JP2006214366A - Screw rotor - Google Patents

Screw rotor Download PDF

Info

Publication number
JP2006214366A
JP2006214366A JP2005028540A JP2005028540A JP2006214366A JP 2006214366 A JP2006214366 A JP 2006214366A JP 2005028540 A JP2005028540 A JP 2005028540A JP 2005028540 A JP2005028540 A JP 2005028540A JP 2006214366 A JP2006214366 A JP 2006214366A
Authority
JP
Japan
Prior art keywords
rotor
tooth surface
screw
screw rotor
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005028540A
Other languages
Japanese (ja)
Other versions
JP4684671B2 (en
Inventor
Masayuki Kasahara
雅之 笠原
Tatsutomo Nishihara
達知 西原
Fumio Takeda
文夫 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2005028540A priority Critical patent/JP4684671B2/en
Publication of JP2006214366A publication Critical patent/JP2006214366A/en
Application granted granted Critical
Publication of JP4684671B2 publication Critical patent/JP4684671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • F05C2201/0439Cast iron
    • F05C2201/0442Spheroidal graphite cast iron, e.g. nodular iron, ductile iron

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw rotor, capable of restricting irregularity of deformation quantity by centrifugal force at the time of rotation. <P>SOLUTION: This screw rotor 2 comprises a plurality of spiral teeth 13, and it is formed hollow. A front side tooth flank part 22 and a rear side tooth flank part 23 on both sides of a tooth apex 21 are formed in such a way that their diametric cross sectional form is asymmetric, and thickness size d1 of the front side tooth flank part 22 and thickness size d<SB>2</SB>the rear side tooth flank part 23 are in inverse proportion to arc length size L<SB>1</SB>and L<SB>2</SB>in the respective diametric cross sections. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の螺旋状の歯を有し中空に形成されたスクリューロータに係わり、特に、例えば径方向中心部まで中空に形成されたスクリューロータに関する。   The present invention relates to a screw rotor that has a plurality of helical teeth and is formed in a hollow shape, and particularly relates to a screw rotor that is formed in a hollow shape, for example, in the radial center.

スクリュー流体機械の一例であるスクリュー圧縮機は、回転軸が平行でかつ螺旋状の歯部が噛み合うようにそれぞれ回転する雄ロータ及び雌ロータと、これら雄ロータ及び雌ロータを収納するケーシングとを備えており、雄ロータ及び雌ロータの歯溝とケーシングの内壁とで被圧縮流体(例えば空気)を圧縮する圧縮作動室が形成されている。そして、雄ロータ及び雌ロータ(以降、これらを総称してスクリューロータと称す)等が被圧縮流体の断熱圧縮により温度上昇して熱膨張するため、スクリューロータ同士の隙間及びスクリューロータとケーシングの隙間は、熱膨張のぶんだけ余裕をみて大きくする必要が生じ、圧縮流体の漏れ量が大きくなって圧縮機の性能が低下する要因となっていた。   A screw compressor, which is an example of a screw fluid machine, includes a male rotor and a female rotor that rotate in parallel so that their rotational axes are parallel and mesh with helical teeth, and a casing that houses these male and female rotors. A compression working chamber for compressing a fluid to be compressed (for example, air) is formed by the tooth grooves of the male rotor and the female rotor and the inner wall of the casing. Since the male rotor and the female rotor (hereinafter collectively referred to as a screw rotor) and the like increase in temperature due to adiabatic compression of the fluid to be compressed and thermally expand, the clearance between the screw rotors and the clearance between the screw rotor and the casing Therefore, it is necessary to increase the thermal expansion with a margin, and the amount of leakage of the compressed fluid increases, resulting in a decrease in the performance of the compressor.

そこで従来、例えば、外周側の歯部(ねじ)及び中空部(空洞)を有する超塑性材料(例えばZn−Al系合金、Al−Zn−Zr系合金、Al−Ca−Zn系合金など)製ローブ部材と、前記ローブ部材の中空部に連通する貫通孔及び軸穴を有する高強度材料(例えば機械構造用炭素鋼、合金鋼、球状黒鉛鋳鉄など)製ロータ軸とを一体結合したスクリューロータが開示されている(例えば、特許文献1参照)。そして、明確には示されていないが、例えば冷却媒体(軸受を潤滑冷却する潤滑油等)をロータ軸の軸穴及び貫通孔を介しローブ部材の中空部に流通して、スクリューロータを冷却するようになっている。これにより、スクリューロータの最大熱膨張が小さくなって上記隙間を小さくすることが可能となり、圧縮機の性能を向上するようになっている。   Therefore, conventionally, for example, a superplastic material (for example, a Zn—Al alloy, an Al—Zn—Zr alloy, an Al—Ca—Zn alloy, etc.) having teeth (screws) on the outer peripheral side and a hollow (cavity) is used. A screw rotor in which a lobe member and a rotor shaft made of a high-strength material (for example, carbon steel for mechanical structure, alloy steel, spheroidal graphite cast iron, etc.) having a through hole and a shaft hole communicating with the hollow portion of the lobe member are integrally coupled It is disclosed (for example, see Patent Document 1). Although not clearly shown, for example, a cooling medium (lubricating oil or the like that lubricates and cools the bearing) is circulated to the hollow portion of the lobe member through the shaft hole and the through hole of the rotor shaft to cool the screw rotor. It is like that. As a result, the maximum thermal expansion of the screw rotor is reduced, the gap can be reduced, and the performance of the compressor is improved.

特開昭57−70985号公報JP-A-57-70985

しかしながら、上記従来技術には以下のような課題があった。
例えば車載燃料電池用や産業用のスクリュー圧縮機では、圧縮機の軽量化及び可変速運転時における応答性の改善を目的として、スクリューロータの質量低減が要望されている。上記従来のスクリューロータでは、中空のローブ部材の径方向中心部にロータ軸を配置し、ロータ軸とローブ部材を一体結合した構造となっており、例えば中実構造とする場合に比べ質量低減が図られている。そして、さらに質量低減を図るためには、ロータ軸をローブ部材の径方向中心部に配置しないように、言い換えれば、スクリューロータを径方向中心部まで中空に形成する構造が考えられる。
However, the above prior art has the following problems.
For example, in an in-vehicle fuel cell or industrial screw compressor, a reduction in the mass of the screw rotor is desired for the purpose of reducing the weight of the compressor and improving the responsiveness during variable speed operation. The conventional screw rotor has a structure in which the rotor shaft is arranged at the center in the radial direction of the hollow lobe member, and the rotor shaft and the lobe member are integrally coupled. For example, the mass is reduced compared to a solid structure. It is illustrated. In order to further reduce the mass, a structure in which the rotor shaft is formed so as to be hollow up to the radial center portion may be considered so as not to arrange the rotor shaft at the radial center portion of the lobe member.

ところが、スクリューロータを径方向中心部まで中空に形成するような場合、ロータ軸がないぶんだけ、回転時の遠心力により大きく外周側に変形する可能性がある。また、雄ロータ等における歯の頂を境とした前側歯面部及び後側歯面部は、径方向断面形状が非対称となるように形成されることが多く、回転時の遠心力による変形量にバラツキが生じて、後側歯面部側から前側歯面部側へ立ち上がるような変形を起こす可能性がある。そして、このような遠心力による変形の最大値及びバラツキを考慮して、スクリューロータ同士の隙間及びスクリューロータとケーシングの隙間を大きくする必要が生じ、圧縮流体の漏れ量が大きくなって圧縮機の性能が低下する可能性があった。   However, when the screw rotor is formed hollow to the center in the radial direction, there is a possibility that the screw rotor is greatly deformed to the outer peripheral side due to the centrifugal force during rotation as much as there is no rotor shaft. In addition, the front tooth surface portion and the rear tooth surface portion of the male rotor or the like with the tooth crest as a boundary are often formed so that the radial cross-sectional shape is asymmetric, and the amount of deformation due to centrifugal force during rotation varies. May occur, causing a deformation that rises from the rear tooth surface portion side to the front tooth surface portion side. In consideration of the maximum value and the variation of the deformation due to the centrifugal force, it is necessary to increase the clearance between the screw rotors and the clearance between the screw rotor and the casing. Performance could be degraded.

本発明の第1の目的は、回転時の遠心力による変形量のバラツキを抑えることができるスクリューロータを提供することにある。
本発明の第2の目的は、回転時の遠心力による変形を抑えることができるスクリューロータを提供することにある。
A first object of the present invention is to provide a screw rotor that can suppress variation in deformation due to centrifugal force during rotation.
A second object of the present invention is to provide a screw rotor that can suppress deformation due to centrifugal force during rotation.

(1)上記目的を達成するために、本発明は、複数の螺旋状の歯を有し中空に形成されたスクリューロータにおいて、歯の頂を境とした前側歯面部及び後側歯面部は、それら径方向断面形状が非対称となるように形成し、それぞれ厚み寸法が径方向断面における弧長寸法に反比例するように形成する。   (1) In order to achieve the above object, the present invention provides a screw rotor that has a plurality of helical teeth and is formed hollow, and the front tooth surface portion and the rear tooth surface portion with the tooth crest as a boundary are: These radial cross-sectional shapes are formed so as to be asymmetric, and the thickness dimensions are respectively formed in inverse proportion to the arc length dimension in the radial cross-section.

本発明においては、スクリューロータにおける歯の頂を境とした前側歯面部及び後側歯面部は、それら径方向断面形状が非対称で、それぞれ厚み寸法が径方向断面における弧長寸法に反比例する。詳細には例えば、径方向断面における弧長寸法が比較的長い前側歯面部は厚み寸法を比較的小さくし、径方向断面における弧長寸法が比較的短い後側歯面部は厚み寸法を比較的大きくする。これにより、前側歯面部及び後側歯面部は径方向断面における断面積すなわち質量がほぼ等しくなり、スクリューロータ回転時の遠心力による前側歯面部及び後側歯面部の変形量のバラツキを抑えることができる。したがって、スクリューロータ同士の隙間等をほぼ均等にして小さくすることができ、スクリュー流体機械の性能を向上させることができる。   In the present invention, the front tooth surface portion and the rear tooth surface portion at the tooth crest of the screw rotor are asymmetric in their radial cross-sectional shapes, and the thickness dimension is inversely proportional to the arc length dimension in the radial cross-section. Specifically, for example, the front tooth surface portion having a relatively long arc length dimension in the radial section has a relatively small thickness dimension, and the rear tooth surface section having a relatively short arc length dimension in the radial section has a relatively large thickness dimension. To do. As a result, the front tooth surface portion and the rear tooth surface portion have substantially the same cross-sectional area in the radial cross section, that is, the mass, and the variation in the deformation amount of the front tooth surface portion and the rear tooth surface portion due to the centrifugal force during the rotation of the screw rotor can be suppressed. it can. Therefore, the gaps between the screw rotors can be made substantially uniform and small, and the performance of the screw fluid machine can be improved.

(2)上記目的を達成するために、また本発明は、複数の螺旋状の歯を有し中空に形成されたスクリューロータにおいて、歯の谷部の厚み寸法が歯面部の厚み寸法より大きくなるように形成する。   (2) In order to achieve the above object, according to the present invention, in the screw rotor having a plurality of helical teeth and formed hollow, the thickness dimension of the valley of the teeth is larger than the thickness dimension of the tooth surface part. To form.

本発明においては、例えばスクリューロータを径方向中心部を含めて中空に形成するような場合、歯の谷部の厚み寸法を歯面部(例えば前側歯面部及び後側歯面部)の厚み寸法より大きくする。これにより、遠心力が大きく作用する外周側に位置する歯面部の厚み寸法を小さくするとともに、遠心力が小さく作用する内周側に位置する歯の谷部の厚み寸法を大きくしてスクリューロータ全体の変形強度を高め、遠心力による変形を抑えることができる。したがって、スクリューロータ同士の隙間及びスクリューロータとケーシングの隙間を小さくすることができ、スクリュー流体機械の性能を向上させることができる。   In the present invention, for example, when the screw rotor is formed hollow including the central portion in the radial direction, the thickness dimension of the tooth valley is larger than the thickness dimension of the tooth surface portion (for example, the front tooth surface portion and the rear tooth surface portion). To do. As a result, the thickness dimension of the tooth surface portion located on the outer peripheral side where the centrifugal force acts greatly is reduced, and the thickness dimension of the tooth valley portion located on the inner circumference side where the centrifugal force acts is increased to increase the entire screw rotor. The deformation strength can be increased, and deformation due to centrifugal force can be suppressed. Therefore, the clearance between the screw rotors and the clearance between the screw rotor and the casing can be reduced, and the performance of the screw fluid machine can be improved.

本発明によれば、歯の頂を境とした前側歯面部及び後側歯面部の厚み寸法をそれぞれ径方向断面における弧長寸法に反比例するように形成することにより、スクリューロータ回転時の遠心力による前側歯面部及び後側歯面部の変形量のバラツキを抑えることができる。また本発明によれば、歯の谷部の厚み寸法を歯面部の厚み寸法より大きくなるように形成することにより、スクリューロータ回転時の遠心力による変形を抑えることができる。したがって、スクリューロータ同士の隙間及びスクリューロータとケーシングの隙間を小さくすることができ、スクリュー流体機械の性能を向上させることができる。   According to the present invention, the centrifugal force during rotation of the screw rotor is obtained by forming the thickness dimension of the front tooth surface part and the rear tooth surface part with the tooth crest as a boundary in inverse proportion to the arc length dimension in the radial section. The variation of the deformation amount of the front tooth surface portion and the rear tooth surface portion due to the above can be suppressed. Moreover, according to this invention, the deformation | transformation by the centrifugal force at the time of screw rotor rotation can be suppressed by forming so that the thickness dimension of a trough part of a tooth may become larger than the thickness dimension of a tooth surface part. Therefore, the clearance between the screw rotors and the clearance between the screw rotor and the casing can be reduced, and the performance of the screw fluid machine can be improved.

以下、本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の第1実施形態を図1〜図5により説明する。
図2は、本実施形態によるスクリューロータの適用対象であるスクリュー圧縮機の全体構造を表す軸方向断面図である。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 2 is an axial sectional view showing the overall structure of the screw compressor to which the screw rotor according to the present embodiment is applied.

この図2において、スクリュー圧縮機1は、回転軸が平行でかつ螺旋状の歯が噛み合うようにそれぞれ回転する雄ロータ2及び雌ロータ3(これらを総称してスクリューロータと称す)と、これら雄ロータ2及び雌ロータ3を収納して複数の圧縮作動室(図示せず)を形成するケーシング4とを備えている。ケーシング4には、雄ロータ2及び雌ロータ3を収納する略円筒状ボア5と、前記圧縮作動室に被圧縮流体(例えば空気等)を吸入するための吸入口6と、前記圧縮作動室で生成した圧縮流体を吐出するための吐出口(図示せず)とが設けられている。   In FIG. 2, a screw compressor 1 includes a male rotor 2 and a female rotor 3 (generally referred to as screw rotors) that rotate so that their rotational axes are parallel and mesh with helical teeth. And a casing 4 which houses the rotor 2 and the female rotor 3 and forms a plurality of compression working chambers (not shown). The casing 4 includes a substantially cylindrical bore 5 that houses the male rotor 2 and the female rotor 3, a suction port 6 for sucking a fluid to be compressed (for example, air) into the compression working chamber, and the compression working chamber. A discharge port (not shown) for discharging the generated compressed fluid is provided.

雄ロータ2及び雌ロータ3は、吸入側(図2中右側)に設けた例えばラジアル荷重を負担する円筒ころ軸受7と、吐出側(図2中左側)に設けた例えばラジアル荷重及びアキシャル荷重の双方を負担する組合アンギュラ玉軸受8により回動可能に支持されている。円筒ころ軸受7の前記圧縮作動室側(図2中左側)には潤滑油用シール9が設けられ、組合アンギュラ玉軸受8の前記圧縮作動室側(図2中右側)には潤滑油用シール10及び圧縮流体用シール11が設けられており、軸受7,8を潤滑冷却する潤滑油が前記圧縮作動室に流入しないようになっている。   The male rotor 2 and the female rotor 3 include, for example, a cylindrical roller bearing 7 that bears a radial load provided on the suction side (right side in FIG. 2) and a radial load and an axial load provided on the discharge side (left side in FIG. 2). It is rotatably supported by a combination angular contact ball bearing 8 that bears both. A lubricating oil seal 9 is provided on the compression working chamber side (left side in FIG. 2) of the cylindrical roller bearing 7, and a lubricating oil seal is provided on the compression working chamber side (right side in FIG. 2) of the combined angular ball bearing 8. 10 and a seal 11 for compressed fluid are provided so that lubricating oil for lubricating and cooling the bearings 7 and 8 does not flow into the compression working chamber.

また、雄ロータ2及び雌ロータ3の吐出側端部には一対のタイミングギヤ12A,12Bが嵌合されている。そして、雌ロータ3の吐出側端部に連結された回動機(図示せず)により回転動力が伝達されると、雄ロータ2及び雌ロータ3は回転駆動するようになっている。このとき、上記圧縮作動室は、雄ロータ2及び雌ロータ3の軸方向(吸入側から吐出側、図2中右側から左側)に移動しながら、その容積が増加されて吸入口6から被圧縮流体を吸入し、容積が減少されて圧縮するようになっている。   A pair of timing gears 12 </ b> A and 12 </ b> B are fitted to the discharge side end portions of the male rotor 2 and the female rotor 3. When the rotational power is transmitted by a rotating machine (not shown) connected to the discharge side end of the female rotor 3, the male rotor 2 and the female rotor 3 are rotationally driven. At this time, the volume of the compression working chamber is increased while moving in the axial direction of the male rotor 2 and the female rotor 3 (from the suction side to the discharge side, from the right side to the left side in FIG. 2), and is compressed from the suction port 6. The fluid is sucked and the volume is reduced and compressed.

上記雄ロータ2は、上記雌ロータ3に比べ、中空にできる体積が大きく質量低減効果を大きく得ることができる。そのため、本実施形態によるスクリューロータは、雄ロータ2を例にとって詳細を説明する。図3は、雄ロータ2の全体構造を表す斜視図であり、図4は、雄ロータ2の詳細構造を表す軸方向断面図であり、図1は、雄ロータ2の詳細構造を表す径方向断面図である。   Compared with the female rotor 3, the male rotor 2 has a large volume that can be made hollow and can achieve a large mass reduction effect. Therefore, the screw rotor according to the present embodiment will be described in detail by taking the male rotor 2 as an example. FIG. 3 is a perspective view showing the entire structure of the male rotor 2, FIG. 4 is an axial sectional view showing the detailed structure of the male rotor 2, and FIG. 1 is a radial direction showing the detailed structure of the male rotor 2. It is sectional drawing.

これら図3、図4、及び図1において、雄ロータ2は、例えば3つの螺旋状の歯13を有するものであり、外周側に形成された螺旋状の歯部14と、この歯部14と略相似形状にかつ径方向中心部を含めて中空に形成された中空部15と、この中空部15の軸方向中央に設けられ、その垂線方向が軸方向に平行である補強板16とを備えたねじ部材17を備えている。このねじ部材17の軸方向一方側(図1中左側)端部18A及び他方側(図1中右側)端部18Bには開口19A,19Bが形成され、これら開口19a,19Bに略円筒状の軸部材(シャフト)20A,20Bの端部が嵌合され、例えば高密度溶接(電子ビーム溶接、レーザビーム溶接、光ビーム溶接等)で接合されている。なお、ねじ部材17及び軸部材20A,20Bは、それぞれ鋳物により製作されている。   3, 4, and 1, the male rotor 2 has, for example, three helical teeth 13, a helical tooth portion 14 formed on the outer peripheral side, and the tooth portion 14. A hollow portion 15 having a substantially similar shape and hollow including the central portion in the radial direction, and a reinforcing plate 16 provided at the axial center of the hollow portion 15 and having a perpendicular direction parallel to the axial direction. A screw member 17 is provided. Openings 19A and 19B are formed at one end (left side in FIG. 1) 18A and the other end (right side in FIG. 1) 18B in the axial direction of the screw member 17. The openings 19a and 19B are substantially cylindrical. End portions of the shaft members (shafts) 20A and 20B are fitted and joined by, for example, high density welding (electron beam welding, laser beam welding, light beam welding, etc.). The screw member 17 and the shaft members 20A and 20B are each made of a casting.

このようにねじ部材17の径方向中心部に軸部材が配置されないように、言い換えれば雄ロータ2が径方向中心部まで中空に形成されるので、雄ロータ2の質量低減が十分に図られている。   In this way, the male rotor 2 is formed hollow up to the radial center so that the shaft member is not disposed at the radial center of the screw member 17, so that the mass of the male rotor 2 is sufficiently reduced. Yes.

雄ロータ2の歯部14は、歯の頂21を境とした前側(回転方向側)歯面部22及び後側(回転方向とは反対側)歯面部23と、歯の谷部24とで構成されており、前側歯面部22及び後側歯面部23は、それら径方向断面形状が非対称となるように形成されている。詳細には、前側歯面部22の径方向断面形状は、雄ロータ2周方向に対し比較的ねかせるような形状であり、径方向断面における弧長寸法Lが比較的大きくなっている。また、後側歯面部23の径方向断面形状は、雄ロータ2周方向に対し比較的たたせるような形状であり、径方向断面における弧長寸法Lが比較的小さくなっている。そして、本実施形態の大きな特徴として、前側歯面部22の厚み寸法dが弧長寸法Lに反比例して比較的小さく、後側歯面部23の厚み寸法dが弧長寸法Lに反比例して比較的大きくなるように形成されている。なお、本実施形態における前側歯面部22の厚み寸法d及び後側歯面部23の厚み寸法dは、それぞれ全面に亘ってほぼ一定値としている。 The tooth portion 14 of the male rotor 2 includes a front side (rotation direction side) tooth surface portion 22 and a rear side (opposite to the rotation direction) tooth surface portion 23 with a tooth apex 21 as a boundary, and a tooth valley portion 24. The front tooth surface portion 22 and the rear tooth surface portion 23 are formed so that their radial cross-sectional shapes are asymmetric. In particular, the radial cross-sectional shape of the front teeth surface 22 is relatively lay time such a shape to the male rotor 2 circumferential direction, the arc length dimension L 1 is relatively large in the radial cross section. Further, the radial cross-sectional shape of the rear tooth surface 23 is shaped like a relatively plentifully to to the male rotor 2 circumferential direction, the arc length dimension L 2 is relatively small in the radial cross section. As a major feature of this embodiment, the thickness dimension d 1 of the front tooth surface portion 22 is relatively small in inverse proportion to the arc length dimension L 1, and the thickness dimension d 2 of the rear tooth surface portion 23 becomes the arc length dimension L 2 . It is formed so as to be relatively large in inverse proportion. The thickness dimension d 2 of the thickness d 1 and a rear tooth surface 23 of the front tooth surface 22 in this embodiment, each have a substantially constant value over the entire surface.

次に、本実施形態のスクリュー圧縮機1の動作を説明する。
スクリュー圧縮機1の運転時、回動機の回転動力が伝達されると、雄ロータ2及び雌ロータ3が回転駆動する。これら雄ロータ2及び雌ロータ3の噛合回転に伴って、圧縮作動室は雄ロータ2及び雌ロータ3の軸方向(吸込側から吐出側)に移動しながら、その容積が増加されて吸入口6から被圧縮流体を吸入し、容積が減少されて圧縮する。
Next, operation | movement of the screw compressor 1 of this embodiment is demonstrated.
When the rotational power of the rotating machine is transmitted during the operation of the screw compressor 1, the male rotor 2 and the female rotor 3 are rotationally driven. As the male rotor 2 and the female rotor 3 mesh with each other, the compression working chamber moves in the axial direction (from the suction side to the discharge side) of the male rotor 2 and the female rotor 3, and its volume is increased, and the suction port 6. The fluid to be compressed is sucked in, and the volume is reduced and compressed.

このような動作における本実施形態の作用効果を、比較例を用いて説明する。図5(a)は、比較例による雄ロータ2’の回転時の変形を簡略化して表す径方向断面図であり、図5(b)は、本実施形態による上記雄ロータ2の回転時の変形を簡略化して表す径方向断面図である。なお、これら図5(a)及び図5(b)において、前側歯面部及び後側歯面部の変形位置を二点鎖線で示す。   The effect of this embodiment in such an operation will be described using a comparative example. FIG. 5A is a radial cross-sectional view showing a simplified deformation at the time of rotation of the male rotor 2 ′ according to the comparative example, and FIG. 5B is a view at the time of the rotation of the male rotor 2 according to the present embodiment. It is radial direction sectional drawing which simplifies and represents a deformation | transformation. In addition, in these Fig.5 (a) and FIG.5 (b), the deformation | transformation position of a front side tooth surface part and a back side tooth surface part is shown with a dashed-two dotted line.

図5(a)に示す比較例の雄ロータ2’では、前側歯面部22’の厚み寸法d’及び後側歯面部23’の厚み寸法d’が等しくなるように形成する。これにより、弧長寸法Lが比較的大きい前側歯面部22’は、弧長寸法Lが比較的小さい後側歯面部23’に比べ、径方向断面における断面積すなわち質量が大きくなってしまう。そのため、雄ロータ2’回転時の遠心力による前側歯面部22’の変形量(変位幅)が後側歯面部23’の変形量より大きくなり、後側歯面部側22’から前側歯面部側23’へ立ち上がるような変形が生じる。 ', The front tooth surface 22' 5 male rotor 2 in the comparative example shown in (a) the thickness d 2 of the thickness d 1 'and the rear tooth surface 23' of the form to be equal. Thus, the arc length dimension L 1 is relatively large front teeth surface 22 ', the side tooth surface 23 after the arc length dimension L 2 is relatively small' compared to the cross-sectional area i.e. mass is increased in the radial cross section . Therefore, the deformation amount (displacement width) of the front tooth surface portion 22 ′ due to the centrifugal force during rotation of the male rotor 2 ′ becomes larger than the deformation amount of the rear tooth surface portion 23 ′, and the front tooth surface portion side from the rear tooth surface portion side 22 ′. Deformation that rises to 23 'occurs.

これに対し、図5(b)に示す本実施形態の雄ロータ2では、前側歯面部22の厚み寸法d及び後側歯面部23の厚み寸法dがそれぞれ径方向断面における弧長寸法L,Lに反比例するように形成する。これにより、前側歯面部22及び後側歯面部23は、径方向断面における断面積すなわち質量がほぼ等しくなり、雄ロータ2’回転時の遠心力による変形量のバラツキを抑えることができる。したがって、雄ロータ2と雌ロータ3の隙間等をほぼ均等にして小さくすることができ、圧縮流体の漏れ量が小さくなってスクリュー圧縮機1の性能を向上させることができる。また、雄ロータ2と雌ロータ3等の接触や衝突を防止することができる。 In contrast, FIG. 5, the male rotor 2 of this embodiment shown in (b), the arc length dimension thickness d 2 of the thickness d 1 and a rear tooth surface 23 of the front tooth surface 22 in the radial direction cross each L 1, is formed so as to be inversely proportional to L 2. Accordingly, the front tooth surface portion 22 and the rear tooth surface portion 23 have substantially the same cross-sectional area, that is, mass, in the radial cross section, and can suppress variation in deformation due to the centrifugal force when the male rotor 2 ′ rotates. Therefore, the gaps between the male rotor 2 and the female rotor 3 can be made substantially uniform and small, and the amount of compressed fluid leakage is reduced, so that the performance of the screw compressor 1 can be improved. Further, contact and collision between the male rotor 2 and the female rotor 3 can be prevented.

また、雄ロータ2は、径方向中心部まで中空に形成して質量低減を十分に図りつつも、中空部15にその垂線方向が軸方向に平行な補強板16を設ける。これにより、補強板16を設けない場合に比べ雄ロータ2全体の変形強度を高めることができ、回転時の遠心力による変形を抑えることができる。   The male rotor 2 is provided with a reinforcing plate 16 whose vertical direction is parallel to the axial direction in the hollow portion 15 while being sufficiently hollowed out to the central portion in the radial direction to sufficiently reduce the mass. Thereby, compared with the case where the reinforcement board 16 is not provided, the deformation strength of the whole male rotor 2 can be raised, and the deformation | transformation by the centrifugal force at the time of rotation can be suppressed.

なお、上記第1の実施形態においては、前側歯面部22の厚み寸法d及び後側歯面部23の厚み寸法dをそれぞれ全面に亘ってほぼ一定値とする場合を例にとって説明したが、これに限られない。すなわち、例えば前側歯面部及び後側歯面部は、それら径方向断面における断面積が等しくなるように、かつそれぞれ厚み寸法が歯の頂に向かって徐々に小さくなるように形成してもよい。このような場合においても、上記実施形態同様の効果を得ることができる。 In the above first embodiment has been described taking the case of a substantially constant value over the thickness d 2 of the thickness d 1 and a rear tooth surface 23 of the front tooth surface 22 on the entire surface, respectively, It is not limited to this. That is, for example, the front tooth surface portion and the rear tooth surface portion may be formed such that their cross-sectional areas in the radial cross section are equal and the thickness dimension gradually decreases toward the top of the tooth. Even in such a case, the same effect as that of the above embodiment can be obtained.

本発明の第2実施形態を図6により説明する。本実施形態は、上記歯の谷部24の厚み寸法が大きくなるように形成した実施形態である。   A second embodiment of the present invention will be described with reference to FIG. The present embodiment is an embodiment formed so that the thickness dimension of the tooth valley portion 24 is increased.

図6は、本実施形態による雄ロータの詳細構造を表す軸方向断面図である。この図6において、上記一実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。   FIG. 6 is an axial sectional view showing a detailed structure of the male rotor according to the present embodiment. In FIG. 6, parts that are the same as in the above embodiment are given the same reference numerals, and descriptions thereof are omitted as appropriate.

本実施形態における雄ロータ25では、例えば上記補強板16を設けない構造とするものの、歯の谷部24の厚み寸法dが歯面部26(上記前側歯面部22及び後側歯面部23の総称)の厚み寸法dより大きくなるように形成する。 In the male rotor 25 in the present embodiment, for example, generic name for the although not the reinforcing plate 16 provided structure, thickness d 3 of the troughs 24 of the teeth tooth face 26 (the front teeth surface 22 and the rear tooth surface 23 ) formed to be larger than the thickness d 4 of the.

以上のように構成された本実施形態においては、遠心力が大きく作用する外周側に位置する歯面部26の厚み寸法dを小さくするとともに、遠心力が小さく作用する内周側に位置する歯の谷部24の厚み寸法dを大きくして雄ロータ25全体の変形強度を高め、回転時の遠心力による変形を抑えることができる。したがって、雄ロータ25と雌ロータ3の隙間及び雄ロータ25とケーシング4の隙間を小さくすることができ、圧縮流体の漏れ量が小さくなってスクリュー圧縮機1の性能を向上させることができる。また、雄ロータ25と雌ロータ3、または雄ロータ25とケーシング4の接触や衝突を防止することができる。 In the present embodiment configured as described above, as well as reducing the thickness d 4 of the tooth surface 26 located on the outer peripheral side of the centrifugal force acts increases, the teeth located on the inner peripheral side of the centrifugal force acts small of increasing the thickness d 3 of the troughs 24 increases the deformation strength of the entire male rotor 25, it is possible to suppress the deformation due to centrifugal force during rotation. Therefore, the gap between the male rotor 25 and the female rotor 3 and the gap between the male rotor 25 and the casing 4 can be reduced, the amount of leakage of the compressed fluid is reduced, and the performance of the screw compressor 1 can be improved. Further, contact and collision between the male rotor 25 and the female rotor 3 or between the male rotor 25 and the casing 4 can be prevented.

なお、上記第1及び第2の実施形態は同時に適用してもよく、このような場合も、上述した効果を得ることができる。また、雄ロータ2,25に限られず、雌ロータ3に適用してもよいことは言うまでもない。   The first and second embodiments may be applied at the same time, and in this case, the above-described effects can be obtained. Needless to say, the present invention is not limited to the male rotors 2 and 25 and may be applied to the female rotor 3.

本発明のスクリューロータの第1実施形態の詳細構造を表す径方向断面図である。It is radial direction sectional drawing showing the detailed structure of 1st Embodiment of the screw rotor of this invention. 本発明のスクリューロータの適用対象であるスクリュー圧縮機の全体構造を表す軸方向断面図である。It is an axial sectional view showing the whole structure of the screw compressor which is the application object of the screw rotor of the present invention. 本発明のスクリューロータの第1の実施形態の全体構造を表す斜視図である。It is a perspective view showing the whole structure of 1st Embodiment of the screw rotor of this invention. 本発明のスクリューロータの第1の実施形態の詳細構造を表す軸方向断面図である。It is an axial direction sectional view showing detailed structure of a 1st embodiment of a screw rotor of the present invention. 本発明のスクリューロータの比較例及び第1の実施形態における回転時の変形をそれぞれ表す径方向断面図である。It is radial sectional drawing showing the deformation | transformation at the time of the rotation in the comparative example and 1st Embodiment of the screw rotor of this invention, respectively. 本発明のスクリューロータの第2の実施形態の詳細構造を表す軸方向断面図である。It is an axial sectional view showing the detailed structure of the second embodiment of the screw rotor of the present invention.

符号の説明Explanation of symbols

2 雄ロータ
3 雌ロータ
13 歯
21 歯の頂
22 前側歯面部
23 後側歯面部
24 歯の谷部
25 雄ロータ
26 歯面部
前側歯面部の厚み寸法
後側歯面部の厚み寸法
歯の谷部の厚み寸法
歯面部の厚み寸法
前側歯面部の径方向断面における弧長寸法
後側歯面部の径方向断面における弧長寸法
2 Male rotor 3 Female rotor 13 Teeth 21 Top of tooth 22 Front tooth surface part 23 Rear tooth surface part 24 Teeth valley part 25 Male rotor 26 Tooth surface part d 1 Thickness dimension d of front tooth surface part 2 Thickness dimension d of rear tooth surface part Thickness dimension d of three tooth valleys Thickness dimension L of four tooth surface parts 1 Arc length dimension in radial section of front tooth surface part L 2 Arc length dimension in radial section of rear tooth surface part

Claims (2)

複数の螺旋状の歯を有し中空に形成されたスクリューロータにおいて、
歯の頂を境とした前側歯面部及び後側歯面部は、それら径方向断面形状が非対称となるように形成し、それぞれ厚み寸法が径方向断面における弧長寸法に反比例するように形成したことを特徴とするスクリューロータ。
In a screw rotor having a plurality of helical teeth and formed hollow,
The front tooth surface part and the back tooth surface part with the tooth crest as a boundary are formed so that their radial cross-sectional shapes are asymmetric, and the thickness dimensions are respectively formed in inverse proportion to the arc length dimension in the radial cross-section. A screw rotor characterized by
複数の螺旋状の歯を有し中空に形成されたスクリューロータにおいて、
歯の谷部の厚み寸法が歯面部の厚み寸法より大きくなるように形成したことを特徴とするスクリューロータ。
In a screw rotor having a plurality of helical teeth and formed hollow,
A screw rotor, characterized in that a thickness dimension of a tooth valley portion is formed to be larger than a thickness dimension of a tooth surface portion.
JP2005028540A 2005-02-04 2005-02-04 Screw rotor Expired - Fee Related JP4684671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028540A JP4684671B2 (en) 2005-02-04 2005-02-04 Screw rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028540A JP4684671B2 (en) 2005-02-04 2005-02-04 Screw rotor

Publications (2)

Publication Number Publication Date
JP2006214366A true JP2006214366A (en) 2006-08-17
JP4684671B2 JP4684671B2 (en) 2011-05-18

Family

ID=36977791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028540A Expired - Fee Related JP4684671B2 (en) 2005-02-04 2005-02-04 Screw rotor

Country Status (1)

Country Link
JP (1) JP4684671B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110902A1 (en) * 2015-01-05 2016-07-14 株式会社アルバック Screw vacuum pump
WO2019073679A1 (en) * 2017-10-12 2019-04-18 株式会社日立産機システム Screw compressor and method for manufacturing same
WO2019188322A1 (en) * 2018-03-30 2019-10-03 株式会社日立産機システム Screw rotor, fluid machine main body, and fluid machine
WO2019188323A1 (en) * 2018-03-30 2019-10-03 株式会社日立産機システム Screw rotor and fluid machine body
JP2021038681A (en) * 2019-09-02 2021-03-11 株式会社日立産機システム Screw rotor and fluid machine
US11536270B2 (en) 2018-08-29 2022-12-27 Hitachi Industrial Equipment Systems Co., Ltd. Screw rotor and screw-type fluid machine main body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198401U (en) * 1987-06-12 1988-12-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198401U (en) * 1987-06-12 1988-12-21

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110902A1 (en) * 2015-01-05 2016-07-14 株式会社アルバック Screw vacuum pump
JPWO2016110902A1 (en) * 2015-01-05 2017-08-10 株式会社アルバック Screw vacuum pump
WO2019073679A1 (en) * 2017-10-12 2019-04-18 株式会社日立産機システム Screw compressor and method for manufacturing same
JP2019073982A (en) * 2017-10-12 2019-05-16 株式会社日立産機システム Screw compressor and method for manufacturing the same
CN111836964A (en) * 2018-03-30 2020-10-27 株式会社日立产机*** Screw rotor, fluid machine body, and fluid machine
WO2019188323A1 (en) * 2018-03-30 2019-10-03 株式会社日立産機システム Screw rotor and fluid machine body
JP2019178614A (en) * 2018-03-30 2019-10-17 株式会社日立産機システム Screw rotor and fluid machine body
CN111727323A (en) * 2018-03-30 2020-09-29 株式会社日立产机*** Screw rotor and fluid machine body
WO2019188322A1 (en) * 2018-03-30 2019-10-03 株式会社日立産機システム Screw rotor, fluid machine main body, and fluid machine
JPWO2019188322A1 (en) * 2018-03-30 2021-01-07 株式会社日立産機システム Screw rotor, fluid machine body and fluid machine
US11225965B2 (en) 2018-03-30 2022-01-18 Hitachi Industrial Equipment Systems Co., Ltd. Screw rotor and fluid machine body
JP7096044B2 (en) 2018-03-30 2022-07-05 株式会社日立産機システム Screw rotor and fluid machine body
US11415134B2 (en) 2018-03-30 2022-08-16 Hitachi Industrial Equipment Systems Co., Ltd. Screw rotor, fluid machine main body, and fluid machine
US11536270B2 (en) 2018-08-29 2022-12-27 Hitachi Industrial Equipment Systems Co., Ltd. Screw rotor and screw-type fluid machine main body
JP2021038681A (en) * 2019-09-02 2021-03-11 株式会社日立産機システム Screw rotor and fluid machine
JP7284045B2 (en) 2019-09-02 2023-05-30 株式会社日立産機システム Fluid machinery

Also Published As

Publication number Publication date
JP4684671B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
EP2221482B1 (en) Multi-stage dry pump
JP4684671B2 (en) Screw rotor
JP2009162220A (en) Roots-type blower reduced acoustic signature method and apparatus
JP2015151954A (en) scroll compressor
JP6545787B2 (en) Rotor pair for screw block compression block
WO2021103525A1 (en) Compressor and refrigeration device
JP3240851B2 (en) Dry screw fluid machine
KR101297743B1 (en) Dry pump
JP2611371B2 (en) Trochoid pump
JP7132909B2 (en) screw vacuum pump
JP6759340B2 (en) Double rotation scroll type compressor
JP4821660B2 (en) Single screw compressor
JP4485770B2 (en) Oil pump rotor
CN210949139U (en) Compressor and refrigeration equipment
JP6618663B1 (en) Slide bearing structure and scroll compressor
JP5074511B2 (en) Positive displacement gas compressor
JP7211947B2 (en) pump sealing
JP3911469B2 (en) Oil-free screw compressor for fuel cells
JP2018509549A (en) Rotor for rotary engine
JPH11210644A (en) Gear pump motor
JPH0515609Y2 (en)
JP3979489B2 (en) Screw rotor and screw machine
JP7284045B2 (en) Fluid machinery
JP4320906B2 (en) Screw compressor rotor structure
JP2007192035A (en) Vane rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees