JP2006210558A - Non-single-crystal solar battery, manufacturing method thereof, and non-single-crystal solar battery manufacturing apparatus - Google Patents

Non-single-crystal solar battery, manufacturing method thereof, and non-single-crystal solar battery manufacturing apparatus Download PDF

Info

Publication number
JP2006210558A
JP2006210558A JP2005019367A JP2005019367A JP2006210558A JP 2006210558 A JP2006210558 A JP 2006210558A JP 2005019367 A JP2005019367 A JP 2005019367A JP 2005019367 A JP2005019367 A JP 2005019367A JP 2006210558 A JP2006210558 A JP 2006210558A
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
doped
boron
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005019367A
Other languages
Japanese (ja)
Other versions
JP4940554B2 (en
Inventor
Manabu Ito
学 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005019367A priority Critical patent/JP4940554B2/en
Publication of JP2006210558A publication Critical patent/JP2006210558A/en
Application granted granted Critical
Publication of JP4940554B2 publication Critical patent/JP4940554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-single-crystal solar battery that has better curvilinear factors and conversion efficiency and improved cell characteristics as compared with a boron-doped p-type thin film, and to provide a method for manufacturing the non-single-crystal solar battery in the non-single-crystal solar battery having at least one pin junction in which a p-type semiconductor layer mainly made of silicon or germanium, an essentially intrinsic i-type semiconductor layer 5, and an n-type semiconductor layer 6 are laminated. <P>SOLUTION: In the non-single-crystal solar battery, at least one p-type semiconductor layer is made of a boron-doped p-type semiconductor layer 3, an i-type semiconductor layer 4 that is as thick as 5 nm or smaller is provided at a pi interface, and the i-type semiconductor layer is exposed to plasma in which gas obtained by performing the hydrogen dilution of a gas material containing gallium as a component is decomposed by high-frequency discharge, thus doping only the side of the pi interface of the p-type semiconductor layer with gallium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、微結晶膜,非晶質膜,多結晶膜などの非単結晶膜を用いた薄膜非単結晶太陽電池及びその製造方法に関するものである。   The present invention relates to a thin-film non-single-crystal solar cell using a non-single-crystal film such as a microcrystalline film, an amorphous film, or a polycrystalline film, and a method for manufacturing the same.

シリコンおよびゲルマニウムを主体とする薄膜シリコン光電変換素子のp型ドープ材料としては一般にボロン(B)が用いられてきた。p層の特性向上は太陽電池デバイスにおいては開放電圧や曲線因子(FF)を増加させるための最重要因子である。   In general, boron (B) has been used as a p-type doping material of a thin film silicon photoelectric conversion element mainly composed of silicon and germanium. The improvement in the characteristics of the p layer is the most important factor for increasing the open circuit voltage and the fill factor (FF) in the solar cell device.

従来p層ドーパントとして用いられてきたボロンは150℃以下の低温成膜条件下では水素によってパッシベーションされやすく、ボロンが膜内に導入されても活性化されないという大きな問題があった。またいわゆるスーパーストレート型太陽電池(pin型太陽電池)においてはp層成膜後にi層を作製することになるが、i層を200℃以上の高温で作製するとp層内のボロンがi層内へ拡散したり、pi界面でi層作製中にボロンがi層内の水素をはぎ取って(いわゆるオートドーピング)、pi界面に欠陥準位を誘起し、太陽電池特性を大幅に悪化させることが知られている。   Boron conventionally used as a p-layer dopant has a big problem that it is easily passivated by hydrogen under a low temperature film formation condition of 150 ° C. or less and is not activated even if boron is introduced into the film. In a so-called super straight type solar cell (pin type solar cell), the i layer is produced after the p layer is formed. However, if the i layer is produced at a high temperature of 200 ° C. or higher, boron in the p layer is converted into the i layer. It is known that boron diffuses into the pi interface and boron in the i layer is stripped of hydrogen in the i layer (so-called auto-doping), induces defect levels at the pi interface, and greatly deteriorates the solar cell characteristics. It has been.

以下に公知の文献を示す。
“Formation of interface defects by enhanced impurity diffusion in microcrystalline silicon solar cells" Y.Nasuno et.al. Appl.Phys.Lett. 81, 3155 (2002) " Perrin et.al. Surf. Sci. 210, 114(1989)" 前述の課題を解決するために原子半径の小さいボロンに代わって、ガリウムを薄膜シリコン光電変換素子のp型ドーパントとして用いることが、特許文献1に公開されている。ガリウムはボロンと比較して原子が大きく従って拡散が少ないためpi界面で欠陥準位が形成されにくいという特性がある。しかしながら、ガリウムは金属元素であるために薄膜中で偏析しやすいという難点があり、ボロンドープp型薄膜と同等の吸収係数とキャリア濃度を併せ持つガリウムドープp型薄膜を形成することが難しいという問題があった。このため、曲線因子や変換効率の劣る非単結晶太陽電池であった。
Known documents are shown below.
“Formation of interface defects by enhanced impurity diffusion in microcrystalline silicon solar cells” Y. Nasuno et.al. Appl. Phys. Lett. 81, 3155 (2002) "Perrin et.al. Surf. Sci. 210, 114 (1989)" In order to solve the above-mentioned problem, gallium is used as a p-type dopant in a thin film silicon photoelectric conversion element instead of boron having a small atomic radius. It is disclosed in Patent Document 1. Since gallium has larger atoms than boron and therefore less diffusion, it has a characteristic that a defect level is hardly formed at the pi interface. However, since gallium is a metal element, it is difficult to segregate in the thin film, and there is a problem that it is difficult to form a gallium-doped p-type thin film having the same absorption coefficient and carrier concentration as the boron-doped p-type thin film. It was. For this reason, it was a non-single crystal solar cell with inferior fill factor and conversion efficiency.

以下に公知の特許文献を示す。
特願2003−090794号公報
The known patent documents are shown below.
Japanese Patent Application No. 2003-090794

本発明はこのような問題点に鑑みなされたもので、ボロンドープp型薄膜に比べ、曲線因子や変換効率のよい、優れたセル特性を有する非単結晶太陽電池及びその製造方法並びに製造装置を提供することを課題とする。   The present invention has been made in view of such problems, and provides a non-single-crystal solar cell having excellent cell characteristics, excellent fill factor and conversion efficiency, and its manufacturing method and manufacturing apparatus as compared with a boron-doped p-type thin film. The task is to do.

そこで、前述の課題を達成するため、本発明では以下のような手段を講じる。   Therefore, in order to achieve the above-mentioned problems, the present invention takes the following measures.

本発明の請求項1の発明は、シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する非単結晶太陽電池において、少なくとも一つのp型半導体層がボロンドープp型半
導体層で構成されており、pi界面に膜厚5nm以下のi型半導体層を設けた後にそのi型半導体層をガリウムを構成元素に含む気体材料を水素希釈したガスを高周波放電にて分解したプラズマにさらすことでp型半導体層のpi界面側のみがガリウムドープされていることを特徴とする非単結晶太陽電池としたものである。
The invention according to claim 1 of the present invention is a non-single crystal having at least one pin junction in which a p-type semiconductor layer mainly composed of silicon or germanium, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are stacked. In a solar cell, at least one p-type semiconductor layer is composed of a boron-doped p-type semiconductor layer, and after providing an i-type semiconductor layer having a thickness of 5 nm or less at the pi interface, the i-type semiconductor layer is made of gallium as a constituent element. A non-single-crystal solar cell is characterized in that only a pi interface side of a p-type semiconductor layer is doped with gallium by exposing a gas obtained by diluting a gaseous material containing hydrogen to plasma decomposed by high-frequency discharge. .

本発明の請求項2の発明は、シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する太陽電池の製造方法において、ボロンドープによりボロンドープp型半導体層を形成し、ボロンドープp型半導体層上に膜厚5nm以下のi型半導体層を形成した後に、そのi型半導体層をガリウムを構成元素に含む気体材料を水素希釈したガスを高周波放電にて分解したプラズマにさらすことでガリウムドープp型半導体層を形成し、ガリウムドープp型半導体層上に真性なi型半導体層を形成し、その上にn型半導体層を形成することを特徴とする非単結晶太陽電池の製造方法としたものである。   According to a second aspect of the present invention, there is provided a solar cell having at least one pin junction in which a p-type semiconductor layer mainly composed of silicon or germanium, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are stacked. In the manufacturing method, after forming a boron-doped p-type semiconductor layer by boron doping, forming an i-type semiconductor layer having a thickness of 5 nm or less on the boron-doped p-type semiconductor layer, the i-type semiconductor layer is a gaseous material containing gallium as a constituent element A gallium-doped p-type semiconductor layer is formed by exposing a hydrogen-diluted gas to plasma decomposed by high-frequency discharge, and an intrinsic i-type semiconductor layer is formed on the gallium-doped p-type semiconductor layer. A method for manufacturing a non-single-crystal solar cell is characterized in that a semiconductor layer is formed.

本発明の請求項3の発明は、ガリウム供給原料とボロン供給原料の双方が供給可能な、請求項1記載記載のp型半導体材料を作製することを特徴とする非単結晶太陽電池製造装置としたものである。   A third aspect of the present invention provides a non-single-crystal solar cell manufacturing apparatus for producing a p-type semiconductor material according to the first aspect, which can supply both a gallium feedstock and a boron feedstock. It is a thing.

シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する太陽電池において、少なくとも一つのp型半導体層がボロンドープp型半導体層で構成されており、pi界面に膜厚5nm以下のi型半導体層を設けた後にそのi型半導体層をガリウムを構成元素に含む気体材料を水素希釈したガスを高周波放電にて分解したプラズマにさらすことでp型半導体層のpi界面側のみをGaドープされている特徴とする非単結晶太陽電池および非単結晶太陽電池の製造方法である。このような製造方法で作成されたガリウムドープp型半導体層をi型半導体層との界面に積層されると、ガリウムはボロンよりも原子半径が大きくi層内に拡散しにくいためpi界面特性の悪化を引き起こしにくい。そのため、例えばpin型太陽電池(スーパーストレート型)においてはi層を従来よりも高温で作製してもセル特性の劣化を引き起こさないという利点がある。またボロンドープp層を併せて用いることで低い吸収係数と高い導電率を有するp層を実現することができる。
またガリウム供給原料とボロン供給原料の双方が供給可能な装置を使用することで、請求項1記載記載のp型半導体材料を作製することができる。
In a solar cell having at least one pin junction in which a p-type semiconductor layer mainly composed of silicon or germanium, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer is laminated, at least one p-type semiconductor layer is boron-doped. It is composed of a p-type semiconductor layer, and after providing an i-type semiconductor layer with a film thickness of 5 nm or less at the pi interface, the gas obtained by diluting a gaseous material containing gallium as a constituent element into the i-type semiconductor layer by high-frequency discharge. A non-single-crystal solar cell and a non-single-crystal solar cell manufacturing method characterized in that only the pi interface side of a p-type semiconductor layer is Ga-doped by exposure to decomposed plasma. When a gallium-doped p-type semiconductor layer prepared by such a manufacturing method is laminated at the interface with the i-type semiconductor layer, gallium has a larger atomic radius than boron and is difficult to diffuse into the i-layer. Hard to cause deterioration. Therefore, for example, in a pin type solar cell (super straight type), there is an advantage that cell characteristics are not deteriorated even if the i layer is produced at a higher temperature than the conventional one. In addition, by using a boron-doped p layer in combination, a p layer having a low absorption coefficient and high conductivity can be realized.
The p-type semiconductor material according to claim 1 can be produced by using an apparatus capable of supplying both a gallium feedstock and a boron feedstock.

以上説明したように、本発明によればシリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する太陽電池において、少なくとも一つのp型半導体層が、ボロンドープp型半導体層で構成されており、i型半導体層との界面側にガリウムを構成元素に含む気体材料を水素希釈したガスを高周波放電にて分解したプラズマにさらすことでボロンドープp型半導体層とガリウムドープp型半導体層の積層物から構成されている構造を取ることで、優れた効率を有する太陽電池及びその製造方法並びに製造装置とすることができる。   As described above, according to the present invention, a solar cell having at least one pin junction in which a p-type semiconductor layer mainly composed of silicon or germanium, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer is laminated. 1, at least one p-type semiconductor layer is composed of a boron-doped p-type semiconductor layer, and a gas obtained by diluting a gaseous material containing gallium as a constituent element with hydrogen on the interface side with the i-type semiconductor layer is decomposed by high-frequency discharge. By taking a structure composed of a laminate of a boron-doped p-type semiconductor layer and a gallium-doped p-type semiconductor layer by exposure to the plasma, a solar cell having excellent efficiency, a method for manufacturing the solar cell, and a device for manufacturing the solar cell can be obtained. it can.

以下に発明の具体的な形態を詳述する。   Specific embodiments of the invention will be described in detail below.

本発明でのガリウムをドープしたp型半導体層およびボロンをドープしたp型半導体層はプラズマCVD法、光CVD法、熱CVD法、Hot−wire CVD法のうちの何れかを任意に組み合わせた方法または蒸着法、スパッタ法等で作製することができるが、好ましくはプラズマCVD法である。ガリウムを導入するためには特許文献1に開示されているように冷却されたトリメチルガリウムまたはトリエチルガリウムを供給原料として
用い、これらの材料を冷却した上で水素等をキャリアガスとして真空漕内へと導入する方法が好ましいが、これに限定されるものではない。ボロンを導入するためにはジボラン、トリメチルボロン、フッ化ボロン等のガスを真空漕内へ導入する方法が挙げられるが、これに限定されるものではない。
The gallium-doped p-type semiconductor layer and the boron-doped p-type semiconductor layer according to the present invention are any combination of plasma CVD, photo-CVD, thermal CVD, and hot-wire CVD. Alternatively, it can be formed by a vapor deposition method, a sputtering method, or the like, but a plasma CVD method is preferable. In order to introduce gallium, trimethylgallium or triethylgallium cooled as disclosed in Patent Document 1 is used as a feedstock, and after these materials are cooled, hydrogen or the like is used as a carrier gas into a vacuum chamber. The method of introduction is preferable, but is not limited thereto. In order to introduce boron, a method of introducing a gas such as diborane, trimethylboron, boron fluoride, or the like into the vacuum tube can be mentioned, but the method is not limited thereto.

図4は本発明のp型半導体層を含む非単結晶太陽電池の製造装置の一例を示した説明図である。ガリウム供給原料(ドーパント用材料容器12に入れておく)としてはトリエチルガリウムやトリメチルガリウムを用い、更にソース温度を0℃以下に冷却することが好ましい(恒温漕13を用いる)。ガリウム材料の導入量をコントロールするためにキャリアガスとして水素、重水素、希ガス(ヘリウム、ネオン、アルゴン、クリプトンキセノン等)等を使用することができるがこれらに限定されるものではない。またボロンはジボラン、トリメチルボロン、フッ化ボロン等を用いることができ、それらのガスは図4のように別々の系統で真空漕10内へと導入することができるし、真空漕10外の配管中で一系統にまとめられ真空漕10内へと導入することもできる(キャリア水素用マスフロー14、シラン用マスフロー15、水素用マスフロー16、ジボラン用マスフロー17等を利用)。またカソード側の電極に多数の孔を空け、そこから源材料を導入(いわゆるカソードシャワー)することもできる。なおガリウム供給原料とボロン供給原料の双方が供給可能な製造装置はこれらに限定されるものではない。   FIG. 4 is an explanatory view showing an example of a non-single crystal solar cell manufacturing apparatus including the p-type semiconductor layer of the present invention. It is preferable to use triethyl gallium or trimethyl gallium as the gallium feedstock (stored in the dopant material container 12), and further cool the source temperature to 0 ° C. or lower (using the thermostatic chamber 13). In order to control the introduction amount of the gallium material, hydrogen, deuterium, rare gas (helium, neon, argon, krypton xenon, etc.) or the like can be used as a carrier gas, but is not limited thereto. Further, diborane, trimethylboron, boron fluoride, or the like can be used as boron, and these gases can be introduced into the vacuum chamber 10 by separate systems as shown in FIG. Among them, they can be integrated into one system and introduced into the vacuum chamber 10 (using a carrier hydrogen mass flow 14, a silane mass flow 15, a hydrogen mass flow 16, a diborane mass flow 17, etc.). It is also possible to open a large number of holes in the electrode on the cathode side and introduce the source material from there (so-called cathode shower). In addition, the manufacturing apparatus which can supply both a gallium feedstock and a boron feedstock is not limited to these.

ボロンをドープしたp型半導体層の膜厚は8nm以上45nm以下であることが必要であり好ましくは15nm以上25nm以下である。ガリウムを含有するガスをプラズマ処理するI型半導体層の膜厚はは5A以上5nm以下であることが必要であり、好ましくは1nm以上2nm以下である。   The film thickness of the p-type semiconductor layer doped with boron needs to be 8 nm or more and 45 nm or less, and preferably 15 nm or more and 25 nm or less. The film thickness of the I-type semiconductor layer for plasma-treating a gas containing gallium needs to be 5 A or more and 5 nm or less, and preferably 1 nm or more and 2 nm or less.

p型半導体層は非晶質、微結晶、もしくは非晶質と微結晶が混在した系のいずれの形態をとっても構わない。   The p-type semiconductor layer may take any form of amorphous, microcrystalline, or a mixed system of amorphous and microcrystalline.

またp型半導体層のバンドギャップを上げて効率的にi層内へ光を取り込むためにp層内へCやOを混入されることも好ましい。この場合、Cを導入するためにはメタン、エチレン、アセチレン等を用い、Oを導入するためには二酸化炭素ガス等を用いるがこれらに限定されるものではない。またpi界面においてCやOをi層方向へ向けて漸減的に減らしていくことも高い開放電圧を得るためには好ましい。
上記のシリコンおよびゲルマニウムを主成分とする非単結晶太陽電池においては、pin型(スーパーストレートタイプ)太陽電池、nip型(サブストレートタイプ)太陽電池のどちらの構成をとっても構わないし、いわゆるタンデム型、トリプル型太陽電池のように素子を複数個積層しても構わない。
It is also preferable that C or O is mixed into the p layer in order to increase the band gap of the p-type semiconductor layer and efficiently take light into the i layer. In this case, methane, ethylene, acetylene or the like is used to introduce C, and carbon dioxide gas or the like is used to introduce O, but is not limited thereto. In order to obtain a high open circuit voltage, it is also preferable to gradually decrease C and O toward the i layer at the pi interface.
The non-single crystal solar cell mainly composed of silicon and germanium may have either a pin type (super straight type) solar cell or a nip type (substrate type) solar cell, so-called tandem type or triple type. A plurality of elements may be stacked like a solar cell.

透明電極は、厚さ10〜500nmの酸化スズ、酸化インジウム、酸化亜鉛等の酸化物、もしくは厚さ5〜15nmの金、白金、パラジウム、銀およびこれらの合金等の金属薄膜などが挙げられるがこれらに限定されるものではない。これらの透光性の導電膜は入射太陽光を良く透過し、かつ表面抵抗の小さい層が好ましく、厚さ5〜15nmの金、白金層、厚さ30〜200nmのスズドープ酸化インジウム層が好ましい。透明電極はスパッタ法、真空蒸着法、イオンプレーティング法、プラズマCV D法、ゾルゲル法、印刷法等で堆積させる。   Examples of the transparent electrode include oxides such as tin oxide, indium oxide, and zinc oxide having a thickness of 10 to 500 nm, or metal thin films such as gold, platinum, palladium, silver, and alloys thereof having a thickness of 5 to 15 nm. It is not limited to these. These light-transmitting conductive films are preferably layers that transmit incident sunlight well and have a low surface resistance, and are preferably 5 to 15 nm thick gold and platinum layers and 30 to 200 nm thick tin-doped indium oxide layers. The transparent electrode is deposited by sputtering, vacuum deposition, ion plating, plasma CV D, sol-gel, printing, or the like.

また透明電極上に金属等によるグリッド電極を形成することもできる。この場合、グリッド電極はスクリーン印刷法、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCV D法、ゾルゲル法等で作製することができる。   A grid electrode made of metal or the like can be formed on the transparent electrode. In this case, the grid electrode can be produced by a screen printing method, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a sol-gel method, or the like.

裏面電極としては、鉄、クロム、チタン、タンタル、ニオブ、モリブデン、ニッケル、
アルミニウム、コバルト等の金属、ニクロム、ステンレス等の合金からなる金属薄膜が用いられるがこれらに限定されるものではない。これらの金属層は、真空蒸着、スパッタリング、イオンプレーティング法、印刷法、メッキ法の手段によって設ける。またこれらの金属層と光電変換層との間に厚さ2nm〜500nmの透明な電極を設けることも可能である。また裏面電極として透明導電性酸化物薄膜を用いて太陽電池全面に透視性をもたせる、いわゆる“シースルー型太陽電池”とすることも可能である。
As the back electrode, iron, chromium, titanium, tantalum, niobium, molybdenum, nickel,
A metal thin film made of a metal such as aluminum or cobalt, or an alloy such as nichrome or stainless steel is used, but is not limited thereto. These metal layers are provided by means of vacuum deposition, sputtering, ion plating, printing, or plating. It is also possible to provide a transparent electrode having a thickness of 2 nm to 500 nm between the metal layer and the photoelectric conversion layer. Also, a so-called “see-through type solar cell” can be used in which a transparent conductive oxide thin film is used as the back electrode to provide transparency to the entire surface of the solar cell.

本発明の太陽電池の基材としては絶縁性材料、導電性材料のどちらであっても構わないし、また可撓性、非可撓性のどちらでも可能である。具体的にはガラス、石英、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン−テトラフルオロエチレン共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、ポリイミド、透明性ポリイミド、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリアクリル系樹脂、SUS薄板、Alフォイルなどを使用することができるが、これらに限定されるわけではない。これらは単独の基材として使用してもよいが、二種以上を積層した複合基材を使用することもできる。   The substrate of the solar cell of the present invention may be either an insulating material or a conductive material, and may be either flexible or inflexible. Specifically, glass, quartz, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer resin, Use weather resistant polyethylene terephthalate, weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, polyimide, transparent polyimide, fluororesin, cyclic polyolefin resin, polyacrylic resin, SUS thin plate, Al foil, etc. However, it is not limited to these. These may be used as a single substrate, but a composite substrate in which two or more kinds are laminated can also be used.

また太陽電池素子の耐候性をあげるために、上記の層上あるいは層間のいずれかに設けガスバリアー層を設けることも可能である。ケイ素酸化物(SiOx)、ケイ素窒化物(SiNx)、酸化アルミニウム(AlxOy)のいずれかの単独、もしくは二種以上の混合系の蒸着層、または無機−有機のハイブリッドコート層のうちのいずれか一種、または二種以上を組み合わせた複合層を好適に使用できる。   In order to increase the weather resistance of the solar cell element, it is possible to provide a gas barrier layer on either the above layer or between the layers. Any one of silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlxOy) alone, or a mixed deposition layer of two or more kinds, or an inorganic-organic hybrid coat layer Alternatively, a composite layer in which two or more kinds are combined can be suitably used.

上記、ケイ素酸化物(SiOx)、ケイ素窒化物(SiNx)、酸化アルミニウム(AlxOy)などの蒸着層は蒸着法、スパッタ法、CVD法、ディッピング法、ゾルゲル法などにより基材フィルム上に容易に形成することができる。このようなバリア層の厚さは5〜500nmの範囲が適当であり、特に30〜150nmの範囲が好ましい。   Evaporation layers such as silicon oxide (SiOx), silicon nitride (SiNx), and aluminum oxide (AlxOy) can be easily formed on a substrate film by vapor deposition, sputtering, CVD, dipping, sol-gel, etc. can do. The thickness of such a barrier layer is suitably in the range of 5 to 500 nm, particularly preferably in the range of 30 to 150 nm.

以下に本発明のp型半導体層を持つ太陽電池の作製方法を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
[実施例1]
図1は本発明のp型半導体層を含む非単結晶太陽電池の実施例の概略断面図で、図4は本発明のp型半導体層を含む非単結晶太陽電池の製造装置の一例を示した説明図である。
A method for manufacturing a solar cell having a p-type semiconductor layer of the present invention will be specifically described below. However, the present invention is not limited to these.
[Example 1]
FIG. 1 is a schematic cross-sectional view of an embodiment of a non-single crystal solar cell including a p-type semiconductor layer of the present invention, and FIG. 4 shows an example of an apparatus for manufacturing a non-single crystal solar cell including a p-type semiconductor layer of the present invention. FIG.

まず、基材1のコーニング1737ガラス(厚さ0.5mm)上に、スパッタ法でアルミをドープした透明導電膜2のZnOを膜厚200nm設けた。引き続きこのZnO薄膜を有するガラスを試料11として、図4に示したような真空漕10の中に入れ、上部電極21の下部に配置した後、170℃まで昇温した後、バルブ20、シラン用マスフロー15、水素用マスフロー16、ジボラン用マスフロー17を開き、成膜ガスを真空漕10内へと導入し、以下のパラメータでプラズマCVD法でボロンドープp型微結晶シリコン層3を以下の条件で15nm設けた。   First, on the Corning 1737 glass (thickness 0.5 mm) of the base material 1, ZnO of the transparent conductive film 2 doped with aluminum by a sputtering method was provided with a film thickness of 200 nm. Subsequently, the glass having this ZnO thin film was used as a sample 11 in a vacuum trough 10 as shown in FIG. 4 and placed under the upper electrode 21, and then heated to 170 ° C. The mass flow 15, the hydrogen mass flow 16, and the diborane mass flow 17 are opened, the film forming gas is introduced into the vacuum chamber 10, and the boron-doped p-type microcrystalline silicon layer 3 is formed by plasma CVD with the following parameters to 15 nm under the following conditions. Provided.

SiH4流量:2.5SCCM、H2で希釈したB26ガス(H2:99%、B26ガス:1%)流量:1SCCM、H2流量:500SCCM、動作圧力200Pa、投入電力15W、励起周波数54.24MHz、基材温度:170℃
成膜後、ガス供給を止め、残留ガスを排気し圧力が7×10-5Paまで下がったのを確認してからバルブ20、シラン用マスフロー15、水素用マスフロー16、成膜ガスを真
空漕10内へと導入し、以下のパラメータでプラズマCVD法でi型微結晶シリコン層を以下の条件で2nm設けた。
SiH 4 flow rate: 2.5 sccm, H 2 diluted B 2 H 6 gas (H 2: 99%, B 2 H 6 gas: 1%) Flow rate: 1 SCCM, H 2 flow rate: 500 SCCM, operating pressure 200 Pa, input power 15 W, excitation frequency 54.24 MHz, substrate temperature: 170 ° C.
After film formation, the gas supply was stopped, the residual gas was evacuated, and after confirming that the pressure had dropped to 7 × 10 −5 Pa, the valve 20, the silane mass flow 15, the hydrogen mass flow 16, and the film formation gas were vacuumed. Then, an i-type microcrystalline silicon layer was provided with a thickness of 2 nm under the following conditions by the plasma CVD method with the following parameters.

SiH4流量:10SCCM、H2流量:500SCCM、動作圧力266Pa、投入電力10W、励起周波数54.24MHz、基材温度:170℃
成膜後、ガス供給を止め、残留ガスを排気し圧力が7×10-5Paまで下がったのを確認してからバルブ19、20を開き、キャリア水素用マスフロー14から自動圧力制御装置18を経由し水素を4SCCM、水素用マスフロー16から水素を500SCCM流し圧力200Paになるように保持する。ドーパント用材料容器12内にはトリエチルガリウムが入っており、恒温漕13によって−20℃に保持している。ここで電源23から下部電極22に電力を供給し(投入電力15W、励起周波数54.24MHz)、i型微結晶シリコン層4をガリウム源を含むガス雰囲気化でプラズマ処理した。
SiH 4 flow rate: 10 SCCM, H 2 flow rate: 500 SCCM, operating pressure 266 Pa, input power 10 W, excitation frequency 54.24 MHz, substrate temperature: 170 ° C.
After film formation, the gas supply is stopped, the residual gas is exhausted, and after confirming that the pressure has dropped to 7 × 10 −5 Pa, the valves 19 and 20 are opened, and the automatic pressure control device 18 is turned on from the carrier hydrogen mass flow 14. The hydrogen is passed through 4 SCCM and the hydrogen mass flow 16 is supplied with 500 SCCM, and the pressure is maintained at 200 Pa. The dopant material container 12 contains triethylgallium and is kept at −20 ° C. by a constant temperature bath 13. Here, power was supplied from the power source 23 to the lower electrode 22 (input power 15 W, excitation frequency 54.24 MHz), and the i-type microcrystalline silicon layer 4 was plasma-treated in a gas atmosphere containing a gallium source.

さらに、以下の条件で微結晶i層5、アモルファスn層6を作製した。   Further, a microcrystalline i layer 5 and an amorphous n layer 6 were produced under the following conditions.

微結晶i層作製条件
SiH4流量:15SCCM、H2流量:500SCCM、動作圧力266Pa、投入電力5W、励起周波数54.24MHz、基板温度:250℃、膜厚2μm
n型アモルファス層作成条件
SiH4流量:10SCCM、H2で希釈したPH3ガス(H2:99%、PH3ガス:1%)流量:20SCCM、動作圧力20Pa、投入電力10W、励起周波数13.56MHz、基板温度:250℃、膜厚25nm
その後、真空漕から取り出して、スパッタ法で透明導電膜(2)7としてZnO膜を30nm成膜し、さらに金属電極8としてAgを500nm真空蒸着法で設けた。
[比較例1]
図2は、本発明の非単結晶太陽電池の比較のための例の概略断面図を示す。
Microcrystal i layer preparation conditions SiH 4 flow rate: 15 SCCM, H 2 flow rate: 500 SCCM, operating pressure 266 Pa, input power 5 W, excitation frequency 54.24 MHz, substrate temperature: 250 ° C., film thickness 2 μm
n-type amorphous layer forming conditions SiH 4 flow rate: 10 SCCM, PH 3 gas diluted with H 2 (H 2: 99% , PH 3 gas: 1%) flow rate: 20 SCCM, operating pressure 20 Pa, input power 10 W, the excitation frequency 13. 56 MHz, substrate temperature: 250 ° C., film thickness 25 nm
Thereafter, the ZnO film was formed as a transparent conductive film (2) 7 with a thickness of 30 nm as a transparent conductive film (2) 7 by sputtering, and Ag was provided as a metal electrode 8 with a vacuum evaporation method at 500 nm.
[Comparative Example 1]
FIG. 2 shows a schematic cross-sectional view of an example for comparison of the non-single crystal solar cell of the present invention.

まず、基材1のコーニング1737ガラス(厚さ0.5mm)上にスパッタ法でアルミをドープした透明導電膜2のZnOを膜厚200nm設けた。引き続きこのZnO薄膜を有するガラスを試料11として、図4に示したような真空漕10の中に入れ、上部電極21の下部に配置した後、170℃まで昇温した後、バルブ20、シラン用マスフロー15、水素用マスフロー16、ジボラン用マスフロー17を開き、成膜ガスを真空漕10内へと導入し、以下のパラメータでプラズマCVD法でボロンドープp型微結晶シリコン層3を以下の条件で15nm設けた。
SiH4流量:2.5SCCM、H2で希釈したB26ガス(H2:99%、B26ガス:1%)流量:1SCCM、H2流量:500SCCM、動作圧力200Pa、投入電力15W、励起周波数54.24MHz、基材温度:170℃
さらに、以下の条件で微結晶i層5、アモルファスn6層を作製した。
微結晶i層作製条件
SiH4流量:15SCCM、H2流量:500SCCM、動作圧力266Pa、投入電力5W、励起周波数54.24MHz、基板温度:250℃、膜厚2μm
n型アモルファス層作成条件
SiH4流量:10SCCM、H2で希釈したPH3ガス(H2:99%、PH3ガス:1%)流量:20SCCM、動作圧力20Pa、投入電力10W、励起周波数13.56MHz、基板温度:250℃、膜厚25nm
その後、真空漕から取り出して、スパッタ法で透明導電膜(2)7としてZnO膜を30nm成膜し、さらに金属膜8としてAgを500nm真空蒸着法で設けた。
First, on the Corning 1737 glass (thickness 0.5 mm) of the substrate 1, ZnO of the transparent conductive film 2 doped with aluminum by a sputtering method was provided with a film thickness of 200 nm. Subsequently, the glass having this ZnO thin film was used as a sample 11 in a vacuum trough 10 as shown in FIG. 4 and placed under the upper electrode 21, and then heated to 170 ° C. The mass flow 15, the hydrogen mass flow 16, and the diborane mass flow 17 are opened, the film forming gas is introduced into the vacuum chamber 10, and the boron-doped p-type microcrystalline silicon layer 3 is formed by plasma CVD with the following parameters to 15 nm under the following conditions. Provided.
SiH 4 flow rate: 2.5 sccm, H 2 diluted B 2 H 6 gas (H 2: 99%, B 2 H 6 gas: 1%) Flow rate: 1 SCCM, H 2 flow rate: 500 SCCM, operating pressure 200 Pa, input power 15 W, excitation frequency 54.24 MHz, substrate temperature: 170 ° C.
Further, a microcrystalline i layer 5 and an amorphous n6 layer were produced under the following conditions.
Microcrystal i layer preparation conditions SiH 4 flow rate: 15 SCCM, H 2 flow rate: 500 SCCM, operating pressure 266 Pa, input power 5 W, excitation frequency 54.24 MHz, substrate temperature: 250 ° C., film thickness 2 μm
n-type amorphous layer forming conditions SiH 4 flow rate: 10 SCCM, PH 3 gas diluted with H 2 (H 2: 99% , PH 3 gas: 1%) flow rate: 20 SCCM, operating pressure 20 Pa, input power 10 W, the excitation frequency 13. 56 MHz, substrate temperature: 250 ° C., film thickness 25 nm
Thereafter, the ZnO film was formed as a transparent conductive film (2) 7 with a thickness of 30 nm as a transparent conductive film (2) 7 by sputtering, and Ag was provided as a metal film 8 with a vacuum evaporation method at 500 nm.

[比較例2]
図3は、本発明の非単結晶太陽電池の比較のためのその他の例の概略断面図を示す。
[Comparative Example 2]
FIG. 3 shows a schematic cross-sectional view of another example for comparison of the non-single-crystal solar cell of the present invention.

まず、基板1のコーニング7059ガラス(厚さ0.5mm)上にスパッタ法でアルミをドープした透明導電膜2のZnOを膜厚200nm設けた。
引き続きこのZnO薄膜を有するガラスを試料11として、図4に示したような真空漕10の中に入れ、バルブ19を開き、キャリア水素用マスフロー14から自動圧力制御装置18を経由し水素を5SCCM、シラン用マスフロー15からシランを2.5SCCM、水素用マスフロー16から水素を500SCCM流し圧力200Paになるように保持する。ドーパント用材料容器12内にはトリエチルガリウムが入っており、恒温漕13によって−20℃に保持している。また基材温度は170℃に保っている。ここで電源23から下部電極22に電力を供給し(投入電力15W、励起周波数54.24MHz)、プラズマCVD法によりガリウムドープp型微結晶シリコン層9を20nm作製した。
さらに、以下の条件で微結晶i層5、アモルファスn層6を作製した。
微結晶i層作製条件
SiH4流量:15SCCM、H2流量:500SCCM、動作圧力266Pa、投入電力5W、励起周波数54.24MHz、基板温度:250℃、膜厚2μm
n型アモルファス層作成条件
SiH4流量:10SCCM、H2で希釈したPH3ガス(H2:99%、PH3ガス:1%)流量:20SCCM、動作圧力20Pa、投入電力10W、励起周波数13.56MHz、基板温度:250℃、膜厚25nm
その後、真空漕から取り出して、スパッタ法で透明導電膜(2)7としてZnO膜を30nm成膜し、さらに金属膜8としてAgを500nm真空蒸着法で設けた。
First, on the Corning 7059 glass (thickness 0.5 mm) of the substrate 1, ZnO of the transparent conductive film 2 doped with aluminum by a sputtering method was provided with a film thickness of 200 nm.
Subsequently, the glass having this ZnO thin film was used as a sample 11 in a vacuum trough 10 as shown in FIG. 4, the valve 19 was opened, and hydrogen was supplied from the carrier hydrogen mass flow 14 via the automatic pressure controller 18 to 5 SCCM, The silane mass flow 15 is supplied with 2.5 SCCM of silane and the hydrogen mass flow 16 with 500 SCCM of hydrogen, and the pressure is maintained at 200 Pa. The dopant material container 12 contains triethylgallium and is kept at −20 ° C. by a constant temperature bath 13. The substrate temperature is kept at 170 ° C. Here, power was supplied from the power source 23 to the lower electrode 22 (input power 15 W, excitation frequency 54.24 MHz), and a gallium-doped p-type microcrystalline silicon layer 9 was formed to 20 nm by plasma CVD.
Further, a microcrystalline i layer 5 and an amorphous n layer 6 were produced under the following conditions.
Microcrystal i layer preparation conditions SiH 4 flow rate: 15 SCCM, H 2 flow rate: 500 SCCM, operating pressure 266 Pa, input power 5 W, excitation frequency 54.24 MHz, substrate temperature: 250 ° C., film thickness 2 μm
n-type amorphous layer forming conditions SiH 4 flow rate: 10 SCCM, PH 3 gas diluted with H 2 (H 2: 99% , PH 3 gas: 1%) flow rate: 20 SCCM, operating pressure 20 Pa, input power 10 W, the excitation frequency 13. 56 MHz, substrate temperature: 250 ° C., film thickness 25 nm
Thereafter, the ZnO film was formed as a transparent conductive film (2) 7 with a thickness of 30 nm as a transparent conductive film (2) 7 by sputtering, and Ag was provided as a metal film 8 with a vacuum evaporation method at 500 nm.

[試験および結果]
このように作製した本発明のp型半導体層を有する微結晶シリコン太陽電池とボロンをドープした微結晶p層を用いた微結晶シリコン太陽電池、ガリウムをドープした微結晶p層を用いた微結晶シリコン太陽電池の特性をそれぞれ比較した。比較例を表1に示す。
表1の比較結果に示すように、本発明のp型半導体層を用いた方が開放電圧、短絡電流共に高く、優れたセル特性を示していることが分かる。
[Tests and results]
The microcrystalline silicon solar cell having the p-type semiconductor layer of the present invention thus prepared, the microcrystalline silicon solar cell using the microcrystalline p layer doped with boron, and the microcrystal using the microcrystalline p layer doped with gallium The characteristics of silicon solar cells were compared. A comparative example is shown in Table 1.
As shown in the comparison results of Table 1, it can be seen that the use of the p-type semiconductor layer of the present invention has higher open circuit voltage and short circuit current, and exhibits excellent cell characteristics.

Figure 2006210558
Figure 2006210558

本発明のp型半導体層を含む非単結晶太陽電池の実施例の概略断面図である。It is a schematic sectional drawing of the Example of the non-single-crystal solar cell containing the p-type semiconductor layer of this invention. 本発明の非単結晶太陽電池の比較のための例の概略断面図である。It is a schematic sectional drawing of the example for the comparison of the non-single-crystal solar cell of this invention. 本発明の非単結晶太陽電池の比較のためのその他の例の概略断面図である。It is a schematic sectional drawing of the other example for the comparison of the non-single-crystal solar cell of this invention. 本発明のp型半導体層を含む非単結晶太陽電池の製造装置の一例を示した説明図である。It is explanatory drawing which showed an example of the manufacturing apparatus of the non-single-crystal solar cell containing the p-type semiconductor layer of this invention.

符号の説明Explanation of symbols

1・・・・基材
2・・・・透明導電膜
3・・・・ボロンドープp型微結晶シリコン層
4・・・・ガリウム源を含むガス雰囲気化でプラズマ処理されたi型微結晶シリコン層
5・・・・微結晶i層
6・・・・アモルファスn層
7・・・・透明導電膜(2)
8・・・・金属電極
9・・・・ガリウムドープp型微結晶シリコン層
10・・・真空漕
11・・・試料
12・・・ドーパント用材料容器
13・・・恒温漕
14・・・キャリア水素用マスフロー
15・・・シラン用マスフロー
16・・・水素用マスフロー
17・・・ジボラン用マスフロー
18・・・自動圧力制御装
19・・・バルブ
20・・・バルブ
21・・・上部電極
22・・・下部電極
23・・・電源
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Transparent conductive film 3 ... Boron dope p-type microcrystalline silicon layer 4 ... i-type microcrystalline silicon layer processed by gas atmosphere containing gallium source 5 ... Microcrystalline i layer 6 ... Amorphous n layer 7 ... Transparent conductive film (2)
8 .... Metal electrode 9 .... Gallium doped p-type microcrystalline silicon layer 10 .... Vacuum cage 11 ... Sample 12 ... Dopant material container 13 ... Constant temperature cage 14 ... Carrier Mass flow 15 for hydrogen ... Mass flow 16 for silane ... Mass flow 17 for hydrogen ... Mass flow 18 for diborane ... Automatic pressure controller 19 ... Valve 20 ... Valve 21 ... Upper electrode 22 ..Lower electrode 23 ... Power source

Claims (3)

シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する非単結晶太陽電池において、少なくとも一つのp型半導体層がボロンドープp型半導体層で構成されており、pi界面に膜厚5nm以下のi型半導体層を設けた後にそのi型半導体層をガリウムを構成元素に含む気体材料を水素希釈したガスを高周波放電にて分解したプラズマにさらすことでp型半導体層のpi界面側のみがガリウムドープされていることを特徴とする非単結晶太陽電池。   In a non-single-crystal solar cell having at least one pin junction in which a p-type semiconductor layer containing silicon or germanium as a main component, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer is stacked, at least one p-type semiconductor The layer is composed of a boron-doped p-type semiconductor layer. After an i-type semiconductor layer having a film thickness of 5 nm or less is provided at the pi interface, a gas obtained by diluting a gas material containing gallium as a constituent element into hydrogen is used for the i-type semiconductor layer. A non-single-crystal solar cell, wherein only the pi interface side of the p-type semiconductor layer is doped with gallium by being exposed to plasma decomposed by discharge. シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する太陽電池の製造方法において、ボロンドープによりボロンドープp型半導体層を形成し、ボロンドープp型半導体層上に膜厚5nm以下のi型半導体層を形成した後に、そのi型半導体層をガリウムを構成元素に含む気体材料を水素希釈したガスを高周波放電にて分解したプラズマにさらすことでガリウムドープp型半導体層を形成し、ガリウムドープp型半導体層上に真性なi型半導体層を形成し、その上にn型半導体層を形成することを特徴とする非単結晶太陽電池の製造方法。   In a method for manufacturing a solar cell having at least one pin junction in which a p-type semiconductor layer containing silicon or germanium as a main component, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer is laminated, boron-doped p-type semiconductor is formed by boron doping. After forming an i-type semiconductor layer having a thickness of 5 nm or less on the boron-doped p-type semiconductor layer, the i-type semiconductor layer is gas-diluted with a gaseous material containing gallium as a constituent element by high-frequency discharge. A gallium-doped p-type semiconductor layer is formed by exposure to decomposed plasma, an intrinsic i-type semiconductor layer is formed on the gallium-doped p-type semiconductor layer, and an n-type semiconductor layer is formed thereon. A method for producing a non-single crystal solar cell. ガリウム供給原料とボロン供給原料の双方が供給可能な、請求項1記載記載のp型半導体材料を作製することを特徴とする非単結晶太陽電池製造装置。   2. The non-single-crystal solar cell manufacturing apparatus according to claim 1, wherein the p-type semiconductor material is capable of supplying both a gallium feedstock and a boron feedstock.
JP2005019367A 2005-01-27 2005-01-27 Non-single crystal solar cell and manufacturing method thereof Expired - Fee Related JP4940554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019367A JP4940554B2 (en) 2005-01-27 2005-01-27 Non-single crystal solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019367A JP4940554B2 (en) 2005-01-27 2005-01-27 Non-single crystal solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006210558A true JP2006210558A (en) 2006-08-10
JP4940554B2 JP4940554B2 (en) 2012-05-30

Family

ID=36967074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019367A Expired - Fee Related JP4940554B2 (en) 2005-01-27 2005-01-27 Non-single crystal solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4940554B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061667A1 (en) * 2008-11-27 2010-06-03 三菱重工業株式会社 Method for producing photoelectric conversion device
CN112151628A (en) * 2020-09-15 2020-12-29 四川晶科能源有限公司 Solar cell and preparation method of gallium and hydrogen doped monocrystalline silicon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976420A (en) * 1982-10-25 1984-05-01 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS6062113A (en) * 1983-09-16 1985-04-10 Semiconductor Energy Lab Co Ltd Plasma cvd equipment
JPH01202817A (en) * 1988-02-08 1989-08-15 Fuji Electric Co Ltd Manufacture of semiconductor device
JPH0574707A (en) * 1991-09-17 1993-03-26 Nippondenso Co Ltd Manufacture of amorphous semiconductor thin film
JPH0927632A (en) * 1995-07-13 1997-01-28 Canon Inc Photovoltaic element and manufacture thereof
JPH1012902A (en) * 1996-06-26 1998-01-16 Sanyo Electric Co Ltd Photovoltaic cell
JP2004297008A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology P-type semiconductor material, its manufacturing method, its manufacturing device, photoelectric conversion element, light emitting device, and thin film transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976420A (en) * 1982-10-25 1984-05-01 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS6062113A (en) * 1983-09-16 1985-04-10 Semiconductor Energy Lab Co Ltd Plasma cvd equipment
JPH01202817A (en) * 1988-02-08 1989-08-15 Fuji Electric Co Ltd Manufacture of semiconductor device
JPH0574707A (en) * 1991-09-17 1993-03-26 Nippondenso Co Ltd Manufacture of amorphous semiconductor thin film
JPH0927632A (en) * 1995-07-13 1997-01-28 Canon Inc Photovoltaic element and manufacture thereof
JPH1012902A (en) * 1996-06-26 1998-01-16 Sanyo Electric Co Ltd Photovoltaic cell
JP2004297008A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology P-type semiconductor material, its manufacturing method, its manufacturing device, photoelectric conversion element, light emitting device, and thin film transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061667A1 (en) * 2008-11-27 2010-06-03 三菱重工業株式会社 Method for producing photoelectric conversion device
JP2010129785A (en) * 2008-11-27 2010-06-10 Mitsubishi Heavy Ind Ltd Method for producing photoelectric conversion device
US8252668B2 (en) 2008-11-27 2012-08-28 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion device fabrication method
CN102105992B (en) * 2008-11-27 2013-03-27 三菱重工业株式会社 Method for producing photoelectric conversion device
CN112151628A (en) * 2020-09-15 2020-12-29 四川晶科能源有限公司 Solar cell and preparation method of gallium and hydrogen doped monocrystalline silicon

Also Published As

Publication number Publication date
JP4940554B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP3926800B2 (en) Manufacturing method of tandem type thin film photoelectric conversion device
Mazzarella et al. Nanocrystalline silicon emitter optimization for Si‐HJ solar cells: substrate selectivity and CO2 plasma treatment effect
JP5526461B2 (en) Photovoltaic device
TW200950113A (en) Thin film silicon solar cell and manufacturing method thereof
IT8224631A1 (en) A PIU PHOTOVOLTAIC DEVICE! SEMICONDUCTOR LAYERS AND PROCEDURE FOR ITS MANUFACTURING
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
US20130089943A1 (en) Method of manufacturing a solar cell
KR101262871B1 (en) Photovoltaic device including flexible or inflexible substrate and method for manufacturing the same
US20150136210A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
JP2010283161A (en) Solar cell and manufacturing method thereof
JPWO2017110457A1 (en) Method for manufacturing photoelectric conversion device
WO2005078154A1 (en) Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter
Hong et al. Fully Bottom‐Up Waste‐Free Growth of Ultrathin Silicon Wafer via Self‐Releasing Seed Layer
WO2010023991A1 (en) Method for producing photoelectric conversion device, photoelectric conversion device, and system for producing photoelectric conversion device
WO2005109526A1 (en) Thin film photoelectric converter
WO2008059857A1 (en) Thin-film photoelectric conversion device
JP2009267222A (en) Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
JP4940554B2 (en) Non-single crystal solar cell and manufacturing method thereof
WO2017110456A1 (en) Method for manufacturing photoelectric conversion device
JP2006210559A (en) Non-single-crystal solar battery, manufacturing method thereof, and non-single-crystal solar battery manufacturing apparatus
JP5109230B2 (en) Non-single crystal solar cell manufacturing method
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP4691889B2 (en) Non-single crystal solar cell and method of manufacturing non-single crystal solar cell
JP4691888B2 (en) Non-single crystal solar cell and method of manufacturing non-single crystal solar cell
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees