JP2006208300A - System for measuring bed profile - Google Patents

System for measuring bed profile Download PDF

Info

Publication number
JP2006208300A
JP2006208300A JP2005023585A JP2005023585A JP2006208300A JP 2006208300 A JP2006208300 A JP 2006208300A JP 2005023585 A JP2005023585 A JP 2005023585A JP 2005023585 A JP2005023585 A JP 2005023585A JP 2006208300 A JP2006208300 A JP 2006208300A
Authority
JP
Japan
Prior art keywords
measuring device
ultrasonic
riverbed
river
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005023585A
Other languages
Japanese (ja)
Other versions
JP4415192B2 (en
Inventor
Yoshihiro Michiguchi
由博 道口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005023585A priority Critical patent/JP4415192B2/en
Publication of JP2006208300A publication Critical patent/JP2006208300A/en
Application granted granted Critical
Publication of JP4415192B2 publication Critical patent/JP4415192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for measuring a bed profile that accurately measures the bed profile, velocity distribution and a flow rate regardless of irregularity of a river bed, velocity and water depth. <P>SOLUTION: The system for measuring the bed profile comprises: a movement measuring instrument 5 for moving a water surface along a measuring line; and a base station measuring instrument 6 for processing data obtained with the movement measuring instrument 5 and detecting a position, a movement speed, a direction and the like of the movement measuring instrument. The movement measuring instrument 5 irradiates an ultraviolet wave from one ultraviolet sensor narrowing directivity characteristics toward the river bed, calculates a distance down to the bed from a time until reflection wave detection received with a plurality of the ultraviolet sensor from irradiation start and a known underwater sound speed, and measures the bed profile. In addition, the system finds a distance amount moved by underwater scattering bodies being in a beam region of one ultraviolet beam irradiated toward the bed during a unit time, converts it into velocity, and measures velocity distribution. The base station measuring instrument 6 detects a position, a movement speed, a direction and the like of the movement measuring instrument, corrects a relative bed profile and velocity measured by the movement measuring instrument 5, and finds a true bed profile, velocity distribution and a flow rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、河床形状測定装置に係り、特に、超音波を用いて河床形状,流速分布,流量を迅速かつ正確に測定し、洪水などの災害防止のための災害予測に反映可能なデータを収集する河床形状測定装置に関する。   The present invention relates to a riverbed shape measuring device, and in particular, measures the riverbed shape, flow velocity distribution, and flow rate quickly and accurately using ultrasonic waves, and collects data that can be reflected in disaster prediction for preventing disasters such as floods. The present invention relates to a riverbed shape measuring apparatus.

河川の河床形状,流速分布,流量は、大雨による洪水などの災害を防止するために、極めて重要な情報である。   The riverbed shape, flow velocity distribution, and flow rate of rivers are extremely important information for preventing disasters such as floods caused by heavy rain.

河床形状は、水深すなわち水面から河底までの距離を河川断面で連続的に求めると取得できる。   The riverbed shape can be acquired by continuously obtaining the water depth, that is, the distance from the water surface to the riverbed, in the river cross section.

流速分布は、ある深さにおける例えば超音波反射体の移動速度から計測できる。   The flow velocity distribution can be measured from, for example, the moving speed of the ultrasonic reflector at a certain depth.

流量はある位置での水深と水中の流速分布とを検出すれば、河川断面の積分量として演算できる。   The flow rate can be calculated as an integral amount of a river cross section by detecting the water depth at a certain position and the flow velocity distribution in the water.

超音波により水深,流速などを測定する方法が提案されている(例えば、特許文献1参照)。   A method of measuring water depth, flow velocity, etc. by ultrasonic waves has been proposed (see, for example, Patent Document 1).

超音波送受信センサを移動させる手段を用いる河川流量測定方法が提案されている(例えば、特許文献2参照)。   A river flow rate measuring method using means for moving an ultrasonic transmission / reception sensor has been proposed (see, for example, Patent Document 2).

水のない部分はレーザ光線計測装置で形状を測定し、河川部分の形状計測には超音波を用いる河川の断面形状測定方法が提案されている(例えば、特許文献3参照)。   A method for measuring the cross-sectional shape of a river using ultrasonic waves is proposed for measuring the shape of a portion without water using a laser beam measuring device and measuring the shape of the river portion (see, for example, Patent Document 3).

複数の超音波ビームを使い海洋での水深,流速分布を測定し、流量を求める方法が提案されている(例えば、特許文献4参照)。   A method has been proposed in which a plurality of ultrasonic beams are used to measure water depth and flow velocity distribution in the ocean to obtain a flow rate (see, for example, Patent Document 4).

超音波を使用しないで河床形状を求める河床探査具が提案されている(例えば、特許文献5参照)。   A riverbed exploration tool for obtaining a riverbed shape without using ultrasonic waves has been proposed (see, for example, Patent Document 5).

河川の河床形状,流速分布,流量の計測に必要な項目としては、水流の方向と超音波測定装置の移動方向との差異,超音波測定装置の移動速度,河川上の位置がある。   Items necessary for measuring the riverbed shape, flow velocity distribution, and flow rate include the difference between the direction of water flow and the moving direction of the ultrasonic measuring device, the moving speed of the ultrasonic measuring device, and the position on the river.

水流の方向と超音波測定装置の移動方向との差異,超音波測定装置の移動速度は、流れの速度ベクトルと計測装置の移動方向ベクトルとが異なる場合に、流速測定において所定の精度を確保するために必要である。流速の検出値は、流れの方向,速度と計測装置の移動方向,速度とが合成された値なので、真の流速を求めるには、計測値を補正する必要がある。   The difference between the direction of the water flow and the moving direction of the ultrasonic measuring device, and the moving speed of the ultrasonic measuring device ensure a predetermined accuracy in the flow velocity measurement when the flow velocity vector and the moving direction vector of the measuring device are different. Is necessary for. Since the detected value of the flow velocity is a value obtained by combining the flow direction and velocity, the moving direction of the measuring device, and the velocity, it is necessary to correct the measured value to obtain the true flow velocity.

測定装置の移動速度の測定方法として、特許文献4の複数ビームを用いる方法がある。複数ビームで河底の移動量を求め、測定装置の移動量に換算する。しかし、河底の深さが複数ビームで異なると、誤差が増大する。   As a method for measuring the moving speed of the measuring apparatus, there is a method using a plurality of beams of Patent Document 4. The amount of riverbed movement is obtained with multiple beams and converted to the amount of movement of the measuring device. However, the error increases when the depth of the riverbed is different for multiple beams.

測定装置の方向検知に地磁気センサを用いる場合、磁性体(鉄橋)などの近くでは、地磁気分布が乱れ,誤差が増加する。   When using a geomagnetic sensor to detect the direction of the measuring device, the geomagnetic distribution is disturbed near the magnetic body (iron bridge) and the error increases.

特開2000−97738号公報 (第6頁〜第7頁,図1)Japanese Patent Laid-Open No. 2000-97738 (pages 6 to 7, FIG. 1) 特許第2955920号公報 (第12頁,図10,図11)Japanese Patent No. 2955920 (page 12, FIG. 10, FIG. 11) 特開平11−304484号公報 (第4頁,図7,図8)Japanese Patent Laid-Open No. 11-304484 (page 4, FIG. 7, FIG. 8) USP005122990A (第4欄〜第6欄,Fig.1,Fig.2)USP005122990A (4th to 6th columns, Fig.1, Fig.2) 特開2000−98046号公報 (第2頁〜第3頁,図1〜図4)JP 2000-98046 A (2nd to 3rd pages, FIGS. 1 to 4)

特許文献1の測定方法においては、深さ方向に棒状の垂下材を設け、その垂下材に沿って複数の超音波受信センサを設置する。河底の超音波送受信センサから超音波を発射し、垂下材各所の超音波受信センサで受信し、超音波の伝搬時間から各超音波センサ間の音速,水深を測定する。河川断面全体の河床形状,流速分布を求めるには、垂下材を多数設ける必要がある。   In the measurement method of Patent Document 1, a rod-like hanging material is provided in the depth direction, and a plurality of ultrasonic reception sensors are installed along the hanging material. Ultrasonic waves are emitted from ultrasonic transmission / reception sensors at the riverbed and received by ultrasonic reception sensors at various locations of the drooping material, and the sound speed and water depth between the ultrasonic sensors are measured from the propagation time of the ultrasonic waves. In order to obtain the riverbed shape and flow velocity distribution of the entire river cross section, it is necessary to provide many drooping materials.

特許文献2の測定方法においても、複数個の超音波送受信センサを水面および水中に配置し、さらに、河底付近に超音波反射体を沈める必要があるので、簡便な測定方法ではない。   The measurement method disclosed in Patent Document 2 is not a simple measurement method because it is necessary to dispose a plurality of ultrasonic transmission / reception sensors in the surface of the water and in the water, and to sink an ultrasonic reflector near the riverbed.

特許文献3の測定方法においては、河床形状の計測に100kHz〜500kHzの超音波を用いており、超音波ビームの広がりにより、精度が低下する。また、流速分布を測定できない。   In the measuring method of Patent Document 3, ultrasonic waves of 100 kHz to 500 kHz are used for measuring the riverbed shape, and the accuracy is reduced due to the spread of the ultrasonic beam. Also, the flow velocity distribution cannot be measured.

特許文献4の測定方法においては、4本の超音波ビームを垂直方向から所定角度だけ離して送信し、水中散乱体からの反射を検出する。また、静止する海底を基準として測定装置の移動を求める。この方法では、ビーム間に角度があるので、水深が深くなるほど超音波ビームは離れていき、離れた位置での流速が異なると、各ビームの流速が同一とならず、誤差になる。海底に凹凸があれば、異なる超音波往復時間となり、水深の大きな誤差となるほか、移動量の測定も不可能となる。海底に比べて凹凸が激しい河川への適用は、さらに難しい。   In the measurement method of Patent Document 4, four ultrasonic beams are transmitted away from a vertical direction by a predetermined angle, and reflection from an underwater scatterer is detected. Further, the movement of the measuring device is obtained with reference to the stationary seabed. In this method, since there is an angle between the beams, the ultrasonic beam moves away as the water depth increases, and if the flow velocities at different positions are different, the flow velocities of the beams do not become the same, resulting in an error. If there is unevenness on the sea floor, it will be a different ultrasonic round trip time, which will cause a large error in water depth and also make it impossible to measure the amount of movement. It is even more difficult to apply to rivers with more irregularities than the seabed.

特許文献5の測定方法においては、河底から採取した河床材料に永久磁石を埋め込んだ探査具を河底に多数配置し、磁場の測定からこの探査具の位置や移動量を測る。この測定方法は、測定範囲が限られ、水深測定に別の手段が必要となる。   In the measurement method disclosed in Patent Document 5, a number of probes having permanent magnets embedded in riverbed material collected from the riverbed are arranged on the riverbed, and the position and amount of movement of the probe are measured from the measurement of the magnetic field. This measuring method has a limited measuring range and requires another means for measuring the water depth.

本発明の課題は、河底の凹凸,流速,水深にかかわりなく、河床形状,流速分布,流量を正確に測定できる河床形状測定装置を提供することである。   An object of the present invention is to provide a riverbed shape measuring apparatus capable of accurately measuring a riverbed shape, a flow velocity distribution, and a flow rate regardless of riverbed irregularities, flow velocity, and water depth.

本発明は、上記課題を解決するために、測定線に沿って自走しまたは牽引され水面を移動する移動測定機器と、移動測定機器で得たデータを処理するとともに移動測定機器の位置,移動速度,方向などを検出する基地測定機器とからなる河床形状測定装置を提案する。   In order to solve the above-mentioned problems, the present invention provides a mobile measuring device that is self-propelled or towed along a measurement line and moves on the water surface, and processes the data obtained by the mobile measuring device and moves and moves the mobile measuring device. We propose a riverbed shape measuring device consisting of a base measuring device that detects speed, direction, etc.

移動測定機器は、指向特性を狭くした1つの超音波センサからの超音波を河底に向けて照射し、照射開始から複数の超音波センサで受信した反射波検出までの時間と既知の水中音速とから河底までの距離を算出し、河床形状を測定する。   The mobile measuring device irradiates the riverbed with ultrasonic waves from one ultrasonic sensor with narrow directional characteristics, the time from the start of irradiation to the detection of reflected waves received by multiple ultrasonic sensors, and the known underwater sound speed. The distance from the bottom to the riverbed is calculated, and the riverbed shape is measured.

移動測定機器は、河底に向けて放射した1本の超音波ビームのビーム領域中にある水中散乱体が単位時間中に移動する距離量を求め、流速に換算し、流速分布を測定する。   The movement measuring device obtains the amount of distance that the underwater scatterer in the beam region of one ultrasonic beam radiated toward the riverbed moves during a unit time, converts it into a flow velocity, and measures the flow velocity distribution.

基地測定機器は、移動測定機器の位置,移動速度,方向などを検出し、移動測定機器が測定した相対的河床形状,流速を補正し、真の河床形状,流速分布,流量を求める。   The base measuring device detects the position, moving speed, direction, etc. of the mobile measuring device, corrects the relative riverbed shape and flow velocity measured by the mobile measuring device, and obtains the true riverbed shape, flow velocity distribution, and flow rate.

本発明において、移動測定機器から河底に向けて照射される超音波ビームは、鋭い指向特性の1本だけなので、河底に凹凸があっても、複数のビームを照射した従来例の交差位置が異なることによる誤差は生じない。   In the present invention, since the ultrasonic beam emitted from the mobile measuring device toward the riverbed is only one with a sharp directivity characteristic, the intersection position of the conventional example in which a plurality of beams are irradiated even if the riverbed is uneven. There is no error due to the difference.

また、複数のビームを照射した場合の超音波源から反射体までの距離差に起因する問題が無く、流速分布や流量への誤差が回避される。   Further, there is no problem due to the difference in distance from the ultrasonic source to the reflector when a plurality of beams are irradiated, and an error in the flow velocity distribution and the flow rate is avoided.

さらに、地上に設置した基地測定機器を基準位置として、河川水面を移動する移動測定機器の位置,方位,移動速度,方向などを例えばレーダで正確に測定するので、移動測定機器の動きに起因する相対誤差を排除し、河床形状,流速分布,流量を正確に測定できる。   Furthermore, the position, direction, moving speed, direction, etc. of the mobile measuring device that moves on the river surface are accurately measured using, for example, radar, with the base measuring device installed on the ground as the reference position, resulting in the movement of the mobile measuring device. Relative errors are eliminated, and riverbed shape, flow velocity distribution, and discharge can be measured accurately.

次に、図1〜図9を参照して、本発明による河床形状測定装置の実施例を説明する。   Next, with reference to FIGS. 1-9, the Example of the river-bed shape measuring apparatus by this invention is described.

図1は、本発明による河床形状測定装置の基本的概念を説明する図である。   FIG. 1 is a diagram for explaining the basic concept of a riverbed shape measuring apparatus according to the present invention.

本実施例1においては、河川1に測定線2を設定し、測定線2に沿った河床形状3と、河川断面4の流速分布と、河川断面4を通過する流量とを求める。本実施例1の測定装置は、測定線2に沿って自走しまたは牽引され水面を移動する移動測定機器5と、移動測定機器5で得たデータを処理するとともに移動測定機器5の位置,移動速度,方向などを検出する基地測定機器6とからなる。   In the first embodiment, the measurement line 2 is set on the river 1, and the riverbed shape 3 along the measurement line 2, the flow velocity distribution of the river cross section 4, and the flow rate passing through the river cross section 4 are obtained. The measurement apparatus of the first embodiment includes a mobile measurement device 5 that is self-propelled or towed along the measurement line 2 and moves on the water surface, processes the data obtained by the mobile measurement device 5, and the position of the mobile measurement device 5. It consists of a base measuring device 6 that detects the moving speed, direction, and the like.

河床形状3の測定には、移動測定機器5の各水面位置で水深を測定し、移動測定機器5を移動させながら河底位置を連続的に求める。その際には、移動測定機器5の水面位置を正確に定めなければならない。   For the measurement of the riverbed shape 3, the water depth is measured at each water surface position of the mobile measuring device 5, and the riverbed position is continuously obtained while moving the mobile measuring device 5. In that case, it is necessary to accurately determine the water surface position of the mobile measuring device 5.

流速分布の計測値は、河水の流速と移動測定機器5の移動成分とが合成されたデータとして得られる。合成されたデータにおいては、河水の流速,方向と基地測定機器6に対する移動測定機器5の移動速度,方向,方位とがベクトル的に合成される。   The measured value of the flow velocity distribution is obtained as data obtained by combining the flow velocity of the river water and the moving component of the moving measuring device 5. In the synthesized data, the flow velocity and direction of the river water and the moving speed, direction, and direction of the mobile measuring device 5 relative to the base measuring device 6 are combined in a vector manner.

したがって、真の流速分布の計測には、移動測定機器5の移動速度,方向,方位が必要である。基地測定機器6により移動測定機器5の移動速度,方向,方位を検出し、移動測定機器5で検出した流速データを補正し、真の河水流速分布を算出する。   Therefore, in order to measure the true flow velocity distribution, the moving speed, direction, and direction of the moving measuring device 5 are necessary. The base measuring device 6 detects the moving speed, direction, and direction of the mobile measuring device 5, corrects the flow velocity data detected by the mobile measuring device 5, and calculates the true river water flow velocity distribution.

図2は、本発明による河床形状測定装置のうちで移動測定機器5の構成と河床形状,流速分布,流量の測定方法とを示す図である。   FIG. 2 is a diagram showing the configuration of the mobile measuring device 5 and the method for measuring the riverbed shape, flow velocity distribution, and flow rate in the riverbed shape measuring apparatus according to the present invention.

移動測定機器5は、浮揚体501と、超音波送受信センサ502と、超音波受信センサ503と、超音波送受信装置504と、傾きセンサ505と、データ送受信装置506とを含んでおり、超音波を用いて河床形状と流速分布とを測定する装置である。   The mobile measuring device 5 includes a levitation body 501, an ultrasonic transmission / reception sensor 502, an ultrasonic reception sensor 503, an ultrasonic transmission / reception device 504, an inclination sensor 505, and a data transmission / reception device 506. It is a device that uses it to measure riverbed shape and flow velocity distribution.

移動測定機器5は、電源を積載して水面に浮く浮揚体501を含んでおり、自走または牽引などにより水面を移動する。   The mobile measuring device 5 includes a floating body 501 that is loaded with a power source and floats on the water surface, and moves on the water surface by self-propelled or towing.

浮揚体501には、超音波送受信センサ502と、超音波受信センサ503−1,503−2,…とが設置されている。超音波送受信センサ502が超音波を送信し、超音波送受信センサ502および超音波受信センサ503−1,503−2,…が水中反射体からの反射波を受信する。   An ultrasonic transmission / reception sensor 502 and ultrasonic reception sensors 503-1, 503-2,... Are installed on the levitation body 501. The ultrasonic transmission / reception sensor 502 transmits ultrasonic waves, and the ultrasonic transmission / reception sensors 502 and the ultrasonic reception sensors 503-1, 503-2, ... receive the reflected waves from the underwater reflector.

超音波送受信装置504は、超音波送受信センサ502に電気信号を印加して水中に超音波を送信させ、超音波センサ502,503−1,503−2,…で検出した河底や水中反射体からの反射波を受信する。その際に、超音波送信から反射波受信までの時間を計測する。   The ultrasonic transmission / reception device 504 applies an electrical signal to the ultrasonic transmission / reception sensor 502 to transmit ultrasonic waves in water, and the riverbed or underwater reflector detected by the ultrasonic sensors 502, 503-1, 503-2,. The reflected wave from is received. At that time, the time from ultrasonic transmission to reflected wave reception is measured.

超音波センサ502,503−1,503−2,…の周波数は、計測する水深,河川水の混濁度に応じて数百kHz〜数MHzから選択する。   The frequency of the ultrasonic sensors 502, 503-1, 503-2,... Is selected from several hundred kHz to several MHz according to the depth of water to be measured and the turbidity of river water.

傾きセンサ505は、浮揚体501の水平からの傾きを検出する。   The tilt sensor 505 detects the tilt of the levitation body 501 from the horizontal.

データの送受信装置506は、基地測定機器6とデータなどをやりとりする。   The data transmission / reception device 506 exchanges data and the like with the base measurement device 6.

浮揚体501上に設置されたレーダの電波反射体507−1,507−2は、反射特性を変えてあるので、基地測定機器6からのレーダにより、電波反射体507−1か電波反射体507−2かを識別できる。したがって、これら電波反射体507−1,507−2の相対的位置関係により、浮揚体501の姿勢や進行方向を検出できる。   Since the radar wave reflectors 507-1 and 507-2 installed on the levitation body 501 have different reflection characteristics, the wave reflector 507-1 or the wave reflector 507 is used by the radar from the base measuring device 6. -2. Therefore, the attitude and traveling direction of the levitation body 501 can be detected based on the relative positional relationship between the radio wave reflectors 507-1 and 507-2.

図3は、本発明による河床形状測定装置のうちで基地測定機器6の構成を示すブロック図である
基地測定機器6は、データ送受信装置601と、レーダ装置602と、制御演算装置603と、入出力表示装置604とを含んでいる。
FIG. 3 is a block diagram showing the configuration of the base measuring device 6 in the riverbed shape measuring device according to the present invention. The base measuring device 6 includes a data transmitting / receiving device 601, a radar device 602, a control arithmetic device 603, and an input / output device. Output display device 604.

データ送受信装置601は、データ送受信装置506とデータなどをやりとりする。レーダ装置602は、電波反射体507−1,507−2までの距離,方位を検出する。   The data transmission / reception device 601 exchanges data and the like with the data transmission / reception device 506. The radar device 602 detects the distance and direction to the radio wave reflectors 507-1 and 507-2.

データ送受信装置601およびレーダ装置602に接続された制御演算装置603は、データを解析し、河床形状,流速分布,流量を算出し、入出力表示装置に演算結果を表示させる。   The control arithmetic device 603 connected to the data transmitting / receiving device 601 and the radar device 602 analyzes the data, calculates the river bed shape, flow velocity distribution, and flow rate, and displays the calculation result on the input / output display device.

図4は、本発明による河床形状測定装置のうちで移動測定機器5に取り付けられた超音波センサ502,503の指向特性を示す図である。   FIG. 4 is a diagram showing the directivity characteristics of the ultrasonic sensors 502 and 503 attached to the mobile measuring device 5 in the riverbed shape measuring apparatus according to the present invention.

図4には、超音波送受信センサ502および超音波受信センサ503−1のみを示してあるが、浮揚体501上の設置位置が異なる他の超音波受信センサ503−2,…も、超音波受信センサ503−1と同様に動作する。   FIG. 4 shows only the ultrasonic transmission / reception sensor 502 and the ultrasonic reception sensor 503-1. However, other ultrasonic reception sensors 503-2,... It operates in the same manner as the sensor 503-1.

超音波送受信センサ502の指向特性は、10度以下と狭い。これに対して、超音波受信センサ503は、紙面の方向に広く、これに垂直な方向は10度以下の狭い指向特性を有する。超音波受信センサ503−1,503−2,…は、超音波送受信センサ502の超音波ビーム領域を含むように指向特性および受信中心方向を設定して浮揚体501に固定されている。   The directivity characteristic of the ultrasonic transmission / reception sensor 502 is as narrow as 10 degrees or less. On the other hand, the ultrasonic receiving sensor 503 has a narrow directivity characteristic that is wide in the direction of the paper surface and the direction perpendicular thereto is 10 degrees or less. The ultrasonic reception sensors 503-1, 503-2,... Are fixed to the floating body 501 with directivity characteristics and reception center directions set so as to include the ultrasonic beam region of the ultrasonic transmission / reception sensor 502.

したがって、超音波受信センサ503−1,503−2,…で検出できる信号は、超音波送受信センサ502から送信された超音波ビーム内にある散乱体からの反射のみである。   Therefore, the signals that can be detected by the ultrasonic reception sensors 503-1, 503-2,... Are only reflections from scatterers in the ultrasonic beam transmitted from the ultrasonic transmission / reception sensor 502.

このような指向特性の超音波センサ502,503を使うと、超音波送受信センサ502から放射された超音波ビームは、河底,水中反射体の散乱点を中心に反射するので、指向領域内にある反射体からの反射波のみを超音波センサ502,503で検出できる。   When the ultrasonic sensors 502 and 503 having such directivity characteristics are used, the ultrasonic beam radiated from the ultrasonic transmission / reception sensor 502 is reflected around the scattering point of the riverbed and the underwater reflector. Only the reflected waves from a certain reflector can be detected by the ultrasonic sensors 502 and 503.

図5は、超音波送受信センサ502からの送信波形と超音波センサ502,503における受信波形との関係を示すタイムチャートである。   FIG. 5 is a time chart showing the relationship between the transmission waveform from the ultrasonic transmission / reception sensor 502 and the reception waveforms at the ultrasonic sensors 502 and 503.

超音波センサ502,503−1,503−2,…は、超音波送受信センサ502からの送信波形と類似し河底,水中反射体から反射した超音波を受信する。超音波送受信装置504は、送信から検出までの散乱検出時間を検出し、データ送受信装置506を介して、基地測定機器6に伝送する。その際に、超音波送信時の傾きセンサ505のデータも、基地測定機器6に伝送される。   The ultrasonic sensors 502, 503-1, 503-2,... Receive ultrasonic waves reflected from the riverbed and the underwater reflector similar to the transmission waveform from the ultrasonic transmission / reception sensor 502. The ultrasonic transmission / reception device 504 detects the scattering detection time from transmission to detection, and transmits the detection time to the base measurement device 6 via the data transmission / reception device 506. At that time, the data of the tilt sensor 505 at the time of ultrasonic transmission is also transmitted to the base measuring device 6.

図6は、移動測定機器5の座標系における超音波センサ502,503および散乱体の位置関係を示す図である。図6においては、超音波センサ502,503−1,503−2の位置を点502p,503−1p,503−2p,…で示してある。   FIG. 6 is a diagram showing the positional relationship between the ultrasonic sensors 502 and 503 and the scatterer in the coordinate system of the mobile measuring device 5. In FIG. 6, the positions of the ultrasonic sensors 502, 503-1, 503-2 are indicated by points 502p, 503-1p, 503-2p,.

基地測定機器6は、移動測定機器5の位置データ,超音波送受信センサ502,超音波受信センサ503の送信から検出までの散乱検出時間,傾きセンサ505の傾きデータに基づき、散乱体の位置を算出する。   The base measuring device 6 calculates the position of the scatterer based on the position data of the mobile measuring device 5, the scattering detection time from transmission to detection of the ultrasonic transmission / reception sensor 502 and ultrasonic reception sensor 503, and the inclination data of the inclination sensor 505. To do.

受信超音波センサは、最低3個必要である。点502pから超音波を送信し、この超音波ビーム内にある散乱体からの反射を502,503−1,503−2,…で検出し、送信から反射波検出までの時間を超音波送受信装置504で求める。   At least three reception ultrasonic sensors are required. The ultrasonic wave is transmitted from the point 502p, the reflection from the scatterer in the ultrasonic beam is detected by 502, 503-1, 503-2,... Obtained at 504.

超音波送信から受信までの時間は、超音波送受信センサ502から散乱体までの伝搬時間と散乱体から超音波送受信センサ502,超音波受信センサ503−1,503−2,…までの伝搬時間の和である。   The time from ultrasonic transmission to reception is the propagation time from the ultrasonic transmission / reception sensor 502 to the scatterer and the propagation time from the scatterer to the ultrasonic transmission / reception sensor 502, the ultrasonic reception sensors 503-1, 503-2,. It is sum.

図6の場合、検出された時間は、T502(502p→散乱体→502p),T503−1(502p→散乱体→503−1p),T503−2(502p→散乱体→503−2p)の3個である。   In the case of FIG. 6, the detected times are T502 (502p → scatterer → 502p), T503-1 (502p → scatterer → 503-1p), and T503-2 (502p → scatterer → 503-2p). It is a piece.

水中における超音波の音速は既知であるから、基地測定機器6の制御演算装置603は、検出された時間に基づき、超音波送受信センサ502から散乱体までと散乱体から超音波送受信センサ502,超音波受信センサ503−1,503−2,…までの距離を正確に算出できる。   Since the sound speed of the ultrasonic wave in water is known, the control calculation device 603 of the base measuring device 6 determines the ultrasonic transmission / reception sensor 502 to the scatterer and from the scatterer to the ultrasonic transmission / reception sensor 502, based on the detected time. The distance to the sound wave reception sensors 503-1, 503-2, ... can be accurately calculated.

各超音波センサで求められる距離は、検出時間からおのおの距離に換算すると、L502,L503−1,L503−2になる。 The distances obtained by the ultrasonic sensors are L 502 , L 503-1 , and L 503-2 when converted from the detection time to the respective distances.

河底位置,散乱***置は、河底に向けた超音波送受信センサ502の検出時間から、502pを中心とした半径L502/2の球面上にあるから、検出時間に基づき河底までの距離(水深)や水中散乱体の深さを同定できる。 Distance riverbed position, the scatterer position from the detection time of the ultrasonic wave transmission and reception sensor 502 toward riverbed, since on a sphere of radius L 502/2 centered on 502p, until riverbed on the basis of the detection time (Water depth) and depth of underwater scatterers can be identified.

次に、水中散乱体の位置決定方法を説明する。水中散乱***置は、502pを中心とし半径L502/2の球面上、502pと503−1pとを焦点とした楕円面上(楕円面上の各点から502p,503−1pまでの距離の和はL503−1),502pと503−2pを焦点とした楕円面上(楕円面上の各点から502p,503−2pまでの距離の和はL503−2)にある。制御演算装置603は、これらの曲面の交点として三次元の散乱***置を算出する。 Next, a method for determining the position of the underwater scatterer will be described. Water scatterer position, the sum of the distance between the center and to the radius L 502/2 on the spherical surface 502p, from each point on 502p and 503-1p and was the focal elliptical plane (ellipsoid 502p, until 503-1p the L 503-1), the sum of the distances to 502p and 503-2p focus and the ellipse plane (from the point on the ellipsoid 502p, until 503-2p is in L 503-2). The control arithmetic device 603 calculates a three-dimensional scatterer position as an intersection of these curved surfaces.

図6において、点502pを座標系の原点とし、Y軸上の原点からDの位置に503−1pを置き、X軸上のDの位置に503−2pを置く。 6, the point 502p as the origin of the coordinate system, place the 503-1p from the origin on the Y axis to the position of the D 1, put 503-2p to the position of the D 2 on the X axis.

散乱***置を(X,Y,Z)とすると、
502/2=
√{X+Y+Z
503−1
√{X+Y+Z}+√{X+(D−Y)+Z
503−2
√{X+Y+Z}+√{(D−X)+Y+Z
が成り立つ。
If the scatterer position is (X, Y, Z),
L 502/2 =
√ {X 2 + Y 2 + Z 2 }
L 503-1 =
√ {X 2 + Y 2 + Z 2 } + √ {X 2 + (D 1 −Y) 2 + Z 2 }
L 503-2 =
√ {X 2 + Y 2 + Z 2 } + √ {(D 2 −X) 2 + Y 2 + Z 2 }
Holds.

これを解くと、
X={D−(L503−2)+(L503−2)(L502)}/2
Y={D−(L503−1)+(L503−1)(L502)}/2
となる。両式から、
Z=√{(L502/2)−X−Y
である。
Solving this,
X = {D 2 - (L 503-2) 2 + (L 503-2) (L 502)} / 2
Y = {D 1 − (L 503-1 ) 2 + (L 503-1 ) (L 502 )} / 2
It becomes. From both formulas,
Z = √ {(L 502/2 ) 2 −X 2 −Y 2 }
It is.

河底,水中散乱体の位置決定において、浮揚体501が回転する場合もある。この場合、超音波センサは浮揚体501と一体なので、座標系自体が回転したとみなしてよい。傾きセンサ505で検出した傾きデータをもとに検出した位置をこの回転に応じて補正する。座標軸の回転公式は、小林幹生編「数学公式集」p71などで公知である。   In determining the position of the riverbed and the underwater scatterer, the levitation body 501 may rotate. In this case, since the ultrasonic sensor is integrated with the floating body 501, the coordinate system itself may be regarded as rotated. The position detected based on the tilt data detected by the tilt sensor 505 is corrected according to this rotation. Coordinate axis rotation formulas are known, for example, by Miki Kobayashi's “Mathematical Formulas” p71.

これまでは、1個の送信信号で送信ビーム内にある散乱体の位置を求め得ることを説明した。   So far, it has been explained that the position of the scatterer in the transmission beam can be obtained with one transmission signal.

河川内部の散乱体の絶対位置および流速分布の算出には、浮揚体501の方位(例えば真北などの基準からの角度)が必要なので、図6においてY軸の方向を常に監視する。   Since the absolute position of the scatterer inside the river and the calculation of the flow velocity distribution require the orientation of the levitated body 501 (for example, an angle from a reference such as true north), the direction of the Y axis is always monitored in FIG.

Y軸の方向が求まると、Z軸まわりにXY座標面を回転させ、散乱体の絶対位置と流速方向とを算出できる。   Once the Y-axis direction is determined, the XY coordinate plane can be rotated around the Z-axis to calculate the absolute position of the scatterer and the flow velocity direction.

流速分布の測定では、設定時間間隔で複数回超音波を送信し、散乱体の位置を追跡する。   In the measurement of the flow velocity distribution, ultrasonic waves are transmitted a plurality of times at set time intervals to track the position of the scatterer.

超音波の送信間隔は既知であるから、送信間隔時間での送信散乱***置の算出から移動量を求め、その深さにおける流速を算出する。種々の深さで散乱体の移動速度を検出し、深さ方向の流速分布を求める。   Since the transmission interval of the ultrasonic wave is known, the movement amount is obtained from the calculation of the transmission scatterer position at the transmission interval time, and the flow velocity at the depth is calculated. The moving speed of the scatterer is detected at various depths, and the flow velocity distribution in the depth direction is obtained.

流速分布は、本実施例1で示したように、超音波送受信センサ502が1個,超音波受信センサ503が2個あればできる。超音波受信センサ503の数を増加させ、検出位置の平均を求めると、誤差を縮小できる。   As shown in the first embodiment, the flow velocity distribution can be obtained by one ultrasonic transmission / reception sensor 502 and two ultrasonic reception sensors 503. When the number of ultrasonic reception sensors 503 is increased and the average of the detection positions is obtained, the error can be reduced.

次に、レーダを用いた浮揚体501の位置,方向の検出および流速方向の補正について説明する。浮揚体501には、レーダの電波反射体507−1,507−2が設けられている。レーダの電波反射体507−1,507−2の反射特性が異なるので、レーダでの観測結果から両者を弁別できる。   Next, detection of the position and direction of the levitating body 501 using the radar and correction of the flow velocity direction will be described. The levitation body 501 is provided with radar radio wave reflectors 507-1 and 507-2. Since the reflection characteristics of the radio wave reflectors 507-1 and 507-2 of the radar are different, the two can be discriminated from the observation result of the radar.

レーダ装置602は、これら二つの電波反射体の位置(距離,方位)を区別して検出し、制御演算装置603に出力する。浮揚体501上の2点の反射***置がわかると、浮揚体501の河川上の位置,方位(例えば真北からの角度)を知ることができる。さらに、時間的に追跡すると、移動速度,移動方向も知ることが可能である。   The radar device 602 distinguishes and detects the positions (distance and azimuth) of these two radio wave reflectors and outputs them to the control arithmetic device 603. If the positions of the two reflectors on the levitation body 501 are known, the position and direction (for example, an angle from true north) of the levitation body 501 on the river can be known. Furthermore, if the time is traced, it is possible to know the moving speed and the moving direction.

浮揚体501の位置は、浮揚体501を移動させてその地点における水深から河床形状を求めるために必要である。浮揚体501の方位,移動速度,移動方向は、検出した流速分布を補正し正確な真の流速分布を算出するために必要となる。   The position of the levitation body 501 is necessary to move the levitation body 501 and obtain the riverbed shape from the water depth at that point. The azimuth, moving speed, and moving direction of the levitated body 501 are necessary for correcting the detected flow velocity distribution and calculating an accurate true flow velocity distribution.

河川中の物体の位置を定めるため、三次元XYZ座標を考える。水面をXY座標面,深さ方向をZ軸とする。   Consider 3D XYZ coordinates to determine the position of an object in a river. The water surface is the XY coordinate plane and the depth direction is the Z axis.

深さ方向Z軸は一意に定まるが、XY平面のX,Y軸は任意に定めることができるので、例えば、Y軸を真北とし浮揚体501の方位を決定する。浮揚体501に2個の電波反射体を設置し、その位置をレーダ装置602で求め、浮揚体501の方位を決定する。   Although the depth direction Z-axis is uniquely determined, the X and Y axes of the XY plane can be arbitrarily determined. For example, the azimuth of the levitation body 501 is determined with the Y axis as true north. Two radio wave reflectors are installed on the levitation body 501, the position thereof is obtained by the radar device 602, and the orientation of the levitation body 501 is determined.

この結果、水中散乱体の絶対位置を算出し、その移動前後の位置関係から、移動方向と移動量とを決定できる。   As a result, the absolute position of the underwater scatterer is calculated, and the movement direction and the movement amount can be determined from the positional relationship before and after the movement.

図7は、移動測定機器5の座標系における反射体の移動信号を基地測定機器のレーダ装置602で検知した移動体の移動信号により補正し真の流速を求める方法を示す図である。   FIG. 7 is a diagram showing a method for obtaining a true flow velocity by correcting the movement signal of the reflector in the coordinate system of the movement measuring device 5 with the movement signal of the moving body detected by the radar device 602 of the base measuring device.

水中散乱体の移動量と移動方向を求めるため、ある時間間隔で二つの超音波を送信する。そのとき、水中散乱体の移動後の位置を(X2,Y2,Z2),移動前の位置を(X1,Y1,Z1)とする。また、水面にある浮揚体501の二つめの超音波送信時の位置を(XX2,YY2),一つめの位置を(XX1,YY1)とする。   In order to determine the amount of movement and the direction of movement of the underwater scatterer, two ultrasonic waves are transmitted at certain time intervals. At this time, the position after the movement of the underwater scatterer is (X2, Y2, Z2), and the position before the movement is (X1, Y1, Z1). Further, the position of the second ultrasonic wave transmission of the levitated body 501 on the water surface is (XX2, YY2), and the first position is (XX1, YY1).

二つの超音波送信間の水中散乱体の移動を(ΔX,ΔY,ΔZ)とすると、ΔX=X2−X1,ΔY=Y2−Y1,ΔZ=Z2−Z1である。一方、浮揚体501の移動量(ΔXX,ΔYY)は、ΔXX=XX2−XX1,ΔYY=YY2−YY1である。   Assuming that the movement of the underwater scatterer between two ultrasonic transmissions is (ΔX, ΔY, ΔZ), ΔX = X2−X1, ΔY = Y2−Y1, and ΔZ = Z2−Z1. On the other hand, the moving amount (ΔXX, ΔYY) of the floating body 501 is ΔXX = XX2-XX1, ΔYY = YY2-YY1.

浮揚体501の移動はXY平面であるから、深さ方向(Z軸方向)を除いたXY座標での関係を考えればよく、図7に示すようなベクトル関係となる。   Since the movement of the levitation body 501 is the XY plane, it is sufficient to consider the relationship in the XY coordinates excluding the depth direction (Z-axis direction), and the vector relationship is as shown in FIG.

図7において、計測されるデータは、流速検出値としてベクトルB(ΔX,ΔY,ΔZ)、浮揚体501の移動としてベクトルA(ΔXX,ΔYY)である。   In FIG. 7, the measured data is a vector B (ΔX, ΔY, ΔZ) as a flow velocity detection value, and a vector A (ΔXX, ΔYY) as a movement of the floating body 501.

真の流速は、ベクトルC=B−(−A)であるから、ベクトルBとAを検出すれば、ある深さの真の流速ベクトルCを算出できる。XY座標で(ΔX+ΔXX,ΔY+ΔYY)とし、ある深さの真の流速を求める。   Since the true flow velocity is the vector C = B − (− A), the true flow velocity vector C having a certain depth can be calculated by detecting the vectors B and A. The true flow velocity at a certain depth is obtained with (ΔX + ΔXX, ΔY + ΔYY) in the XY coordinates.

深さ方向の異なる点の流速検知値からその浮揚***置での深さ方向の流速分布を求める。   The flow velocity distribution in the depth direction at the floating body position is obtained from the flow velocity detection values at different points in the depth direction.

浮揚体501を移動させ、水深分布(河床形状)と河川断面での流速分布とを計測する。   The levitated body 501 is moved, and the water depth distribution (river bed shape) and the flow velocity distribution at the river cross section are measured.

ある計測断面での河床形状と流速分布とがわかると、流速を断面全体で積分すれば、その河川断面を通過する流量を算出できる。   If the riverbed shape and flow velocity distribution in a measurement section are known, the flow rate that passes through the river section can be calculated by integrating the flow velocity over the entire section.

図8は、本発明による河床形状測定装置の基地測定機器における処理手順を示すフローチャートである。   FIG. 8 is a flowchart showing a processing procedure in the base measuring device of the river bed shape measuring apparatus according to the present invention.

まず、水中の超音波音速,測定する深さ,超音波センサの配置状態,測定終了条件などの測定に必要なパラメータを設定する。   First, parameters necessary for measurement, such as the ultrasonic sound velocity in water, the depth to be measured, the arrangement state of the ultrasonic sensor, and the measurement end condition, are set.

超音波送信間隔,送信エネルギー,周波数などの移動測定機器5に関するパラメータは、予め設定してある。
基準となる方位(例えば真北)に浮揚体501を向け、レーダ装置602でその位置を校正し、基準方位と基準となる測定器位置を設定する(ステップ01)。
Parameters relating to the mobile measuring device 5 such as the ultrasonic transmission interval, transmission energy, and frequency are set in advance.
The levitation body 501 is directed to a reference azimuth (for example, true north), the position is calibrated by the radar apparatus 602, and the reference azimuth and the reference measuring instrument position are set (step 01).

計測を開始し、移動測定機器5からデータの送信を待つ(ステップ02)。   Measurement is started and data transmission from the mobile measuring device 5 is awaited (step 02).

各センサの反射検出時間データを受信し、検出時間から距離への換算を演算し反射体の位置を計算し、その結果をメモリに一時格納する(ステップ03)。   The reflection detection time data of each sensor is received, the conversion from the detection time to the distance is calculated, the position of the reflector is calculated, and the result is temporarily stored in the memory (step 03).

レーダ装置602から浮揚体501上の二つの反射***置データを取得し、その位置と浮揚体501の方位を算出してメモリに格納する(ステップ04)。   Two reflector position data on the levitation body 501 are acquired from the radar device 602, and the position and the orientation of the levitation body 501 are calculated and stored in the memory (step 04).

浮揚体501の傾きデータと、基準方位データとから基準方位による散乱体の位置を補正し、その座標を求める(ステップ05)。   The position of the scatterer according to the reference azimuth is corrected from the inclination data of the levitation body 501 and the reference azimuth data, and its coordinates are obtained (step 05).

流速分布を求めるには、2回以上の超音波送信で散乱体の位置移動を追跡する。このため、複数回の送信での反射データがあるかを判定し(ステップ06)、なければ、次のデータ受信を待つ。   In order to obtain the flow velocity distribution, the position movement of the scatterer is traced by two or more ultrasonic transmissions. For this reason, it is determined whether there is reflection data in a plurality of transmissions (step 06). If there is no reflection data, the next data reception is awaited.

複数送信による散乱***置データがあれば、流速と水深データとを算出し、メモリに格納する(ステップ07)。   If there is scatterer position data by multiple transmissions, the flow velocity and water depth data are calculated and stored in the memory (step 07).

深さ方向で、予め設定した位置の流速データが得られるまでこの操作を続ける(ステップ08)。   This operation is continued in the depth direction until flow velocity data at a preset position is obtained (step 08).

測定が完了すれば(ステップ09)、測定断面で流速分布を積分して流量を求め、結果を格納する(ステップ10)。   When the measurement is completed (step 09), the flow velocity distribution is integrated in the measurement section to obtain the flow rate, and the result is stored (step 10).

その結果を表示し(ステップ11)、測定を終了する。   The result is displayed (step 11) and the measurement is terminated.

本実施例2は、超音波受信センサ503として、送受信素子が二次元状に多数並んだ構造の二次元超音波アレイセンサを用いる。   The second embodiment uses a two-dimensional ultrasonic array sensor having a structure in which a large number of transmission / reception elements are arranged two-dimensionally as the ultrasonic reception sensor 503.

二次元超音波アレイセンサにおいては、超音波の受信時、予め設定した遅延時間だけ各素子の検出時間を遅らせ、遅れて受信した信号を加え合わせる。遅延時間を制御すると、超音波ビームの検出時の指向特性および検出中心軸の方向を制御できる。   In the two-dimensional ultrasonic array sensor, when receiving ultrasonic waves, the detection time of each element is delayed by a preset delay time, and the received signals are added together. By controlling the delay time, it is possible to control the directivity characteristics and the direction of the detection center axis when detecting the ultrasonic beam.

二次元超音波アレイセンサの制御方法は、超音波検査やレーダの分野では公知なので、その制御方法についての説明は省略する。   Since the control method of the two-dimensional ultrasonic array sensor is known in the fields of ultrasonic inspection and radar, the description of the control method is omitted.

このような二次元超音波アレイセンサを用いると、超音波送受信センサ502から放射された超音波ビームの任意位置に超音波受信センサ503の検出領域を合致させることができる。各素子の遅延量を制御すると、検出領域を走査でき、ノイズの影響を低減できる効果もある。   When such a two-dimensional ultrasonic array sensor is used, the detection area of the ultrasonic reception sensor 503 can be matched with an arbitrary position of the ultrasonic beam emitted from the ultrasonic transmission / reception sensor 502. By controlling the delay amount of each element, the detection area can be scanned, and the effect of noise can be reduced.

図9は、本発明による河床形状測定装置の実施例3に用いる水中散乱体放出手段の構成を示す図である。   FIG. 9 is a diagram showing the configuration of the underwater scatterer emitting means used in Embodiment 3 of the river bed shape measuring apparatus according to the present invention.

本実施例3は、筒状の収納容器701の内部に散乱体702を入れてあり、水中散乱体を意図的に作り出す。   In the third embodiment, a scatterer 702 is placed inside a cylindrical storage container 701, and an underwater scatterer is intentionally created.

浮揚体501は、ここでは図示していないが、複数の収納容器701を格納する格納器と水中に放出する放出機構とを備える。   Although not shown here, the levitation body 501 includes a storage for storing a plurality of storage containers 701 and a discharge mechanism for discharging the storage container into the water.

収納容器701および散乱体702は、河底の砂などを固めた材料で作成しており、測定終了後は水中で分解して環境に負荷をかけない。散乱体702は、空気を内部に含ませて固めてあり、その比重が水と同程度なので、河水流線と同じようなふるまいをする。   The storage container 701 and the scatterer 702 are made of a material obtained by solidifying riverbed sand and the like, and are not decomposed in water after the measurement is finished so as not to burden the environment. The scatterer 702 is hardened by containing air inside, and has the same specific gravity as that of water, and thus behaves like a river stream line.

散乱体702を入れた収納容器701を水中に落とすと、収納容器701は、散乱体702を水中に残しながら沈んでいく。浮揚体501上の超音波送受信センサ502,超音波受信センサ503,超音波送受信装置504は、水中に残されて河川の流れと同じに動く散乱体702からの反射波を検出し、実施例1と同様に、流速分布を計測する。   When the storage container 701 containing the scatterer 702 is dropped into water, the storage container 701 sinks while leaving the scatterer 702 in water. The ultrasonic transmission / reception sensor 502, the ultrasonic reception sensor 503, and the ultrasonic transmission / reception device 504 on the levitation body 501 detect a reflected wave from the scatterer 702 that remains in the water and moves in the same manner as the flow of the river. Similar to Measure the flow velocity distribution.

本実施例3は、測定点の数だけ収納容器701が必要である。しかし、水中の散乱体を確実に生成できるメリットがある。   The third embodiment requires as many storage containers 701 as the number of measurement points. However, there is an advantage that a scatterer in water can be generated reliably.

なお、浮揚体501などの移動測定機器5の移動方法としては、浮揚体501自体に移動/駆動機構を設ける方法,橋などの固定物から綱などで浮揚体501を牽引する方法,浮揚体501をボートに固定する方法など周知の方法を使えるので、上記各実施例ではその説明を省略した。   The moving measuring device 5 such as the levitation body 501 can be moved by a method of providing a moving / driving mechanism on the levitation body 501 itself, a method of pulling the levitation body 501 from a fixed object such as a bridge with a rope, or the like. Since a well-known method such as a method of fixing to the boat can be used, the description thereof is omitted in each of the above embodiments.

また、流速がほとんど問題とならない湖やダム湖などで湖底の形状を測定する場合は、流速を測定する部分を除去しまたは停止させ、形状測定部分のみを使用すればよい。   In addition, when measuring the shape of the bottom of a lake or dam lake where the flow velocity hardly poses a problem, the portion for measuring the flow velocity may be removed or stopped, and only the shape measurement portion may be used.

計測した河川形状,流量,測定位置データは、データ管理部署に送信し、災害防止,予測の基本データとする。また、災害防止ハザードマップ作成システムにも基本データとして利用できる。   The measured river shape, flow rate, and measurement position data are sent to the data management department and used as basic data for disaster prevention and prediction. It can also be used as basic data in a disaster prevention hazard map creation system.

本発明による河床形状測定装置の基本的概念を説明する図である。It is a figure explaining the basic concept of the riverbed shape measuring apparatus by this invention. 本発明による河床形状測定装置のうちで移動測定機器の構成と河床形状,流速分布,流量の測定方法とを示す図である。It is a figure which shows the structure of a moving measurement apparatus among the riverbed shape measuring apparatuses by this invention, and the measuring method of a riverbed shape, flow velocity distribution, and flow volume. 本発明による河床形状測定装置のうちで基地測定機器の構成を示すブロック図である。It is a block diagram which shows the structure of a base measurement apparatus among the riverbed shape measuring apparatuses by this invention. 本発明による河床形状測定装置のうちで移動測定機器に取り付けられた超音波センサ502,503の指向特性を示す図である。It is a figure which shows the directional characteristic of the ultrasonic sensors 502 and 503 attached to the movement measurement apparatus among the riverbed shape measuring apparatuses by this invention. 超音波送受信センサ502からの送信波形と超音波センサ502,503における受信波形との関係を示すタイムチャートである。5 is a time chart showing a relationship between a transmission waveform from an ultrasonic transmission / reception sensor 502 and reception waveforms at the ultrasonic sensors 502 and 503; 移動測定機器5の座標系における超音波センサ502,503および散乱体の位置関係を示す図である。4 is a diagram illustrating a positional relationship between ultrasonic sensors 502 and 503 and a scatterer in a coordinate system of a mobile measuring device 5. FIG. 移動測定機器の座標系における反射体の移動信号を基地測定機器のレーダで検知した移動体の移動信号により補正し真の流速を求める方法を示す図である。It is a figure which shows the method of correct | amending the movement signal of the reflector in the coordinate system of a mobile measurement apparatus with the movement signal of the mobile body detected with the radar of the base measurement apparatus, and calculating | requiring a true flow velocity. 本発明による河床形状測定装置の基地測定機器における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the base measurement apparatus of the riverbed shape measuring apparatus by this invention. 本発明による河床形状測定装置の実施例3に用いる水中散乱体放出手段の構成を示す図である。It is a figure which shows the structure of the underwater scatterer discharge | release means used for Example 3 of the riverbed shape measuring apparatus by this invention.

符号の説明Explanation of symbols

1 河川
2 測定線
3 河床形状
4 河川断面
5 移動測定機器
501 浮揚体
502 超音波送受信センサ
503 超音波受信センサ
504 超音波送受信装置
505 傾きセンサ
506 データ送受信装置
6 基地測定機器
601 データ送受信装置
602 レーダ装置
603 制御演算装置
604 入出力表示装置
701 収納容器
702 散乱体
DESCRIPTION OF SYMBOLS 1 River 2 Measurement line 3 River bed shape 4 River cross section 5 Movement measuring device 501 Levitation body 502 Ultrasonic transmission / reception sensor 503 Ultrasonic reception sensor 504 Ultrasonic transmission / reception device 505 Tilt sensor 506 Data transmission / reception device 6 Base measurement device 601 Data transmission / reception device 602 Radar Device 603 Control arithmetic device 604 Input / output display device 701 Storage container 702 Scattering body

Claims (8)

超音波を用いて河川の測定線に沿った河床形状を測定する河床形状測定装置において、
測定線に沿って水面を移動する移動測定機器と、地上に設置され前記移動測定機器で得たデータを処理する基地測定機器とからなり、
前記移動測定機器が、河底方向に鋭い指向特性の超音波を照射し河底からの反射波を検出する超音波送受信センサと、前記超音波センサからの超音波照射領域に指向特性を有する超音波受信センサと、超音波照射から河底の反射波検出までの時間を測定する手段と、前記測定時間と超音波の音速と超音波センサの位置とから河底の位置を算出する手段と、前記各手段を積載した浮揚体の傾きを検出する手段と、前記傾きに応じて前記河底の位置座標を補正する手段とを含み、
前記基地測定機器が、前記移動測定機器の移動速度と移動方向と位置とを求める手段と、前記移動測定機器が測定した相対的河床形状を補正する手段とを含むことを特徴とする河床形状測定装置。
In the river bed shape measuring device that measures the river bed shape along the river measurement line using ultrasound,
It consists of a mobile measuring device that moves along the water surface along the measurement line, and a base measuring device that is installed on the ground and processes the data obtained by the mobile measuring device,
The mobile measuring device radiates ultrasonic waves having a sharp directivity in the riverbed direction and detects reflected waves from the riverbed, and an ultrasonic wave having a directivity in the ultrasonic irradiation area from the ultrasonic sensor. A sound wave receiving sensor, means for measuring time from ultrasonic irradiation to detection of reflected waves on the riverbed, means for calculating the position of the riverbed from the measurement time, the sound velocity of the ultrasonic waves, and the position of the ultrasonic sensor, Means for detecting the inclination of the floating body loaded with each means, and means for correcting the position coordinates of the river bed according to the inclination,
River bed shape measurement characterized in that the base measuring device includes means for obtaining a moving speed, moving direction and position of the mobile measuring device, and means for correcting the relative river bed shape measured by the mobile measuring device. apparatus.
超音波を用いて河川の測定線に沿った河床形状,流速分布を測定する河床形状測定装置において、
測定線に沿って水面を移動する移動測定機器と、地上に設置され前記移動測定機器で得たデータを処理する基地測定機器とからなり、
前記移動測定機器が、河底方向に鋭い指向特性の超音波を照射し河底および水中散乱体からの反射波を検出する超音波送受信センサと、前記超音波センサからの超音波照射領域に指向特性を有する超音波受信センサと、超音波照射から河底および水中散乱体の反射波検出までの時間を測定する手段と、前記測定時間と超音波の音速と超音波センサの位置とから河底および水中散乱体の位置ならびに水中散乱体の移動速度および移動方向を算出する手段と、前記各手段を積載した浮揚体の傾きを検出する手段と、前記傾きに応じて前記河底および水中散乱体の位置座標ならびに水中散乱体の移動速度および移動方向を補正する手段とを含み、
前記基地測定機器が、前記移動測定機器の移動速度と移動方向と位置とを求める手段と、前記移動測定機器が測定した相対的河床形状,流速分布を補正する手段とを含むことを特徴とする河床形状測定装置。
In the riverbed shape measuring device that measures the riverbed shape and flow velocity distribution along the river measurement line using ultrasound,
It consists of a mobile measuring device that moves along the water surface along the measurement line, and a base measuring device that is installed on the ground and processes the data obtained by the mobile measuring device,
The mobile measuring device radiates ultrasonic waves with sharp directivity in the riverbed direction and detects reflected waves from the riverbed and underwater scatterers, and is directed to the ultrasonic irradiation area from the ultrasonic sensor. An ultrasonic receiving sensor having characteristics, means for measuring time from ultrasonic irradiation to detection of reflected waves of the bottom of the river and underwater scatterers, and the bottom of the river from the measurement time, the sound velocity of the ultrasonic wave, and the position of the ultrasonic sensor Means for calculating the position of the underwater scatterer and the moving speed and direction of the underwater scatterer, means for detecting the inclination of the floating body loaded with each means, and the riverbed and underwater scatterer according to the inclination Means for correcting the position coordinates of the underwater scatterer and the moving speed and direction of the underwater scatterer,
The base measuring device includes means for determining a moving speed, a moving direction, and a position of the mobile measuring device, and means for correcting the relative riverbed shape and flow velocity distribution measured by the mobile measuring device. River bed shape measuring device.
超音波を用いて河川の測定線に沿った河床形状,流速分布,流量を測定する河床形状測定装置において、
測定線に沿って水面を移動する移動測定機器と、地上に設置され前記移動測定機器で得たデータを処理する基地測定機器とからなり、
前記移動測定機器が、河底方向に鋭い指向特性の超音波を照射し河底および水中散乱体からの反射波を検出する超音波送受信センサと、前記超音波センサからの超音波照射領域に指向特性を有する超音波受信センサと、超音波照射から河底および水中散乱体の反射波検出までの時間を測定する手段と、前記測定時間と超音波の音速と超音波センサの位置とから河底および水中散乱体の位置ならびに水中散乱体の移動速度および移動方向を算出する手段と、前記各手段を積載した浮揚体の傾きを検出する手段と、前記傾きに応じて前記河底および水中散乱体の位置座標ならびに水中散乱体の移動速度および移動方向を補正する手段とを含み、
前記基地測定機器が、前記移動測定機器の移動速度と移動方向と位置とを求める手段と、前記移動測定機器が測定した相対的河床形状,流速分布,流量を補正する手段とを含むことを特徴とする河床形状測定装置。
In the riverbed shape measuring device that measures the riverbed shape, flow velocity distribution, and flow rate along the river measurement line using ultrasound,
It consists of a mobile measuring device that moves along the water surface along the measurement line, and a base measuring device that is installed on the ground and processes the data obtained by the mobile measuring device,
The mobile measuring device radiates ultrasonic waves with sharp directivity in the riverbed direction and detects reflected waves from the riverbed and underwater scatterers, and is directed to the ultrasonic irradiation area from the ultrasonic sensor. An ultrasonic receiving sensor having characteristics, means for measuring time from ultrasonic irradiation to detection of reflected waves of the bottom of the river and underwater scatterers, and the bottom of the river from the measurement time, the sound velocity of the ultrasonic wave, and the position of the ultrasonic sensor Means for calculating the position of the underwater scatterer and the moving speed and direction of the underwater scatterer, means for detecting the inclination of the floating body loaded with each means, and the riverbed and underwater scatterer according to the inclination Means for correcting the position coordinates of the underwater scatterer and the moving speed and direction of the underwater scatterer,
The base measuring device includes means for determining a moving speed, a moving direction, and a position of the mobile measuring device, and a means for correcting the relative riverbed shape, flow velocity distribution, and flow rate measured by the mobile measuring device. Riverbed shape measuring device.
請求項1ないし3のいずれか一項に記載の河床形状測定装置において、
前記移動測定機器の移動速度と移動方向と位置とを求める手段が、前記移動測定機器に設置した複数の反射体の位置を検出するレーダ装置であることを特徴とする河床形状測定装置。
In the river-bed shape measuring apparatus as described in any one of Claims 1 thru | or 3,
The riverbed shape measuring apparatus characterized in that the means for obtaining the moving speed, moving direction, and position of the mobile measuring device is a radar device that detects the positions of a plurality of reflectors installed in the mobile measuring device.
請求項1ないし4のいずれか一項に記載の河床形状測定装置において、
前記超音波受信センサが、2次元超音波アレイセンサであることを特徴とする河床形状測定装置。
In the river-bed shape measuring apparatus as described in any one of Claims 1 thru | or 4,
The river bed shape measuring apparatus, wherein the ultrasonic receiving sensor is a two-dimensional ultrasonic array sensor.
請求項1ないし5のいずれか一項に記載の河床形状測定装置において、
前記移動測定機器が、超音波を散乱する散乱体を水中に放出する水中散乱体放出手段を備えたことを特徴とする河床形状測定装置。
In the river-bed shape measuring apparatus as described in any one of Claims 1 thru | or 5,
The river bed shape measuring apparatus according to claim 1, wherein the mobile measuring device includes an underwater scatterer emitting unit that emits a scatterer that scatters ultrasonic waves into water.
請求項1ないし6のいずれか一項に記載の河床形状測定装置と、得られた河床形状または流速分布または流量の水理情報を用いて災害を予測する手段とからなる災害予測システム。   A disaster prediction system comprising the river bed shape measuring apparatus according to any one of claims 1 to 6 and means for predicting a disaster using the obtained river bed shape, flow velocity distribution or flow rate hydraulic information. 請求項1ないし6のいずれか一項に記載の河床形状測定装置と、得られた河床形状または流速分布または流量の水理情報を用いてハザードマップを作成する手段とからなるハザードマップ作成システム。
A hazard map creation system comprising the river bed shape measuring device according to any one of claims 1 to 6 and means for creating a hazard map using hydraulic information on the obtained river bed shape, flow velocity distribution or flow rate.
JP2005023585A 2005-01-31 2005-01-31 Riverbed measuring device Expired - Fee Related JP4415192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023585A JP4415192B2 (en) 2005-01-31 2005-01-31 Riverbed measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023585A JP4415192B2 (en) 2005-01-31 2005-01-31 Riverbed measuring device

Publications (2)

Publication Number Publication Date
JP2006208300A true JP2006208300A (en) 2006-08-10
JP4415192B2 JP4415192B2 (en) 2010-02-17

Family

ID=36965311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023585A Expired - Fee Related JP4415192B2 (en) 2005-01-31 2005-01-31 Riverbed measuring device

Country Status (1)

Country Link
JP (1) JP4415192B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140119A (en) * 2012-01-06 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
JP2013164423A (en) * 2012-02-10 2013-08-22 Navico Inc Sonar assembly for reduced interference
US9142206B2 (en) 2011-07-14 2015-09-22 Navico Holding As System for interchangeable mounting options for a sonar transducer
US9182486B2 (en) 2011-12-07 2015-11-10 Navico Holding As Sonar rendering systems and associated methods
US9223022B2 (en) 2009-07-14 2015-12-29 Navico Holding As Linear and circular downscan imaging sonar
JP2016003864A (en) * 2014-06-13 2016-01-12 国立研究開発法人海上技術安全研究所 Method and device for measuring distance in turbid water, and underwater apparatus
US9244168B2 (en) 2012-07-06 2016-01-26 Navico Holding As Sonar system using frequency bursts
US9541643B2 (en) 2009-07-14 2017-01-10 Navico Holding As Downscan imaging sonar
CN106595777A (en) * 2016-12-01 2017-04-26 广西师范大学 Calculation method for detecting flow of section of river in non-contact manner
KR101927673B1 (en) 2018-10-10 2018-12-10 권남원 A water level measurement with dead-zone sensor
US10151829B2 (en) 2016-02-23 2018-12-11 Navico Holding As Systems and associated methods for producing sonar image overlay
CN109916458A (en) * 2019-04-12 2019-06-21 江苏亚楠电子科技有限公司 A kind of decomposition cross-sectional flow method
JP2019138891A (en) * 2018-02-06 2019-08-22 株式会社Soken Wind velocity distribution measurement device
CN110765636A (en) * 2019-11-04 2020-02-07 中国水利水电第八工程局有限公司 Closure gap hydraulic calculation method, system and medium based on curved riverbed
CN112113625A (en) * 2020-10-13 2020-12-22 河南安宏信息科技有限公司 River flow velocity measuring system and method
JP2021195925A (en) * 2020-06-16 2021-12-27 株式会社Ihi Water flow power generation system and sailing body
US11367425B2 (en) 2017-09-21 2022-06-21 Navico Holding As Sonar transducer with multiple mounting options
CN114739333A (en) * 2022-03-14 2022-07-12 中国长江三峡集团有限公司 Real-time measuring and testing system and method for bed surface shape of load bed on water tank
CN115200652A (en) * 2022-07-11 2022-10-18 武汉新烽光电股份有限公司 River course flow velocity of flow monitoring devices
CN117629315A (en) * 2024-01-26 2024-03-01 四川省产业计量测试研究院 Open channel flow auxiliary measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651060A (en) * 1992-07-29 1994-02-25 Dengiyoushiya Kikai Seisakusho:Kk Underwater ground shape measuring device
JPH10300467A (en) * 1997-04-21 1998-11-13 Norin Suisansyo Nogyo Kogaku Kenkyu Shocho Surveying system and surveying method using the same
JP2001133548A (en) * 1999-11-05 2001-05-18 Japan Radio Co Ltd Current-rip detector
JP2005114634A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Measuring device for hydraulic information of river or lake

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651060A (en) * 1992-07-29 1994-02-25 Dengiyoushiya Kikai Seisakusho:Kk Underwater ground shape measuring device
JPH10300467A (en) * 1997-04-21 1998-11-13 Norin Suisansyo Nogyo Kogaku Kenkyu Shocho Surveying system and surveying method using the same
JP2001133548A (en) * 1999-11-05 2001-05-18 Japan Radio Co Ltd Current-rip detector
JP2005114634A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Measuring device for hydraulic information of river or lake

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9223022B2 (en) 2009-07-14 2015-12-29 Navico Holding As Linear and circular downscan imaging sonar
US10024961B2 (en) 2009-07-14 2018-07-17 Navico Holding As Sonar imaging techniques for objects in an underwater environment
US9541643B2 (en) 2009-07-14 2017-01-10 Navico Holding As Downscan imaging sonar
US9142206B2 (en) 2011-07-14 2015-09-22 Navico Holding As System for interchangeable mounting options for a sonar transducer
US10247823B2 (en) 2011-12-07 2019-04-02 Navico Holding As Sonar rendering systems and associated methods
US9182486B2 (en) 2011-12-07 2015-11-10 Navico Holding As Sonar rendering systems and associated methods
JP2013140119A (en) * 2012-01-06 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
US9268020B2 (en) 2012-02-10 2016-02-23 Navico Holding As Sonar assembly for reduced interference
JP2013164423A (en) * 2012-02-10 2013-08-22 Navico Inc Sonar assembly for reduced interference
US9354312B2 (en) 2012-07-06 2016-05-31 Navico Holding As Sonar system using frequency bursts
US9244168B2 (en) 2012-07-06 2016-01-26 Navico Holding As Sonar system using frequency bursts
JP2016003864A (en) * 2014-06-13 2016-01-12 国立研究開発法人海上技術安全研究所 Method and device for measuring distance in turbid water, and underwater apparatus
US10151829B2 (en) 2016-02-23 2018-12-11 Navico Holding As Systems and associated methods for producing sonar image overlay
CN106595777A (en) * 2016-12-01 2017-04-26 广西师范大学 Calculation method for detecting flow of section of river in non-contact manner
US11367425B2 (en) 2017-09-21 2022-06-21 Navico Holding As Sonar transducer with multiple mounting options
JP2019138891A (en) * 2018-02-06 2019-08-22 株式会社Soken Wind velocity distribution measurement device
KR101927673B1 (en) 2018-10-10 2018-12-10 권남원 A water level measurement with dead-zone sensor
CN109916458B (en) * 2019-04-12 2020-09-15 南京亚楠鸿业科技实业有限公司 Method for decomposing cross section flow velocity
CN109916458A (en) * 2019-04-12 2019-06-21 江苏亚楠电子科技有限公司 A kind of decomposition cross-sectional flow method
CN110765636A (en) * 2019-11-04 2020-02-07 中国水利水电第八工程局有限公司 Closure gap hydraulic calculation method, system and medium based on curved riverbed
JP2021195925A (en) * 2020-06-16 2021-12-27 株式会社Ihi Water flow power generation system and sailing body
JP7452275B2 (en) 2020-06-16 2024-03-19 株式会社Ihi Water power generation system and navigation vehicle
CN112113625A (en) * 2020-10-13 2020-12-22 河南安宏信息科技有限公司 River flow velocity measuring system and method
CN114739333A (en) * 2022-03-14 2022-07-12 中国长江三峡集团有限公司 Real-time measuring and testing system and method for bed surface shape of load bed on water tank
CN115200652A (en) * 2022-07-11 2022-10-18 武汉新烽光电股份有限公司 River course flow velocity of flow monitoring devices
CN115200652B (en) * 2022-07-11 2023-05-30 武汉新烽光电股份有限公司 River channel flow and velocity monitoring device
CN117629315A (en) * 2024-01-26 2024-03-01 四川省产业计量测试研究院 Open channel flow auxiliary measuring device
CN117629315B (en) * 2024-01-26 2024-04-05 四川省产业计量测试研究院 Open channel flow auxiliary measuring device

Also Published As

Publication number Publication date
JP4415192B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4415192B2 (en) Riverbed measuring device
US10698094B2 (en) 3D-position determination method and device
JP4633565B2 (en) River data measurement method and apparatus
FI126828B (en) Procedure for scanning an object underwater and targets for scanning an object underwater
CN108614269A (en) A kind of underwater positioning system and its working method based on image sonar
CN104133217B (en) Method and device for three-dimensional velocity joint determination of underwater moving target and water flow
JP2011149720A (en) Surveying system
US20210048821A1 (en) Indoors positioning and navigation systems and methods
RU2012153734A (en) METHOD FOR SHOOTING AQUATORIA BOTTOM RELIEF AND DEVICE FOR SHOOTING AQUATORIA BOTTOM RELIEF
GB2474103A (en) Scanning apparatus and method
RU2527136C1 (en) Method of measuring depth of object using sonar
CN110456361A (en) The bistatic acoustics imaging method of large-scale seabed landforms telemetering
JP2004184268A (en) Underwater resources exploring method and system thereof
US20220236437A1 (en) Method and system for determining top and bottom depth of an under water mud layer
Balk et al. Surface-induced errors in target strength and position estimates during horizontal acoustic surveys.
Tomczak Modern methods of underwater positioning applied in subsea mining
KR100971079B1 (en) Noise measurement using GPS
RU2480790C1 (en) Method of determining position of measured depths of sound signals
JP4342546B2 (en) Turbidity monitoring method and turbidity monitoring device in water
JP2008076294A (en) Under-bottom-of-water survey method and instrument
JP2005114634A (en) Measuring device for hydraulic information of river or lake
JP2001074834A (en) Method for measuring underwater structure
RU2559311C1 (en) Assessment method of state of ice field
Song et al. Underwater slope measurement using a tilted multibeam sonar head
RU2712799C1 (en) Hydroacoustic navigation device with four-element short-base receiving antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees