JP2006212570A - Desolvating device - Google Patents

Desolvating device Download PDF

Info

Publication number
JP2006212570A
JP2006212570A JP2005029118A JP2005029118A JP2006212570A JP 2006212570 A JP2006212570 A JP 2006212570A JP 2005029118 A JP2005029118 A JP 2005029118A JP 2005029118 A JP2005029118 A JP 2005029118A JP 2006212570 A JP2006212570 A JP 2006212570A
Authority
JP
Japan
Prior art keywords
gas
liquid
solvent
phase
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005029118A
Other languages
Japanese (ja)
Inventor
Yoshihiro Norikane
義浩 法兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005029118A priority Critical patent/JP2006212570A/en
Publication of JP2006212570A publication Critical patent/JP2006212570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively carry out solvent extraction between a liquid droplet and a liquid phase, and further a liquid phase and a gas phase to extract a solvent from a resin liquid droplet containing the solvent to the gas phase in a production process of a fine particle using a gas-liquid extracting operation part by a micro flow channel (reaction flow channel). <P>SOLUTION: A desolvating device for recovering the solvent from the water dispersion of the resin fine particle swelled with the solvent (organic solvent) by chemical reaction operation and chemical engineering unit operation using the micro flow channel includes a gas-liquid extracting part by the micro flow channel having a plurality of fluid introduction parts and discharge parts, and a width and a depth in a range from 1 to 1,000 μm; introduces a solution dispersed with the liquid droplet particle dissolving a resin from one side of the fluid introduction part; introduces gas from another side of the fluid introduction part to bring the gas phase into contact with the liquid phase in the micro flow channel; extracts the solvent containing the liquid fine particle to the liquid phase; and extracts the solvent present in the liquid phase to the gas phase, thereby to have a structure quickly extracting the solvent included in the droplet fine particle to the gas phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微小流路を用いた化学反応操作及び化学工学的単位操作(通称マイクロ化学プロセス)により、溶媒(有機溶剤)で膨潤した樹脂微粒子の水分散液から上記溶媒を回収する方法及び装置に関するものであり、
液晶スペーサ、トナー、化粧品、化粧品用改質剤、医療用診断検査用微粒子、FRP用低収縮剤、プラスチック樹脂改質剤、トナー用添加剤、電気泳動カプセルなどの機能性樹脂微粒子の生産方法に利用することができるものである。
The present invention relates to a method and apparatus for recovering a solvent from an aqueous dispersion of resin fine particles swollen with a solvent (organic solvent) by a chemical reaction operation using a microchannel and a chemical engineering unit operation (commonly called a microchemical process). And
For production methods of functional resin fine particles such as liquid crystal spacers, toners, cosmetics, cosmetic modifiers, medical diagnostic inspection fine particles, FRP low shrinkage agents, plastic resin modifiers, toner additives, electrophoresis capsules, etc. It can be used.

幅及び深さが数μm〜数mmの微細流路構造体を用いて流体を操作し、化学プラントにおける単位操作や化学反応を数cmのチップ上で実現する、いわゆるLab on a Chip またはマイクロリアクタと言われる技術による物質生産に関する研究が盛んに行われ、生産工程の一部に組み込まれるなどの実用例が近年増加している(下記の特許文献1、特許文献2参照)。
マイクロリアクタといわれる上記技術は次のような特徴を有している。
(a)低レイノルズ数領域のため、解析が容易である。
(b)流路幅が小さく物質混合や熱伝達は拡散律速であるため、確実かつ迅速な混合操作、熱伝達操作が行える。
(c)熱などのホットスポットが発生しないため、副生成物の生成が抑制され、反応収率が向上する。
(d)1チップ上でも、局所的流路箇所毎に温度制御が可能である。
また、単一の微小空間より供給される生成物質はごく微量であるが、微小流路のパターンを多数並列化することで大量生産が可能であると考えられている。このような微小化学プラントを実現するためには、化学プラントで行われる様々な単位操作をチップ上で再現し、制御するための技術及びデータの蓄積が望まれる。
A so-called Lab on a Chip or microreactor that operates a fluid using a fine channel structure having a width and depth of several μm to several mm to realize unit operations and chemical reactions in a chemical plant on a chip of several centimeters. Research on substance production by the so-called technology has been actively conducted, and practical examples such as incorporation into a part of the production process have been increasing in recent years (see Patent Document 1 and Patent Document 2 below).
The technique referred to as a microreactor has the following characteristics.
(A) The analysis is easy because of the low Reynolds number region.
(B) Since the channel width is small and the material mixing and heat transfer are diffusion-controlled, reliable and quick mixing operation and heat transfer operation can be performed.
(C) Since hot spots such as heat do not occur, the production of by-products is suppressed and the reaction yield is improved.
(D) Temperature control is possible for each local flow path location even on one chip.
In addition, the amount of product supplied from a single micro space is very small, but it is considered that mass production is possible by arranging a large number of micro channel patterns in parallel. In order to realize such a microchemical plant, it is desired to accumulate techniques and data for reproducing and controlling various unit operations performed in the chemical plant on a chip.

本発明は化学プロセスにおける単位操作のうち、液相−気相間の抽出操作に関するものであるが、有機微粒子を製造する工程において、有機溶媒により膨潤した液滴の分散した水相から有機溶剤を回収する手法では、低温・減圧条件下で緩やかに溶剤を揮発させる方法や気液の向流接触を利用する方法(特許文献3)などが用いられている(下記の特許文献3参照)。しかし、微小流路を用いた化学プロセスにおいて液滴分散系から有機溶剤を回収する方法は知られていない。そして、微小空間においては単位体積当りの気液の接触面積が非常に大きいので、気液界面が重要となる操作に好適である。   The present invention relates to an extraction operation between a liquid phase and a gas phase among unit operations in a chemical process. In the process of producing organic fine particles, an organic solvent is recovered from an aqueous phase in which droplets swollen with an organic solvent are dispersed. In such a technique, a method of volatilizing a solvent slowly under low temperature and reduced pressure conditions, a method using gas-liquid countercurrent contact (Patent Document 3), or the like is used (see Patent Document 3 below). However, a method for recovering an organic solvent from a droplet dispersion system in a chemical process using a microchannel is not known. In a minute space, the contact area of gas / liquid per unit volume is very large, which is suitable for an operation in which the gas / liquid interface is important.

更に液滴の分散した液相と気泡との混合を促進することにより、液滴を気相に混合させ、液滴より排出される有機溶媒量を増加させることが可能である。下記の特許文献4に記載されているものは、気相と液相の多層シースフローを形成し、その後気泡を作成することで、気相と液相接触界面を増大させ、抽出効率を向上させている。この特許文献4の方法は、気液抽出手段として有効であるが、液相に溶媒を含む液滴より溶媒を抽出する過程においては、液相に対してより大量の気相を通過させる必要があり、他方、特許文献4の方法は、液相に接触可能な気相の流量が大量に与えることが不可能であるので、このような系に特許文献4の方法を適用することは困難である。
特表2003−506339号公報 特開2002−129050号公報 特開2004−230213号公報 特開2004−148277号公報
Furthermore, by promoting the mixing of the liquid phase in which the droplets are dispersed and the bubbles, the droplets can be mixed into the gas phase, and the amount of the organic solvent discharged from the droplets can be increased. What is described in Patent Document 4 below forms a multilayer sheath flow of a gas phase and a liquid phase, and then creates bubbles, thereby increasing the interface between the gas phase and the liquid phase and improving the extraction efficiency. ing. The method of Patent Document 4 is effective as a gas-liquid extraction means, but in the process of extracting a solvent from droplets containing the solvent in the liquid phase, it is necessary to pass a larger amount of gas phase with respect to the liquid phase. On the other hand, since the method of Patent Document 4 cannot provide a large amount of the gas phase flow rate that can contact the liquid phase, it is difficult to apply the method of Patent Document 4 to such a system. is there.
Special table 2003-506339 gazette JP 2002-129050 A JP 2004230213 A JP 2004-148277 A

微小流路(反応流路)による気液抽出操作部を用いた微粒子製造工程において、溶媒を含んだ樹脂液滴から気相へ溶媒を抽出するためには、液滴−液相間の溶媒抽出、更には液相−気相間の溶媒抽出を効率的に行わなければならない。
この発明は上記のことをその課題とするものである。
なお、上記「溶媒」は、樹脂微粒子を製造する際に、樹脂を溶解し油相とするために用いられている一般的かつ汎用的な有機物質であり、例えばヘキサン、オクタン、酢酸エチル、オレイン酸メチル、オレイン酸エチル、デカン、トルエン、アルコール類、アセトン、メチルエチルケトンなどが挙げられる。水相中に液滴として存在するために、水との溶解性が比較的低いものが選択される。
In order to extract a solvent from a resin droplet containing a solvent into a gas phase in a fine particle manufacturing process using a gas-liquid extraction operation unit by a microchannel (reaction channel), solvent extraction between the droplet and the liquid phase is performed. Furthermore, solvent extraction between the liquid phase and the gas phase must be performed efficiently.
The present invention has the above as its subject.
The above-mentioned “solvent” is a general and general-purpose organic substance that is used to dissolve a resin into an oil phase when producing resin fine particles. For example, hexane, octane, ethyl acetate, olein Examples include methyl acid, ethyl oleate, decane, toluene, alcohols, acetone, and methyl ethyl ketone. Since they exist as droplets in the aqueous phase, those having a relatively low solubility in water are selected.

〔解決手段1〕
上記課題を解決するための手段は、微小流路を用いた化学反応操作及び化学工学的単位操作により、溶媒(有機溶剤)で膨潤した樹脂微粒子の水分散液から溶媒を回収する脱溶媒装置を、次の(イ)〜(ホ)で構成したものである。
(イ)複数の流体導入部及び排出部を持つ幅及び深さが1〜1000μmの範囲の微小流路による気液抽出部を有し、
(ロ)上記流体導入部の一方から樹脂を溶解した液滴微粒子の分散した溶液を導入し、
(ハ)上記流体導入部の他方から気体を導入して気相と液相を上記微小流路で接触させ、
(ニ)液滴微粒子を含有する溶媒を液相に抽出し、
(ホ)液相に存在する溶媒を気相に抽出することにより、液滴微粒子に含まれる溶媒を気相に速やかに抽出する構造を有すること。
なお、上記の「液滴微粒子」は、特定の径の液滴微粒子を意味するものではないが、概略、10μm以下の液滴微粒子である。
[Solution 1]
Means for solving the above problems include a desolvation apparatus for recovering a solvent from an aqueous dispersion of resin fine particles swollen with a solvent (organic solvent) by a chemical reaction operation and a chemical engineering unit operation using a microchannel. The following (a) to (e) are configured.
(A) having a gas-liquid extraction part with a micro flow channel having a width and a depth of 1 to 1000 μm having a plurality of fluid introduction parts and discharge parts;
(B) introducing a solution in which droplet fine particles in which resin is dissolved are introduced from one of the fluid introduction parts,
(C) introducing a gas from the other of the fluid introduction parts to bring the gas phase and the liquid phase into contact with each other through the microchannel;
(D) extracting the solvent containing the droplet fine particles into the liquid phase;
(E) A structure in which the solvent contained in the liquid droplets is rapidly extracted into the gas phase by extracting the solvent present in the liquid phase into the gas phase.
The above “droplet fine particles” do not mean droplet fine particles having a specific diameter, but are generally droplet fine particles of 10 μm or less.

〔解決手段2〕
解決手段2は、解決手段1の脱溶媒装置について、前記微小流路の壁面の一部分を親水化及び疎水化処理を施したものである。
[Solution 2]
Solution 2 is the solvent removal apparatus of Solution 1, wherein a part of the wall surface of the microchannel is subjected to hydrophilization and hydrophobization treatment.

〔解決手段3〕
解決手段3は、解決手段1の脱溶媒装置について、前記微小流路の気相流路と液相流路の間に10〜500μmピッチのメッシュ構造を設け、気相及び液相の安定接触を実現したものである。
[Solution 3]
Solution 3 is a solvent removal apparatus according to Solution 1, in which a mesh structure with a pitch of 10 to 500 μm is provided between the gas-phase channel and the liquid-phase channel of the micro-channel, and stable contact between the gas-phase and the liquid phase is achieved. It has been realized.

〔解決手段4〕
解決手段4は、解決手段1の脱溶媒装置について、前記微小流路の一部に気相を微小な泡に***させる構造を有するものである。
なお、上記の「微小な泡」は、100μm以下の泡粒である。
[Solution 4]
The solving means 4 has a structure in which the vapor phase is divided into fine bubbles in a part of the micro flow channel in the desolvation device of the solving means 1.
The “fine bubbles” are foam particles of 100 μm or less.

〔実施態様1〕
実施態様1は、解決手段4の脱溶媒装置について、前記気相を微小な泡に***させる構造が、微小流路の一部に流路幅または流路深さを狭めた堰形状であるものである。
[Embodiment 1]
Embodiment 1 relates to the solvent removal apparatus of Solution 4, wherein the structure for dividing the gas phase into fine bubbles is a dam shape in which the flow channel width or flow channel depth is narrowed in a part of the micro flow channel It is.

〔実施態様2〕
実施態様2は、解決手段4の脱溶媒装置について、前記の気相を微小な泡に***させる構造が、微小流路の一部に設けられた貫通孔であるものである。
[Embodiment 2]
In Embodiment 2, the solvent removal apparatus of Solution 4 is such that the structure for splitting the gas phase into fine bubbles is a through-hole provided in a part of the microchannel.

〔解決手段5〕
解決手段5は、解決手段1の脱溶媒装置について、前記微小流路における抽出操作後に気相、液相を分離させる気液分離構造を設けたものである。
[Solution 5]
Solution 5 is the solvent removal apparatus of Solution 1 provided with a gas-liquid separation structure that separates the gas phase and the liquid phase after the extraction operation in the microchannel.

〔実施態様3〕
実施態様3は、解決手段5の脱溶媒装置について、前記の気液分離構造が分岐型流路であるものである。
[Embodiment 3]
Embodiment 3 relates to the desolvation device of the solution means 5 in which the gas-liquid separation structure is a branched flow path.

〔実施態様4〕
実施態様4は、解決手段5の脱溶媒装置について、前記の気液分離構造がセトラーであるものである。
[Embodiment 4]
Embodiment 4 relates to the desolvation device of the solution means 5 in which the gas-liquid separation structure is a settler.

〔実施態様5〕
実施態様5は、解決手段5の脱溶媒装置について、前記気液分離構造に加熱機構を設けたものである。
[Embodiment 5]
In Embodiment 5, the solvent removal apparatus of Solution 5 is provided with a heating mechanism in the gas-liquid separation structure.

〔実施態様6〕
実施態様6は、解決手段1の脱溶媒装置について、その気液分離構造の流路の下流側に冷却機構を設けたものである。
[Embodiment 6]
In the sixth embodiment, a cooling mechanism is provided on the downstream side of the flow path of the gas-liquid separation structure of the solvent removal apparatus of the solving means 1.

〔実施態様7〕
実施態様7は、解決手段1の脱溶媒装置について、その気液抽出部において加熱機構を設けたものである。
[Embodiment 7]
In Embodiment 7, the solvent removal apparatus of Solution 1 is provided with a heating mechanism in the gas-liquid extraction unit.

〔実施態様8〕
実施態様8は、解決手段1の脱溶媒装置について、微小流路構造がガラス、金属、樹脂、シリコンのいずれか一種類またはこれらの組み合わせにより構成されているものである。
[Embodiment 8]
In the eighth embodiment, the solvent removal apparatus of Solution 1 is such that the microchannel structure is made of any one of glass, metal, resin, and silicon, or a combination thereof.

〔請求項1の発明の効果〕
流体導入部の一方から導入された液相において、液相中に分散された液滴から液相に溶出した溶媒は、液相から拡散して気液界面に到達し、気相に揮発する。その際、液滴が気相に近い程、溶媒の液相における拡散時間は短縮される。
また、液滴が液相内部で混合した状態においては、液相における溶媒の濃度勾配がなく、均等に溶媒が溶解することが可能であるため単位時間当りの気相への溶媒揮発量が増大する。
本発明の構成においては、1000μm以下の流路内で気液を混合するため、液相幅を流路幅以下に保ち、また気液界面または液相と壁面の接触に起因する液相における混合が促進されるため、溶媒の相内・相間移動速度を大幅に増大し抽出効率を増大させることが可能となる。また、気相流量を大きくすることで、液滴内部の溶媒の大部分または全てを抽出することが可能となる。
[Effect of the invention of claim 1]
In the liquid phase introduced from one of the fluid introduction portions, the solvent eluted from the liquid droplets dispersed in the liquid phase to the liquid phase diffuses from the liquid phase, reaches the gas-liquid interface, and volatilizes in the gas phase. At that time, the closer the droplet is to the gas phase, the shorter the diffusion time in the liquid phase of the solvent.
In addition, when the droplets are mixed inside the liquid phase, there is no concentration gradient of the solvent in the liquid phase, and the solvent can be dissolved evenly, so the amount of solvent volatilization into the gas phase per unit time increases. To do.
In the configuration of the present invention, since the gas-liquid is mixed in the flow path of 1000 μm or less, the liquid phase width is kept below the flow path width, and the mixing in the liquid phase caused by the contact between the gas-liquid interface or the liquid phase and the wall surface is performed. Therefore, it is possible to greatly increase the speed of movement of the solvent in the phase and between the phases and increase the extraction efficiency. Further, by increasing the gas phase flow rate, most or all of the solvent inside the droplet can be extracted.

〔請求項2の発明の効果〕
請求項1に係る発明による効果に加え、親水処理された壁面部には水相が安定的に流れ、疎水部は気相が安定的に流れることで、気液の安定界面が形成され、これにより気相及び液相の併流または向流接触を安定的に行うことが可能である。
[Effect of the invention of claim 2]
In addition to the effect of the invention according to claim 1, the water phase stably flows through the hydrophilically treated wall surface portion, and the gas phase stably flows through the hydrophobic portion, whereby a gas-liquid stable interface is formed. Thus, it is possible to stably carry out cocurrent or countercurrent contact of the gas phase and the liquid phase.

〔請求項3の発明の効果〕
請求項1の発明の効果に加え、臨界圧力以下においては液相物質の表面張力により、液相または気相がメッシュを超えて隣の流路へ到達しない。これにより気液の界面を保ちながら安定に気相と液相を接触させることが可能である。
[Effect of the invention of claim 3]
In addition to the effect of the invention of claim 1, below the critical pressure, the liquid phase or gas phase does not reach the adjacent flow path beyond the mesh due to the surface tension of the liquid phase substance. Thereby, it is possible to stably contact the gas phase and the liquid phase while maintaining the gas-liquid interface.

〔請求項4の発明の効果〕
請求項1に係る発明による効果に加え、気液間で効率よく抽出を行うためには、気液界面積を大きく確保することが必要となる。
本構成によると微小流路の抽出部において気相を微小な泡に***させ、比表面積を増大することにより、
(a)抽出平衡に達する時間が短くなり、
(b)液相における混合が促進され、
(c)抽出効率が大幅に向上する。
[Effect of the invention of claim 4]
In addition to the effect of the first aspect of the invention, it is necessary to ensure a large gas-liquid interface area in order to perform efficient extraction between the gas and liquid.
According to this configuration, by splitting the gas phase into micro bubbles in the extraction part of the micro channel, increasing the specific surface area,
(A) The time to reach extraction equilibrium is shortened,
(B) mixing in the liquid phase is promoted,
(C) The extraction efficiency is greatly improved.

〔請求項5の発明の効果〕
請求項4による発明の効果に加え、気液抽出操作部において、液相に濡れた壁面の流路の幅または深さを急峻な角度で拡げることにより、拡がり部において気液界面の不安定化が起こり、気相が微小な気泡に***されるので、この角度を適宜に選定することで、また、単純な構造により、気泡直径を容易に制御することができる。
[Effect of the invention of claim 5]
In addition to the effect of the invention according to claim 4, in the gas-liquid extraction operation part, the width or depth of the flow path of the wall surface wetted by the liquid phase is widened at a steep angle, thereby destabilizing the gas-liquid interface in the spread part. Since the gas phase is split into fine bubbles, the bubble diameter can be easily controlled by selecting this angle appropriately and with a simple structure.

〔請求項6の発明の効果〕
請求項4による発明の効果に加え、気液抽出操作部において、壁面に設けられた1個または複数の貫通孔より気相を供給することにより、貫通孔出口において気相が微小気泡の形態で液相に放出され、液相に取り込まれるので、気相を微小な気泡として液相に分散させることでき、また、気相の流量または貫通孔の断面積を調節することによって、気泡直径の大きさが加減されるため、単純な構造で容易に気泡直径を制御し、微小にすることができる。
[Effect of the invention of claim 6]
In addition to the effect of the invention according to claim 4, in the gas-liquid extraction operation unit, the gas phase is supplied in the form of microbubbles at the outlet of the through hole by supplying the gas phase from one or more through holes provided on the wall surface. Since it is released into the liquid phase and taken into the liquid phase, the gas phase can be dispersed in the liquid phase as fine bubbles, and the bubble diameter can be increased by adjusting the flow rate of the gas phase or the cross-sectional area of the through holes. Therefore, the bubble diameter can be easily controlled and made minute with a simple structure.

〔請求項7の発明の効果〕
請求項1による発明の効果に加え、気液抽出操作直後には気相と液相が混在した状態で流路を通過しているので、この流路中において気液を分離することにより、気相からの溶媒濃縮操作を行うことができ、また溶媒が除去された液相を回収できることになる。
[Effect of the invention of claim 7]
In addition to the effect of the invention according to claim 1, immediately after the gas-liquid extraction operation, the gas phase and the liquid phase pass through the channel in a mixed state. The solvent concentration operation from the phase can be performed, and the liquid phase from which the solvent has been removed can be recovered.

〔請求項8の発明の効果〕
請求項7に係る発明の効果に加え、気相及び液相が安定界面を形成した状態で気液抽出操作を終え、その後に流路を分岐し 気相及び液相を安定に分離することが可能であるから、気相を速やかに溶媒回収操作部へ導くことが可能となる。
液相を速やかに微粒子回収操作部へ導くことが可能となり、また、単純な構造で気液分離を行うことができる。
[Effect of the invention of claim 8]
In addition to the effect of the invention according to claim 7, the gas-liquid extraction operation is completed in a state where the gas phase and the liquid phase form a stable interface, and then the flow path is branched to stably separate the gas phase and the liquid phase. Since it is possible, the gas phase can be promptly guided to the solvent recovery operation unit.
The liquid phase can be promptly guided to the fine particle recovery operation section, and gas-liquid separation can be performed with a simple structure.

〔請求項9の発明の効果〕
請求項7に係る発明の効果に加え、気液抽出操作部の微小流路(又は処理流路)を気相と液相の混在状態で通過した後に流路を大幅に拡げること及び、重力により液相を下部に回収可能な構造に保つことにより、比重の小さな気相が上部へ移動し液相は重力により下部へ沈降するため、気泡が開裂し、気液分離が容易になり、また、単純な構造により気液分離を行うことができる。
[Effect of the invention of claim 9]
In addition to the effect of the invention according to claim 7, the flow path is greatly expanded after passing through the micro flow path (or processing flow path) of the gas-liquid extraction operation unit in a mixed state of the gas phase and the liquid phase, and by gravity By keeping the liquid phase in a structure that can be recovered at the bottom, the gas phase with a small specific gravity moves to the top and the liquid phase settles to the bottom by gravity, so that the bubbles are cleaved and gas-liquid separation becomes easy. Gas-liquid separation can be performed with a simple structure.

〔請求項10の発明の効果〕
請求項7に係る発明の効果に加え、気液分離部において加熱構造を設けることにより、気液分離部における気相及び液相温度が上昇し界面の不安定化が促進されるため気液分離部における気泡の開裂が促進され、その結果、気相と液相の界面が減少し、気液分離が容易になる。
[Effect of the invention of claim 10]
In addition to the effect of the invention according to claim 7, by providing a heating structure in the gas-liquid separation unit, the gas phase and the liquid phase temperature in the gas-liquid separation unit are increased and the destabilization of the interface is promoted. Cleavage of bubbles in the part is promoted, and as a result, the interface between the gas phase and the liquid phase is reduced, and gas-liquid separation is facilitated.

〔請求項11の発明の効果〕
請求項1に係る発明による効果に加え、気液を分離した後、気相を流路外部より冷却することによって、冷却部における溶媒の飽和蒸気圧が低下して溶媒が液化される。この溶媒の液化は連続フロー中で継続するので、連続フロー中で、液化した状態で溶媒を能率的に回収することができる。
[Effect of the invention of claim 11]
In addition to the effect of the first aspect of the invention, after separating the gas and liquid, the saturated vapor pressure of the solvent in the cooling section is lowered and the solvent is liquefied by cooling the gas phase from the outside of the flow path. Since the liquefaction of the solvent continues in the continuous flow, the solvent can be efficiently recovered in the liquefied state in the continuous flow.

〔請求項12の発明の効果〕
請求項1に係る発明の効果に加え、気液抽出操作部で流路内部を外部より加熱することにより、
(a)気相中の溶媒の蒸気圧が飽和蒸気圧に添って上昇し、
(b)液相への溶媒の溶解度が上昇する。
そして、溶媒液滴から液相への溶媒の溶解度が高いほど、溶媒は効率よく気相へ揮発することが可能であるため、上記(a)(b)の両効果により、常温にくらべて液滴中の溶媒の気相への抽出効率が向上する。
[Effect of the invention of claim 12]
In addition to the effect of the invention according to claim 1, by heating the inside of the flow channel from the outside in the gas-liquid extraction operation unit,
(A) the vapor pressure of the solvent in the gas phase increases along with the saturated vapor pressure;
(B) The solubility of the solvent in the liquid phase increases.
The higher the solubility of the solvent from the solvent droplets to the liquid phase, the more efficiently the solvent can be volatilized into the gas phase. Therefore, due to both effects (a) and (b) above, The extraction efficiency of the solvent in the droplets into the gas phase is improved.

〔請求項13の発明の効果〕
請求項1に係る発明の効果に加え、微小流路デバイスをガラス、金属、樹脂、シリコンのいずれか一種類またはこれらの組み合わせで構成することにより、機械加工、エッチング、レーザ加工などの従来のマイクロ加工技術を用いて微小流路を高精度でかつ容易に加工・形成することができる。
[Effect of the invention of claim 13]
In addition to the effect of the invention according to claim 1, by configuring the microchannel device with any one kind of glass, metal, resin, silicon, or a combination thereof, conventional micromachining such as machining, etching, laser processing, etc. It is possible to easily process and form the micro flow path with high accuracy using the processing technology.

次いで、図面を参照しつつ実施例を説明する。   Next, embodiments will be described with reference to the drawings.

請求項1に係る発明の脱溶媒装置の具体例(実施例1)を図1、図2−1、図2−2、図2−3に基いて説明する。
この実施例1の脱溶媒装置Dは一辺が5cmの四角なブロック体によるものであり、導入流路g,g、反応流路(気液抽出操作部14の微小流路)14aによる気液抽出操作部14、気液分離操作部15、溶媒回収操作部16等を有するものであり、これらは、ガラス、金属、樹脂、シリコン等で構成することができるが、この実施例1は、表面に溝などを形成した厚さ0.5mmのシリコンベースを張り合わせて構成したものである。
A specific example (Example 1) of the desolvation apparatus of the invention according to claim 1 will be described with reference to FIGS. 1, 2-1, 2-2 and 2-3.
The solvent removal apparatus D of the first embodiment is a square block body having a side of 5 cm, and gas generated by the introduction flow paths g 1 and g 2 and the reaction flow path (micro flow path of the gas-liquid extraction operation unit 14) 14a. The liquid extraction operation unit 14, the gas-liquid separation operation unit 15, the solvent recovery operation unit 16 and the like, which can be composed of glass, metal, resin, silicon, etc. A silicon base having a thickness of 0.5 mm with grooves and the like formed on the surface is laminated.

導入流路g,gは、深さが40μm、幅が100μmの流路であり、導入流路g及びgに対して、深さが40μm、幅が100μmの反応流路(気液抽出操作部14の微小流路)14aがT字状に接続されている。
導入流路gの外端に気相導入口11が接続されており、導入流路gの外端に液相導入口12が接続されている。上記反応流路(気液抽出操作部の微小流路)14aの他端に気液分離操作部15が接続されており、気液分離操作部15から分岐した一方の分岐流路が気相流路16aであり、当該気相流路16aに溶媒回収操作部16がある。気液分離操作部15から分岐し他方の分岐流路は微粒子分散液相流路18aであり、当該微粒子分散液相流路18aに微粒子分散液相回収口18がある。
The introduction channels g 1 and g 2 are channels having a depth of 40 μm and a width of 100 μm. The introduction channels g 1 and g 2 have a depth of 40 μm and a width of 100 μm. 14a of the liquid extraction operation unit 14) is connected in a T shape.
It is connected a gas phase introduction port 11 to the outer end of the inlet passage g 1, the liquid phase introduction port 12 is connected to the outer end of the inlet passage g 2. A gas-liquid separation operation unit 15 is connected to the other end of the reaction channel (a micro-channel of the gas-liquid extraction operation unit) 14a, and one branch channel branched from the gas-liquid separation operation unit 15 is a gas phase flow. There is a solvent recovery operation section 16 in the gas phase flow path 16a. The other branch flow path branched from the gas-liquid separation operation section 15 is a fine particle dispersion liquid phase flow path 18a, and the fine particle dispersion liquid phase flow path 18a has a fine particle dispersion liquid phase recovery port 18.

気相導入口11から温度50℃、流量5.0ml/時間で気相(この実施例1では空気相。必要に応じて不活性ガス)を導入し、液相導入口12から、流量0.1ml/時間で微小な液滴(この実施例1ではポリエステル(Mw=12,000)をトルエンに10重量%溶解するように調整し乳化することにより得た液滴)を含む液相(具体的にはイオン交換水に上記液滴が10重量%含まれた液相)を導入させる。   A gas phase (air phase in this Example 1; an inert gas if necessary) is introduced from the gas phase inlet 11 at a temperature of 50 ° C. and a flow rate of 5.0 ml / hour. Liquid phase (specifically, droplets obtained by emulsifying by adjusting so that 10% by weight of polyester (Mw = 12,000) is dissolved in toluene in this Example 1) at 1 ml / hour Is introduced with a liquid phase containing 10% by weight of the above-mentioned droplets in ion-exchanged water.

導入流路g、gに導入された気液両気相は、両導入流路の合流部13で合流する。合流部13で合流した気相aと液相(微小液滴分散液相)bは図2−1に模式的に示すように交互に微小流路(又は反応流路)14aに流入して、交互に整列した状態で反応流路内を流れる。
この実施例1においては合流部13はT字状であるが、この部分は安定なスラグ流となる形状であればよいので、この合流構造はT字形状に限られない。因みに、安定2相流の場合は図2−2に示す合流部13aでY字状に交わるもの、あるいは気相と液相とが合流部13bでゆるやかに合流する図2−3のような形状が好ましい。また、各導入流路g,gの幅、深さは、反応流路14a内の流速が0.1〜10.0ml/時間になるように、流体の流量により適宜選択される。なお、反応流路14aの断面形状は一定の同一形状である必要はない。
The gas-liquid gas phases introduced into the introduction flow paths g 1 and g 2 merge at the merge portion 13 of both introduction flow paths. The gas phase a and the liquid phase (microdroplet dispersion liquid phase) b merged at the merge section 13 alternately flow into the microchannel (or reaction channel) 14a as schematically shown in FIG. It flows in the reaction channel in an alternately aligned state.
In the first embodiment, the merging portion 13 has a T-shape, but this portion may have any shape that provides a stable slag flow, and therefore this merging structure is not limited to the T-shape. Incidentally, in the case of a stable two-phase flow, a shape that intersects in a Y shape at the merge portion 13a shown in FIG. 2-2, or a shape as shown in FIG. 2-3 in which the gas phase and the liquid phase gently merge at the merge portion 13b. Is preferred. Further, the width and depth of each of the introduction channels g 1 and g 2 are appropriately selected according to the flow rate of the fluid so that the flow rate in the reaction channel 14a is 0.1 to 10.0 ml / hour. In addition, the cross-sectional shape of the reaction channel 14a does not have to be the same shape.

前記ポリエステル(樹脂)がトルエン(溶媒)に溶解した液滴(例えば図3における液滴33a参照)が、界面活性剤としてドデシル硫酸ナトリウムを1%含むイオン交換水に分散している液相と、気相が流れる反応流路14aの長さは、所望の割合まで抽出操作が完了するのに十分なように適宜選定される。反応流路14aによる気液抽出操作部14の下流端に設けた気液分離操作部15は、気相に揮発された溶媒を再利用のため回収する機能を有するものである。また、気液分離操作部15から分岐した気相流路16aに設けた溶媒回収操作部16は、気相内に揮発状態で含まれている溶媒を分離・回収するものである。また、気液分離操作部15から分岐した微粒子分散液相流路18aに抽出後の微粒子分散液相が回収され、微粒子分散液回収口18から取り出される。   Liquid phase in which the polyester (resin) is dissolved in toluene (solvent) (see, for example, the droplet 33a in FIG. 3) is dispersed in ion-exchanged water containing 1% sodium dodecyl sulfate as a surfactant, The length of the reaction channel 14a through which the gas phase flows is appropriately selected so that the extraction operation is completed to a desired ratio. The gas-liquid separation operation unit 15 provided at the downstream end of the gas-liquid extraction operation unit 14 by the reaction channel 14a has a function of recovering the solvent volatilized in the gas phase for reuse. The solvent recovery operation unit 16 provided in the gas phase flow path 16a branched from the gas-liquid separation operation unit 15 separates and recovers the solvent contained in a volatile state in the gas phase. In addition, the extracted fine particle dispersion liquid phase is collected in the fine particle dispersion liquid phase flow path 18 a branched from the gas-liquid separation operation unit 15 and taken out from the fine particle dispersion liquid recovery port 18.

上記溶媒回収操作部16で分離された溶媒(この実施例1ではトルエン)が溶媒回収ポート19から回収され、溶媒回収操作部16で溶媒が分離された残余の気相は気相回収口17から回収される。
なお、上記の気液分離操作部15、溶媒回収操作部16の具体例については、後述する。
The solvent separated by the solvent recovery operation unit 16 (toluene in this embodiment 1) is recovered from the solvent recovery port 19, and the remaining gas phase from which the solvent has been separated by the solvent recovery operation unit 16 is supplied from the gas phase recovery port 17. Collected.
Specific examples of the gas-liquid separation operation unit 15 and the solvent recovery operation unit 16 will be described later.

請求項2に係る発明の特徴事項、「微小流路壁面の一部分に親水性及び疎水性のパターンを設けたこと」を備えている、脱溶媒装置の気液抽出操作部の具体例(実施例2)を図3に基いて説明する。
この実施例2は、実施例1を基本構成とし、流路を構成するプレートの材質はシリコンであり、これをウェットエッチングにより流路を作成し、その後基板表面を酸化処理し、ガラス基板と熱融着処理により接合した。反応流路(気液抽出操作部14を構成する微小流路)14aにおいて、気相導入部側の壁面31をフッ素化処理で疎水処理した。これにより、疎水処理した壁面31が気相を安定に流通させる作用を奏するので、気相34と液滴33aが分散している液相33が安定な2相流を形成することになる。
A specific example of the gas-liquid extraction operation part of the desolvation apparatus (characterized in that it is provided with a hydrophilic and hydrophobic pattern on a part of the wall surface of the micro-channel). 2) will be described with reference to FIG.
The second embodiment is basically the same as the first embodiment, and the material of the plate constituting the flow path is silicon, and the flow path is formed by wet etching, and then the substrate surface is oxidized to form a glass substrate and a heat It joined by the melt | fusion process. In the reaction channel (a microchannel constituting the gas-liquid extraction operation unit 14) 14a, the wall surface 31 on the gas phase introduction unit side was subjected to hydrophobic treatment by fluorination treatment. As a result, the hydrophobically treated wall surface 31 has an effect of allowing the gas phase to flow stably, so that the liquid phase 33 in which the gas phase 34 and the droplets 33a are dispersed forms a stable two-phase flow.

請求項3に係る発明の特徴事項、「微小流路の気相流路と液相流路の間に10〜500μmピッチのメッシュ構造を設け、気相及び液相の安定接触を実現すること」を備えている、脱溶媒装置の気液抽出操作部の、他の例(実施例3)を図4−1、図4−2に基いて説明する。
この実施例3は、実施例1を基本構成とし、その反応流路(気液抽出操作部の微小流路)14aにおいて、その気相流41と液相流42の間に、両流41と42を繋ぐ空間43aが交互に並ぶような、1列以上のメッシュ構造43が設けられているものである。気液接触部の断面図を図4−2に示している。液相は表面張力により臨界圧力以下で気相側流路へ通過することはなく、したがって、気相42及び液相41は一部で接触しながら併流または向流を実現する。
A feature of the invention according to claim 3, “providing a mesh structure with a pitch of 10 to 500 μm between the gas phase channel and the liquid phase channel of the micro channel and realizing stable contact between the gas phase and the liquid phase” The other example (Example 3) of the gas-liquid extraction operation part of the desolvation apparatus provided with this is demonstrated based on FIGS. 4-1 and FIGS. 4-2.
The third embodiment is based on the basic configuration of the first embodiment, and in the reaction flow path (a micro flow path of the gas-liquid extraction operation unit) 14a, between the gas phase flow 41 and the liquid phase flow 42, One or more mesh structures 43 in which the spaces 43a connecting the 42 are alternately arranged are provided. A sectional view of the gas-liquid contact portion is shown in FIG. The liquid phase does not pass to the gas phase flow path below the critical pressure due to the surface tension. Therefore, the gas phase 42 and the liquid phase 41 realize a co-current or countercurrent while partly contacting.

請求項4,5に係る発明の特徴事項、「前記微小流路の一部に気相を微小な泡に***させる構造を有すること」、「この気相を微小な泡に***する構造が、微小流路の一部に流路幅または流路深さを狭めた堰形状であること」を備えている、脱溶媒装置の気液抽出操作部の他の例(実施例4)を図5−1、図5−2に基いて説明する。
液滴が分散している液相51と気相52は、合流部13及びその直後でスラグ流となっており(図5−1参照)、その後方において、図5−2(a)に示すように、流路の幅を拡張部53で急峻な角度で拡げられ、この拡張部53で気相が微小な気泡に***されることによって、気液接触面積を大幅に増大させることができる。本実施例においては、シリコンのウェットエッチングにより得られた構造であり、流路拡張部の角度は90度以下である。
また、図5−2(b)に示すように、狭流路による圧力損失を低減するために、高さ38μmの堰54を設け、この堰54によって流路(深さ40.0μm)の一部においてその深さまたは幅を狭める構造にし、これによって微小気泡を生成させることもできる。
上記のように気泡が発生するのは、流路拡張部において気体は膨張を起こすが、界面形状が不安定であるために界面張力により気相流体が***することを利用している。そして、気泡の発生量は、気相流量を調整することによって調整され、また、気泡の大きさは流路深さまたは幅を調整することによって調整される。
The features of the inventions according to claims 4 and 5, "part of the microchannel has a structure that splits the gas phase into microbubbles", "a structure that splits the gas phase into microbubbles, FIG. 5 shows another example (embodiment 4) of the gas-liquid extraction operation unit of the desolvation apparatus, which is provided with “a weir shape in which a channel width or a channel depth is narrowed in a part of a microchannel”. -1, FIG. 5-2 will be described.
The liquid phase 51 and the gas phase 52 in which the liquid droplets are dispersed form a slag flow at the merging portion 13 and immediately after the merging portion 13 (see FIG. 5A). As described above, the width of the flow path is expanded at a steep angle by the expansion portion 53, and the gas phase is split into fine bubbles by the expansion portion 53, so that the gas-liquid contact area can be greatly increased. In this embodiment, the structure is obtained by wet etching of silicon, and the angle of the flow path extension is 90 degrees or less.
Further, as shown in FIG. 5B, in order to reduce pressure loss due to the narrow flow path, a weir 54 having a height of 38 μm is provided, and this weir 54 provides a flow path (depth of 40.0 μm). It is also possible to generate a microbubble by making the depth or width narrow in the portion.
The generation of bubbles as described above utilizes the fact that the gas expands in the channel expansion part, but the gas phase fluid is split by the interfacial tension because the interface shape is unstable. The bubble generation amount is adjusted by adjusting the gas phase flow rate, and the bubble size is adjusted by adjusting the flow path depth or width.

請求項6に係る発明の特徴事項、「前記の気相を微小な泡に***させる構造が、微小流路の一部に設けられた貫通孔であること」を備えている、脱溶媒装置の気液抽出操作部の他の具体例(実施例5)を図6に基いて説明する。
この実施例5は、実施例4の特徴事項、すなわち拡張部53、堰54による気泡生成機構に換えて、気相65と液相63の間の仕切り壁62に直径8.0μmなる円形断面を持つ貫通孔61を設け、この貫通孔61から液相63に気体を供給するようにしたものである。反応流路(気液抽出操作部14の微小流路)14a内の液相63に気相65から気体が供給されると、液相のせん断により気相が貫通孔断面において連続気相流体より切断されるので、液相63内に微細気泡64が無数に生成される。
A feature of the invention according to claim 6, wherein “the structure for splitting the gas phase into fine bubbles is a through-hole provided in a part of the microchannel”. Another specific example (Example 5) of the gas-liquid extraction operation unit will be described with reference to FIG.
In this fifth embodiment, instead of the feature of the fourth embodiment, that is, the bubble generation mechanism by the expansion portion 53 and the weir 54, the partition wall 62 between the gas phase 65 and the liquid phase 63 has a circular cross section with a diameter of 8.0 μm. A through hole 61 is provided, and gas is supplied from the through hole 61 to the liquid phase 63. When gas is supplied from the gas phase 65 to the liquid phase 63 in the reaction channel (the micro channel of the gas-liquid extraction operation unit 14) 14a, the gas phase is sheared from the continuous gas phase fluid in the through-hole cross section due to shearing of the liquid phase. Since it is cut, countless fine bubbles 64 are generated in the liquid phase 63.

請求項7,8に係る発明の特徴事項、「前記微小流路における抽出操作後に気液を分離させる構造を設けたこと」、「前記の気液分離構造が分岐型流路であること」を備えている、気液分離構造の具体例(実施例6)を図7に基いて説明する。
この実施例6は、図1に示す実施例1における気液分離操作部15の構造の具体例であり、反応流路(気液抽出操作部14の微小流路)14aの終端に設けられており、気液分離機構80を備えていて、これにより、反応流路14a内の気相81と液相82を分流・分岐させるものである。この実施例6の気液分離操作部15の構造によれば、気液抽出操作部の液相81と気相82から成る安定2層流を、80%以上の分離効率で気相、液相に分離・分岐させることができる。なお、気相、液相の分離効率は気液分離機構80の気相流量が溶媒液滴含むを液相の流量に対して少量であるほど低くなるため、気相流量が前記液相流量に対して数10倍以上であることが望ましい。この実施例6は、気相流量は液相流量の40倍以上に設定したものであるから、80%以上の分離効率で気相、液相に分離・分岐させることができるのである。
The features of the inventions according to claims 7 and 8, "providing a structure for separating gas and liquid after the extraction operation in the micro-channel", and "the gas-liquid separation structure is a branched channel" A specific example (Example 6) of the gas-liquid separation structure provided will be described with reference to FIG.
The sixth embodiment is a specific example of the structure of the gas-liquid separation operation section 15 in the first embodiment shown in FIG. 1, and is provided at the end of the reaction flow path (micro flow path of the gas-liquid extraction operation section 14) 14a. In addition, a gas-liquid separation mechanism 80 is provided, and thereby, the gas phase 81 and the liquid phase 82 in the reaction flow path 14a are divided and branched. According to the structure of the gas-liquid separation operation unit 15 of the sixth embodiment, a stable two-layer flow composed of the liquid phase 81 and the gas phase 82 of the gas-liquid extraction operation unit is converted into a gas phase and a liquid phase with a separation efficiency of 80% or more. Can be separated and branched. Note that the separation efficiency of the gas phase and the liquid phase becomes lower as the gas phase flow rate of the gas-liquid separation mechanism 80 includes the solvent droplets and is smaller than the liquid phase flow rate. On the other hand, it is desirable to be several tens of times or more. In Example 6, since the gas phase flow rate is set to 40 times or more of the liquid phase flow rate, it can be separated and branched into the gas phase and the liquid phase with a separation efficiency of 80% or more.

請求項9に係る発明の特徴事項、「気液分離構造がセトラーであること」の具体例(実施例7)を図8に基いて説明する。
この実施例7は、図1に示す実施例1における気液分離操作部15の構造の一具体例であり、反応流路(気液抽出92は気相の流出口であり、流出口93は液相の流出口である。操作部14の微小流路)14aから液相に気泡が分散した状態で排出され、これを導入口91よりセトラー部90に導入する。セトラー部90は広幅流路94の一方端に接続された一つの導入口91、他方端に接続された2つの流出口92,93を備えているものである。この実施例7におけるセトラーの広幅流路94は、その深さが500μmであり、また、その幅が導入口91の幅100μmの約100倍であり、さらにその長さが約20mmである。なおこれらの条件は分離する流体の流量により、重力により確実に気液が分離可能となる領域を適宜設定することができる。
A specific example (Example 7) of the feature matter of the invention according to claim 9, “the gas-liquid separation structure is a settler” will be described with reference to FIG.
Example 7 is a specific example of the structure of the gas-liquid separation operation unit 15 in Example 1 shown in FIG. 1, and the reaction channel (the gas-liquid extraction 92 is a gas-phase outlet and the outlet 93 is A liquid-phase outlet, which is a micro-channel of the operation unit 14, is discharged in a state where bubbles are dispersed in the liquid phase, and is introduced into the settler unit 90 through the inlet 91. The settler part 90 is provided with one inlet 91 connected to one end of the wide flow path 94 and two outlets 92 and 93 connected to the other end. The settler wide flow path 94 in Example 7 has a depth of 500 μm, a width of about 100 times the width of the introduction port 91 of 100 μm, and a length of about 20 mm. In addition, these conditions can set suitably the area | region where a gas-liquid can be reliably isolate | separated by gravity with the flow volume of the fluid to isolate | separate.

導入口91から広幅流路94に流入した気・液相は、ゆっくりとその流れ幅を拡げながら広幅流路94内を流れ、気泡の合一が促進される。また、セトラー部90の深さ及び幅が500μm以上であって、重力が表面力に勝る条件になっているため、気相、液相がその比重差によってセトラー部90内で上下に分離され、その後の流路にて2つに分離される。   The gas / liquid phase that has flowed into the wide flow path 94 from the introduction port 91 flows through the wide flow path 94 while gradually expanding the flow width thereof, and the coalescence of bubbles is promoted. Further, since the depth and width of the settler part 90 is 500 μm or more and the gravity is in a condition to overcome the surface force, the gas phase and the liquid phase are separated vertically in the settler part 90 due to the specific gravity difference. It is separated into two in the subsequent flow path.

請求項10に係る発明の特徴事項、「気液分離構造に加熱機構を設けること」を備えている、気液分離操作部の具体例(実施例8)を、図9に基いて説明する。
実施例8は、実施例1における気液分離操作部15を図8に示すセトラーにした実施例7について、そのセトラー(気液分離セトラー)に電気的な加熱機構101を付設したものであり、セトラー内で気液相を約50〜60℃に加熱して、その気泡を開裂させ、これによって、気相回収側出口への液相の混入または液相回収側出口の気相混入を抑制するようにしたものである。
この実施例8における気液分離操作部15は、深さが500μm、幅が1.0m、長さが20mmであり、これに対する加熱機構101は、本気液分離操作部周辺のみを加熱し、その他流体操作部に温度分布を与えない必要がある。
A specific example (Embodiment 8) of the gas-liquid separation operation unit including the feature of the invention according to claim 10, “providing a heating mechanism in the gas-liquid separation structure” will be described with reference to FIG. 9.
Example 8 relates to Example 7 in which the gas-liquid separation operation unit 15 in Example 1 is a settler shown in FIG. 8, and an electrical heating mechanism 101 is attached to the settler (gas-liquid separation settler). The gas-liquid phase is heated to about 50 to 60 ° C. in the settler to cleave the bubbles, thereby suppressing the mixing of the liquid phase into the gas phase recovery side outlet or the gas phase mixing at the liquid phase recovery side outlet. It is what I did.
The gas-liquid separation operation unit 15 in Example 8 has a depth of 500 μm, a width of 1.0 m, and a length of 20 mm. The heating mechanism 101 corresponding thereto heats only the periphery of the gas-liquid separation operation unit. It is necessary not to give temperature distribution to the fluid operation part.

請求項11に係る発明の特徴事項、「気液分離部より後方の流路の一部に冷却機構を設けること」の具体例(実施例9)を、図10に基いて説明する。
実施例9は、実施例1における溶媒回収操作部16、すなわち、反応流路(気液抽出操作部14の微小流路)14aで分離された気相が導かれる溶媒回収操作部16に、ペルチェ素子による外部からの冷却機構111を付設し、これにより溶媒回収操作部16内で気相を20℃に冷却して当該気相中に揮発した溶媒を液化させて、溶媒を分離し、回収するものである。
実施例9における溶媒回収操作部16の寸法は用いる流量及び滞留時間に依存し、80%以上の回収効率となるように適宜調整する。
A specific example (Example 9) of the characteristic matter of the invention according to claim 11, “providing a cooling mechanism in a part of the flow path behind the gas-liquid separator” will be described with reference to FIG. 10.
In the ninth embodiment, the solvent recovery operation section 16 in the first embodiment, that is, the solvent recovery operation section 16 to which the gas phase separated in the reaction flow path (micro flow path of the gas-liquid extraction operation section 14) 14a is led is connected to the Peltier. An external cooling mechanism 111 is provided by the element, whereby the gas phase is cooled to 20 ° C. in the solvent recovery operation unit 16 to liquefy the solvent volatilized in the gas phase, and the solvent is separated and recovered. Is.
The dimensions of the solvent recovery operation unit 16 in Example 9 depend on the flow rate used and the residence time, and are adjusted as appropriate so that the recovery efficiency is 80% or more.

請求項12に係る発明の特徴事項、「気液抽出部において加熱機構を設けること」の具体例(実施例10)を図11に基いて説明する。
この実施例10は、実施例1における反応流路14aによる気液抽出操作部14に電気的な加熱機構121を付設し、これにより、気液抽出操作部14内で液相を50℃まで加熱して、液相中における溶媒の溶解度を上昇させ、かつ気相中の溶媒の蒸気圧を上昇させることで抽出効率を向上させるものである。
実施例1における気液抽出操作部14の仕様は上記のとおりであり、これに付設される加熱機構121は、本気液抽出操作部周辺のみを加熱し、その他流体操作部に温度分布を与えないである必要がある。
A specific example (Example 10) of the characteristic matter of the invention according to claim 12, “providing a heating mechanism in the gas-liquid extraction part” will be described with reference to FIG.
In the tenth embodiment, an electric heating mechanism 121 is attached to the gas-liquid extraction operation section 14 by the reaction flow path 14a in the first embodiment, and thereby the liquid phase is heated to 50 ° C. in the gas-liquid extraction operation section 14. Thus, the extraction efficiency is improved by increasing the solubility of the solvent in the liquid phase and increasing the vapor pressure of the solvent in the gas phase.
The specification of the gas-liquid extraction operation unit 14 in the first embodiment is as described above, and the heating mechanism 121 attached thereto heats only the periphery of the gas-liquid extraction operation unit and does not give temperature distribution to the other fluid operation units. Need to be.

は、実施例1を模式的に示す平面図。These are top views which show Example 1 typically. は、図1における両導入流路の合流部13の拡大平面図。These are the enlarged plan views of the confluence | merging part 13 of both the introduction flow paths in FIG. は、図1における両導入流路の合流部13の他の例の拡大平面図。These are the enlarged plan views of the other examples of the confluence | merging part 13 of both the introduction flow paths in FIG. は、図1における両導入流路の合流部13のさらに他の例の拡大平面図。FIG. 4 is an enlarged plan view of still another example of the merge portion 13 of both introduction flow paths in FIG. 1. は、気液抽出操作部の他の例(実施例2)の拡大平面図。These are the enlarged plan views of other examples (Example 2) of a gas-liquid extraction operation part. は、脱溶媒装置の気液抽出操作部のさらに他の例(実施例3)の一部拡大斜視図。These are some expansion perspective views of other examples (Example 3) of the gas-liquid extraction operation part of a desolvation apparatus. は、図4−1の気液抽出操作部の拡大縦断面図。These are the expanded longitudinal cross-sectional views of the gas-liquid extraction operation part of FIGS. は、気液抽出操作部の他の例(実施例4)の平面図。These are the top views of the other example (Example 4) of a gas-liquid extraction operation part. (a)は、上記実施例4の一部拡大縦断面図、(b)は実施例4の変形例の一部拡大縦断面図。(A) is a partially expanded longitudinal cross-sectional view of the said Example 4, (b) is a partially expanded longitudinal cross-sectional view of the modification of Example 4. FIG. は、脱溶媒装置の気液抽出操作部のさらに他の例(実施例5)の拡大縦断面図。These are the expanded longitudinal cross-sectional views of other examples (Example 5) of the gas-liquid extraction operation part of a desolvation apparatus. は、気液分離構造の具体例(実施例6)の拡大縦断面図。These are the expanded longitudinal cross-sectional views of the specific example (Example 6) of a gas-liquid separation structure. は、気液分離構造の他の具体例(実施例7)を模式的に示す拡大斜視界図。These are the expansion perspective views which show typically the other specific example (Example 7) of a gas-liquid separation structure. は、気液分離操作部に加熱手段を備えている脱溶媒装置の具体例(実施例8)の平面図。These are top views of the specific example (Example 8) of the desolvation apparatus provided with the heating means in the gas-liquid separation operation part. は、気液分離部より後方の流路の一部に冷却機構を設けた脱溶媒装置の具体例(実施例9)の平面図。These are the top views of the specific example (Example 9) of the solvent removal apparatus which provided the cooling mechanism in a part of flow path behind a gas-liquid separation part. は、気液抽出部において加熱機構を設けた脱溶媒装置の具体例(実施例10)の平面図。These are top views of the specific example (Example 10) of the solvent removal apparatus which provided the heating mechanism in the gas-liquid extraction part.

符号の説明Explanation of symbols

a:気相
b:液相
D:脱溶媒装置
,g:導入流路
11:気相導入口
12:液相導入口
13,13a,13b:合流部
14:気液抽出操作部
14a:反応流路(気液抽出操作部の微小流路)
15:気液分離操作部
16:溶媒回収操作部
17:気相回収口
18:微粒子分散液回収口
18a:微粒子分散液相流路
19:溶媒回収ポート
31:気相導入部側の壁面
32:液相導入部側の壁面
33:気相34と液滴33aが分散している液相
33a:液滴
41:気相流
42:液相流
43:メッシュ構造
43a:気相流41と液相流42を繋ぐ空間
53:流路幅の拡張部
54:堰
61:貫通孔
62:気相と液相の間の仕切り壁
63:液相
64:微細気泡
65:気相
80:気液分離機構
81:気相
82:液相
90:セトラー部
91:導入口
92,93:流出口
94:広幅流路
101:加熱機構
111:冷却機構
121:加熱機構
a: Gas phase b: Liquid phase D: Desolvation device g 1 , g 2 : Introduction channel 11: Gas phase introduction port 12: Liquid phase introduction port 13, 13a, 13b: Merge unit 14: Gas-liquid extraction operation unit 14a : Reaction channel (micro channel of gas-liquid extraction operation part)
15: Gas-liquid separation operation unit 16: Solvent recovery operation unit 17: Gas phase recovery port 18: Fine particle dispersion recovery port 18a: Fine particle dispersion phase channel 19: Solvent recovery port 31: Wall surface 32 on the gas phase introduction side Wall 33 on the liquid phase introduction part side: liquid phase 33a in which the gas phase 34 and droplets 33a are dispersed: droplet 41: gas phase flow 42: liquid phase flow 43: mesh structure 43a: gas phase flow 41 and liquid phase Space 53 connecting the flow 42: Channel width extension 54: Weir 61: Through hole 62: Partition wall between the gas phase and the liquid phase 63: Liquid phase 64: Fine bubbles 65: Gas phase 80: Gas-liquid separation mechanism 81: Gas phase 82: Liquid phase 90: Settling part 91: Inlet 92, 93: Outlet 94: Wide channel 101: Heating mechanism 111: Cooling mechanism 121: Heating mechanism

Claims (19)

微小流路を用いた化学反応操作及び化学工学的単位操作により、溶媒(有機溶剤)で膨潤した樹脂溶解液滴微粒子の水分散液から溶媒を回収する脱溶媒装置であって、
複数の流体導入部及び排出部を持つ幅及び深さが1〜1000μmの範囲の微小流路による気液抽出操作部を有し、
上記流体導入部の一方から樹脂溶解液滴微粒子の分散した溶液を導入し、他方から気体を導入して、気相と液相を上記微小流路で接触させ、
樹脂溶解液滴微粒子を含有する溶媒を液相に抽出し、液相に存在する溶媒を気相に抽出することにより、樹脂溶解液滴微粒子に含まれる溶媒を気相に速やかに抽出する構造を有することを特徴とする脱溶媒装置。
A solvent removal apparatus for recovering a solvent from an aqueous dispersion of resin-dissolved droplet fine particles swollen with a solvent (organic solvent) by a chemical reaction operation and a chemical engineering unit operation using a microchannel,
It has a gas-liquid extraction operation part with a micro flow channel having a width and a depth in the range of 1 to 1000 μm with a plurality of fluid introduction parts and discharge parts,
Introducing a solution in which resin-dissolved droplet fine particles are dispersed from one of the fluid introduction parts, introducing a gas from the other, and bringing the gas phase and the liquid phase into contact with each other through the microchannel;
By extracting the solvent containing the resin-dissolved droplet fine particles into the liquid phase and extracting the solvent present in the liquid phase into the gas phase, the solvent contained in the resin-dissolved droplet fine particles can be quickly extracted into the gas phase. A desolvation apparatus comprising:
前記微小流路の壁面の一部分に親水性及び疎水性のパターンを設けたことを特徴とする請求項1記載の脱溶媒装置。   2. The solvent removal apparatus according to claim 1, wherein a hydrophilic pattern and a hydrophobic pattern are provided on a part of the wall surface of the microchannel. 前記微小流路内の気相流路と液相流路の間に10〜500μmピッチのメッシュ構造を設け、気相及び液相の安定接触を実現することを特徴とする請求項1記載の脱溶媒装置。   2. The desorption according to claim 1, wherein a mesh structure with a pitch of 10 to 500 [mu] m is provided between the gas phase channel and the liquid phase channel in the micro channel to realize stable contact between the gas phase and the liquid phase. Solvent device. 前記微小流路の一部に、気相を微小な泡に***させる構造を有することを特徴とする請求項1記載の脱溶媒装置。   The desolvation apparatus according to claim 1, wherein a part of the microchannel has a structure that splits the gas phase into microbubbles. 前記気相を微小な泡に***させる構造が、微小流路の一部に流路幅または流路深さを狭めた堤防形状であることを特徴とする請求項4記載の脱溶媒装置。   5. The desolvation apparatus according to claim 4, wherein the structure for dividing the gas phase into fine bubbles has a bank shape in which a channel width or a channel depth is narrowed in a part of a micro channel. 前記の気相を微小な泡に***させる構造が、微小流路の一部に設けられた貫通孔であることを特徴とする請求項4記載の脱溶媒装置。   The desolvation apparatus according to claim 4, wherein the structure that splits the gas phase into fine bubbles is a through-hole provided in a part of the microchannel. 前記微小流路における抽出操作後に気相、液相を分離させる気液分離構造を設けたことを特徴とする請求項1記載の脱溶媒装置。   The desolvation apparatus according to claim 1, further comprising a gas-liquid separation structure that separates a gas phase and a liquid phase after an extraction operation in the microchannel. 前記の気液分離構造が分岐型流路であることを特徴とする請求項7記載の脱溶媒装置。   The desolvation apparatus according to claim 7, wherein the gas-liquid separation structure is a branched flow path. 前記の気液分離構造がセトラーであることを特徴とする請求項7記載の脱溶媒装置。   The desolvation apparatus according to claim 7, wherein the gas-liquid separation structure is a settler. 前記の気液分離構造に加熱機構を設けていることを特徴とする請求項7記載の脱溶媒装置。   The desolvation apparatus according to claim 7, wherein a heating mechanism is provided in the gas-liquid separation structure. 前記の気液分離部より後方の流路の一部に冷却機構を設けていることを特徴とする請求項7記載の脱溶媒装置。   The desolvation apparatus according to claim 7, wherein a cooling mechanism is provided in a part of the flow path behind the gas-liquid separation unit. 前記気液抽出操作部に加熱機構を設けていることを特徴とする請求項1記載の脱溶媒装置。   The desolvation apparatus according to claim 1, wherein a heating mechanism is provided in the gas-liquid extraction operation unit. 前記微小流路による気液抽出操作部がガラス、金属、樹脂、シリコンのいずれか一種類またはこれらの組み合わせにより構成されていることを特徴とする請求項1記載の脱溶媒装置。   The desolvation apparatus according to claim 1, wherein the gas-liquid extraction operation unit using the micro flow path is made of any one of glass, metal, resin, and silicon, or a combination thereof. 微小流路を用いた化学反応操作及び化学工学的単位操作により、溶媒(有機溶剤)で膨潤した樹脂溶解液滴微粒子の水分散液から溶媒を回収する脱溶媒方法であって、
複数の流体導入部及び排出部を持つ幅及び深さが1〜1000μmの範囲の微小流路による気液抽出操作部で気液抽出し、
上記流体導入部の一方から樹脂溶解液滴微粒子の分散した溶液を導入し、他方の流体導入部のから気体を導入して、気相と液相を上記微小流路で接触させ、
樹脂溶解液滴微粒子を含有する溶媒を液相に抽出し、液相に存在する溶媒を気相に抽出することにより、樹脂溶解液滴微粒子に含まれる溶媒を気相に速やかに抽出することを特徴とする脱溶媒方法。
A solvent removal method for recovering a solvent from an aqueous dispersion of resin-dissolved droplet fine particles swollen with a solvent (organic solvent) by a chemical reaction operation and a chemical engineering unit operation using a microchannel,
Gas-liquid extraction is performed by a gas-liquid extraction operation unit with a micro-channel having a width and a depth ranging from 1 to 1000 μm with a plurality of fluid introduction parts and discharge parts,
Introducing a solution in which resin-dissolved droplet fine particles are dispersed from one of the fluid introduction parts, introducing a gas from the other fluid introduction part, and bringing the gas phase and the liquid phase into contact with each other through the microchannel;
By extracting the solvent containing the resin-dissolved droplet fine particles into the liquid phase and extracting the solvent present in the liquid phase into the gas phase, the solvent contained in the resin-dissolved droplet fine particles can be quickly extracted into the gas phase. Desolvation method characterized.
前記微小流路の一部において、気相を微小な泡に***させることを特徴とする請求項14記載の脱溶媒方法。   The desolvation method according to claim 14, wherein the gas phase is split into micro bubbles in a part of the micro channel. 前記微小流路における抽出操作後に気液分離構造によって気相、液相を分離させる工程を有する請求項14の脱溶媒方法。   The solvent removal method according to claim 14, further comprising a step of separating the gas phase and the liquid phase by a gas-liquid separation structure after the extraction operation in the microchannel. 前記の気液分離構造において加熱機構によって加熱することを特徴とする請求項14記載の脱溶媒方法。   The solvent removal method according to claim 14, wherein the gas-liquid separation structure is heated by a heating mechanism. 前記の気液分離部より後方の流路の一部において冷却機構によって冷却することを特徴とする請求項14記載の脱溶媒方法。   The desolvation method according to claim 14, wherein cooling is performed by a cooling mechanism in a part of the flow path behind the gas-liquid separation unit. 前記気液抽出操作部において加熱機構で加熱することを特徴とする請求項14記載の脱溶媒方法。   The desolvation method according to claim 14, wherein heating is performed by a heating mechanism in the gas-liquid extraction operation unit.
JP2005029118A 2005-02-04 2005-02-04 Desolvating device Pending JP2006212570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029118A JP2006212570A (en) 2005-02-04 2005-02-04 Desolvating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029118A JP2006212570A (en) 2005-02-04 2005-02-04 Desolvating device

Publications (1)

Publication Number Publication Date
JP2006212570A true JP2006212570A (en) 2006-08-17

Family

ID=36976215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029118A Pending JP2006212570A (en) 2005-02-04 2005-02-04 Desolvating device

Country Status (1)

Country Link
JP (1) JP2006212570A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233483A (en) * 2008-03-25 2009-10-15 Kakei Gakuen Active slug reactor
JP2014014729A (en) * 2012-07-05 2014-01-30 Kobe Steel Ltd Separation method and separator
US9656228B2 (en) 2008-06-16 2017-05-23 Midatech Pharma (Wales) Limited Device and method for making solid beads
CN108212230A (en) * 2017-12-22 2018-06-29 昆明理工大学 A kind of drop formation device and method based on micro-valve control
CN113115198A (en) * 2021-03-05 2021-07-13 立讯电子科技(昆山)有限公司 Air suction carrier, air suction device and method for solving poor acoustics of earphone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233483A (en) * 2008-03-25 2009-10-15 Kakei Gakuen Active slug reactor
US9656228B2 (en) 2008-06-16 2017-05-23 Midatech Pharma (Wales) Limited Device and method for making solid beads
JP2014014729A (en) * 2012-07-05 2014-01-30 Kobe Steel Ltd Separation method and separator
CN108212230A (en) * 2017-12-22 2018-06-29 昆明理工大学 A kind of drop formation device and method based on micro-valve control
CN113115198A (en) * 2021-03-05 2021-07-13 立讯电子科技(昆山)有限公司 Air suction carrier, air suction device and method for solving poor acoustics of earphone

Similar Documents

Publication Publication Date Title
Sattari et al. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures
JP6246587B2 (en) Method for forming droplets in a microfluidic circuit
Vladisavljević et al. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
Shui et al. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics
US9446360B2 (en) Microfluidic system and methods for highly selective droplet fusion
Liu et al. Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes
Lambrich et al. Emulsification using microporous systems
Kobayashi et al. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size
JP2006212570A (en) Desolvating device
CN105765055A (en) Microfluidic devices and methods of their use
Yang et al. Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles
Liu et al. Liquid–liquid microflows and mass transfer performance in slit-like microchannels
WO2014018562A1 (en) Droplet generation system with features for sample positioning
Tan et al. Process intensification of H2O2 extraction using gas–liquid–liquid microdispersion system
Reddy et al. Interfacial stabilization of organic–aqueous two-phase microflows for a miniaturized DNA extraction module
Dyett et al. Accelerated formation of H2 nanobubbles from a surface nanodroplet reaction
JP2005144356A (en) Micro flow path structure and method for producing fine particle using the same
Ma et al. The breakup dynamics and mechanism of viscous droplets in Y-shaped microchannels
CN112439467A (en) Chip and device for preparing emulsion droplets
Liu et al. Effects on droplet generation in step-emulsification microfluidic devices
Madadelahi et al. Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres
Kaske et al. The influence of operating conditions on the mass transfer performance of a micro capillary contactor with liquid–liquid slug flow
JP2006272231A (en) Microchannel
Vu et al. Numerical study of rheological behaviors of a compound droplet in a conical nozzle
Sattari et al. Microfluidic on-chip production of alginate hydrogels using double coflow geometry