JP2006212642A - Method for manufacturing casting mold for precision casting - Google Patents

Method for manufacturing casting mold for precision casting Download PDF

Info

Publication number
JP2006212642A
JP2006212642A JP2005025023A JP2005025023A JP2006212642A JP 2006212642 A JP2006212642 A JP 2006212642A JP 2005025023 A JP2005025023 A JP 2005025023A JP 2005025023 A JP2005025023 A JP 2005025023A JP 2006212642 A JP2006212642 A JP 2006212642A
Authority
JP
Japan
Prior art keywords
casting mold
precision casting
mold
producing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005025023A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yagi
裕幸 八木
Katsuyuki Sugitani
勝幸 杉谷
Hidemi Kawashiri
秀美 河尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Castings Co Ltd
Original Assignee
Daido Castings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Castings Co Ltd filed Critical Daido Castings Co Ltd
Priority to JP2005025023A priority Critical patent/JP2006212642A/en
Publication of JP2006212642A publication Critical patent/JP2006212642A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and economically manufacturing a casting mold for precision casting, which casting mold has the practically sufficient strength enough to bear a load during its carriage. <P>SOLUTION: The casting mold for precision casting is made by the following first, second, third steps. The first step comprises making an intermediate laminated body having a cavity corresponding to a wax pattern by removing the wax by the lost wax process. The second step is for making a hardened body having the intermediate laminated body integrally therein by setting the intermediate laminated body made in the first step in a vessel and by pouring slurry of self-curing mold material between both of them. The third step is to obtain the casting mold for precision casting by baking the hardened body made in the second step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は精密鋳造用鋳型の製造方法に関し、更に詳しくは運搬時の荷重にも耐え得る実用上充分な強度を有する精密鋳造用鋳型を簡便に且つ経済的に製造することができる方法に関する。   The present invention relates to a method for manufacturing a precision casting mold, and more particularly, to a method for easily and economically manufacturing a precision casting mold having a practically sufficient strength that can withstand a load during transportation.

従来一般に、精密鋳造用鋳型はロストワックス法により製造されている。ワックス模型に対しスラリーの付着、スタッコの付着及び乾燥を繰り返して、該ワックス模型の表面に積層体を形成した後、脱ワックス処理し、焼成することにより、該ワックス模型に相当するキャビティを有する精密鋳造用鋳型を製造しているのである(例えば特許文献1〜3参照)。   Conventionally, precision casting molds are generally produced by the lost wax method. Precision with a cavity corresponding to the wax model is obtained by repeatedly depositing slurry, sticking stucco and drying the wax model to form a laminate on the surface of the wax model, then dewaxing and firing. A casting mold is manufactured (for example, see Patent Documents 1 to 3).

ところで、精密鋳造用鋳型の製造や使用においては、その製造過程における脱ワックス処理時の荷重、製造した精密鋳造用鋳型を鋳造装置の設置されている場所まで運搬するときの運搬時の荷重、鋳造時の荷重等が加わる。これらの荷重のうちで最も小さいのが脱ワックス処理時の荷重であるが、最も大きいのが運搬時の荷重であり、したがって精密鋳造用鋳型にはかかる運搬時の荷重に耐え得るだけの強度が求められる。このため従来は、ワックス模型の表面にスラリーの付着、スタッコの付着及び乾燥により形成される層を1層とする通常は8層以上の積層体を形成した後、脱ワックス処理し、焼成することにより精密鋳造用鋳型を製造している。しかし、運搬時の荷重に耐え得るだけの強度を有する精密鋳造用鋳型を製造するため、前記のように層数の多い積層体を形成するのは、その分だけ手間がかかり、また相応に高価なスラリーやスタッコ用の耐火材が必要となる。
特開平8−174145号公報 特開2003−225738号公報 特開2003−225739号公報
By the way, in the manufacture and use of precision casting molds, the load at the time of dewaxing in the manufacturing process, the load at the time of transporting the manufactured precision casting mold to the place where the casting apparatus is installed, the casting The load of time is added. Of these loads, the smallest is the load during the dewaxing process, but the largest is the load during transportation, and therefore the precision casting mold is strong enough to withstand such transportation load. Desired. For this reason, conventionally, after forming a laminate of usually 8 or more layers, the layer formed by adhesion of slurry, stucco and drying on the surface of the wax model is usually dewaxed and fired. The mold for precision casting is manufactured. However, in order to manufacture a precision casting mold having a strength sufficient to withstand the load during transportation, forming a laminate having a large number of layers as described above is time-consuming and correspondingly expensive. Refractory materials for slurries and stucco are required.
JP-A-8-174145 JP 2003-225738 A JP 2003-225739 A

本発明が解決しようとする課題は、運搬時の荷重にも耐え得る実用上充分な強度を有する精密鋳造用鋳型を簡便に且つ経済的に製造することができる方法を提供する処にある。   The problem to be solved by the present invention is to provide a method capable of easily and economically producing a precision casting mold having practically sufficient strength that can withstand a load during transportation.

前記の課題を解決する本発明は、下記の第1工程、第2工程及び第3工程を経ることを特徴とする精密鋳造用鋳型の製造方法に係る。
第1工程:ロストワックス法にしたがい、脱ワックス処理して、ワックス模型に相当するキャビティを有する中間積層体を得る工程。
第2工程:第1工程の中間積層体を容器にセットし、双方の間に自硬性鋳型材のスラリーを注入して硬化させ、内部に中間積層体を一体的に有する硬化体を得る工程。
第3工程:第2工程の硬化体を焼成して、精密鋳造用鋳型を得る工程。
The present invention for solving the above-mentioned problems relates to a method for producing a precision casting mold, which is characterized by passing through the following first step, second step and third step.
First step: A step of obtaining an intermediate laminate having a cavity corresponding to a wax model by dewaxing according to the lost wax method.
2nd process: The process of setting the intermediate laminated body of a 1st process to a container, inject | pouring the slurry of a self-hardening casting_mold | template material between both, making it harden | cure, and obtaining the hardening body which has an intermediate laminated body integrally inside.
3rd process: The process of baking the hardening body of a 2nd process and obtaining the casting mold for precision casting.

本発明に係る精密鋳造用鋳型の製造方法(以下、単に本発明の製造方法という)は、以下に詳述するような第1工程、第2工程及び第3工程を経る方法である。第1工程は、ロストワックス法にしたがい、脱ワックス処理して、ワックス模型に相当するキャビティを有する中間積層体を得る工程である。ワックス模型に対しスラリーの付着、スタッコの付着及び乾燥を繰り返して、該ワックス模型の表面に中間積層体を形成し、脱ワックス処理するのである。ここで中間積層体は、それ自体として前記したような脱ワックス処理時の荷重に耐え得るが、運搬時の荷重には耐え得ない程度の強度を有する比較的に層数の少ない積層体を意味する。したがって中間積層体は、前記したような従来法における積層体よりも層数が少なく、スラリーの付着、スタッコの付着及び乾燥により形成される層を1層とするとき、通常は3〜6層の積層体であり、好ましくは4又は5層の積層体である。   The method for producing a precision casting mold according to the present invention (hereinafter simply referred to as the production method of the present invention) is a method that undergoes the first step, the second step, and the third step as described in detail below. The first step is a step of obtaining an intermediate laminate having a cavity corresponding to a wax model by dewaxing according to the lost wax method. Slurry adhesion, stucco adhesion, and drying are repeated on the wax model to form an intermediate laminate on the surface of the wax model, and dewaxing is performed. Here, the intermediate laminate means a laminate with a relatively small number of layers that can withstand the load during the dewaxing process as described above but has a strength that cannot withstand the load during transportation. To do. Therefore, the intermediate laminate has a smaller number of layers than the laminate in the conventional method as described above, and when the layer formed by slurry adhesion, stucco adhesion and drying is one layer, usually 3 to 6 layers. A laminate, preferably a laminate of 4 or 5 layers.

第2工程は、第1工程の中間積層体を容器にセットし、双方の間に自硬性鋳型材のスラリーを注入して硬化させ、内部に中間積層体を一体的に有する硬化体を得る工程である。例えば、底面に開口を有する有底円筒形の容器内に、該開口から中間積層体の湯道を取り出した状態で該中間積層体を収容し、該容器と該中間積層体との間に自硬性鋳型材のスラリーを注入して硬化させるのである。かくして得られる硬化体は、内部に中間積層体を、また該中間積層体を覆う外部に自硬性鋳型材のスラリーの硬化部を一体的に有するものとなり、結果としてかかる硬化部が中間積層体の強度不足を補うこととなる。   The second step is a step of setting the intermediate laminate of the first step in a container, injecting and curing a slurry of a self-hardening mold material between the two, and obtaining a cured body integrally having the intermediate laminate inside. It is. For example, the intermediate laminate is accommodated in a bottomed cylindrical container having an opening on the bottom surface with the runner of the intermediate laminate taken out from the opening, and the container is automatically placed between the container and the intermediate laminate. A slurry of a hard mold material is injected and cured. The cured body thus obtained has an intermediate laminate inside and a cured portion of a slurry of a self-hardening mold material outside which covers the intermediate laminate, and as a result, such a cured portion is the intermediate laminate. It will compensate for the lack of strength.

第2工程で用いる自硬性鋳型材は自己硬化性を有するものであればその種類を特に制限されないが、耐火砂、硬化材、結合材及び起泡材を含有して成るものが好ましく、なかでも94〜98質量%の耐火砂と2〜6質量%の硬化材とからなる粉体資材100質量部当たり、結合材を5〜30質量部及び起泡材を0.2〜0.8質量部の割合で含有してなるものがより好ましく、96〜97質量%の耐火砂と3〜4質量%の硬化材とからなる粉体資材100質量部当たり、結合材を18〜25質量部及び起泡材を0.4〜0.8質量部の割合で含有してなるものが特に好ましい。自硬性鋳型材のスラリーの調製、注入及び自己硬化を円滑に促して、充分な強度を有する硬化体を得るためである。   The type of the self-hardening mold material used in the second step is not particularly limited as long as it has self-curing properties, but preferably contains fireproof sand, a hardener, a binder and a foaming material. The binder is 5 to 30 parts by mass and the foaming material is 0.2 to 0.8 parts by mass per 100 parts by mass of the powder material composed of 94 to 98% by mass of refractory sand and 2 to 6% by mass of the hardener. More preferably, the binder is contained in an amount of 18 to 25 parts by mass and 100 parts by mass of the powder material consisting of 96 to 97% by mass of refractory sand and 3 to 4% by mass of a hardener. What contains a foam material in the ratio of 0.4-0.8 mass part is especially preferable. This is because the preparation, injection, and self-curing of the self-hardening mold material slurry are smoothly promoted to obtain a cured body having sufficient strength.

自硬性鋳型材の成分として用いる耐火砂、硬化材、結合材及び起泡材はその種類や性状等を特に制限されないが、耐火砂としてはSiOを95質量%以上含有するものが好ましく、これに加えて平均粒径0.15〜0.30mmのものがより好ましく、なかでもかかる物性を有する珪砂及び/又は石英砂が特に好ましい。また硬化材としては2CaO・SiOを70質量%以上含有するものが好ましく、なかでもかかる物性を有するネフェリンスライム、平炉スラグ、高炉スラグ、フェロクロムスラグ、マグネスラグ、セメントがより好ましい。更に結合材としては硬化材中の2CaO・SiOと反応してカルシウム・ハイドロシリケートを作るものが好ましく、なかでも水ガラス及び/又はコロイダルシリカがより好ましい。そして起泡材としては界面活性剤が好ましく、なかでもカチオン性界面活性剤が好ましい。 The type and properties of the refractory sand, hardener, binder and foaming material used as components of the self-hardening mold material are not particularly limited, but the refractory sand preferably contains 95% by mass or more of SiO 2. In addition, those having an average particle diameter of 0.15 to 0.30 mm are more preferable, and silica sand and / or quartz sand having such physical properties are particularly preferable. Also preferably those containing 2CaO · SiO 2 more than 70% by weight as a hardening material, nepheline slime having inter alia such properties, open hearth slag, blast furnace slag, ferro chromium slag, Magunesuragu, cement is more preferable. Further, the binder is preferably one that reacts with 2CaO · SiO 2 in the hardened material to form calcium hydrosilicate, and water glass and / or colloidal silica are more preferred. And as a foaming material, surfactant is preferable and a cationic surfactant is especially preferable.

自硬性鋳型材のスラリーの調製及び調製したスラリーの注入はその方法を特に制限されないが、スラリーの調製に際しては、先ず耐火砂及び硬化材を混合し、次に水及び起泡材を加えて更に混合した後、最後に結合材を加えて混合する方法が好ましく、また調製したスラリーの注入に際しては、容器を振動するのが好ましく、0.1〜1.0mmの振幅で1000〜10000サイクル/分の振動数の振動を加えるのがより好ましい。充分な流動性を有するスラリーを調製し、かかるスラリーを容器に収容した中間積層体の周面に沿い隅々にまで行き渡らせるためである。かくして注入した自硬性鋳型材のスラリーは、室温放置にて1〜4時間程度で充分に硬化する。硬化により中間積層体を覆う外部に形成される硬化部の肉厚は100〜200mm程度とすれば充分である。   The method for preparing the slurry of the self-hardening mold material and the injection of the prepared slurry is not particularly limited. However, in preparing the slurry, first, the refractory sand and the hardener are mixed, and then water and a foaming material are added, and further. After mixing, a method of adding a binder at the end and mixing is preferable, and when injecting the prepared slurry, it is preferable to vibrate the container, and 1000 to 10000 cycles / min with an amplitude of 0.1 to 1.0 mm. It is more preferable to apply vibrations of the following frequency. This is because a slurry having sufficient fluidity is prepared, and the slurry is spread to every corner along the peripheral surface of the intermediate laminate accommodated in the container. The slurry of the self-hardening mold material thus injected is sufficiently cured in about 1 to 4 hours when left at room temperature. It is sufficient that the thickness of the cured portion formed outside covering the intermediate laminate by curing is about 100 to 200 mm.

第3工程は、第2工程の硬化体を焼成して、精密鋳造用鋳型を得る工程である。第2工程の硬化体を焼成炉に入れ、通常は1000〜1100℃で30分〜2時間程度焼成するのである。以上説明した第1工程、第2工程及び第3工程を経る本発明の製造方法によると、その焼成だけでは運搬時の荷重に耐え得ない中間積層体であっても、これが簡便且つ経済的に充分補強されて、運搬時の荷重にも耐え得る実用上充分な強度を有する精密鋳造用鋳型とすることができる。   The third step is a step of firing the cured body of the second step to obtain a precision casting mold. The cured product of the second step is put in a firing furnace and is usually fired at 1000 to 1100 ° C. for about 30 minutes to 2 hours. According to the manufacturing method of the present invention that has passed through the first step, the second step, and the third step described above, even if the intermediate laminate cannot withstand the load during transportation only by firing, this is simple and economical. A precision casting mold that is sufficiently reinforced and has a practically sufficient strength that can withstand the load during transportation can be obtained.

本発明の製造方法によると、運搬時の荷重にも耐え得る実用上充分な強度を有する精密鋳造用鋳型を簡便且つ経済的に製造することができる。   According to the manufacturing method of the present invention, it is possible to easily and economically manufacture a precision casting mold having a practically sufficient strength that can withstand a load during transportation.

図1は本発明の製造方法の第1工程で得られる中間積層体を略示する縦断面図、図2は本発明の製造方法の第2工程の状態を略示する縦断面図、図3は本発明の製造方法の第3工程の状態を略示する縦断面図、図4は本発明の製造方法で製造した精密鋳造用鋳型の使用状態を略示する縦断面図である。ロストワックス法にしたがい、ワックス模型に対しスラリーの付着、スタッコの付着及び乾燥を繰り返して、該ワックス模型の表面に中間積層体を形成し、脱ワックス処理すると、該ワックス模型に相当するキャビティ11を有する中間積層体12が得られる。底面に開口を有する有底円筒形の容器21内に、該開口から中間積層体12の湯道13を取り出した状態で中間積層体12を収容し、容器21と中間積層体12との間に自硬性鋳型材のスラリーを注入して硬化させると、内部に中間積層体12を、また中間積層体12を覆う外部に自硬性鋳型材のスラリーの硬化部22を一体的に有する硬化体23が得られる。硬化体23を焼成炉31に入れて焼成すると、精密鋳造用鋳型32が得られる。精密鋳造用鋳型32を鋳造装置の設置されている場所まで運搬した後、該鋳造装置のチャンバ41内へセットし、その湯道に相当する部分を下方に設置されている溶解炉51内の金属溶湯Aへ挿入して、チャンバ41内を真空ポンプにより減圧雰囲気にすると、金属溶湯Aは精密鋳造用鋳型32のキャビティ11に吸引されるので、これを凝固させることにより当初のワックス模型に相当する鋳造品を得ることができる。   1 is a longitudinal sectional view schematically showing an intermediate laminate obtained in the first step of the manufacturing method of the present invention, FIG. 2 is a longitudinal sectional view schematically showing the state of the second step of the manufacturing method of the present invention, FIG. FIG. 4 is a longitudinal sectional view schematically showing the state of the third step of the production method of the present invention, and FIG. 4 is a longitudinal sectional view schematically showing the state of use of the precision casting mold produced by the production method of the present invention. According to the lost wax method, adhesion of slurry, stucco, and drying are repeated on the wax model to form an intermediate laminate on the surface of the wax model, and after dewaxing, the cavity 11 corresponding to the wax model is formed. The intermediate laminated body 12 which has is obtained. In the bottomed cylindrical container 21 having an opening on the bottom surface, the intermediate laminate 12 is accommodated with the runner 13 of the intermediate laminate 12 taken out from the opening, and between the container 21 and the intermediate laminate 12. When the slurry of the self-hardening mold material is injected and cured, the intermediate laminate 12 is formed inside, and the hardened body 23 integrally having the hardened portion 22 of the self-hardening mold material slurry is formed outside the intermediate laminate 12. can get. When the cured body 23 is placed in a firing furnace 31 and fired, a precision casting mold 32 is obtained. After the precision casting mold 32 is transported to the place where the casting apparatus is installed, it is set into the chamber 41 of the casting apparatus, and the metal in the melting furnace 51 installed below the portion corresponding to the runner is installed. When the molten metal A is inserted into the molten metal A and the inside of the chamber 41 is depressurized by a vacuum pump, the molten metal A is sucked into the cavity 11 of the precision casting mold 32, and this is solidified to correspond to the original wax model. A cast product can be obtained.

実施例1
図1〜3について前記した方法にしたがい、次の条件下で精密鋳造用鋳型を製造した。
ワックス模型に対し付着したスラリー:ジルコンフラワー、溶融シリカ及びコロイダルシリカの混合物のスラリー
ワックス模型に対し付着したスタッコ:シャモット
中間積層体の層数:5層
自硬性鋳型材のスラリー:耐火砂として珪砂を95質量%及び硬化材として高炉セメントを5質量%含有してなる粉体資材10質量部当たり、結合材としてJIS1号の水ガラスを7質量部及び起泡材としてカチオン性界面活性剤を0.2質量部の割合で含有してなる混合物のスラリー
硬化:室温で2時間
焼成:1050℃で1時間
製造した精密鋳造用鋳型を鋳造装置の設置されている場所まで運搬し、図4について前記した方法にしたがい鋳造を行なったが、運搬時及び鋳造時に支障は全くなく、所望通りの鋳造品を得ることができた。
Example 1
According to the method described above with reference to FIGS. 1-3, a precision casting mold was produced under the following conditions.
Slurry adhering to the wax model: slurry of a mixture of zircon flour, fused silica and colloidal silica Stucco adhering to the wax model: Chamotte Number of layers of the intermediate laminate: 5 layers Slurry of self-hardening mold material: Silica sand as refractory sand Per 10 parts by mass of powder material containing 95% by mass and 5% by mass of blast furnace cement as a hardener, 7 parts by mass of JIS 1 water glass as a binder and 0. 1% of a cationic surfactant as a foaming material. Slurry of mixture containing 2 parts by weight Curing: 2 hours at room temperature Firing: 1 hour at 1050 ° C. The manufactured casting mold was transported to the place where the casting apparatus was installed, and described above with reference to FIG. Casting was carried out according to the method, but there was no hindrance during transportation and casting, and the desired cast product could be obtained.

実施例2〜5
説明を省略する他の条件は実施例1と同じとし、自硬性鋳型材として表1に記載のものを用いて、精密鋳造用鋳型を製造した。製造した精密鋳造用鋳型を鋳造装置の設置されている場所まで運搬し、実施例1と同様に鋳造を行なったが、運搬時及び鋳造時に支障は全くなく、所望通りの鋳造品を得ることができた。
Examples 2-5
The other conditions for omitting the explanation were the same as those in Example 1, and a mold for precision casting was manufactured using the self-hardening mold material described in Table 1. The manufactured precision casting mold was transported to the place where the casting apparatus was installed, and casting was performed in the same manner as in Example 1. However, there was no problem during transportation and casting, and a desired cast product could be obtained. did it.

比較例1
実施例1と同様にして7層の中間積層体を得た。この中間積層体をそのまま実施例1と同様の焼成に供し、精密鋳造用鋳型を製造した。製造した精密鋳造用鋳型を鋳造装置の設置されている場所まで運搬し、実施例1と同様の鋳造を行なおうとしたが、運搬時に把持部から精密鋳造用鋳型が破損してしまい、鋳造を行なうことができなかった。

Comparative Example 1
In the same manner as in Example 1, a seven-layer intermediate laminate was obtained. This intermediate laminate was directly subjected to firing in the same manner as in Example 1 to produce a precision casting mold. The manufactured precision casting mold was transported to the place where the casting apparatus was installed, and an attempt was made to perform the same casting as in Example 1. However, the precision casting mold was damaged from the gripping part during transportation, and the casting was performed. I couldn't do it.

Figure 2006212642
Figure 2006212642

表1において、使用量(部)は質量部   In Table 1, the amount used (parts) is parts by mass.

本発明の製造方法の第1工程で得られる中間積層体を略示する縦断面図。The longitudinal cross-sectional view which shows schematically the intermediate | middle laminated body obtained at the 1st process of the manufacturing method of this invention. 本発明の製造方法の第2工程の状態を略示する縦断面図。The longitudinal cross-sectional view which shows schematically the state of the 2nd process of the manufacturing method of this invention. 本発明の製造方法の第3工程の状態を略示する縦断面図。The longitudinal cross-sectional view which briefly shows the state of the 3rd process of the manufacturing method of this invention. 本発明の製造方法で製造した精密鋳造用鋳型の使用状態を略示する縦断面図。The longitudinal cross-sectional view which shows schematically the use condition of the casting mold for precision casting manufactured with the manufacturing method of this invention.

符号の説明Explanation of symbols

11 キャビティ
12 中間積層体
21 容器
22 硬化部
23 硬化体
31 焼成炉
32 精密鋳造用鋳型
41 チャンバ
51 溶解炉
A 金属溶湯
DESCRIPTION OF SYMBOLS 11 Cavity 12 Intermediate laminated body 21 Container 22 Curing part 23 Cured body 31 Firing furnace 32 Precision casting mold 41 Chamber 51 Melting furnace A Metal melt

Claims (8)

下記の第1工程、第2工程及び第3工程を経ることを特徴とする精密鋳造用鋳型の製造方法。
第1工程:ロストワックス法にしたがい、脱ワックス処理して、ワックス模型に相当するキャビティを有する中間積層体を得る工程。
第2工程:第1工程の中間積層体を容器にセットし、双方の間に自硬性鋳型材のスラリーを注入して硬化させ、内部に中間積層体を一体的に有する硬化体を得る工程。
第3工程:第2工程の硬化体を焼成して、精密鋳造用鋳型を得る工程。
A method for producing a precision casting mold, which comprises the following first step, second step and third step.
First step: A step of obtaining an intermediate laminate having a cavity corresponding to a wax model by dewaxing according to the lost wax method.
2nd process: The process of setting the intermediate laminated body of a 1st process to a container, inject | pouring the slurry of a self-hardening casting_mold | template material between both, making it harden | cure, and obtaining the hardening body which has an intermediate laminated body integrally inside.
3rd process: The process of baking the hardening body of a 2nd process and obtaining the casting mold for precision casting.
第1工程の中間積層体が、スラリーの付着、スタッコの付着及び乾燥により形成される層を1層とする合計3〜6層の積層体である請求項1記載の精密鋳造用鋳型の製造方法。   2. The method for producing a precision casting mold according to claim 1, wherein the intermediate laminated body in the first step is a laminated body having a total of 3 to 6 layers including one layer formed by adhering slurry, adhering stucco and drying. . 第2工程の自硬性鋳型材が、耐火砂、硬化材、結合材及び起泡材を含有してなるものである請求項1又は2記載の精密鋳造用鋳型の製造方法。   The method for producing a precision casting mold according to claim 1 or 2, wherein the self-hardening mold material in the second step contains refractory sand, a hardener, a binder and a foaming material. 自硬性鋳型材が、94〜98質量%の耐火砂と2〜6質量%の硬化材とからなる粉体資材100質量部当たり、結合材を5〜30質量部及び起泡材を0.2〜0.8質量部の割合で含有してなるものである請求項3記載の精密鋳造用鋳型の製造方法。   The self-hardening mold material is 5 to 30 parts by mass of the binder and 0.2 of the foaming material per 100 parts by mass of the powder material composed of 94 to 98% by mass of refractory sand and 2 to 6% by mass of the hardened material. The method for producing a casting mold for precision casting according to claim 3, wherein the casting mold is contained in a ratio of ˜0.8 parts by mass. 耐火砂が珪砂及び/又は石英砂である請求項3又は4記載の精密鋳造用鋳型の製造方法。   The method for producing a precision casting mold according to claim 3 or 4, wherein the refractory sand is quartz sand and / or quartz sand. 硬化材が2CaO・SiOを70質量%以上含有するものである請求項3〜5のいずれか一つの項記載の精密鋳造用鋳型の製造方法。 Method of manufacturing a precision casting mold of any one of claim wherein the curing material according to claim 3-5 are those containing 2CaO · SiO 2 to 70 wt%. 結合材が水ガラス及び/又はコロイダルシリカである請求項3〜6のいずれか一つの項記載の精密鋳造用鋳型の製造方法。   The method for producing a precision casting mold according to any one of claims 3 to 6, wherein the binder is water glass and / or colloidal silica. 起泡材がカチオン性界面活性剤である請求項3〜7のいずれか一つの項記載の精密鋳造用鋳型の製造方法。
The method for producing a precision casting mold according to any one of claims 3 to 7, wherein the foaming material is a cationic surfactant.
JP2005025023A 2005-02-01 2005-02-01 Method for manufacturing casting mold for precision casting Pending JP2006212642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025023A JP2006212642A (en) 2005-02-01 2005-02-01 Method for manufacturing casting mold for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025023A JP2006212642A (en) 2005-02-01 2005-02-01 Method for manufacturing casting mold for precision casting

Publications (1)

Publication Number Publication Date
JP2006212642A true JP2006212642A (en) 2006-08-17

Family

ID=36976281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025023A Pending JP2006212642A (en) 2005-02-01 2005-02-01 Method for manufacturing casting mold for precision casting

Country Status (1)

Country Link
JP (1) JP2006212642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015074A1 (en) * 2019-07-23 2021-01-28 三菱電機株式会社 Casting mold, and method for manufacturing casting mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015074A1 (en) * 2019-07-23 2021-01-28 三菱電機株式会社 Casting mold, and method for manufacturing casting mold

Similar Documents

Publication Publication Date Title
US4812278A (en) Process for preparing mold
EP0695226B1 (en) Methods for fabricating shapes by use of organometallic, ceramic precursor binders
US8122939B2 (en) Method for the layered construction of models
CN1033147C (en) Mold core for investment casting and process thereof
US20080121363A1 (en) Sleeve, procedure for the manufacture thereof and mixture for the production of said sleeve
JP2023508983A (en) Casting elements and methods of making them using cold solidification
JP2022075748A (en) Method for manufacturing sand mold for casting
JP2006212642A (en) Method for manufacturing casting mold for precision casting
TWI610736B (en) Highly exothermic feeder sleeves and manufacturing method thereof
Deore et al. A study of core and its types for casting process
JPS63242439A (en) Production of mold for investment casting
JPH0663684A (en) Production of ceramic core for casting
JP2017087226A (en) Manufacturing method of ceramic casting mold
JP2013087307A (en) Manufacturing method of metal-ceramic composite material and metal-ceramic composite material
JPS59141342A (en) Mold forming method utilizing microwave heating
JPS63140740A (en) Mold for casting active metal of high melting point
JP3774557B2 (en) Refractory for injecting inert gas into molten metal and method for producing the same
JPH04143063A (en) Production of composite casting added with reinforcing material
KR100890310B1 (en) Sleeve, procedure for the manufacture thereof and mixture for the production of said sleeve
CN109475928B (en) Method for producing a shell mould
JPH0372372B2 (en)
KR101557653B1 (en) Core making method
JPH0339774B2 (en)
JPH11291213A (en) Method for forming castable refractory block
JPS611443A (en) Production of casting mold made of refractories