図である。It is a figure which shows the structural example of the data table of a perimeter air conditioning system.

符号の説明Explanation of symbols

1…入力指示部、2…入力画面編集処理部、3…入力項目データ、4…データ入力処理部、5…データテーブル、6…PMV計算用データ編集部、7…年間熱負荷計算用データ編集部、8…PAL計算用データ編集部、9…PMV計算部、10…年間熱負荷計算部、11…PAL計算部   DESCRIPTION OF SYMBOLS 1 ... Input instruction part, 2 ... Input screen edit process part, 3 ... Input item data, 4 ... Data input process part, 5 ... Data table, 6 ... Data edit part for PMV calculation, 7 ... Data edit for annual heat load calculation 8 ... Data editing unit for PAL calculation, 9 ... PMV calculation unit, 10 ... Annual heat load calculation unit, 11 ... PAL calculation unit

Claims (3)

建物用途(室用途)、地域、方位、外壁種別、窓ガラス材料、ブラインド種類、ペリメータ空調方式、窓や庇の寸法、高さ、面積その他建物仕様を入力して温熱環境指標、年間熱負荷、省エネ指標を計算して出力する居室の温熱環境と空調省エネルギーシミュレーション装置であって、
1スパン入力と1フロア入力のいずれかの入力を選択可能とし、該選択にしたがって入力項目を編集して建物用途(室用途)、地域、方位、外壁種別、窓ガラス材料、ブラインド種類、ペリメータ空調方式その他建物仕様を入力する入力処理手段と、
前記入力処理手段により入力されたデータに基づき温熱環境指標、年間熱負荷、省エネ指標の計算用データを編集するデータ編集処理手段と、
前記データ編集処理手段により編集された計算用データに基づき温熱環境指標、年間熱負荷、省エネ指標を計算して出力する計算処理手段と
を備え、
前記入力処理手段は、少なくとも建物用途(室用途)、地域、窓ガラス材料、ブラインド種類に対し複数の選択肢を設定し、前記建物用途(室用途)毎に一般的な設計条件としての室温、湿度、室の使い方から想定される着衣量、活動量、気流速度、人員密度、照明電力、機器電力、外気取り入れ量、空調運転開始時刻・終了時刻の詳細入力データを設定し、前記地域毎に夏・冬の設計外気温度、緯度・経度、地域区分の詳細入力データを設定し、前記窓ガラス材料とブラインド種類毎に窓熱貫流率、窓遮蔽係数、日射侵入率、日射吸収率、日射透過率の詳細入力データを設定したデータテーブルを有し、前記データ編集処理手段は、前記選択肢の選択入力に対して前記データテーブルに設定した詳細入力データを読み出して計算用データを編集することを特徴とする居室の温熱環境と空調省エネルギーシミュレーション装置。
Building use (room use), area, orientation, exterior wall type, window glass material, blind type, perimeter air conditioning system, window and fence dimensions, height, area and other building specifications to enter the thermal environment index, annual thermal load, A room thermal environment and air conditioning energy saving simulation device that calculates and outputs energy saving indicators,
Either one span input or one floor input can be selected, and input items are edited according to the selection, building use (room use), area, direction, exterior wall type, window glass material, blind type, perimeter air conditioning Input processing means for inputting the system and other building specifications;
Data editing processing means for editing data for calculation of thermal environment index, annual heat load, energy saving index based on data input by the input processing means;
Calculation processing means for calculating and outputting a thermal environment index, an annual heat load, and an energy saving index based on the calculation data edited by the data editing processing means,
The input processing means sets a plurality of options for at least building use (room use), area, window glass material, and blind type, and room temperature and humidity as general design conditions for each building use (room use). Set detailed input data on the amount of clothing, activity, air velocity, personnel density, lighting power, equipment power, outside air intake, air conditioning start time and end time assumed from how to use the room.・ Detailed input data of winter design outside air temperature, latitude / longitude, and region classification are set, and the window heat transmissivity, window shielding coefficient, solar intrusion rate, solar absorption rate, solar radiation transmittance for each window glass material and blind type. The data edit processing means reads the detailed input data set in the data table in response to the selection input of the option, and outputs the calculation data. Thermal environment and cooling energy saving simulation apparatus room, characterized in that the collecting.
前記入力処理手段は、前記詳細入力データの一覧を表示して修正可能にしたことを特徴とする請求項1記載の居室の温熱環境と空調省エネルギーシミュレーション装置。 2. The room thermal environment and air conditioning energy-saving simulation device according to claim 1, wherein the input processing means displays a list of the detailed input data so as to be corrected. 前記1スパン入力では、窓面方位、スパン寸法、奥行き寸法の入力項目が付加されるのに対し、前記1フロア入力では、居室床面積、方位、外壁長さ、窓面積、空調・非空調選択、日当たり・日陰選択、PALペリメータゾーン形状の入力項目が付加されることを特徴とする請求項1記載の居室の温熱環境と空調省エネルギーシミュレーション装置。 In the 1-span input, input items such as window surface orientation, span dimension, and depth dimension are added, whereas in the 1-floor input, the floor area, orientation, outer wall length, window area, air conditioning / non-air conditioning selection is selected. 2. The room thermal environment and air-conditioning energy-saving simulation device according to claim 1, wherein input items for selection of sun / shade selection and PAL perimeter zone shape are added.
JP2005027519A 2005-02-03 2005-02-03 Simulation device for thermal environment in dwelling room and for energy saving of air conditioner Pending JP2006214637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027519A JP2006214637A (en) 2005-02-03 2005-02-03 Simulation device for thermal environment in dwelling room and for energy saving of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027519A JP2006214637A (en) 2005-02-03 2005-02-03 Simulation device for thermal environment in dwelling room and for energy saving of air conditioner

Publications (1)

Publication Number Publication Date
JP2006214637A true JP2006214637A (en) 2006-08-17

Family

ID=36978018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027519A Pending JP2006214637A (en) 2005-02-03 2005-02-03 Simulation device for thermal environment in dwelling room and for energy saving of air conditioner

Country Status (1)

Country Link
JP (1) JP2006214637A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217328A (en) * 2007-03-02 2008-09-18 Hiroshima Industrial Promotion Organization Heat insulation performance diagnostic system for opening
CN102129805A (en) * 2010-12-29 2011-07-20 中国联合工程公司 Large-scale experiment device capable of simulating natural environment climate condition
JP2012082991A (en) * 2010-10-07 2012-04-26 Hitoshi Takeda Heat load calculation system, and heat load calculation program
CN106461255A (en) * 2014-07-16 2017-02-22 三菱电机株式会社 Air conditioning controller, air conditioning control method, and program
JP2017101880A (en) * 2015-12-02 2017-06-08 株式会社大林組 Thermal load calculation device, method and program
CN107367988A (en) * 2017-08-01 2017-11-21 华南理工大学 A kind of novel intelligent control energy-saving bathroom heater and its control method based on Architecural Physics modeling
US10731890B2 (en) 2015-08-20 2020-08-04 Mitsubishi Electric Corporation Air conditioning operation analysis device and non-transitory computer-readable recording medium storing program
CN111520863A (en) * 2020-05-12 2020-08-11 北京工业大学 Control method and system of indoor humidifying device for household heat metering
CN111651801A (en) * 2019-12-27 2020-09-11 滨州学院 Rapid building natural lighting model modeling method based on window database
CN112283897A (en) * 2020-09-18 2021-01-29 海信(山东)空调有限公司 Air conditioner and control method
JPWO2020194602A1 (en) * 2019-03-27 2021-09-13 三菱電機株式会社 Risk calculation device, risk calculation program and risk calculation method
CN113819596A (en) * 2021-08-23 2021-12-21 青岛海尔空调器有限总公司 Air conditioner control method and air conditioner
CN114137018A (en) * 2021-11-30 2022-03-04 国网北京市电力公司 Simulation test system, method and application of house anti-power-off endurance time

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217328A (en) * 2007-03-02 2008-09-18 Hiroshima Industrial Promotion Organization Heat insulation performance diagnostic system for opening
JP2012082991A (en) * 2010-10-07 2012-04-26 Hitoshi Takeda Heat load calculation system, and heat load calculation program
CN102129805A (en) * 2010-12-29 2011-07-20 中国联合工程公司 Large-scale experiment device capable of simulating natural environment climate condition
CN106461255A (en) * 2014-07-16 2017-02-22 三菱电机株式会社 Air conditioning controller, air conditioning control method, and program
CN106461255B (en) * 2014-07-16 2019-05-10 三菱电机株式会社 Air conditioning control device and air conditioning control method
US10731890B2 (en) 2015-08-20 2020-08-04 Mitsubishi Electric Corporation Air conditioning operation analysis device and non-transitory computer-readable recording medium storing program
JP2017101880A (en) * 2015-12-02 2017-06-08 株式会社大林組 Thermal load calculation device, method and program
CN107367988A (en) * 2017-08-01 2017-11-21 华南理工大学 A kind of novel intelligent control energy-saving bathroom heater and its control method based on Architecural Physics modeling
CN107367988B (en) * 2017-08-01 2023-04-21 华南理工大学 Novel intelligent control energy-saving bathroom heater based on building physical modeling and control method thereof
JPWO2020194602A1 (en) * 2019-03-27 2021-09-13 三菱電機株式会社 Risk calculation device, risk calculation program and risk calculation method
JP6995243B2 (en) 2019-03-27 2022-02-04 三菱電機株式会社 Risk calculator, risk calculator and risk calculator
CN111651801A (en) * 2019-12-27 2020-09-11 滨州学院 Rapid building natural lighting model modeling method based on window database
CN111520863B (en) * 2020-05-12 2021-08-03 北京工业大学 Control method and system of indoor humidifying device for household heat metering
CN111520863A (en) * 2020-05-12 2020-08-11 北京工业大学 Control method and system of indoor humidifying device for household heat metering
CN112283897A (en) * 2020-09-18 2021-01-29 海信(山东)空调有限公司 Air conditioner and control method
CN112283897B (en) * 2020-09-18 2022-09-16 海信空调有限公司 Air conditioner and control method
CN113819596A (en) * 2021-08-23 2021-12-21 青岛海尔空调器有限总公司 Air conditioner control method and air conditioner
CN114137018A (en) * 2021-11-30 2022-03-04 国网北京市电力公司 Simulation test system, method and application of house anti-power-off endurance time

Similar Documents

Publication Publication Date Title
JP2006214637A (en) Simulation device for thermal environment in dwelling room and for energy saving of air conditioner
Kükrer et al. Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building
Hwang et al. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control
Kim et al. Development of a double-skin facade for sustainable renovation of old residential buildings
Okpalike et al. Effects of renovation on ventilation and energy saving in residential building
Byrd Post-occupancy evaluation of green buildings: the measured impact of over-glazing
Zelenay et al. High-performance facades design strategies and applications in North America and Northern Europe
Jin et al. A prototype whole-life value optimization tool for façade design
Pichatwatana et al. An integrative approach for indoor environment quality assessment of large glazed air-conditioned airport terminal in the tropics
Kwong et al. A review of energy efficiency potentials in tropical buildings–Perspective of enclosed common areas
Yusoff et al. Review of openings with shading devices at naturally ventilated buildings
Ge et al. Impact of a non-enclosed atrium on the surrounding thermal environment in shopping malls
Omrany et al. Is atrium an ideal form for daylight in buildings?
Albatayneh Sensitivity analysis optimisation of building envelope parameters in a sub-humid Mediterranean climate zone
González et al. Effects of latitude and building orientation in indoor-illuminance levels towards energy efficiency
Kolokotroni et al. Environmental impact analysis for typical office facades
Abdollahzadeh et al. Indoor environmental quality improvement of student dormitories in Tehran, Iran
Lim et al. The renovation of window mechanism for natural ventilation in a high-rise residential building
Kim et al. Overall environmental modelling of newly designed curtain wall façade configurations
Oliveira et al. Thermal performance of highly glazed office buildings in the tropics: Contradicting architectś expectations
Gelil M et al. Simulated comparative investigation of the daylight and airflow of the conventional Egyptian shutter ‘sheesh’and a proposed latticework device ‘new mashrabiyya’
Balador et al. Evaluation of different shading devices for a Tehran primary school classroom
Selkowitz et al. COMFEN–Early Design Tool for Commercial Facades and Fenestration Systems
Kiatreungwattana et al. Demonstration and Evaluation of Lightweight High Performance Quad-Pane Windows
Kariuki External Shading for Passive Thermal and Daylighting Design a Case of Small Learning Spaces in Tropic Upland Climate of Nairobi

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091216