JP2006212095A - Photoelectric sensor and blood pressure measuring apparatus - Google Patents

Photoelectric sensor and blood pressure measuring apparatus Download PDF

Info

Publication number
JP2006212095A
JP2006212095A JP2005025544A JP2005025544A JP2006212095A JP 2006212095 A JP2006212095 A JP 2006212095A JP 2005025544 A JP2005025544 A JP 2005025544A JP 2005025544 A JP2005025544 A JP 2005025544A JP 2006212095 A JP2006212095 A JP 2006212095A
Authority
JP
Japan
Prior art keywords
photoelectric sensor
light receiving
light
blood pressure
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005025544A
Other languages
Japanese (ja)
Other versions
JP4227107B2 (en
Inventor
Shinji Kondo
針次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K and S KK
Original Assignee
K and S KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K and S KK filed Critical K and S KK
Priority to JP2005025544A priority Critical patent/JP4227107B2/en
Publication of JP2006212095A publication Critical patent/JP2006212095A/en
Application granted granted Critical
Publication of JP4227107B2 publication Critical patent/JP4227107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric sensor capable of being easily attached to a flat part such as an earlobe in addition to a finger and a wrist, and a blood pressure measuring apparatus or the like using the photoelectric sensor. <P>SOLUTION: The photoelectric sensor 40 is composed of a pair of clamping plates (corresponding to holding members) 41 and 51, and the respective clamping plates 41 and 51 are provided with a projecting element 45 and a light receiving element 55 respectively on the opposing surafces. Both clamping plates 41 and 51 are connected by a hinge pin 61 passing through an insertion hole provided in attaching parts 43 and 53, and a coil spring 62 for energizing both clamping plates 41 and 51 in a closing direction is externally fitted on the hinge pin 61 further. Thus, while both clamping plates 41 and 51 are normally in a closed posture where the upper ends butt on each other, however when the lower ends of the clamping plates 41 and 51 are pinched against spring force, the plate take an opened posture. Thus, the photoelectric sensor 40 is set to an earlobe in a state where a pinching operation is performed and a hand is released from the state, the entire photoelectric sensor 40 is attached to the earlobe of a subject. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光電センサ、血圧測定装置に関する。   The present invention relates to a photoelectric sensor and a blood pressure measurement device.

従来、被験者の血流量の変動の様子を光電センサによって検出するものが広く知られている。光電センサは投光・受光素子から構成され、例えば被験者の手指等にセンサ固定用バンドによって固定されるようになっている。
特開2004−136105公報(同公報中の図3参照)
2. Description of the Related Art Conventionally, a device that detects a change in blood flow of a subject using a photoelectric sensor is widely known. The photoelectric sensor is composed of a light projecting / receiving element, and is fixed to a subject's finger or the like by a sensor fixing band, for example.
JP 2004-136105 A (see FIG. 3 in the same publication)

バンドによる取り付け構造では、光電センサの取り付け場所が被験者の指、手首、足首等に限定され、それ以外の場所への取り付けを行うことが出来ない。
また、上記取り付け構造では、光電センサを測定箇所に取り付けるのに、固定用のバンドを両手でつかんで拡げた状態にしておき、その後、測定箇所にバンドを被せてゆくといった作業が必要となり、この点においても改善の余地があった。
本発明は上記のような事情に基づいて完成されたものであって、指、手首に加えて耳たぶ等の平らな部分への取り付けが簡単に行うこと出来る光電センサ並びに、それを用いた血流量測定装置を提供することを目的とする。
In the attachment structure using the band, the attachment place of the photoelectric sensor is limited to the subject's finger, wrist, ankle, etc., and attachment to other places is not possible.
Further, in the above mounting structure, in order to attach the photoelectric sensor to the measurement location, it is necessary to hold the band for fixing with both hands and then spread it, and then cover the measurement location with the band. There was room for improvement.
The present invention has been completed based on the above-described circumstances, and a photoelectric sensor that can be easily attached to a flat part such as an earlobe in addition to a finger and a wrist, and a blood flow volume using the photoelectric sensor. It aims at providing a measuring device.

上記の目的を達成するための手段として、請求項1の発明は、被験者の被測定部位に取り付けて前記被測定部位内部の血管を流れる血流量の変化を検出する光電センサであって、ヒンジによって回動可能に連結されるとともに前記被測定部位を挟持可能な一対の保持部材と、前記保持部材のうちいずれか一方側に設けられ、前記被測定部位の血管に対して所定波長の検出光を照射する投光素子と、他方側の保持部材に設けられ、前記投光素子からの検出光の光量に応じた大きさの受光信号を出力する受光素子と、前記両保持部材を挟み方向に付勢する付勢部材とからなるところに特徴を有する。   As means for achieving the above object, the invention of claim 1 is a photoelectric sensor that is attached to a measurement site of a subject and detects a change in blood flow flowing in a blood vessel inside the measurement site, and is a hinge sensor. A pair of holding members that are pivotably connected and can hold the measurement site, and provided on either one of the holding members, and detect light of a predetermined wavelength with respect to the blood vessel of the measurement site A light emitting element to be irradiated, a light receiving element that is provided on the other holding member and outputs a light receiving signal having a magnitude corresponding to the amount of detection light from the light projecting element, and the both holding members are attached in the sandwiching direction. It is characterized in that it comprises a biasing member that biases.

請求項2の発明は、請求項1に記載のものにおいて、前記他方側の保持部材には前記受光素子が複数個設けられ、これら複数の受光素子がそれぞれ前記投光素子からの検出光を受光するように配置されているところに特徴を有する。   According to a second aspect of the present invention, in the first aspect, the holding member on the other side is provided with a plurality of the light receiving elements, and each of the plurality of light receiving elements receives detection light from the light projecting element. It is characterized by being arranged so as to.

請求項3の発明は、請求項2に記載の光電センサと、前記光電センサの備える受光素子から得られる受光信号のレベルに基づいて被験者の血流データを決定する血流データ決定手段と、前記受光素子から得られる両受光信号の位相差に基づいて血流の速度データを決定する速度決定手段と、被験者の血管を圧迫するためのカフと、このカフによって圧迫された部分から圧脈波を検出するカフ圧センサと、前記カフ圧センサから得られる圧脈波データ、前記血流データ並びに前記速度データに基づいて被験者の血圧値を決定する血圧決定手段と、を有するところに特徴を有する。   The invention according to claim 3 is the photoelectric sensor according to claim 2, blood flow data determining means for determining blood flow data of a subject based on a level of a light reception signal obtained from a light receiving element included in the photoelectric sensor, Speed determining means for determining blood flow speed data based on the phase difference between the two received light signals obtained from the light receiving element, a cuff for compressing the blood vessel of the subject, and a pressure pulse wave from the portion compressed by the cuff The present invention is characterized in that it has a cuff pressure sensor to be detected, and blood pressure determination means for determining a blood pressure value of a subject based on pressure pulse wave data obtained from the cuff pressure sensor, the blood flow data, and the velocity data.

請求項4の発明は、請求項3に記載のものにおいて、前記受光素子から得られる受光信号のノイズ成分を除去するノイズ除去回路を備えたところに特徴を有する。   The invention of claim 4 is characterized in that, in the apparatus of claim 3, there is provided a noise removing circuit for removing a noise component of a light receiving signal obtained from the light receiving element.

<請求項1の発明>
請求項1の発明によれば、被測定部位に対する光電センサの取り付けをワンタッチで行うことが出来るから、取り付け操作性に優れる。また、被測定部位を両保持部材間に挟み込んで保持する取り付け形式であるから、指、手首等に加えて、耳たぶへの取り付けも可能となる。
<Invention of Claim 1>
According to the first aspect of the present invention, since the photoelectric sensor can be attached to the measurement site with a single touch, the attachment operability is excellent. In addition, since it is an attachment type in which the measurement site is held between both holding members, it can be attached to the earlobe in addition to the finger, the wrist, and the like.

<請求項2並びに請求項3の発明>
受光素子を複数個備えていれば、受光信号の位相差から血流の速度を算出することが可能となる。そして、血圧値は圧脈波データ、血流量データに加えて、血流の速度も加味した上で決定されるから、決定される血圧値の信頼性が高まる。
<Invention of Claims 2 and 3>
If a plurality of light receiving elements are provided, the blood flow velocity can be calculated from the phase difference of the light receiving signals. Since the blood pressure value is determined in consideration of the blood flow velocity in addition to the pressure pulse wave data and the blood flow volume data, the reliability of the determined blood pressure value is increased.

<請求項4の発明>
ノイズを除去することが出来るから、測定精度が高まる。
<Invention of Claim 4>
Since noise can be removed, measurement accuracy is increased.

<実施形態1>
本発明に係る血圧測定装置を図1ないし図12を参照して説明する。
血圧測定装置1は基準となる血圧値(絶対値)を測定するためのカフ圧センサ4と、被験者の耳たぶに取り付けて同部位の血流量の変化(相対値)を経時的に測定する光電センサ40と、両センサ4、40から得られるデータに基づいて演算処理を行うデータ処理装置20とを備え、カフ圧センサ4並びに光電センサ40の双方のセンサを使用して予備測定(装置のキャリブレーション、並びに基準値の取得)を行った後、光電センサ40のみを使用して本測定を行い、被験者の血圧を連続して算出するものである。以下、カフ圧センサ4並びに光電センサ40の構成について説明し、その後、データ処理装置20内における具体的な処理手順について説明する。
<Embodiment 1>
A blood pressure measuring apparatus according to the present invention will be described with reference to FIGS.
The blood pressure measurement device 1 includes a cuff pressure sensor 4 for measuring a blood pressure value (absolute value) serving as a reference, and a photoelectric sensor that is attached to the subject's earlobe and measures a change (relative value) in blood flow over time at the same site. 40 and a data processing device 20 that performs arithmetic processing based on data obtained from both sensors 4 and 40, and uses both the cuff pressure sensor 4 and the photoelectric sensor 40 for preliminary measurement (device calibration). , And acquisition of the reference value), the main measurement is performed using only the photoelectric sensor 40, and the blood pressure of the subject is continuously calculated. Hereinafter, the configuration of the cuff pressure sensor 4 and the photoelectric sensor 40 will be described, and then a specific processing procedure in the data processing device 20 will be described.

図2において、2は被験者の手首に装着可能なカフであり、内部にゴム袋が内蔵されている。このゴム袋にはチューブが接続されていてエアー供給用のポンプ6と接続されている。また、チューブの途中には開閉弁3が介在されていて、その開閉動作によってカフ2内のゴム袋に対するエアーの供給と排気を行うことが出来るようにしてある。さらに、カフ2内にはゴム袋内の空気変動を検出するためのカフ圧センサ4が組み込まれている。このカフ圧センサ4は図1に示すように、ローパスフィルタ11、ハイパスフィルタ9に接続され、同カフ圧センサ4から出力される検出信号(圧脈波データ)はそれぞれ所定周波数成分(ノイズ成分)がカットされた状態でデータ処理装置20へ入力されるようになっている   In FIG. 2, 2 is a cuff that can be attached to the wrist of the subject, and a rubber bag is incorporated inside. A tube is connected to the rubber bag and is connected to an air supply pump 6. An on-off valve 3 is interposed in the middle of the tube so that air can be supplied to and exhausted from the rubber bag in the cuff 2 by the opening / closing operation. Further, a cuff pressure sensor 4 for detecting air fluctuation in the rubber bag is incorporated in the cuff 2. As shown in FIG. 1, the cuff pressure sensor 4 is connected to a low-pass filter 11 and a high-pass filter 9, and detection signals (pressure pulse wave data) output from the cuff pressure sensor 4 are respectively predetermined frequency components (noise components). Is input to the data processing device 20 in a cut state.

光電センサ40は対向する一対の挟持板(本発明の保持部材に相当する)41、51からなる。図3に示すように、両挟持板41、51は相手側との対向面の上部寄りの位置にそれぞれ光電素子取り付け用の凹部42、52が設けられ、その下方部に連結用の取り付け部43、53が設けられている。取り付け部43、53は図6に示すように各挟持板41、51に一対水平方向に並んで設けられるとともに、挟持板51の取り付け部53間に挟持板41の取り付け部43が若干の隙間を持って嵌めあわされるようになっている。   The photoelectric sensor 40 includes a pair of sandwiching plates (corresponding to the holding member of the present invention) 41 and 51 facing each other. As shown in FIG. 3, the sandwiching plates 41 and 51 are provided with concave portions 42 and 52 for attaching photoelectric elements at positions close to the upper portion of the surface facing the counterpart, respectively, and a connecting attachment portion 43 at the lower portion thereof. , 53 are provided. As shown in FIG. 6, the attachment portions 43 and 53 are provided in a pair in the horizontal direction on each of the sandwich plates 41 and 51, and the attachment portion 43 of the sandwich plate 41 has a slight gap between the attachment portions 53 of the sandwich plate 51. It is designed to be held and fitted.

これら両挟持板41、51は取り付け部43、53に設けられる挿通孔を貫通するヒンジピン61によって連結され、更に、ヒンジピン61には両挟持板41、51を閉じ方向に付勢するコイルばね(本発明の付勢部材に相当)62が外挿されている。これにより、両挟持板41、51は常には上端同士を付き合わせた閉じ姿勢にあるが(図3に示す姿勢)、挟持板41、51の下端をばね力に抗じてつまみ操作(近接方向に操作)してやると、開脚姿勢をとる。これにより、つまみ操作をした状態で光電センサ40を耳たぶにセットし、その状態から手を離してやれば被験者の耳たぶに対して光電センサ40全体の取り付けを行うことが出来る(図4参照)。   Both the sandwiching plates 41 and 51 are connected by a hinge pin 61 that passes through an insertion hole provided in the attachment portions 43 and 53. Further, the hinge pin 61 is a coil spring that urges the sandwiching plates 41 and 51 in the closing direction (the main spring). 62 corresponding to the biasing member of the invention is extrapolated. Thereby, although both the clamping plates 41 and 51 are always in the closed posture in which the upper ends are attached to each other (the posture shown in FIG. 3), the lower ends of the clamping plates 41 and 51 are operated by the knob operation against the spring force (proximity direction). ) To take an open leg position. Thereby, the photoelectric sensor 40 can be attached to the subject's earlobe by setting the photoelectric sensor 40 to the earlobe in a state where the knob is operated and releasing the hand from the state (see FIG. 4).

凹部のうち図5における左側の挟持板41の凹部42には投光素子45が投光面を相手側に向けた状態で収容され、右側の挟持板51の凹部52には受光素子55が同じく受光面を相手側に向けた状態で収容されている。投光素子45としては近赤外光波長(例えば640mm)をもった光を照射可能な発光赤色LEDが使用され、受光素子55としてはフォトトランジスタが使用されている。   Among the recesses, the light projecting element 45 is accommodated in the recess 42 of the left sandwiching plate 41 in FIG. 5 with the light projecting surface facing the other side, and the light receiving element 55 is similarly disposed in the recess 52 of the right sandwiching plate 51. It is accommodated with the light receiving surface facing the other side. A light emitting red LED capable of irradiating light having a near infrared light wavelength (for example, 640 mm) is used as the light projecting element 45, and a phototransistor is used as the light receiving element 55.

そして、発光赤色LEDから被験者の血管に向けて検出光が照射されると、検出光のうち血管を透過した透過光がフォトトランジスタによって受光され、同フォトトランジスタからは透過光の光量に応じた大きさの受光信号(より、詳しくは受光量を反転させた信号)が出力される。これにより、フォトトランジスタからは血管の容量に伴う吸光度の変化、すなわち血流量の相対的な変化(光電容積脈波)が検出されるようになっている。   Then, when detection light is emitted from the light emitting red LED toward the blood vessel of the subject, transmitted light that has passed through the blood vessel is received by the phototransistor among the detection light, and the magnitude corresponding to the amount of transmitted light is received from the phototransistor. The light reception signal (more specifically, a signal obtained by inverting the light reception amount) is output. As a result, a change in absorbance associated with the volume of the blood vessel, that is, a relative change in blood flow (photoelectric volume pulse wave) is detected from the phototransistor.

また、図6に示すように、投光素子45は凹部42に1個収容されているのに対して、受光素子55は凹部52に2個、図6における左右方向(挟持板51の長手方向と直交する方向)に並んだ状態で収容されている。これら両受光素子55A、55Bはいずれも投光素子45からの検出光を受光可能とされ、各受光素子55A、55Bからはそれぞれ受光信号が出力されるようになっている。これら各受光信号はローパスフィルタ(本発明のノイズ除去回路に相当)14及びハイパスフィルタ(本発明のノイズ除去回路に相当)15に接続されノイズ成分が除去された後、データ処理装置20に入力されるようになっている。
なお、光電センサ40に接続されたローパスフィルタ14ではノイズとなる低周波成分を除去するためにこの実施形態では30HZ以下の成分をカットし、また、同じくハイパスフィルタ15では所定の高周波成分(150HZ以上)をカットすることが出来るような設定となっている。
Further, as shown in FIG. 6, one light projecting element 45 is accommodated in the concave portion 42, whereas two light receiving elements 55 are disposed in the concave portion 52, in the left-right direction in FIG. 6 (the longitudinal direction of the sandwiching plate 51. Are housed in a state of being lined up in a direction orthogonal to each other. Both the light receiving elements 55A and 55B can receive the detection light from the light projecting element 45, and light receiving signals are output from the light receiving elements 55A and 55B, respectively. These received light signals are connected to a low-pass filter (corresponding to the noise removing circuit of the present invention) 14 and a high-pass filter (corresponding to the noise removing circuit of the present invention) 15 to remove noise components, and then input to the data processing device 20. It has become so.
In this embodiment, the low-pass filter 14 connected to the photoelectric sensor 40 cuts out components of 30 Hz or less in order to remove low-frequency components that are noise, and the high-pass filter 15 similarly uses a predetermined high-frequency component (150 Hz or more). ) Can be cut.

そして、本実施形態では受光素子55Aがメイン側、受光素子55Bがサブ側とされており、詳細には後述するがメイン側の受光素子55Aから得られる受光信号(光電容積脈波)に基づいてデータ処理装置20において脈波面積Vが算出される。   In the present embodiment, the light receiving element 55A is on the main side and the light receiving element 55B is on the sub side. Although described in detail later, the light receiving element 55A is based on a light receiving signal (photoelectric volume pulse wave) obtained from the light receiving element 55A on the main side. The pulse wave area V is calculated in the data processing device 20.

一方、サブ側の受光素子55Bは血圧測定装置1の測定精度を向上させるためのものである。本実施形態の血圧測定装置1は血圧を連続算出するのに、光電容積脈波の脈波面積と血圧との関係に着目しているが(詳細な血圧算出手順に関しては後に述べる)、血圧は血液の粘性や血管の硬化によっても変動する。そして、血流の粘性が異なったり血管が硬化すると、血流の速度が変化するとともに光電容積脈波の波形が変化するから脈波面積に基づく算出方法であれば、一応はこれらの血圧変動因子を加味することが出来るが、血流の速度を監視し、速度に変化が生じたときには補正処理(詳細には後述)を行うことで、より一層正確な血圧値の算出が可能となる。   On the other hand, the sub-side light receiving element 55B is for improving the measurement accuracy of the blood pressure measurement device 1. The blood pressure measurement device 1 of the present embodiment focuses on the relationship between the pulse wave area of the photoelectric volume pulse wave and the blood pressure to continuously calculate the blood pressure (the detailed blood pressure calculation procedure will be described later). It also varies depending on blood viscosity and blood vessel stiffness. And if the viscosity of the blood flow is different or the blood vessel is hardened, the velocity of the blood flow will change and the waveform of the photoelectric volume pulse wave will change, so if it is a calculation method based on the pulse wave area, these blood pressure fluctuation factors However, it is possible to calculate the blood pressure value more accurately by monitoring the blood flow velocity and performing correction processing (described later in detail) when the velocity changes.

血流の速度の算出は次の要領で行われる。メイン・サブの両受光素子55A、55Bは、図11に示すように血液の流れ方向の上流側と下流側に配置され、両受光素子55A、55Bからは、図12に示すように波形がほぼ同一で位相のみことなる受光信号Do、D1が得られる。そして、これら両受光素子55A、55Bの配置ピッチはLmmであることから、受光素子55Aのピーク時をt1、受光素子55Bのピーク時をt2とすると血流の速度Rは次式より得られる。
R=L/(t2−t1)・・・・・・・・(a)
尚、この速度Rが本発明における血流の速度データに相当するものである。
The blood flow velocity is calculated as follows. As shown in FIG. 11, the main and sub light receiving elements 55A and 55B are arranged on the upstream side and the downstream side in the direction of blood flow, and the waveforms from both light receiving elements 55A and 55B are almost as shown in FIG. The received light signals Do and D1 which are the same and differ only in phase are obtained. Since the arrangement pitch of these light receiving elements 55A and 55B is Lmm, the blood flow velocity R can be obtained from the following equation where t1 is the peak time of the light receiving element 55A and t2 is the peak time of the light receiving element 55B.
R = L / (t2-t1) (a)
The velocity R corresponds to blood flow velocity data in the present invention.

次にデータ処理装置20における具体的な処理手順について説明する。
データ処理装置20は図1に示すように、A/D変換部21、CPU25、メモリ27から構成されており、カフ圧センサ4、並びに光電センサ40から出力された信号はA/D変換部21によってアナログ信号からディジタル信号に変換された後、CPU25に入力される。
Next, a specific processing procedure in the data processing device 20 will be described.
As shown in FIG. 1, the data processing device 20 includes an A / D conversion unit 21, a CPU 25, and a memory 27, and signals output from the cuff pressure sensor 4 and the photoelectric sensor 40 are A / D conversion units 21. Is converted from an analog signal to a digital signal and then input to the CPU 25.

その後、CPU25では以下の処理手順にしたがって、被験者の血圧値が算出される。尚、メモリ27内には光電センサ40から得られる光電容積脈波から血圧値を算出するのに必要な計算式が書き込まれている。また、CPU25が本発明の血流データ決定手段、血圧決定手段、速度決定手段に相当するものである。   Thereafter, the CPU 25 calculates the blood pressure value of the subject according to the following processing procedure. In the memory 27, a calculation formula necessary for calculating the blood pressure value from the photoelectric volume pulse wave obtained from the photoelectric sensor 40 is written. The CPU 25 corresponds to blood flow data determining means, blood pressure determining means, and speed determining means of the present invention.

<予備測定時の処理>
CPU25ではカフ圧センサ4から圧脈波の入力があると、これに基づいて基準となる最高・最低の両血圧値及び脈拍数の各絶対値が算出される(図7におけるa、bの工程)。
続いて、最高、最低血圧算出の対象となった時(以下、基準時)における血圧面積(基準血圧面積)Aoが算出される(cの工程)。基準血圧面積Aoは時間を横軸に血圧を縦軸にとって、1心拍の周期To内における最高・最低の両血圧値Po1、Po2によって定まる平面図形の面積によって決定される。具体的には、図9に示すように、基準血圧面積Aoは横の辺が1心拍時間To、縦の辺が最低血圧Po2によって形成される長方形の領域(下部領域面積Aop2)と、底辺が1心拍時間To、高さが最高血圧Po1と最低血圧Po2の差となって表される三角形の領域(上部領域面積Aop1)との和、すなわち以下の(1)式から(3)式に基づいて算出される。
Aop1=(Po1−Po2)/2×To・・・・・・・・(1)
Aop2=Po2×To・・・・・・・・・・・・・・・・(2)
Ao=Aop1+Aop2・・・・・・・・・・・・・・・(3)
ここで、Aop1とAop2との比をKとする。
Aop1:Aop2=K・・・・・・・・・・・・・・・・(4)
<Process during preliminary measurement>
When a pressure pulse wave is input from the cuff pressure sensor 4 in the CPU 25, the reference maximum and minimum blood pressure values and absolute values of the pulse rate are calculated based on this (steps a and b in FIG. 7). ).
Subsequently, a blood pressure area (reference blood pressure area) Ao at the time when the highest and lowest blood pressures are calculated (hereinafter referred to as reference time) is calculated (step c). The reference blood pressure area Ao is determined by the area of the plane figure determined by both the highest and lowest blood pressure values Po1 and Po2 within one heartbeat period To, with time on the horizontal axis and blood pressure on the vertical axis. Specifically, as shown in FIG. 9, the reference blood pressure area Ao has a rectangular region (lower region area Aop2) in which the horizontal side is formed by one heartbeat time To and the vertical side is the minimum blood pressure Po2, and the base is 1 heartbeat time To, sum of triangle area (upper area Aop1) whose height is the difference between systolic blood pressure Po1 and systolic blood pressure Po2, that is, based on the following expressions (1) to (3) Is calculated.
Aop1 = (Po1-Po2) / 2 × To (1)
Aop2 = Po2 × To (2)
Ao = Aop1 + Aop2 (3)
Here, the ratio between Aop1 and Aop2 is K.
Aop1: Aop2 = K (4)

そして、上記基準血圧面積Aoの算出に続いて、メイン側の受光素子55Aの光電容積脈波Doに基づいて脈波面積(基準脈波面積)Voが求められる(fの工程)。具体的には、図10に示すような1心拍時間To内の血流量変化の積分値として基準脈波面積Voが求められる。   Then, following the calculation of the reference blood pressure area Ao, a pulse wave area (reference pulse wave area) Vo is obtained based on the photoelectric volume pulse wave Do of the main light receiving element 55A (step f). Specifically, the reference pulse wave area Vo is obtained as an integrated value of the blood flow change within one heartbeat time To as shown in FIG.

そして、基準脈波面積Voの算出がなされると、今度はgの工程で面積比(Ao/Vo)がCPU25において算出される。こうして得られた面積比(Ao/Vo)がキャリブレーション値となり、この値に基づいて光量の調整がなされる。すなわち、算出された面積比(Ao/Vo)が閾値に比べて大きい場合(基準脈波面積Voが小さい場合)には、受光素子55からの受光信号が大きくなるように投光素子45の投光レベルを上昇させ、これとは反対に算出された面積比(Ao/Vo)が閾値に比べて小さい場合(基準脈波面積Voが大きい場合)には、受光素子55からの受光信号が小さくなるように投光素子45の投光レベルをダウンさせる。
尚、この基準脈波面積Vo並びに、後述する脈波面積Vtが本発明の血流データに相当するものである。
When the reference pulse wave area Vo is calculated, the CPU 25 calculates the area ratio (Ao / Vo) in the process of g. The area ratio (Ao / Vo) obtained in this way becomes a calibration value, and the amount of light is adjusted based on this value. That is, when the calculated area ratio (Ao / Vo) is larger than the threshold value (when the reference pulse wave area Vo is small), the light projecting element 45 emits light so that the light reception signal from the light receiving element 55 becomes large. When the light level is increased and the calculated area ratio (Ao / Vo) is smaller than the threshold value (when the reference pulse wave area Vo is large), the light reception signal from the light receiving element 55 is small. Thus, the light projection level of the light projecting element 45 is lowered.
The reference pulse wave area Vo and the pulse wave area Vt described later correspond to the blood flow data of the present invention.

また、先に説明したfの工程では、基準脈波面積Voの算出とともに、血流の速度の算出が先に説明した(a)式に基づいて行われ、算出された血流の速度が基準速度Roとしてメモリ27に記憶される。   In step f described above, the calculation of the reference pulse wave area Vo and the calculation of the blood flow velocity are performed based on the equation (a) described above, and the calculated blood flow velocity is the reference. It is stored in the memory 27 as the speed Ro.

<本測定時の処理>
本測定では光電センサ40によって被験者の血管に対して検出光が照射され、両受光素子45、55により光電容積脈波が経時的に出力されるが、この場合においても、各受光素子55A、55Bからの受光信号はローパス・ハイパスの両フィルタ14、15によって所定周波数域の周波成分が除去された後、A/D変換部21によってデジタル信号に変換され、その後、CPU25に入力される。
<Process during the actual measurement>
In this measurement, the photoelectric sensor 40 irradiates the subject's blood vessel with detection light, and both the light receiving elements 45 and 55 output the photoelectric volume pulse wave over time. In this case as well, each light receiving element 55A and 55B is output. After the frequency components in a predetermined frequency range are removed by both the low-pass and high-pass filters 14 and 15, the received light signal is converted into a digital signal by the A / D converter 21 and then input to the CPU 25.

CPU25ではメイン側の受光素子55Aからの得られた光電容積脈波Dtより1心拍毎の脈波面積Vtが基準脈波面積Voと同じ要領で算出される。そして、脈波面積Vtに前記した面積比(Ao/Vo)が乗ぜられて血圧面積Atが算出される(iの工程)。   In the CPU 25, the pulse wave area Vt for each heartbeat is calculated from the photoelectric volume pulse wave Dt obtained from the light receiving element 55A on the main side in the same manner as the reference pulse wave area Vo. Then, the blood pressure area At is calculated by multiplying the pulse wave area Vt by the area ratio (Ao / Vo) (step i).

そして、上記した血圧面積Atの算出に続いて、Jの工程で血圧値の最大、最小値がCPU25において算出される。具体的には、血圧値の最大値をPt1、最小値をPt2、心拍時間をTtとすると、血圧面積At、上部領域面積Atp1、下部領域面積Atp2は以下の(5)〜(7)式によって表すことが出来る。
Atp1=(Pt1−Pt2)/2×Tt・・・・・・・・(5)
Atp2=Pt2×Tt・・・・・・・・・・・・・・・・(6)
At=Atp1+Atp2・・・・・・・・・・・・・・・(7)
ここで、血圧面積Atの上部領域面積Atp1と下部領域面積Atp2との比率が、基準血圧面積Aoの上部領域面積Aop1と下部領域面積Aop2との比率Kと等しいと仮定すると次の(8)式が得られる。
Atp1:Atp2=K・・・・・・・・・・・・・・・・(8)
Then, following the calculation of the blood pressure area At described above, the maximum and minimum blood pressure values are calculated in the CPU 25 in step J. Specifically, when the maximum value of the blood pressure value is Pt1, the minimum value is Pt2, and the heartbeat time is Tt, the blood pressure area At, the upper region area Atp1, and the lower region area Atp2 are expressed by the following equations (5) to (7). Can be expressed.
Atp1 = (Pt1-Pt2) / 2 × Tt (5)
Atp2 = Pt2 × Tt (6)
At = Atp1 + Atp2 (7)
Assuming that the ratio of the upper region area Atp1 and the lower region area Atp2 of the blood pressure area At is equal to the ratio K of the upper region area Aop1 and the lower region area Aop2 of the reference blood pressure area Ao, the following equation (8) Is obtained.
Atp1: Atp2 = K (8)

したがって、(7)式、(8)式より、以下の(9)式、(10)式が得られる。
Atp1=K/(1+K)×At・・・・・・・・・・・・(9)
Atp2=1/(1+K)×At・・・・・・・・・・・・(10)
Therefore, the following formulas (9) and (10) are obtained from formulas (7) and (8).
Atp1 = K / (1 + K) × At (9)
Atp2 = 1 / (1 + K) × At (10)

そして、得られた(10)式を(6)式に代入すると最小血圧値が得られ、更に、(5)式、(9)式、(11)式より最大血圧値が得られる。
Pt2=At/((1+K)×Tt)・・・・・・・・・・(11)
Pt1=(2K+1)×At/((1+K)×Tt)・・・(12)
Substituting the obtained equation (10) into equation (6) yields a minimum blood pressure value, and further obtains a maximum blood pressure value from equations (5), (9), and (11).
Pt2 = At / ((1 + K) × Tt) (11)
Pt1 = (2K + 1) × At / ((1 + K) × Tt) (12)

上記要領で最低・最高血圧値が算出されると、今度はkの工程に進み、そこでメイン・サブの両受光素子55A、55Bから得られる受光信号に基づいて血流の速度Rtの算出がCPU25において行われる。具体的には、上記(a)式に各受光素子55A、55Bから得られる受光信号のピーク時間t1.t2を代入することで算出される。   When the minimum and maximum blood pressure values are calculated in the above manner, the process proceeds to step k, where the CPU 25 calculates the blood flow velocity Rt based on the received light signals obtained from both the main and sub light receiving elements 55A and 55B. Done in Specifically, the peak time t1... Of the received light signal obtained from each of the light receiving elements 55A and 55B in the above equation (a). Calculated by substituting t2.

kの工程で血流の速度Rtが算出されると、l工程に進みそこでは、k工程で算出された血流の速度Rtに基づいてJ工程で算出された血圧値の補正処理を行う。具体的には、k工程で算出された血流の速度Rtをfの工程で算出された予備測定時における基準速度Roと比較して、速度の変動分に応じた大きさの補正係数を血圧値Pt1、Pt2にそれぞれ乗じることとしている。
すなわち、基準速度Roに対して本測定時の血流の速度Rtが大きな値である場合には、補正係数として1以上の値が上記(5)式から(12)式に基づいて算出された血圧値に対して乗ぜられる。これは、血流の速度が早ければ早いほど血圧(動圧成分)が上昇するためである。
一方、これとは反対に基準速度Roに対して、本測定時の血流の速度Rtが小さな値である場合には、血圧値が上記数式で得られた値より小さくなるように補正係数は1以下の値とされている。
When the blood flow velocity Rt is calculated in step k, the process proceeds to step l where the blood pressure value calculated in step J is corrected based on the blood flow velocity Rt calculated in step k. Specifically, the blood flow velocity Rt calculated in step k is compared with the reference velocity Ro in the preliminary measurement calculated in step f, and a correction coefficient having a magnitude corresponding to the variation in velocity is calculated. The values Pt1 and Pt2 are multiplied respectively.
That is, when the blood flow velocity Rt at the time of the main measurement is larger than the reference velocity Ro, a value of 1 or more is calculated as the correction coefficient based on the equations (5) to (12). It is multiplied by the blood pressure value. This is because blood pressure (dynamic pressure component) increases as the blood flow speed increases.
On the other hand, when the blood flow velocity Rt at the actual measurement is a small value with respect to the reference velocity Ro, the correction coefficient is set so that the blood pressure value is smaller than the value obtained by the above formula. The value is 1 or less.

その後、データ処理装置20はl工程で算出された血圧値を血圧基準値と照合しチェックする(mの工程)。この血圧基準値は正常な測定で得られる血圧値の幅(例えば、50〜140mmHg)であって、算出された血圧値がこの血圧基準値内にあるときには「測定が正しく行われた」と判断し血圧値の推移をモニタ30に表示し(nの工程)、血圧基準値外の時には「測定に誤りがあった」と判断して最高血圧・最低血圧を算出する工程に戻って再び血圧値を算出するようになっている。   Thereafter, the data processing device 20 checks the blood pressure value calculated in step l against the blood pressure reference value (step m). This blood pressure reference value is a range of blood pressure values obtained by normal measurement (for example, 50 to 140 mmHg), and when the calculated blood pressure value is within the blood pressure reference value, it is determined that “the measurement has been performed correctly”. The transition of the blood pressure value is displayed on the monitor 30 (step n), and when the blood pressure is outside the blood pressure reference value, it is determined that “the measurement was incorrect” and the process returns to the step of calculating the maximum blood pressure / minimum blood pressure, and the blood pressure value again. Is calculated.

次に本実施形態の作用、効果を具体的に説明する。
血圧の測定を行うにはまず基準となる血圧値を測定するために予備測定を行う。それには、カフバンド2を被験者の指先から奥側に向けて被せて、被験者の手首又は前腕にカフ圧センサ4をセットするとともに、以下の要領で被験者の耳たぶに対して光電センサ40の取り付けを行う。
Next, the operation and effect of this embodiment will be specifically described.
In order to measure blood pressure, first, preliminary measurement is performed in order to measure a blood pressure value as a reference. For this purpose, the cuff band 2 is covered from the fingertip of the subject toward the back side, the cuff pressure sensor 4 is set on the wrist or forearm of the subject, and the photoelectric sensor 40 is attached to the earlobe of the subject in the following manner. .

まず、両挟持板41、51のうちの図3における下部を摘まんで光電センサ40をV字形の開脚姿勢にする。その後、光電センサ40の挟持板41、51間に被験者の耳たぶが挟まれた状態となるように光電センサ40をセットし、手を離してやる。すると、光電センサ40の両挟持板41、51は先端同士を突き合わせた元姿勢に復帰する。これにより、光電センサ40の装着が完了する。   First, the lower part in FIG. 3 of both the clamping plates 41 and 51 is pinched, and the photoelectric sensor 40 is made into a V-shaped open leg posture. Thereafter, the photoelectric sensor 40 is set so that the subject's earlobe is sandwiched between the sandwiching plates 41 and 51 of the photoelectric sensor 40, and the hands are released. Then, both sandwiching plates 41 and 51 of the photoelectric sensor 40 return to the original posture in which the tips are butted together. Thereby, the mounting of the photoelectric sensor 40 is completed.

両センサ4、40の取り付けが完了したら、データ処理装置20の電源を投入する。続いてポンプ6を駆動させてカフ2のゴム袋へエアーを供給する。圧脈波が検出されなくなるまでカフ2へのエア−供給が継続される。圧脈波が出現しなくなった時点で、カフ2へのエアーの供給を停止し、開閉弁3を開いて減圧を開始する。その間の圧力変動がカフ圧センサ4によって検出され、これがCPU25に入力される。
一方、光電センサ40の投光素子45からは耳たぶの毛細血管に向けて検出光が照射される。光電センサ40からの検出光の一部は血管内において吸収されるが、検出光のうち血管を透過した透過光が隣接される2個の受光素子55によってそれぞれ受光され、各受光素子55からは透過光の光量に応じた大きさの受光信号が出力され、これがCPU25に入力される。
そして、CPU25ではa工程からfの工程を経て、最高・最低の両血圧Po1、Po2の測定、基準速度Ro、面積比(Ao/Vo)等の算出が行われる。
When the attachment of both sensors 4 and 40 is completed, the data processor 20 is turned on. Subsequently, the pump 6 is driven to supply air to the rubber bag of the cuff 2. Air supply to the cuff 2 is continued until no pressure pulse wave is detected. When the pressure pulse wave no longer appears, the supply of air to the cuff 2 is stopped, and the on-off valve 3 is opened to start depressurization. The pressure fluctuation during that time is detected by the cuff pressure sensor 4 and is input to the CPU 25.
On the other hand, the light projecting element 45 of the photoelectric sensor 40 emits detection light toward the capillaries of the earlobe. Although a part of the detection light from the photoelectric sensor 40 is absorbed in the blood vessel, transmitted light that has passed through the blood vessel in the detection light is received by the two adjacent light receiving elements 55, and each light receiving element 55 receives the light. A light reception signal having a magnitude corresponding to the amount of transmitted light is output and input to the CPU 25.
Then, the CPU 25 performs steps a through f to measure the highest and lowest blood pressures Po1 and Po2, and calculate the reference speed Ro, the area ratio (Ao / Vo), and the like.

そして、予備測定が完了すると今度はカフ圧センサ4は取り外され、光電センサ40のみで測定を行う本測定に移行する。本測定では、光電センサ40から得られる受光信号(光電容積脈波)がCPU25に入力されるとともに、CPU25では入力された受光信号と、予備測定において得られたデータから血圧値の算出が連続的に行われ(h工程からm工程における処理)、その算出結果がモニタ30に表示される。   Then, when the preliminary measurement is completed, the cuff pressure sensor 4 is removed and the process moves to the main measurement in which the measurement is performed only by the photoelectric sensor 40. In this measurement, a light reception signal (photoelectric volume pulse wave) obtained from the photoelectric sensor 40 is input to the CPU 25, and the blood pressure value is continuously calculated from the input light reception signal and data obtained in the preliminary measurement. (Processing from the h process to the m process), and the calculation result is displayed on the monitor 30.

このように本実施形態によれば、予備測定で圧脈波と光電容積脈波を同時に測定してあるから、その後に行われる本測定で得られる光電容積脈波を予備測定のデータを利用して絶対値化することができる。そのため、カフ2による再加圧を行うことなく連続して血圧を測定することが出来る。   As described above, according to the present embodiment, the pressure pulse wave and the photoelectric volume pulse wave are simultaneously measured in the preliminary measurement. Therefore, the photoelectric volume pulse wave obtained in the subsequent main measurement is used for the preliminary measurement data. Can be converted into absolute values. Therefore, blood pressure can be continuously measured without performing re-pressurization with the cuff 2.

また、カフ圧センサ4は予備測定にだけ使用されるのに対して、光電センサ40は予備測定並びに本測定の双方で使用されるから、取り付け・取り外しの頻度が多く装着を簡単に行えることが望まれる。この点に関し、本発明によれば光電センサ40の取り付け・取り外しをワンタッチで行うことが可能であり、操作性に優れる。加えて、光電センサ40は一対の挟持板41、51によって被測定箇所を挟みつけて固定する形式のものであるから、被測定箇所が指や手首等に限定されることなく、耳たぶに対しても取り付けが可能である。   In addition, the cuff pressure sensor 4 is used only for preliminary measurement, whereas the photoelectric sensor 40 is used for both preliminary measurement and main measurement. desired. In this regard, according to the present invention, the photoelectric sensor 40 can be attached and detached with one touch, and the operability is excellent. In addition, since the photoelectric sensor 40 is of a type in which the measurement location is sandwiched and fixed by the pair of clamping plates 41 and 51, the measurement location is not limited to a finger, wrist, etc. Can also be installed.

加えて、本実施形態では光電センサ40に受光素子55を複数個備えており、これら両受光素子55A、55Bからの受光信号に基づいて血流の速度Rを算出し、これに基づいて血圧値Pを補正処理している。このような処理を行うことで、血液の粘度や血管の硬化に伴う血圧値の変動を加味した血圧値の算出が可能となる。   In addition, in the present embodiment, the photoelectric sensor 40 includes a plurality of light receiving elements 55, the blood flow velocity R is calculated based on the light receiving signals from both the light receiving elements 55A and 55B, and the blood pressure value is calculated based on the calculated blood flow velocity R. P is corrected. By performing such a process, it is possible to calculate a blood pressure value in consideration of a change in blood pressure value associated with blood viscosity and blood vessel hardening.

<実施形態2>
本実施形態の血圧測定装置1は上記した血圧値の算出の他に動脈血酸素飽和度(血中酸素飽和量)SaO2を算出するようになっており、以下その算出手順について図13のフローチャートを参照して説明する。
まず、前述したように、カフ圧センサ4及び光電センサ40より圧脈波、光電容積脈波を検出し、これらに基づきデータ処理装置20が血圧値を算出する。その後、血圧値から血管内の圧力変動ΔPを算出するとともに、実施形態1の(a)式に従って血流速度Rを算出する。
<Embodiment 2>
The blood pressure measurement device 1 according to the present embodiment calculates arterial blood oxygen saturation (blood oxygen saturation) SaO2 in addition to the above-described blood pressure value calculation. For the calculation procedure, refer to the flowchart of FIG. To explain.
First, as described above, the pressure pulse wave and the photoelectric volume pulse wave are detected from the cuff pressure sensor 4 and the photoelectric sensor 40, and the data processing device 20 calculates the blood pressure value based on these. Thereafter, the pressure fluctuation ΔP in the blood vessel is calculated from the blood pressure value, and the blood flow velocity R is calculated according to the equation (a) in the first embodiment.

続いて、(13)〜(15)式に従って、データ処理装置20が血流量Q、心拍出量Co、心係数Cxを算出する。
Q=π×d2×R・・・・・・・・・・・・・・・・(13)
Co=E×Q・・・・・・・・・・・・・・・・・・(14)
Cx=Co/S・・・・・・・・・・・・・・・・・(15)
E・・・脈拍
S・・・・体表面積(本実施形態では、S=3.4L/min/m2とする)
d・・・・血管径(本実施形態では、d=0.15cmとする)
Subsequently, according to the equations (13) to (15), the data processing device 20 calculates the blood flow rate Q, the cardiac output Co, and the cardiac coefficient Cx.
Q = π × d 2 × R (13)
Co = E × Q (14)
Cx = Co / S (15)
E ... Pulse S ... Body surface area (in this embodiment, S = 3.4 L / min / m 2 )
d... Blood vessel diameter (d = 0.15 cm in this embodiment)

その後、光電容積脈波から動脈血酸素含量CaO2及び混合静脈血酸素飽和含量CvO2を算出するとともに、(16)式に従って、動脈血酸素飽和度SaO2を算出する。
SaO2=(CaO2−CvO2)×Cx・・・・・(16)
そして、動脈血酸素飽和度SaO2の推移がモニタ30に表示される。
Thereafter, the arterial oxygen content CaO2 and the mixed venous oxygen saturation content CvO2 are calculated from the photoelectric volume pulse wave, and the arterial oxygen saturation SaO2 is calculated according to the equation (16).
SaO2 = (CaO2-CvO2) × Cx (16)
The transition of the arterial oxygen saturation SaO2 is displayed on the monitor 30.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)実施形態1では、被験者の耳たぶに光電センサを取り付けたが、被験者の手のひらに取り付けてもよい。   (1) In Embodiment 1, the photoelectric sensor is attached to the subject's earlobe, but may be attached to the subject's palm.

実施形態1に係る血圧測定装置のブロック図1 is a block diagram of a blood pressure measurement device according to Embodiment 1. FIG. カフによる血圧測定の仕組みを示す図Diagram showing blood pressure measurement mechanism with cuff 光電センサの側面図Side view of photoelectric sensor 光電センサを被験者の耳たぶにセットした状態を表す斜視図The perspective view showing the state which set the photoelectric sensor to the test subject's earlobe その側面図Its side view 光電センサを構成する挟持板の平面図Plan view of the clamping plate constituting the photoelectric sensor 血圧値の算出手順を示すフローチャートFlow chart showing blood pressure value calculation procedure カフ圧と圧脈波とを示す波形図Waveform diagram showing cuff pressure and pressure pulse wave 血圧面積を示す図Diagram showing blood pressure area 脈波面積を示す図Diagram showing pulse wave area 光電素子の配置を示す図Diagram showing the arrangement of photoelectric elements 光電容積脈波の位相のずれを示す図Diagram showing phase shift of photoelectric volumetric pulse wave 動脈血酸素飽和度の算出手順を示すフローチャートFlow chart showing the procedure for calculating arterial oxygen saturation

符号の説明Explanation of symbols

40…光電センサ
41、55…挟持板
45…投光素子
55…受光素子
62…コイルばね
DESCRIPTION OF SYMBOLS 40 ... Photoelectric sensor 41, 55 ... Holding plate 45 ... Light projecting element 55 ... Light receiving element 62 ... Coil spring

Claims (4)

被験者の被測定部位に取り付けて前記被測定部位内部の血管を流れる血流量の変化を検出する光電センサであって、
ヒンジによって回動可能に連結されるとともに前記被測定部位を挟持可能な一対の保持部材と、
前記保持部材のうちいずれか一方側に設けられ、前記被測定部位の血管に対して所定波長の検出光を照射する投光素子と、
他方側の保持部材に設けられ、前記投光素子からの検出光の光量に応じた大きさの受光信号を出力する受光素子と、
前記両保持部材を挟み方向に付勢する付勢部材とからなることを特徴とする光電センサ。
A photoelectric sensor that detects a change in blood flow that flows through a blood vessel inside the measurement site by being attached to the measurement site of the subject,
A pair of holding members that are pivotally connected by a hinge and capable of sandwiching the measurement site;
A light projecting element that is provided on either side of the holding member and irradiates a blood vessel of the measurement site with a predetermined wavelength of detection light;
A light receiving element that is provided on the holding member on the other side and outputs a light receiving signal having a magnitude corresponding to the amount of detection light from the light projecting element;
A photoelectric sensor comprising: an urging member that urges both the holding members in the sandwiching direction.
前記他方側の保持部材には前記受光素子が複数個設けられ、これら複数の受光素子がそれぞれ前記投光素子からの検出光を受光するように配置されていることを特徴とする請求項1に記載の光電センサ。 2. The holding member on the other side is provided with a plurality of the light receiving elements, and the plurality of light receiving elements are respectively arranged so as to receive detection light from the light projecting element. The photoelectric sensor as described. 請求項2に記載の光電センサと、
前記光電センサの備える受光素子から得られる受光信号のレベルに基づいて被験者の血流データを決定する血流データ決定手段と、
前記受光素子から得られる両受光信号の位相差に基づいて血流の速度データを決定する速度決定手段と、
被験者の血管を圧迫するためのカフと、
このカフによって圧迫された部分から圧脈波を検出するカフ圧センサと、
前記カフ圧センサから得られる圧脈波データ、前記血流データ並びに前記速度データに基づいて被験者の血圧値を決定する血圧決定手段と、を有することを特徴とする血圧測定装置。
The photoelectric sensor according to claim 2;
Blood flow data determining means for determining blood flow data of a subject based on a level of a light reception signal obtained from a light receiving element included in the photoelectric sensor;
Speed determining means for determining blood flow speed data based on a phase difference between both light receiving signals obtained from the light receiving element;
A cuff to compress the blood vessels of the subject,
A cuff pressure sensor for detecting a pressure pulse wave from a portion compressed by the cuff;
A blood pressure measurement device comprising: blood pressure determination means for determining a blood pressure value of a subject based on pressure pulse wave data obtained from the cuff pressure sensor, the blood flow data, and the velocity data.
前記受光素子から得られる受光信号のノイズ成分を除去するノイズ除去回路を備えたことを特徴とする請求項3に記載の血圧測定装置。 The blood pressure measurement apparatus according to claim 3, further comprising a noise removal circuit that removes a noise component of a light reception signal obtained from the light receiving element.
JP2005025544A 2005-02-01 2005-02-01 Blood pressure measurement device Active JP4227107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025544A JP4227107B2 (en) 2005-02-01 2005-02-01 Blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025544A JP4227107B2 (en) 2005-02-01 2005-02-01 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2006212095A true JP2006212095A (en) 2006-08-17
JP4227107B2 JP4227107B2 (en) 2009-02-18

Family

ID=36975799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025544A Active JP4227107B2 (en) 2005-02-01 2005-02-01 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP4227107B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142254A (en) * 2006-12-08 2008-06-26 Univ Nihon Blood flow rate measurement device
WO2015151132A1 (en) * 2014-04-01 2015-10-08 Cyberdyne株式会社 Blood pressure measurement device
JP2017510411A (en) * 2014-04-04 2017-04-13 アップ−メド ゲーエムベーハー Method for determining blood pressure in a blood vessel and apparatus for performing the method
US9737218B2 (en) 2014-12-17 2017-08-22 Seiko Epson Corporation Blood pressure measurement device, electronic device, and blood pressure measurement method
WO2018066678A1 (en) * 2016-10-05 2018-04-12 京セラ株式会社 Estimation device, massage system, estimation method, and estimation program
US10058273B2 (en) 2016-07-14 2018-08-28 Seiko Epson Corporation Detection device and measuring apparatus
JP2019166145A (en) * 2018-03-23 2019-10-03 富士ゼロックス株式会社 Biological information measurement device and biological information measurement program
CN111727009A (en) * 2018-03-14 2020-09-29 欧姆龙株式会社 Biological information measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142254A (en) * 2006-12-08 2008-06-26 Univ Nihon Blood flow rate measurement device
WO2015151132A1 (en) * 2014-04-01 2015-10-08 Cyberdyne株式会社 Blood pressure measurement device
JPWO2015151132A1 (en) * 2014-04-01 2017-04-13 Cyberdyne株式会社 Blood pressure measurement device
JP2017510411A (en) * 2014-04-04 2017-04-13 アップ−メド ゲーエムベーハー Method for determining blood pressure in a blood vessel and apparatus for performing the method
US9737218B2 (en) 2014-12-17 2017-08-22 Seiko Epson Corporation Blood pressure measurement device, electronic device, and blood pressure measurement method
US10058273B2 (en) 2016-07-14 2018-08-28 Seiko Epson Corporation Detection device and measuring apparatus
WO2018066678A1 (en) * 2016-10-05 2018-04-12 京セラ株式会社 Estimation device, massage system, estimation method, and estimation program
CN111727009A (en) * 2018-03-14 2020-09-29 欧姆龙株式会社 Biological information measuring device
CN111727009B (en) * 2018-03-14 2024-03-08 欧姆龙株式会社 Biological information measuring device
JP2019166145A (en) * 2018-03-23 2019-10-03 富士ゼロックス株式会社 Biological information measurement device and biological information measurement program

Also Published As

Publication number Publication date
JP4227107B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4227107B2 (en) Blood pressure measurement device
US6592528B2 (en) Biological information evaluation apparatus
EP2493373B1 (en) Apparatus and methods for enhancing and analyzing signals from a continuous non-invasive blood pressure measurement device
JP3774396B2 (en) Oscillometric automatic blood pressure measuring device
US6869403B2 (en) Blood-pressure determining apparatus
US7497831B2 (en) Blood pressure measuring system and method
US6923771B2 (en) Arteriostenosis inspecting apparatus and ankle-blood-pressure measuring apparatus
US20020095092A1 (en) Pulse wave measuring apparatus and pulse wave measuring method
KR20160123321A (en) Method for determining pulse wave velocity in an artery
EP1074216A1 (en) Blood pressure measuring device and pulse wave detecting device
JP3530892B2 (en) Vascular disorder diagnostic device
JP2000515972A (en) A method for measuring the oxygen saturation of tissues to which blood is supplied without damaging the specimen
US9241642B2 (en) Systems and methods for monitoring a patient
KR20130051992A (en) Non-invasive blood pressure measuring apparatus and measuring method thereof
JP2003199719A (en) Hemomanometer
US6743179B2 (en) Arteriostenosis inspecting apparatus
EP1808123B1 (en) Blood pressure measuring device and blood pressure measuring method
JP2007125247A (en) Cuff for sphygmomanometry, sphygmomanometer apparatus, and sphygmomanometry method
US7052465B1 (en) Noninvasive blood pressure monitor having automatic high motion tolerance
JP2020521543A (en) Systolic blood pressure calibration
US11020010B2 (en) Blood pressure/pulse wave measurement device
JP4729703B2 (en) Blood vessel hardness measuring device
WO2007017661A1 (en) A device for measuring blood pressure
JP2018075077A (en) Blood pressure measuring device
JPH04259448A (en) Electronic sphygmomanometer for finger

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4227107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250