JP2006205207A - Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus - Google Patents

Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus Download PDF

Info

Publication number
JP2006205207A
JP2006205207A JP2005020422A JP2005020422A JP2006205207A JP 2006205207 A JP2006205207 A JP 2006205207A JP 2005020422 A JP2005020422 A JP 2005020422A JP 2005020422 A JP2005020422 A JP 2005020422A JP 2006205207 A JP2006205207 A JP 2006205207A
Authority
JP
Japan
Prior art keywords
magnetic field
mold
magnetostrictive element
workpiece
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020422A
Other languages
Japanese (ja)
Inventor
Gennai Yanagisawa
源内 柳沢
Toru Nakabo
徹 中坊
Osamu Nakamura
修 中村
Takahisa Kusuura
崇央 楠浦
Akihiko Kanai
彰彦 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scivax Corp
Engineering System Co Ltd
Original Assignee
Scivax Corp
Engineering System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax Corp, Engineering System Co Ltd filed Critical Scivax Corp
Priority to JP2005020422A priority Critical patent/JP2006205207A/en
Publication of JP2006205207A publication Critical patent/JP2006205207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Press Drives And Press Lines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die movable mechanism which is small in size, is hardly breakable, and is easily adjustable of a vibration frequency, and a working object movable mechanism, and a working apparatus using these mechanisms. <P>SOLUTION: The working apparatus has a die holding section 2 holding a die 100, and a working object holding section 2 holding the working object and works the working object by the die 100. The apparatus includes the magnetostrictor 3a connected to the die 100, a magnetic field application means 4 to apply a magnetic field to the magnetostrictor 3, a magnetic field adjustment means 5 to adjust magnetism of the magnetic field application means 4, a magnetization characteristic detection means 7 to detect the magnetization state of the magnetostrictor 3, and a control means 300 to calculate at least either of the stress applied to the magnetostrictor and an amount of displacement of the magnetostrictor based on the information detected by the magnetization characteristic detection means 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、型を作動させる型可動装置、加工対象物を作動させる加工対象物可動装置及びこれらを用いた加工装置に関するものである。   The present invention relates to a mold movable device that operates a mold, a workpiece moving device that operates a workpiece, and a machining apparatus using these.

LSI(大規模集積回路)に代表される微細回路パターンを半導体基板(以下、単に基板と称する)上に形成するには、フォトリソグラフィーと呼ばれる技術が一般に用いられている。しかしながら、この方法では、形成するパターンの微細化にともない、装置の大型化やプロセスコストの増大を招いていた。   In order to form a fine circuit pattern typified by an LSI (Large Scale Integrated Circuit) on a semiconductor substrate (hereinafter simply referred to as a substrate), a technique called photolithography is generally used. However, this method has led to an increase in the size of the apparatus and an increase in process cost as the pattern to be formed is miniaturized.

近年、上記問題を解決するものとして、超微細なパターンを基板上に形成するナノインプリンティングプロセス技術が注目されている(例えば、非特許文献1参照。)。   In recent years, attention has been paid to a nano-imprinting process technology for forming an ultrafine pattern on a substrate as a solution to the above problem (for example, see Non-Patent Document 1).

このプロセスは、ガラス転移点を越える温度に加工対象物を加熱し、形成したいパターンが表面に作りこまれた型をこの加工対象物表面に押し付け、その後冷却、離型してパターンを転写する方法である。この方法では、高価なレーザ光源や光学系を必要とせず、加熱用ヒータとプレス装置を基本とした簡易な構造であるにもかかわらず、型に作り込まれた形状をそのまま精度良く転写することが可能となっており、すでにこの方法によって約20nmの線幅をもつ細線が形成された報告がある(例えば、非特許文献2参照。)。   In this process, the workpiece is heated to a temperature exceeding the glass transition point, a mold on which the pattern to be formed is formed is pressed against the surface of the workpiece, then cooled and released to transfer the pattern. It is. This method does not require an expensive laser light source or optical system, and accurately transfers the shape built in the mold as it is, despite the simple structure based on the heater and press device. There is a report that a thin line having a line width of about 20 nm is already formed by this method (for example, see Non-Patent Document 2).

更に、このようなナノインプリンティングプロセス技術を用いることで、回折格子、フォトニック結晶、導波路、等の光デバイス、マクロチャネル、リアクター等の流体デバイスのような、各種のマイクロチップ、マイクロデバイスの製作も可能な状況が実現しつつある。   Furthermore, by using such nano-imprinting process technology, various microchips and microdevices such as optical devices such as diffraction gratings, photonic crystals, and waveguides, and fluid devices such as macrochannels and reactors can be used. The situation where production is possible is also being realized.

しかしながら、上記したようなプロセスには、以下のような問題が存在する。すなわち、金型のパターンを加工対象物面に押し付けて転写した後、金型を加工対象物面から引き離す、いわゆる離型工程で、金型と加工対象物の離型がスムーズで無い場合、加工対象物に形成されたパターンが崩れたり、加工対象物側の材料が金型に密着して剥がれたりする等の現象が生じる。その結果、パターンの再現精度(繰り返し精度)が低下するという問題が生じる。   However, the process described above has the following problems. In other words, after the mold pattern is pressed against the workpiece surface and transferred, the mold is pulled away from the workpiece surface. Phenomena occur such that the pattern formed on the object collapses or the material on the processing object side comes into close contact with the mold and peels off. As a result, there arises a problem that the pattern reproduction accuracy (repetition accuracy) decreases.

また、上記のようなプロセスで各種デバイスに対するパターン形成を行うにあたり、実際に工業化を図る際には、当然のことながら高スループット化が要求されている。上記のような現象が生じると、これに対する処置等が必要となり、高スループット化の妨げにもなる。   In addition, when patterning is performed on various devices in the process as described above, it is a matter of course that high throughput is required for industrialization. When the above phenomenon occurs, it is necessary to take measures against this, and hinder high throughput.

様々なパターンを形成するには、例えば直径100nmで深さ5μmといった、孔や溝、柱や壁の幅に対し、深さ、高さの寸法が大きい、いわゆる高アスペクト比のパターンを形成しなければならないことがある。上記の問題はこのような場合により顕著なものとなる。   In order to form various patterns, for example, a pattern with a large aspect ratio of depth and height with respect to the width of holes, grooves, pillars and walls, such as 100 nm in diameter and 5 μm in depth, must be formed. There are things that must be done. The above problem becomes more prominent in such a case.

このような問題の対策としては、通常の金型を用いたパターン成形プロセスのように、金型に潤滑剤(離型剤)を塗布したり、酸化膜を形成する等して、金型と加工対象物の間の摩擦を低減させたり、あるいは離型時の金型の移動速度を極端に遅くし、金型と加工対象物の間に急激な剥離力が生じ無いようにすること等が考えられる。   As a countermeasure against such a problem, as in a pattern forming process using a normal mold, a lubricant (release agent) is applied to the mold or an oxide film is formed. To reduce friction between workpieces, or extremely slow the mold moving speed when releasing, so that no sudden peeling force is generated between the mold and workpiece. Conceivable.

しかしながら、これらの対策では、パターン成形を多数回繰り返すうちに金型表面の潤滑剤が加工対象物側に付着して潤滑剤が少なくなったり、加工対象物側との摩擦により酸化膜が摩耗したりする。このため、潤滑剤を定期的に補給したり、酸化膜の摩耗状況を適宜点検したり、必要に応じて酸化膜を再形成したりする必要が生じるが、これでは高スループット化を妨げることになる。特に、集積回路を製作するような場合、加工対象物に対し金型が小さく、一つの加工対象物に金型を多数回プレスするため、この問題はより顕著になる。   However, with these measures, the lubricant on the mold surface adheres to the workpiece side as pattern forming is repeated many times, and the lubricant is reduced, or the oxide film wears due to friction with the workpiece side. Or For this reason, it is necessary to periodically replenish the lubricant, check the state of wear of the oxide film as appropriate, and re-form the oxide film as necessary, but this hinders high throughput. Become. In particular, when an integrated circuit is manufactured, this problem becomes more prominent because the mold is small with respect to the workpiece and the mold is pressed many times on one workpiece.

また、加工対象物が、薬液を流す流路や、形成した孔や溝で化学反応を生じさせるようなものである場合、離型剤の付着等は薬液や化学反応に影響を及ぼすために好ましくないのは言うまでもないことである。   In addition, when the workpiece is such that a chemical reaction is caused by a flow path for flowing a chemical solution or a hole or groove formed, adhesion of a mold release agent is preferable because it affects the chemical solution and the chemical reaction. It goes without saying that it is not.

さらに、離型時の金型の移動速度を遅くする方法では、スループットの低下に直結するため、好ましくない。   Furthermore, the method of slowing the moving speed of the mold at the time of mold release is not preferable because it directly leads to a decrease in throughput.

また、交流電圧を加えることによりその周波数で振動する圧電素子と、この圧電素子の下面に取り付けられ、共振を利用して圧電素子の振動を増幅する超音波ホーンとを用いることにより、金型に振動を加えて離型するものもある(例えば、特許文献1参照。)。   In addition, by using a piezoelectric element that vibrates at that frequency when an AC voltage is applied, and an ultrasonic horn that is attached to the lower surface of the piezoelectric element and amplifies the vibration of the piezoelectric element using resonance, Some molds are released by applying vibration (for example, see Patent Document 1).

G. M. Whitesides, J. C. Love、「ナノ構造を作る新技術」、"日経サイエンス"、日本経済新聞社、平成13年(2001年)12月1日、31巻、12号、p.30−41G. M. Whitesides, J. C. Love, “New Technology for Creating Nanostructures”, “Nikkei Science”, Nikkei Inc., December 1, 2001, Vol. 31, No. 12, p. 30-41 C. M. Sotomayor, et. al.、"Nanoimprint lithography: an alternative nanofabrication approach"、「Materials Science & Engineering C」、Elsevier Science、平成14年(2002年)、989巻、p.1−9C. M. Sotomayor, et. Al., “Nanoimprint lithography: an alternative nanofabrication approach”, “Materials Science & Engineering C”, Elsevier Science, 2002, 989, p. 1-9 国際公開番号WO2004/093171(第12頁、第2図)International Publication Number WO2004 / 093171 (page 12, FIG. 2)

しかしながら、超音波ホーンを共振させるためには、圧電素子を超音波ホーンの固有振動数で振動させる必要があるため、加工対象物の材料や形状等に応じて振動数を変化させることができないという問題があった。また、圧電素子の変位量は小さいため、超音波ホーンを用いないで使用するためには、装置を大型化する必要があるという問題があった。また、超音波ホーンを用いると、型の中心部と端部とで振幅に差が生じ、離型の効果にばらつきが生じるという問題があった。   However, in order to resonate the ultrasonic horn, it is necessary to vibrate the piezoelectric element at the natural frequency of the ultrasonic horn. Therefore, the frequency cannot be changed according to the material or shape of the workpiece. There was a problem. In addition, since the displacement amount of the piezoelectric element is small, there is a problem that it is necessary to increase the size of the device in order to use it without using an ultrasonic horn. In addition, when an ultrasonic horn is used, there is a problem that a difference in amplitude occurs between the center portion and the end portion of the mold, resulting in variations in the release effect.

また、圧電素子の歪を調節するためには、電圧を制御する必要があるが、電圧の制御は一般に難しいという問題があった。   Further, in order to adjust the distortion of the piezoelectric element, it is necessary to control the voltage, but there is a problem that it is generally difficult to control the voltage.

更に、セラミック製の圧電素子は、真空中でアーク放電を生じる危険性があることや、耐荷重性、耐衝撃性が小さく、壊れ易いという問題があった。   Further, the piezoelectric element made of ceramic has a risk of causing arc discharge in a vacuum, and has a problem that load resistance and impact resistance are small and easily broken.

そこで本発明は、小型で、壊れ難く、振動数を容易に調節することができる型可動装置、加工対象物可動装置及びこれらを用いた加工装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a mold movable device, a workpiece movable device, and a machining device using these, which are small and hard to break and whose frequency can be easily adjusted.

上記目的を達成するために、本発明の型可動装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置において、型を変動させる型可動装置であって、型保持部に接続される磁歪素子と、磁歪素子に対し磁界を加える磁界付加手段と、を具備することを特徴とするものである。   In order to achieve the above object, a mold movable device of the present invention includes a mold holding unit that holds a mold and a processing target object holding unit that holds a processing target, and processes the processing target with the mold. The processing apparatus is a mold movable apparatus that changes the mold, and includes a magnetostrictive element connected to the mold holding portion, and a magnetic field adding unit that applies a magnetic field to the magnetostrictive element.

この場合、磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、磁歪素子に付加されている応力および磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、磁歪素子に対し、磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   In this case, it is preferable to provide a magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means. In addition, based on the information detected by the magnetization characteristic detection means for detecting the magnetization state of the magnetostriction element and the magnetization characteristic detection means, at least one of the stress applied to the magnetostriction element and the displacement amount of the magnetostriction element is calculated. And a control means. In addition, it is preferable that the magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means.

また、本発明の別の型可動装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置において、型を変動させる型可動装置であって、型保持部に接続される複数の磁歪素子と、各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、を具備することを特徴とするものである。   Further, another mold movable device of the present invention includes a mold holding unit that holds a mold and a processing target object holding unit that holds a processing target, and a processing apparatus that processes a processing target with a mold. A movable mold apparatus for changing a mold, comprising: a plurality of magnetostrictive elements connected to a mold holding portion; and a plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements. It is.

この場合、各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、型と加工対象物との相対的な傾きを検出する傾き検出手段と、傾き検出手段が検出した情報に基づき、型と加工対象物が平行になるように磁界調節手段を制御する制御手段と、を具備する方が好ましい。また、各磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、各磁歪素子に付加されている応力および各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、制御手段は、磁化特性検出手段が検出した情報に基づいて、型と加工対象物とが平行になるように、磁化調節手段を制御する方が好ましい。また、各磁歪素子に対し、各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   In this case, it is preferable to provide magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. Further, an inclination detecting means for detecting a relative inclination between the mold and the processing object, and a control means for controlling the magnetic field adjusting means so that the mold and the processing object are parallel based on information detected by the inclination detecting means. It is preferable to have In addition, a magnetization characteristic detection unit that detects a magnetization state of each magnetostrictive element, and at least one of stress applied to each magnetostrictive element and a displacement amount of each magnetostrictive element based on information detected by the magnetic characteristic detection unit It is preferable to comprise control means for calculating Further, it is preferable that the control means controls the magnetization adjusting means based on the information detected by the magnetization characteristic detecting means so that the mold and the workpiece are parallel. Further, it is preferable that each magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by each magnetic field applying means.

また、本発明の加工対象物可動装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置において、加工対象物を変動させる加工対象物可動装置であって、加工対象物保持部に接続される磁歪素子と、磁歪素子に対し磁界を加える磁界付加手段と、を具備することを特徴とするものである。   The processing object movable device of the present invention includes a mold holding unit that holds a mold and a processing object holding unit that holds a processing object, and a processing apparatus that processes the processing object with a mold. A moving object moving apparatus for changing a processing object, comprising: a magnetostrictive element connected to a processing object holding unit; and a magnetic field adding means for applying a magnetic field to the magnetostrictive element. is there.

この場合、磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、磁歪素子に付加されている応力および磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、磁歪素子に対し、磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   In this case, it is preferable to provide a magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means. In addition, based on the information detected by the magnetization characteristic detection means for detecting the magnetization state of the magnetostriction element and the magnetization characteristic detection means, at least one of the stress applied to the magnetostriction element and the displacement amount of the magnetostriction element is calculated. And a control means. In addition, it is preferable that the magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means.

また、本発明の別の加工対象物可動装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置において、加工対象物を変動させる加工対象物可動装置であって、加工対象物保持部に接続される複数の磁歪素子と、各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、を具備することを特徴とする。   Another processing object movable device of the present invention has a mold holding part for holding a mold and a processing object holding part for holding a processing object, and processes the processing object with a mold. A plurality of magnetostrictive elements connected to the workpiece holding section, and a plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements, respectively. It is characterized by comprising.

この場合、各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、型と加工対象物との相対的な傾きを検出する傾き検出手段と、傾き検出手段が検出した情報に基づき、型と加工対象物が平行になるように磁界調節手段を制御する制御手段と、を具備する方が好ましい。また、各磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、各磁歪素子に付加されている応力および各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、制御手段は、磁化特性検出手段が検出した情報に基づいて、型と加工対象物とが平行になるように、磁化調節手段を制御する方が好ましい。また、各磁歪素子に対し、各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   In this case, it is preferable to provide magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. Further, an inclination detecting means for detecting a relative inclination between the mold and the processing object, and a control means for controlling the magnetic field adjusting means so that the mold and the processing object are parallel based on information detected by the inclination detecting means. It is preferable to have In addition, a magnetization characteristic detection unit that detects a magnetization state of each magnetostrictive element, and at least one of stress applied to each magnetostrictive element and a displacement amount of each magnetostrictive element based on information detected by the magnetic characteristic detection unit It is preferable to comprise control means for calculating Further, it is preferable that the control means controls the magnetization adjusting means based on the information detected by the magnetization characteristic detecting means so that the mold and the workpiece are parallel. Further, it is preferable that each magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by each magnetic field applying means.

また、本発明の加工装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置であって、型保持部に接続される磁歪素子と、磁歪素子に対し磁界を加える磁界付加手段と、を具備することを特徴とする。   The processing apparatus of the present invention is a processing apparatus that has a mold holding part that holds a mold and a processing object holding part that holds a processing object, and processes the processing object with the mold, A magnetostrictive element connected to the holding portion and a magnetic field applying means for applying a magnetic field to the magnetostrictive element are provided.

この場合、磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする。また、磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、磁歪素子に付加されている応力および磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備することを特徴とする。また、磁歪素子に対し、磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする。   In this case, magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means is provided. In addition, based on the information detected by the magnetization characteristic detection means for detecting the magnetization state of the magnetostriction element and the magnetization characteristic detection means, at least one of the stress applied to the magnetostriction element and the displacement amount of the magnetostriction element is calculated. And a control means. The magnetostrictive element further includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means.

また、本発明の別の加工装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置であって、型保持部に接続される複数の磁歪素子と、各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、を具備する方が好ましい。また、各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、型と加工対象物との相対的な傾きを検出する傾き検出手段と、傾き検出手段が検出した情報に基づき、型と加工対象物が平行になるように磁界調節手段を制御する制御手段と、を具備する方が好ましい。また、各磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、各磁歪素子に付加されている応力および各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、制御手段は、磁化特性検出手段が検出した情報に基づいて、型と加工対象物とが平行になるように、磁化調節手段を制御する方が好ましい。また、各磁歪素子に対し、各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   Another processing apparatus of the present invention is a processing apparatus that includes a mold holding unit that holds a mold and a processing object holding unit that holds a processing target, and processes the processing target with a mold. It is preferable to include a plurality of magnetostrictive elements connected to the mold holding unit and a plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements. In addition, it is preferable to provide magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. Further, an inclination detecting means for detecting a relative inclination between the mold and the processing object, and a control means for controlling the magnetic field adjusting means so that the mold and the processing object are parallel based on information detected by the inclination detecting means. It is preferable to have In addition, a magnetization characteristic detection unit that detects a magnetization state of each magnetostrictive element, and at least one of stress applied to each magnetostrictive element and a displacement amount of each magnetostrictive element based on information detected by the magnetic characteristic detection unit It is preferable to comprise control means for calculating Further, it is preferable that the control means controls the magnetization adjusting means based on the information detected by the magnetization characteristic detecting means so that the mold and the workpiece are parallel. Further, it is preferable that each magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by each magnetic field applying means.

また、本発明の更に別の加工装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置であって、加工対象物保持部に接続される磁歪素子と、磁歪素子に対し磁界を加える磁界付加手段と、を具備することを特徴とする。   Still another processing apparatus according to the present invention is a processing apparatus that includes a mold holding unit that holds a mold and a processing target object holding unit that holds a processing target, and processes the processing target with a mold. And a magnetostrictive element connected to the workpiece holding part, and a magnetic field applying means for applying a magnetic field to the magnetostrictive element.

この場合、磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、磁歪素子に付加されている応力および磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、磁歪素子に対し、磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   In this case, it is preferable to provide a magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means. In addition, based on the information detected by the magnetization characteristic detection means for detecting the magnetization state of the magnetostriction element and the magnetization characteristic detection means, at least one of the stress applied to the magnetostriction element and the displacement amount of the magnetostriction element is calculated. And a control means. In addition, it is preferable that the magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means.

また、本発明の更に別の加工装置は、型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、型で加工対象物を加工する加工装置であって、加工対象物保持部に接続される複数の磁歪素子と、各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、を具備することを特徴とする。   Still another processing apparatus according to the present invention is a processing apparatus that includes a mold holding unit that holds a mold and a processing target object holding unit that holds a processing target, and processes the processing target with a mold. And a plurality of magnetostrictive elements connected to the workpiece holding unit, and a plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements.

この場合、各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備する方が好ましい。また、型と加工対象物との相対的な傾きを検出する傾き検出手段と、傾き検出手段が検出した情報に基づき、型と加工対象物が平行になるように磁界調節手段を制御する制御手段と、を具備する方が好ましい。また、各磁歪素子の磁化状態を検出する磁化特性検出手段と、磁化特性検出手段が検出した情報に基づいて、各磁歪素子に付加されている応力および各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、を具備する方が好ましい。また、制御手段は、磁化特性検出手段が検出した情報に基づいて、型と加工対象物とが平行になるように、磁化調節手段を制御する方が好ましい。また、各磁歪素子に対し、各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備する方が好ましい。   In this case, it is preferable to provide magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. Further, an inclination detecting means for detecting a relative inclination between the mold and the processing object, and a control means for controlling the magnetic field adjusting means so that the mold and the processing object are parallel based on information detected by the inclination detecting means. It is preferable to have In addition, a magnetization characteristic detection unit that detects a magnetization state of each magnetostrictive element, and at least one of stress applied to each magnetostrictive element and a displacement amount of each magnetostrictive element based on information detected by the magnetic characteristic detection unit It is preferable to comprise control means for calculating Further, it is preferable that the control means controls the magnetization adjusting means based on the information detected by the magnetization characteristic detecting means so that the mold and the workpiece are parallel. Further, it is preferable that each magnetostrictive element includes second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by each magnetic field applying means.

請求項1,11,21,31記載の発明によれば、型や加工対象物の振動に磁歪素子を用いるので、加工対象物の材料や形状等に応じて振動数を自由に設定できる。また、圧電素子に比較して大きな歪を得ることができるので、超音波ホーンを用いる必要がなく、装置を小型化することができる。また、超音波ホーンを用いないので、型の中心部と端部とで振幅を同一にすることができる。   Since the magnetostrictive element is used for the vibration of the mold and the workpiece, the frequency can be freely set according to the material and shape of the workpiece. In addition, since a large strain can be obtained as compared with the piezoelectric element, it is not necessary to use an ultrasonic horn, and the apparatus can be miniaturized. Further, since no ultrasonic horn is used, the amplitude can be made the same at the center and the end of the mold.

請求項5,15,25,35記載の発明によれば、型保持部や加工対象物保持部を複数の磁歪素子で変位させることができるので、各磁歪素子の変位量を調節して、型と加工対象物との相対的な傾きを調節することができる。   According to the invention described in claims 5, 15, 25, and 35, the mold holding part and the workpiece holding part can be displaced by a plurality of magnetostrictive elements. And the relative inclination of the object to be processed can be adjusted.

請求項2,6,12,16,22,26,32,36記載の発明によれば、磁界付加手段の磁界の大きさを調節する磁界調節手段を用いるので、型や加工対象物の変位量や振動するを自由に変更することができる。   According to the second, sixth, twelfth, sixteenth, sixteenth, twenty-sixth, twenty-sixth, thirty-sixth and thirty-sixth inventions, the magnetic field adjusting means for adjusting the magnetic field magnitude of the magnetic field adding means is used. And can be changed freely.

請求項3,13,23,33記載の発明によれば、磁歪素子の磁化状態を検出する磁化特性検出手段を有するので、型と加工対象物との間に加わっている圧力を検出することができる。   According to the invention described in claims 3, 13, 23 and 33, since the magnetic characteristic detecting means for detecting the magnetization state of the magnetostrictive element is provided, the pressure applied between the mold and the workpiece can be detected. it can.

請求項7,17,27,37記載の発明によれば、傾き検出手段によって、型と加工対象物との相対的な傾きを検出すると共に、その情報に基づいて型と加工対象物との相対的な傾きを調節することができる。   According to the invention described in claims 7, 17, 27 and 37, the inclination detecting means detects the relative inclination between the mold and the object to be processed, and based on the information, the relative between the mold and the object to be processed is detected. Can be adjusted.

請求項8,18,28,38記載の発明によれば、複数の磁歪素子の磁化状態を検出する磁化特性検出手段を有するので、各磁歪素子の変位量から型と加工対象物との相対的な傾きを検出することができる。   According to the invention described in claims 8, 18, 28, and 38, since the magnetic characteristic detecting means for detecting the magnetization state of the plurality of magnetostrictive elements is provided, the relative relationship between the mold and the workpiece is determined from the displacement amount of each magnetostrictive element. Can be detected.

請求項9,19,29,39記載の発明によれば、各磁歪素子の変位量から型と加工対象物との相対的な傾きを検出すると共に、その情報に基づいて型と加工対象物との相対的な傾きを調節することができる。   According to invention of Claim 9,19,29,39, while detecting the relative inclination of a type | mold and a process target object from the displacement amount of each magnetostrictive element, based on the information, a mold | type, a process target object, The relative inclination of can be adjusted.

請求項4,10,14,20,24,30,34,40記載の発明によれば、磁界付加手段と第2の磁界付加手段とによって、磁歪素子に直行する二つの磁界を付加するので、型と加工対象物との間に捩じれを付加することができる。したがって、離型時に型と加工対象物との間に作用させる動作のバリエーションを増やすことができ、最適な離型方法を選択することが可能となる。   According to the invention described in claims 4, 10, 14, 20, 24, 30, 34, and 40, two magnetic fields orthogonal to the magnetostrictive element are added by the magnetic field adding means and the second magnetic field adding means. Twist can be added between the mold and the workpiece. Therefore, it is possible to increase the variation of the action that acts between the mold and the workpiece at the time of mold release, and it is possible to select an optimum mold release method.

以下に、本発明の実施の形態を図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

本発明の加工装置21は、図7に示すように、型100で加工対象物200を加工するもので、型100を保持する型保持部2と、加工対象物200を保持する加工対象物保持部12と、型100を作動させる型可動装置1と、加工対象物200を作動させる加工対象物可動装置11と、型100と加工対象物200とを相対的に接離する押圧手段50と、で主に構成される。   As shown in FIG. 7, the processing apparatus 21 of the present invention processes a workpiece 200 with a mold 100, and holds a mold holding unit 2 that holds the mold 100 and a workpiece to hold the workpiece 200. The part 12, the mold movable device 1 for operating the mold 100, the workpiece moving apparatus 11 for operating the workpiece 200, the pressing means 50 for relatively contacting and separating the mold 100 and the workpiece 200, It is mainly composed of.

型100は、加工対象物200に押圧して加工対象物200を加工し得るものであればどのようなものでもよいが、例えば、その下面に、所定のパターンとしての凹凸が形成されたパターン面100aを有している。この凹凸は、型100をニッケル等の金属やセラミックス、ガラス状カーボン等の炭素素材などで形成し、そのパターン面100aに精密機械加工を施すことで形成することができる。また、型100の原盤となるシリコン基板等にエッチング等の半導体微細加工技術によって所定のパターンを形成した後、このシリコン基板等の表面にニッケルメッキ法(電気鋳造(エレクトロフォーミング)法)等によって金属メッキを施し、この金属メッキ層を剥離して、凹凸を有した型100を形成することもできる。もちろん型100は、微細パターンが形成できるものであれば材質やその製造法が特に限定されるものではない。この凹凸の幅は、用いられる加工対象物200の種類にもよるが、100μm以下、好ましくは10μm以下、更に好ましくは1μm以下、更に好ましくは100nm以下、更に好ましくは10nm以下に形成される。なお、この型100は、上述した型保持部2の型加熱手段および型冷却手段によって加熱・冷却されるため、なるべく薄型化してその熱容量をできる限り小さくするのが好ましい。   The mold 100 may be anything as long as it can press the workpiece 200 and process the workpiece 200. For example, a pattern surface in which irregularities as a predetermined pattern are formed on the lower surface thereof. 100a. The unevenness can be formed by forming the mold 100 from a metal such as nickel, ceramics, a carbon material such as glassy carbon, and the like, and subjecting the pattern surface 100a to precision machining. In addition, after a predetermined pattern is formed on a silicon substrate or the like used as a master disk of the mold 100 by a semiconductor micromachining technique such as etching, the surface of the silicon substrate or the like is subjected to metal plating by a nickel plating method (electroforming (electroforming) method) or the like. It is also possible to form the mold 100 having irregularities by plating and peeling the metal plating layer. Of course, as long as the mold 100 can form a fine pattern, the material and the manufacturing method thereof are not particularly limited. Although the width of the unevenness depends on the type of the workpiece 200 to be used, it is formed to be 100 μm or less, preferably 10 μm or less, more preferably 1 μm or less, further preferably 100 nm or less, more preferably 10 nm or less. Since the mold 100 is heated and cooled by the mold heating means and the mold cooling means of the mold holding unit 2 described above, it is preferable that the mold 100 be made as thin as possible to reduce its heat capacity as much as possible.

加工対象物200としては、種々のものを用いることができ、例えばポリカーボネート、ポリイミド等の樹脂の他、アルミニウム等の金属、ガラス、石英ガラス、シリコン、ガリウム砒素、サファイア、酸化マグネシウム等の材料など、成形素材がそのまま基板形状をなしているものを用いることができる。また、シリコンやガラス等からなる基板本体の表面に、樹脂、フォトレジスト、配線パターンを形成するためのアルミニウム、金、銀などの金属薄膜の被覆層等が形成されたものを用いることもできる。更に、加工対象物200は、基板以外の形状であっても勿論良い。   Various objects can be used as the workpiece 200, for example, a resin such as polycarbonate and polyimide, a metal such as aluminum, a material such as glass, quartz glass, silicon, gallium arsenide, sapphire, and magnesium oxide. A molding material having a substrate shape as it is can be used. In addition, it is also possible to use a substrate body made of silicon, glass, or the like, on which a coating layer of a metal thin film such as resin, photoresist, or aluminum, gold, or silver for forming a wiring pattern is formed. Furthermore, the workpiece 200 may of course have a shape other than the substrate.

型保持部2は、図2に示すように、型100を保持する型保持面2aに、ねじやクランプ金具等の締結具で型100を面接触するように固定可能に形成される。なお、型保持部2の構造は、型100を型保持面2a上に保持するものであればどのようなものでも良く、例えば、型保持面2aに静電吸着や真空吸着により吸着保持する構造とすることも可能である。   As shown in FIG. 2, the mold holding unit 2 is formed on a mold holding surface 2 a that holds the mold 100 so that the mold 100 can be fixed in surface contact with a fastener such as a screw or a clamp fitting. The structure of the mold holding unit 2 may be any structure as long as it holds the mold 100 on the mold holding surface 2a. For example, the structure that holds the mold 100 by electrostatic suction or vacuum suction on the mold holding surface 2a. It is also possible.

また、型保持部2には、図示しないが、型100を加熱するための型加熱手段、例えばヒータを備えている。このヒータは、コントローラにより、型100を所定の一定温度に維持するよう、その作動が制御される。このヒータとしては、例えば、伝熱ヒータやセラミックヒータを好適に用いることができる。   In addition, although not shown, the mold holding unit 2 includes a mold heating means for heating the mold 100, for example, a heater. The operation of this heater is controlled by the controller so as to maintain the mold 100 at a predetermined constant temperature. As this heater, for example, a heat transfer heater or a ceramic heater can be suitably used.

また、型保持部2には、型100を冷却する型冷却手段を設けることもできる。型冷却手段としては、例えば型保持部2の内部に冷却液や冷却気体を流すことで、型100を冷却することができる冷却流路を用いることができる。   The mold holding unit 2 may be provided with a mold cooling means for cooling the mold 100. As the mold cooling means, for example, a cooling channel capable of cooling the mold 100 by flowing a coolant or a cooling gas into the mold holding unit 2 can be used.

加工対象物保持部12は、図5に示すように、加工対象物200を略水平状態に保持するものであり、上面に加工対象物保持面12aを有した保持ステージを備えている。   As illustrated in FIG. 5, the workpiece holding unit 12 holds the workpiece 200 in a substantially horizontal state, and includes a holding stage having a workpiece holding surface 12 a on the upper surface.

この保持ステージには、加工対象物保持面12aに多数のバキューム孔(図示せず)が形成されており、このバキューム孔に図示しない負圧源から負圧を作用させることで、加工対象物保持面12a上に、加工対象物200を吸着保持できる構成となっている。なお、加工対象物保持部12の構造は、加工対象物200を加工対象物保持面12aに保持するものであればどのようなものでも良く、例えば、クランプ金具等の締結具で加工対象物保持面12aに固定したり、静電吸着で吸着保持したりする構造とすることも勿論可能である。   In this holding stage, a large number of vacuum holes (not shown) are formed in the workpiece holding surface 12a, and a negative pressure is applied to the vacuum holes from a negative pressure source (not shown) to hold the workpiece. The workpiece 200 can be sucked and held on the surface 12a. The structure of the workpiece holding unit 12 may be anything as long as the workpiece 200 is held on the workpiece holding surface 12a. For example, the workpiece holding unit 12 may be held by a fastener such as a clamp fitting. Of course, it is also possible to adopt a structure that is fixed to the surface 12a or is held by suction by electrostatic attraction.

また、図示しないが、保持ステージの下部には保持した加工対象物200を加熱するための加工対象物加熱手段、例えばヒータを備えている。このヒータは、コントローラにより、保持ステージ上の加工対象物200を所定の一定温度に維持するよう、その作動が制御される。このヒータとしては、例えば、伝熱ヒータやセラミックヒータを好適に用いることができる。   Although not shown, a workpiece heating means for heating the workpiece 200 held, for example, a heater is provided below the holding stage. The operation of the heater is controlled by the controller so as to maintain the workpiece 200 on the holding stage at a predetermined constant temperature. As this heater, for example, a heat transfer heater or a ceramic heater can be suitably used.

また、加工対象物保持部12には、加工対象物200を冷却する加工対象物冷却手段を設けることも可能である。加工対象物冷却手段としては、例えば加工対象物保持部12の内部に冷却液や冷却気体を流すことで、型100を冷却することができる冷却流路を用いることができる。   Further, the processing object holding unit 12 may be provided with a processing object cooling means for cooling the processing object 200. As the processing object cooling means, for example, a cooling channel capable of cooling the mold 100 by flowing a coolant or a cooling gas inside the processing object holding unit 12 can be used.

押圧手段50は、図7に示すように、垂直方向に連結するボールネジ51と、このボールネジを回転駆動させるモータ52とから構成され、型可動装置1と連結されている。また、ボールネジ51の下端部と型可動装置1の上面は押圧部53、ベアリング機構54を介して連結されている。押圧手段50をこのように構成することによって、型100を保持する型保持部2を上下し、加工対象物保持部12に保持される加工対象物200に対し、型100のパターン面100aを接近・押圧及び離間することができる。なお、ここでは、押圧手段50を型可動装置1側に設ける場合について説明したが、これに限られるものではなく、加工対象物可動装置11側に設けることも可能である。   As shown in FIG. 7, the pressing means 50 includes a ball screw 51 connected in the vertical direction and a motor 52 that rotationally drives the ball screw, and is connected to the mold movable device 1. Further, the lower end portion of the ball screw 51 and the upper surface of the mold movable device 1 are connected via a pressing portion 53 and a bearing mechanism 54. By configuring the pressing means 50 in this way, the mold holding unit 2 that holds the mold 100 is moved up and down, and the pattern surface 100a of the mold 100 approaches the workpiece 200 held by the workpiece holding unit 12. -Can be pressed and separated. Here, although the case where the pressing means 50 is provided on the mold movable device 1 side has been described, the present invention is not limited to this, and it is also possible to provide the pressing means 50 on the workpiece moving device 11 side.

型可動装置1は、型100を作動させるもので、図1、図2に示すように、磁歪素子3と、磁歪素子3に対し磁界を加える磁界付加手段4と、磁界付加手段4の磁界の大きさを調節する磁界調節手段5と、磁界付加手段4を取り囲む例えば有底円筒形状のケース9と、磁歪素子3の一端面に接続されると共に、ケース9の開口端面から突出して設けられた接続部8と、で主に構成される。   The mold movable device 1 operates the mold 100. As shown in FIGS. 1 and 2, the magnetostrictive element 3, the magnetic field applying means 4 for applying a magnetic field to the magnetostrictive element 3, and the magnetic field of the magnetic field adding means 4 The magnetic field adjusting means 5 for adjusting the size, the bottomed cylindrical case 9 surrounding the magnetic field adding means 4, and the one end face of the magnetostrictive element 3 are connected to the opening end face of the case 9. The connection unit 8 is mainly configured.

磁歪素子3は、強磁性材料からなるもので、磁石等の外部からの磁界に応じて弾性変形するものである。磁歪素子としては、比較的変位量の大きい超磁歪素子を用いる方が好ましく、例えばETERMA Products Inc.製のTerfenol-Dを用いることができる。また、強磁性材料を粉末冶金法によって所定の形状、例えば円柱形状に形成したものを用いることができる。   The magnetostrictive element 3 is made of a ferromagnetic material and elastically deforms in response to a magnetic field from the outside such as a magnet. As the magnetostrictive element, it is preferable to use a giant magnetostrictive element having a relatively large displacement, for example, Terfenol-D manufactured by ETERMA Products Inc. can be used. Further, a ferromagnetic material formed into a predetermined shape, for example, a cylindrical shape by powder metallurgy can be used.

磁界付加手段4は、例えば、型100と加工対象物200が接離する方向を軸に磁歪素子3の外側をらせん状に巻装するコイル4aを用いることができる。これにより、コイル4aに直流電流を流すと、型100と加工対象物200の接離方向に磁界が発生し、磁歪素子3を接離方向に伸縮させることができる。また、交流電流を流すことにより、その発振周波数に応じて磁歪素子3が伸縮し、振動を発生させることもできる。   For example, the magnetic field applying means 4 may be a coil 4 a that spirally winds the outer side of the magnetostrictive element 3 around the direction in which the mold 100 and the workpiece 200 are contacted and separated. Thereby, when a direct current is passed through the coil 4a, a magnetic field is generated in the contact / separation direction of the mold 100 and the workpiece 200, and the magnetostrictive element 3 can be expanded and contracted in the contact / separation direction. In addition, by passing an alternating current, the magnetostrictive element 3 can expand and contract in accordance with the oscillation frequency to generate vibration.

なお、磁界付加手段4は、磁歪素子3に磁界を付加するものであればどのようなものでもよく、電磁石や永久磁石を用いても良い。   The magnetic field applying means 4 may be anything as long as it applies a magnetic field to the magnetostrictive element 3, and an electromagnet or a permanent magnet may be used.

また、磁歪素子3は付加される磁界の大きさが変化すると変位量もそれに応じて変化するが、この変位量は磁界の大きさに必ずしも比例しない。したがって、永久磁石10等を磁歪素子3の接離方向両端に配置して、磁気バイアスをかける方が好ましい。磁気バイアスをかけることにより、磁界の大きさに対し、変位量が大きい範囲を用いることができるからである。なお、コイル4aに直流電流を流して磁気バイアスをかけることも可能である。この場合、コイル4aに磁気バイアス用の直流電流と可動用の直流電流又は交流電流を重畳的に流すか、あるいは、磁気バイアス用のコイルと可動用のコイル4aを独立して設け、磁気バイアス用のコイルに磁気バイアス用の直流を流すと共に、可動用のコイル4aに直流又は交流を流せばよい。   Further, when the magnitude of the magnetic field applied to the magnetostrictive element 3 changes, the amount of displacement also changes accordingly, but this amount of displacement is not necessarily proportional to the magnitude of the magnetic field. Therefore, it is preferable to place the permanent magnet 10 or the like on both ends of the magnetostrictive element 3 in the contact / separation direction and apply a magnetic bias. This is because by applying a magnetic bias, a range in which the amount of displacement is large with respect to the magnitude of the magnetic field can be used. It is also possible to apply a magnetic bias by passing a direct current through the coil 4a. In this case, a direct current for magnetic bias and a movable direct current or alternating current are caused to flow in the coil 4a in a superimposed manner, or a magnetic bias coil and a movable coil 4a are provided independently to provide a magnetic bias. A direct current for magnetic bias is allowed to flow through the coil, and a direct current or an alternating current is allowed to flow through the movable coil 4a.

磁界調節手段5は、磁界付加手段4の磁界の大きさを調節するものであればどのようなものでもよいが、磁界付加手段4をコイル4aとして形成する場合には、コイル4aに流す電流を変化させる電流調節手段5aを用いることができる。これにより、コイル4aに流す直流電流を変化させて、磁歪素子3に付加する磁界の大きさを調節すれば、磁歪素子3を伸縮させて、型100を任意の大きさで変位させることができる。また、任意の周波数でコイル4aに電流を流せば、型100を任意の振動数で振動させることができる。   The magnetic field adjusting means 5 may be anything as long as it adjusts the magnitude of the magnetic field of the magnetic field adding means 4, but when the magnetic field adding means 4 is formed as the coil 4a, the current flowing through the coil 4a is changed. The current adjusting means 5a to be changed can be used. Thus, by changing the direct current flowing through the coil 4a and adjusting the magnitude of the magnetic field applied to the magnetostrictive element 3, the magnetostrictive element 3 can be expanded and contracted to displace the mold 100 by an arbitrary size. . Further, if a current is passed through the coil 4a at an arbitrary frequency, the mold 100 can be vibrated at an arbitrary frequency.

接続部8は、型100に磁歪素子3の変位を伝達するもので、例えば、図2に示すように、型保持部2の接続面2bに連結されるものである。これにより、磁歪素子3の変位が型保持部2を介して型100に伝達される。   The connection part 8 transmits the displacement of the magnetostrictive element 3 to the mold 100, and is connected to the connection surface 2b of the mold holding part 2, for example, as shown in FIG. Thereby, the displacement of the magnetostrictive element 3 is transmitted to the mold 100 via the mold holding part 2.

また、磁歪素子3に対して、磁界付加手段4が加える磁界と直行する方向に磁界を付加する第2の磁界付加手段6を設けてもよい。例えば、図3に示すように、磁界付加手段4としてのコイル4aの外側に第2の磁界付加手段6として電磁石6aを設ける構成とすることができる。このように構成すれば、磁歪素子3に対して二つの直行する磁界を同時に付加することにより、磁歪素子3に捻れを発生させることができる。したがって、離型時に型100と加工対象物200との間に作用させる動作のバリエーションを増やすことができ、最適な離型方法を選択することが可能となる。なお、第2の磁界付加手段6の磁界を調節する磁界調節手段(図示せず)を設けることも勿論可能である。   Further, second magnetic field applying means 6 for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means 4 may be provided for the magnetostrictive element 3. For example, as shown in FIG. 3, an electromagnet 6a can be provided as the second magnetic field applying means 6 outside the coil 4a as the magnetic field applying means 4. With this configuration, the magnetostrictive element 3 can be twisted by simultaneously applying two orthogonal magnetic fields to the magnetostrictive element 3. Therefore, it is possible to increase the variation of the operation that acts between the mold 100 and the workpiece 200 at the time of mold release, and it is possible to select an optimum mold release method. Of course, it is possible to provide magnetic field adjusting means (not shown) for adjusting the magnetic field of the second magnetic field adding means 6.

また、磁歪素子3を型保持部2の接続面2bの同一直線上にない位置に複数設けることも可能である。例えば図4に示すように、3つの磁歪素子3を接続面2bの三角形の頂点の位置に配置し連結すれば、型100の傾きに応じて各磁歪素子3に付加する磁界を変化させて変位量を調節し、型100の傾きを調節することができる。特に、微小なパターンを有する型100で加工対象物200を加工する際に問題となる型100と加工対象物200の傾きを調節する際に、型100と加工対象物200の接離方向における1μm以下の誤差でも容易に調節することができるという利点がある。また、型100と加工対象物200との相対的な傾きを検出可能な傾き検出手段(図示せず)と、この傾き検出手段が検出した情報に基づき、型100と加工対象物200が平行になるように磁界調節手段5を制御する制御手段300とを設ければ、自動で型100と加工対象物200との傾きを調節することも可能である。   It is also possible to provide a plurality of magnetostrictive elements 3 at positions that are not on the same straight line of the connection surface 2 b of the mold holding unit 2. For example, as shown in FIG. 4, if the three magnetostrictive elements 3 are arranged and connected at the apex position of the triangle of the connecting surface 2b, the magnetic field applied to each magnetostrictive element 3 is changed according to the inclination of the mold 100 and displaced. The amount can be adjusted and the inclination of the mold 100 can be adjusted. In particular, when adjusting the inclination of the mold 100 and the workpiece 200 which is a problem when the workpiece 200 is machined with the mold 100 having a minute pattern, 1 μm in the contact / separation direction of the mold 100 and the workpiece 200 is determined. There is an advantage that the following errors can be easily adjusted. Further, an inclination detecting means (not shown) capable of detecting a relative inclination between the mold 100 and the workpiece 200, and the mold 100 and the workpiece 200 are parallel based on information detected by the inclination detecting means. If the control means 300 for controlling the magnetic field adjusting means 5 is provided as described above, it is possible to automatically adjust the inclination between the mold 100 and the workpiece 200.

なお、磁歪素子3を複数設ける場合にも、磁歪素子3に対して、磁界付加手段4が付加する磁界と直行する方向に磁界を付加する第2の磁界付加手段を設けることができる。この場合、第2の磁界付加手段が磁歪素子3に付加する磁界を調節する第2の磁界調節手段と、磁界付加手段4に付加する磁界に応じて、第2の磁界調節手段を制御する制御手段300とを有する構成とすればよい。   Even when a plurality of magnetostrictive elements 3 are provided, second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means 4 can be provided for the magnetostrictive element 3. In this case, a second magnetic field adjusting means for adjusting the magnetic field applied to the magnetostrictive element 3 by the second magnetic field adding means, and a control for controlling the second magnetic field adjusting means in accordance with the magnetic field applied to the magnetic field adding means 4. What is necessary is just to set it as the structure which has the means 300. FIG.

また、磁歪素子は、機械的な圧縮、引張、捻り等の外荷重を受けて変形すると、その力の速度や大きさに応じて透磁率や自己インダクタンス等の磁気特性が変化する素子である。したがって、接続部8に外荷重を受け、接続部8を介して磁歪素子3に圧力(応力)が加わり圧縮されると、磁歪素子3の磁化特性が変化する。この磁化特性を検出する磁化特性検出手段7を設ければ、型100が加工対象物200に押圧されている際の磁歪素子3に加わっている圧力(応力)や、変形量を検出することができる。また、磁歪素子3を複数設けている場合には、各磁歪素子3に、磁化特性を検出する磁化特性検出手段を設けて、型100を加工対象物200に押圧した際の各磁歪素子3の変形量を検出し、これを用いて型100と加工対象物200との相対的な傾きを検出することができる。   A magnetostrictive element is an element whose magnetic characteristics such as magnetic permeability and self-inductance change according to the speed and magnitude of the force when deformed by an external load such as mechanical compression, tension, and twist. Therefore, when an external load is applied to the connecting portion 8 and pressure (stress) is applied to the magnetostrictive element 3 through the connecting portion 8 and the magnetostrictive element 3 is compressed, the magnetization characteristics of the magnetostrictive element 3 change. If the magnetization characteristic detecting means 7 for detecting this magnetization characteristic is provided, it is possible to detect the pressure (stress) applied to the magnetostrictive element 3 when the mold 100 is pressed against the workpiece 200 and the amount of deformation. it can. Further, when a plurality of magnetostrictive elements 3 are provided, each magnetostrictive element 3 is provided with a magnetization characteristic detecting means for detecting a magnetization characteristic, and each of the magnetostrictive elements 3 when the mold 100 is pressed against the workpiece 200. The amount of deformation can be detected, and the relative inclination between the mold 100 and the workpiece 200 can be detected using this.

磁化特性検出手段7としては、例えば図1、図2に示すように、磁歪素子3に巻装されたコイル4aの自己インダクタンスを検出するインダクタンス検出手段、例えばLC発振器7aを用いることができる。LC発振器7aは、コイル4aのインダクタンスとコンデンサによるインダクタンスに応じた周波数を有する発振を生じさせ、周波数検出部でその発振波形の周波数を検出する。そして、その結果は制御手段300に入力される。制御手段300は、その周波数から各磁歪素子3に巻装されているコイル4aのインダクタンスを計算し、その値から各磁歪素子3に付加されている応力や各磁歪素子3の変形量(変位量)を検出することができる。   As the magnetization characteristic detecting means 7, for example, as shown in FIGS. 1 and 2, an inductance detecting means for detecting the self-inductance of the coil 4a wound around the magnetostrictive element 3, such as an LC oscillator 7a, can be used. The LC oscillator 7a generates oscillation having a frequency corresponding to the inductance of the coil 4a and the inductance of the capacitor, and the frequency detector detects the frequency of the oscillation waveform. Then, the result is input to the control means 300. The control means 300 calculates the inductance of the coil 4a wound around each magnetostrictive element 3 from the frequency, and the stress applied to each magnetostrictive element 3 and the deformation amount (displacement amount) of each magnetostrictive element 3 from the value. ) Can be detected.

なお、磁化特性検出手段7は、磁歪素子3の磁化特性を検出できるものであれば、どのようなものでもよく、LC発振器7aに限定されるものではない。例えば、磁化特性検出手段7として、磁歪素子3の磁束密度を検出する磁束密度検出手段を用いても良い。磁束密度検出手段としては、例えば、磁束密度を測定するホール素子及びガウスメータを用いることができる。磁束密度を測定するホール素子を磁歪素子3の側面に配設し、ガウスメータでその値を検出するように構成すればよい。この磁束密度を制御手段300で計算すれば、磁歪素子3に加えられた応力を検出することができる。   The magnetization characteristic detecting means 7 may be anything as long as it can detect the magnetization characteristic of the magnetostrictive element 3, and is not limited to the LC oscillator 7a. For example, a magnetic flux density detecting means for detecting the magnetic flux density of the magnetostrictive element 3 may be used as the magnetization characteristic detecting means 7. As the magnetic flux density detection means, for example, a Hall element and a gauss meter that measure the magnetic flux density can be used. What is necessary is just to comprise so that the Hall element which measures magnetic flux density may be arrange | positioned in the side surface of the magnetostriction element 3, and the value may be detected with a gauss meter. If this magnetic flux density is calculated by the control means 300, the stress applied to the magnetostrictive element 3 can be detected.

また、制御手段300は、磁化特性検出手段7が検出した各磁歪素子3の変形量に基づき、磁界調節手段5が磁歪素子3に付加する磁界の大きさを制御するように構成することもできる。例えば、型100を加工対象物200に押圧した際の各磁歪素子3の変形量又は応力が総て同一になるように、各コイル4aに流す直流の大きさを調節して、各磁歪素子3に付加される磁界の大きさを調節すれば、型100と加工対象物200を平行にすることができる。   The control unit 300 can also be configured to control the magnitude of the magnetic field applied to the magnetostrictive element 3 by the magnetic field adjusting unit 5 based on the deformation amount of each magnetostrictive element 3 detected by the magnetization characteristic detection unit 7. . For example, the magnitude of the direct current passed through each coil 4a is adjusted so that the amount of deformation or stress of each magnetostrictive element 3 when pressing the mold 100 against the workpiece 200 is the same, and each magnetostrictive element 3 is adjusted. If the magnitude | size of the magnetic field added to is adjusted, the type | mold 100 and the workpiece 200 can be made parallel.

なお、上記説明では、磁歪素子3と型保持部2とを接続部8を介して接続しているが、これに限定されるものではなく、磁歪素子3に型保持部2を直接固定する構成とすることも勿論可能である。   In the above description, the magnetostrictive element 3 and the mold holding unit 2 are connected via the connection unit 8, but the present invention is not limited to this, and the configuration in which the mold holding unit 2 is directly fixed to the magnetostrictive element 3. Of course, it is also possible.

加工対象物可動装置11は、加工対象物200を作動させるもので、図1に示すように、磁歪素子13と、磁歪素子13に対し磁界を加える磁界付加手段14と、磁界付加手段14の磁界の大きさを調節する磁界調節手段15と、磁界付加手段14を取り囲む例えば有底円筒形状のケース19と、磁歪素子3の一端面に接続されると共に、ケース19の開口端面から突出して設けられた接続部18と、で主に構成される。   The workpiece moving device 11 operates the workpiece 200, and as shown in FIG. 1, the magnetostrictive element 13, the magnetic field applying means 14 for applying a magnetic field to the magnetostrictive element 13, and the magnetic field of the magnetic field adding means 14 are provided. Is connected to one end face of the magnetostrictive element 3 and protrudes from the opening end face of the case 19. And the connecting portion 18.

磁歪素子13は、強磁性材料からなるもので、磁石等の外部からの磁界に応じて弾性変形するものである。磁歪素子としては、比較的変位量の大きい超磁歪素子を用いる方が好ましく、例えばETERMA Products Inc.製のTerfenol-Dを用いることができる。また、強磁性材料を粉末冶金法によって所定の形状、例えば円柱形状に形成したものを用いることができる。   The magnetostrictive element 13 is made of a ferromagnetic material and elastically deforms in response to a magnetic field from the outside such as a magnet. As the magnetostrictive element, it is preferable to use a giant magnetostrictive element having a relatively large displacement, for example, Terfenol-D manufactured by ETERMA Products Inc. can be used. Further, a ferromagnetic material formed into a predetermined shape, for example, a cylindrical shape by powder metallurgy can be used.

磁界付加手段14は、例えば、型100と加工対象物200とが接離する方向を軸に磁歪素子13の外側をらせん状に巻装するコイル14aを用いることができる。これにより、コイル14aに直流電流を流すと、型100と加工対象物200の接離方向に磁界が発生し、磁歪素子13を接離方向に伸縮させることができる。また、交流電流を流すことにより、その発振周波数に応じて磁歪素子13が伸縮し、振動を発生させることもできる。   For example, the magnetic field applying unit 14 may be a coil 14 a that spirally winds the outer side of the magnetostrictive element 13 around the direction in which the mold 100 and the workpiece 200 are contacted and separated. Thereby, when a direct current is passed through the coil 14a, a magnetic field is generated in the contact / separation direction of the mold 100 and the workpiece 200, and the magnetostrictive element 13 can be expanded and contracted in the contact / separation direction. Also, by passing an alternating current, the magnetostrictive element 13 can expand and contract in accordance with the oscillation frequency to generate vibration.

なお、磁界付加手段14は、磁歪素子13に磁界を付加するものであればどのようなものでもよく、電磁石や永久磁石を用いても良い。   The magnetic field adding means 14 may be anything as long as it applies a magnetic field to the magnetostrictive element 13, and an electromagnet or a permanent magnet may be used.

また、磁歪素子13は付加される磁界の大きさが変化すると変位量もそれに応じて変化するが、この変位量は磁界の大きさに必ずしも比例しない。したがって、永久磁石等を磁歪素子13の接離方向両端に配置して、磁気バイアスをかける方が好ましい。磁気バイアスをかけることにより、磁界の大きさに対し、変位量が大きい範囲を用いることができるからである。なお、コイル14aに直流電流を流して磁気バイアスをかけることも可能である。この場合、コイル14aに磁気バイアス用の直流電流と可動用の直流電流又は交流電流を重畳的に流すか、あるいは、磁気バイアス用のコイルと可動用のコイル14aを独立して設け、磁気バイアス用のコイルに磁気バイアス用の直流を流すと共に、可動用のコイル14aに直流又は交流を流せばよい。   Further, when the magnitude of the magnetic field applied to the magnetostrictive element 13 changes, the amount of displacement also changes accordingly, but this amount of displacement is not necessarily proportional to the magnitude of the magnetic field. Therefore, it is preferable to place a permanent magnet or the like at both ends of the magnetostrictive element 13 in the contact / separation direction to apply a magnetic bias. This is because by applying a magnetic bias, a range in which the amount of displacement is large with respect to the magnitude of the magnetic field can be used. It is also possible to apply a magnetic bias by passing a direct current through the coil 14a. In this case, a direct current for magnetic bias and a movable direct current or alternating current are caused to flow in the coil 14a in a superimposed manner, or a magnetic bias coil and a movable coil 14a are provided independently to provide a magnetic bias. A direct current for a magnetic bias may be passed through the other coil, and a direct current or an alternating current may be passed through the movable coil 14a.

磁界調節手段15は、磁界付加手段14の磁界の大きさを調節するものであればどのようなものでもよいが、磁界付加手段14をコイル14aとして形成する場合には、コイル14aに流す電流を変化させる電流調節手段15aを用いることができる。これにより、コイル14aに流す直流電流を変化させて、磁歪素子13に付加する磁界の大きさを調節すれば、磁歪素子13を伸縮させて、加工対象物200を任意の大きさで変位させることができる。また、任意の周波数でコイル14aに電流を流せば、加工対象物200を任意の振動数で振動させることができる。   The magnetic field adjusting means 15 may be anything as long as it adjusts the magnitude of the magnetic field of the magnetic field adding means 14, but when the magnetic field adding means 14 is formed as a coil 14a, a current flowing through the coil 14a is supplied. The current adjusting means 15a to be changed can be used. Thus, by changing the direct current flowing through the coil 14a and adjusting the magnitude of the magnetic field applied to the magnetostrictive element 13, the magnetostrictive element 13 is expanded and contracted to displace the workpiece 200 by an arbitrary size. Can do. Further, if a current is passed through the coil 14a at an arbitrary frequency, the workpiece 200 can be vibrated at an arbitrary frequency.

接続部18は、加工対象物200に磁歪素子13の変位を伝達するもので、例えば、図2に示すように、加工対象物保持部12の接続面12bに連結されるものである。これにより、磁歪素子13の変位が加工対象物保持部12を介して加工対象物200に伝達される。   The connecting portion 18 transmits the displacement of the magnetostrictive element 13 to the workpiece 200, and is connected to the connecting surface 12b of the workpiece holding portion 12, for example, as shown in FIG. Thereby, the displacement of the magnetostrictive element 13 is transmitted to the workpiece 200 via the workpiece holding unit 12.

また、図示しないが、磁歪素子13に対して、磁界付加手段14が加える磁界と直行する方向に磁界を付加する第2の磁界付加手段を設けてもよい。例えば、磁界付加手段14としてのコイル14aの外側に第2の磁界付加手段として電磁石を設ける構成とすることができる。このように構成すれば、磁歪素子13に対して二つの直行する磁界を同時に付加することにより、磁歪素子13に捻れを発生させることができる。したがって、離型時に型100と加工対象物200との間に作用させる動作のバリエーションを増やすことができ、最適な離型方法を選択することが可能となる。なお、第2の磁界付加手段の磁界を調節する磁界調節手段を設けることも勿論可能である。   Further, although not shown, a second magnetic field applying unit that applies a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field adding unit 14 may be provided for the magnetostrictive element 13. For example, an electromagnet can be provided as the second magnetic field applying means outside the coil 14a as the magnetic field applying means 14. With this configuration, the magnetostrictive element 13 can be twisted by simultaneously applying two perpendicular magnetic fields to the magnetostrictive element 13. Therefore, it is possible to increase the variation of the operation that acts between the mold 100 and the workpiece 200 at the time of mold release, and it is possible to select an optimum mold release method. Of course, it is possible to provide a magnetic field adjusting means for adjusting the magnetic field of the second magnetic field adding means.

また、磁歪素子13を型保持部2の接続面2bの同一直線上にない位置に複数設けることも可能である。例えば図4に示すように、3つの磁歪素子13を接続面2bの三角形の頂点の位置に配置し連結すれば、加工対象物200の傾きに応じて各磁歪素子13に付加する磁界を変化させて変位量を調節し、加工対象物200の傾きを調節することができる。特に、微小なパターンを有する型100で加工対象物200を加工する際に問題となる型100と加工対象物200の傾きを調節する際に、型100と加工対象物200の接離方向における1μm以下の誤差でも容易に調節することができるという利点がある。また、型100と加工対象物200との相対的な傾きを検出可能な傾き検出手段(図示せず)と、この傾き検出手段が検出した情報に基づき、型100と加工対象物200が平行になるように磁界調節手段5を制御する制御手段300とを設ければ、自動で型100と加工対象物200との傾きを調節することも可能である。   It is also possible to provide a plurality of magnetostrictive elements 13 at positions that are not on the same straight line of the connection surface 2 b of the mold holding unit 2. For example, as shown in FIG. 4, if three magnetostrictive elements 13 are arranged and connected at the positions of the apexes of the triangle of the connection surface 2b, the magnetic field applied to each magnetostrictive element 13 is changed according to the inclination of the workpiece 200. Thus, the amount of displacement can be adjusted, and the inclination of the workpiece 200 can be adjusted. In particular, when adjusting the inclination of the mold 100 and the workpiece 200 which is a problem when the workpiece 200 is machined with the mold 100 having a minute pattern, 1 μm in the contact / separation direction of the mold 100 and the workpiece 200 is determined. There is an advantage that the following errors can be easily adjusted. Further, an inclination detecting means (not shown) capable of detecting a relative inclination between the mold 100 and the workpiece 200, and the mold 100 and the workpiece 200 are parallel based on information detected by the inclination detecting means. If the control means 300 for controlling the magnetic field adjusting means 5 is provided as described above, it is possible to automatically adjust the inclination between the mold 100 and the workpiece 200.

なお、磁歪素子13を複数設ける場合にも、磁歪素子13に対して、磁界付加手段14が付加する磁界と直行する方向に磁界を付加する第2の磁界付加手段を設けることができる。この場合、第2の磁界付加手段が磁歪素子13に付加する磁界を調節する第2の磁界調節手段と、磁界付加手段14に付加する磁界に応じて、第2の磁界調節手段を制御する制御手段300とを有する構成とすればよい。   Even when a plurality of magnetostrictive elements 13 are provided, second magnetic field applying means for applying a magnetic field to the magnetostrictive element 13 in a direction perpendicular to the magnetic field applied by the magnetic field applying means 14 can be provided. In this case, the second magnetic field adding means adjusts the magnetic field applied to the magnetostrictive element 13, and the second magnetic field adjusting means controls the second magnetic field adjusting means in accordance with the magnetic field applied to the magnetic field adding means 14. What is necessary is just to set it as the structure which has the means 300. FIG.

また、上述したように、磁歪素子は、機械的な圧縮、引張、捻り等の外荷重を受けて変形すると、その力の速度や大きさに応じて透磁率や自己インダクタンス等の磁気特性が変化する素子である。したがって、接続部18に外荷重を受け、接続部18を介して磁歪素子13に圧力(応力)が加わり圧縮されると、磁歪素子13の磁化特性が変化する。この磁化特性を検出する磁化特性検出手段17を設ければ、型100が加工対象物200に押圧されている際の磁歪素子13に加わっている圧力(応力)や、変形量を検出することができる。また、磁歪素子13を複数設けている場合には、各磁歪素子13に、磁化特性を検出する磁化特性検出手段17を設けて、型100を加工対象物200に押圧した際の各磁歪素子13の変形量を検出し、これを用いて型100と加工対象物200との相対的な傾きを検出することができる。   Further, as described above, when a magnetostrictive element is deformed by receiving an external load such as mechanical compression, tension, and twist, the magnetic characteristics such as permeability and self-inductance change according to the speed and magnitude of the force. It is an element to do. Therefore, when an external load is applied to the connecting portion 18 and pressure (stress) is applied to the magnetostrictive element 13 through the connecting portion 18 and the magnetostrictive element 13 is compressed, the magnetization characteristics of the magnetostrictive element 13 change. By providing the magnetization characteristic detecting means 17 for detecting this magnetization characteristic, it is possible to detect the pressure (stress) applied to the magnetostrictive element 13 when the mold 100 is pressed against the workpiece 200 and the amount of deformation. it can. In addition, when a plurality of magnetostrictive elements 13 are provided, each magnetostrictive element 13 is provided with a magnetization characteristic detecting means 17 for detecting the magnetization characteristic, and each magnetostrictive element 13 when the mold 100 is pressed against the workpiece 200. , And the relative inclination between the mold 100 and the workpiece 200 can be detected.

磁化特性検出手段17としては、例えば図5に示すように、磁歪素子13に巻装されたコイル14aの自己インダクタンスを検出するインダクタンス検出手段、例えばLC発振器17aを用いることができる。LC発振器17aは、コイル14aのインダクタンスとコンデンサによるインダクタンスに応じた周波数を有する発振を生じさせ、周波数検出部でその発振波形の周波数を検出する。そして、その結果は制御手段300に入力される。制御手段300は、その周波数から各磁歪素子13に巻装されているコイル14aのインダクタンスを計算し、その値から各磁歪素子13に付加されている応力や各磁歪素子13の変形量(変位量)を検出することができる。   As the magnetization characteristic detecting means 17, for example, as shown in FIG. 5, an inductance detecting means for detecting the self-inductance of a coil 14a wound around the magnetostrictive element 13, for example, an LC oscillator 17a can be used. The LC oscillator 17a generates oscillation having a frequency corresponding to the inductance of the coil 14a and the inductance of the capacitor, and the frequency detector detects the frequency of the oscillation waveform. Then, the result is input to the control means 300. The control means 300 calculates the inductance of the coil 14a wound around each magnetostrictive element 13 from the frequency, and the stress applied to each magnetostrictive element 13 and the deformation amount (displacement amount) of each magnetostrictive element 13 from the value. ) Can be detected.

なお、磁化特性検出手段17は、磁歪素子13の磁化特性を検出できるものであれば、どのようなものでもよく、LC発振器17aに限定されるものではない。例えば、磁化特性検出手段17として、磁歪素子13の磁束密度を検出する磁束密度検出手段を用いても良い。磁束密度検出手段としては、例えば、磁束密度を測定するホール素子及びガウスメータを用いることができる。磁束密度を測定するホール素子を磁歪素子13の側面に配設し、ガウスメータでその値を検出するように構成すればよい。この磁束密度を制御手段300で計算すれば、磁歪素子13に加えられた応力を検出することができる。   The magnetization characteristic detecting means 17 may be anything as long as it can detect the magnetization characteristic of the magnetostrictive element 13, and is not limited to the LC oscillator 17a. For example, a magnetic flux density detecting means for detecting the magnetic flux density of the magnetostrictive element 13 may be used as the magnetization characteristic detecting means 17. As the magnetic flux density detection means, for example, a Hall element and a gauss meter that measure the magnetic flux density can be used. What is necessary is just to comprise so that the Hall element which measures magnetic flux density may be arrange | positioned in the side surface of the magnetostriction element 13, and the value may be detected with a gauss meter. If this magnetic flux density is calculated by the control means 300, the stress applied to the magnetostrictive element 13 can be detected.

また、制御手段300は、磁化特性検出手段17が検出した各磁歪素子13の変形量に基づき、磁界調節手段15が磁歪素子13に付加する磁界の大きさを制御するように構成することもできる。例えば、型100を加工対象物200に押圧した際の各磁歪素子13の変形量又は応力が総て同一になるように、各コイル14aに流す直流の大きさを調節して、各磁歪素子13に付加される磁界の大きさを調節すれば、型100と加工対象物200を平行にすることができる。   Further, the control means 300 can be configured to control the magnitude of the magnetic field applied to the magnetostrictive element 13 by the magnetic field adjusting means 15 based on the deformation amount of each magnetostrictive element 13 detected by the magnetization characteristic detection means 17. . For example, the magnitude of the direct current passed through each coil 14a is adjusted so that the deformation amount or stress of each magnetostrictive element 13 when pressing the mold 100 against the workpiece 200 is the same, and each magnetostrictive element 13 is adjusted. If the magnitude | size of the magnetic field added to is adjusted, the type | mold 100 and the workpiece 200 can be made parallel.

なお、上記説明では、磁歪素子13と加工対象物保持部12とを接続部18を介して接続しているが、これに限定されるものではなく、磁歪素子13に加工対象物保持部12を直接固定する構成とすることも勿論可能である。   In the above description, the magnetostrictive element 13 and the workpiece holding part 12 are connected via the connecting part 18, but the present invention is not limited to this, and the workpiece holding part 12 is attached to the magnetostrictive element 13. Of course, it is possible to directly fix the structure.

なお、上記説明では、加工装置21に型可動装置1と加工対象物可動装置11の両方を用いる場合について説明したが、加工装置21の構成はこれに限られるものではなく、型可動装置1と加工対象物可動装置11のいずれか一方のみを用いた構成とすることも勿論可能である。   In the above description, the case where both the mold movable device 1 and the workpiece movable device 11 are used as the processing device 21 has been described. However, the configuration of the processing device 21 is not limited to this, and the mold movable device 1 and Of course, it is possible to use only one of the workpiece moving devices 11.

また、型可動装置1と型保持部2との間、加工対象物可動装置11と加工対象物保持部12との間に超音波ホーンを設けて、振動(振幅)を増幅することも可能である。   It is also possible to amplify vibration (amplitude) by providing an ultrasonic horn between the mold movable device 1 and the mold holding unit 2 and between the workpiece moving device 11 and the workpiece holding unit 12. is there.

本発明の型可動装置を示す概略断面図である。It is a schematic sectional drawing which shows the type | mold movable apparatus of this invention. 本発明の型可動装置を示す概略正面図である。It is a schematic front view which shows the type | mold movable apparatus of this invention. 本発明の別の型可動装置を示す概略断面図である。It is a schematic sectional drawing which shows another type | mold movable apparatus of this invention. 本発明の更に別の型可動装置を示す概略正面図である。It is a schematic front view which shows another type | mold movable apparatus of this invention. 本発明の加工対象物可動装置を示す概略断面図である。It is a schematic sectional drawing which shows the workpiece moving apparatus of this invention. 本発明の別の加工対象物可動装置を示す概略正面図である。It is a schematic front view which shows another workpiece target moving apparatus of this invention. 本発明の加工装置を示す概略断面図である。It is a schematic sectional drawing which shows the processing apparatus of this invention.

符号の説明Explanation of symbols

1 型可動装置
2 型保持部
3 磁歪素子
4 磁界付加手段
5 磁界調節手段
6 第2の磁界付加手段
7 磁化特性検出手段
11 加工対象物可動装置
12 加工対象物保持部
13 磁歪素子
14 磁界付加手段
15 磁界調節手段
17 磁化特性検出手段
21 加工装置
100 型
200 加工対象物
300 制御手段
DESCRIPTION OF SYMBOLS 1 type movable apparatus 2 type holding | maintenance part 3 magnetostrictive element 4 magnetic field addition means 5 magnetic field adjustment means 6 2nd magnetic field addition means 7 magnetization characteristic detection means 11 process target object moving apparatus 12 process target object holding part 13 magnetostriction element 14 magnetic field addition means DESCRIPTION OF SYMBOLS 15 Magnetic field adjustment means 17 Magnetization characteristic detection means 21 Processing apparatus 100 Type 200 Processing target object 300 Control means

Claims (40)

型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置において、前記型を変動させる型可動装置であって、
前記型保持部に接続される磁歪素子と、
前記磁歪素子に対し磁界を加える磁界付加手段と、
を具備することを特徴とする型可動装置。
In a processing apparatus that has a mold holding unit that holds a mold and a processing target object holding unit that holds a processing target, and that processes the processing target with the mold, the mold moving device is configured to change the mold. And
A magnetostrictive element connected to the mold holder;
Magnetic field applying means for applying a magnetic field to the magnetostrictive element;
A mold movable device characterized by comprising:
前記磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項1記載の型可動装置。 2. The mold movable device according to claim 1, further comprising magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means. 前記磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記磁歪素子に付加されている応力および前記磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項1又は2記載の型可動装置。
Magnetization characteristic detection means for detecting the magnetization state of the magnetostrictive element;
Control means for calculating at least one of the stress applied to the magnetostrictive element and the amount of displacement of the magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
The mold movable device according to claim 1, further comprising:
前記磁歪素子に対し、前記磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項1ないし3のいずれかに記載の型可動装置。 4. The mold movable device according to claim 1, further comprising second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means to the magnetostrictive element. 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置において、前記型を変動させる型可動装置であって、
前記型保持部に接続される複数の磁歪素子と、
前記各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、
を具備することを特徴とする型可動装置。
In a processing apparatus that has a mold holding unit that holds a mold and a processing target object holding unit that holds a processing target, and that processes the processing target with the mold, the mold moving device is configured to change the mold. And
A plurality of magnetostrictive elements connected to the mold holder;
A plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements;
A mold movable device characterized by comprising:
前記各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項5記載の型可動装置。 6. The mold movable device according to claim 5, further comprising magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. 前記型と前記加工対象物との相対的な傾きを検出する傾き検出手段と、
前記傾き検出手段が検出した情報に基づき、前記型と前記加工対象物が平行になるように前記磁界調節手段を制御する制御手段と、
を具備することを特徴とする請求項6記載の型可動装置。
An inclination detecting means for detecting a relative inclination between the mold and the workpiece;
Control means for controlling the magnetic field adjustment means based on the information detected by the inclination detection means so that the mold and the workpiece are parallel;
The mold movable device according to claim 6, comprising:
前記各磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記各磁歪素子に付加されている応力および前記各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項5又は6記載の型可動装置。
Magnetization characteristic detection means for detecting the magnetization state of each magnetostrictive element;
Control means for calculating at least one of the stress applied to each magnetostrictive element and the amount of displacement of each magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
The mold movable device according to claim 5 or 6, characterized by comprising:
前記制御手段は、前記磁化特性検出手段が検出した情報に基づいて、前記型と前記加工対象物とが平行になるように、前記磁化調節手段を制御することを特徴とする請求項8記載の型可動装置。 The said control means controls the said magnetization adjustment means based on the information which the said magnetization characteristic detection means detected so that the said type | mold and the said to-be-processed object may become parallel. Mold movable device. 前記各磁歪素子に対し、前記各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項5ないし9のいずれかに記載の型可動装置。 10. The mold movable device according to claim 5, further comprising second magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements in a direction perpendicular to the magnetic field applied by the magnetic field applying means. apparatus. 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置において、前記加工対象物を変動させる加工対象物可動装置であって、
前記加工対象物保持部に接続される磁歪素子と、
前記磁歪素子に対し磁界を加える磁界付加手段と、
を具備することを特徴とする加工対象物可動装置。
A processing object having a mold holding part for holding a mold and a processing object holding part for holding a processing object, and processing the object to be processed in the processing apparatus that processes the processing object with the mold A mobile device,
A magnetostrictive element connected to the workpiece holding part;
Magnetic field applying means for applying a magnetic field to the magnetostrictive element;
A workpiece moving device characterized by comprising:
前記磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項11記載の加工対象物可動装置。 The workpiece moving apparatus according to claim 11, further comprising a magnetic field adjusting unit that adjusts a magnitude of a magnetic field of the magnetic field adding unit. 前記磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記磁歪素子に付加されている応力および前記磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項11又は12記載の加工対象物可動装置。
Magnetization characteristic detection means for detecting the magnetization state of the magnetostrictive element;
Control means for calculating at least one of the stress applied to the magnetostrictive element and the amount of displacement of the magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
The apparatus for moving a workpiece according to claim 11 or 12, characterized by comprising:
前記磁歪素子に対し、前記磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項11ないし13のいずれかに記載の加工対象物可動装置 14. The work target movable according to claim 11, further comprising second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means to the magnetostrictive element. apparatus 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置において、前記加工対象物を変動させる加工対象物可動装置であって、
前記加工対象物保持部に接続される複数の磁歪素子と、
前記各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、
を具備することを特徴とする加工対象物可動装置。
A processing object having a mold holding part for holding a mold and a processing object holding part for holding a processing object, and processing the object to be processed in the processing apparatus that processes the processing object with the mold A mobile device,
A plurality of magnetostrictive elements connected to the workpiece holding unit;
A plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements;
A workpiece moving device characterized by comprising:
前記各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項15記載の加工対象物可動装置。 The workpiece moving device according to claim 15, further comprising a magnetic field adjusting unit that adjusts the magnitude of the magnetic field of each of the magnetic field adding units. 前記型と前記加工対象物との相対的な傾きを検出する傾き検出手段と、
前記傾き検出手段が検出した情報に基づき、前記型と前記加工対象物が平行になるように前記磁界調節手段を制御する制御手段と、
を具備することを特徴とする請求項16記載の加工対象物可動装置。
An inclination detecting means for detecting a relative inclination between the mold and the workpiece;
Control means for controlling the magnetic field adjustment means based on the information detected by the inclination detection means so that the mold and the workpiece are parallel;
The apparatus for moving a workpiece according to claim 16, comprising:
前記各磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記各磁歪素子に付加されている応力および前記各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項15又は16記載の加工対象物可動装置。
Magnetization characteristic detection means for detecting the magnetization state of each magnetostrictive element;
Control means for calculating at least one of the stress applied to each magnetostrictive element and the amount of displacement of each magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
The workpiece moving apparatus according to claim 15 or 16, further comprising:
前記制御手段は、前記磁化特性検出手段が検出した情報に基づいて、前記型と前記加工対象物とが平行になるように、前記磁化調節手段を制御することを特徴とする請求項18記載の加工対象物可動装置。 The said control means controls the said magnetization adjustment means so that the said type | mold and the said to-be-processed object may become parallel based on the information which the said magnetization characteristic detection means detected. Processing object moving device. 前記各磁歪素子に対し、前記各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項15ないし19のいずれかに記載の加工対象物可動装置。 20. The processing target according to claim 15, further comprising second magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements in a direction perpendicular to the magnetic field applied by the magnetic field applying means. Object moving device. 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置であって、
前記型保持部に接続される磁歪素子と、
前記磁歪素子に対し磁界を加える磁界付加手段と、
を具備することを特徴とする加工装置。
A processing apparatus that has a mold holding unit that holds a mold, and a workpiece holding unit that holds a workpiece, and that processes the workpiece with the mold,
A magnetostrictive element connected to the mold holder;
Magnetic field applying means for applying a magnetic field to the magnetostrictive element;
A processing apparatus comprising:
前記磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項21記載の加工装置。 The processing apparatus according to claim 21, further comprising magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means. 前記磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記磁歪素子に付加されている応力および前記磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項21又は22記載の加工装置。
Magnetization characteristic detection means for detecting the magnetization state of the magnetostrictive element;
Control means for calculating at least one of the stress applied to the magnetostrictive element and the amount of displacement of the magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
The processing apparatus according to claim 21 or 22, further comprising:
前記磁歪素子に対し、前記磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項21ないし23のいずれかに記載の加工装置。 24. The processing apparatus according to claim 21, further comprising second magnetic field applying means for applying a magnetic field in a direction orthogonal to the magnetic field applied by the magnetic field applying means to the magnetostrictive element. 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置であって、
前記型保持部に接続される複数の磁歪素子と、
前記各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、
を具備することを特徴とする加工装置。
A processing apparatus that has a mold holding unit that holds a mold and a processing object holding unit that holds a processing object, and processes the processing object with the mold,
A plurality of magnetostrictive elements connected to the mold holder;
A plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements;
A processing apparatus comprising:
前記各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項25記載の加工装置。 26. The processing apparatus according to claim 25, further comprising magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. 前記型と前記加工対象物との相対的な傾きを検出する傾き検出手段と、
前記傾き検出手段が検出した情報に基づき、前記型と前記加工対象物が平行になるように前記磁界調節手段を制御する制御手段と、
を具備することを特徴とする請求項26記載の加工装置。
An inclination detecting means for detecting a relative inclination between the mold and the workpiece;
Control means for controlling the magnetic field adjustment means based on the information detected by the inclination detection means so that the mold and the workpiece are parallel;
27. The processing apparatus according to claim 26, comprising:
前記各磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記各磁歪素子に付加されている応力および前記各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項25又は26記載の加工装置。
Magnetization characteristic detection means for detecting the magnetization state of each magnetostrictive element;
Control means for calculating at least one of the stress applied to each magnetostrictive element and the amount of displacement of each magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
27. The processing apparatus according to claim 25 or 26, comprising:
前記制御手段は、前記磁化特性検出手段が検出した情報に基づいて、前記型と前記加工対象物とが平行になるように、前記磁化調節手段を制御することを特徴とする請求項28記載の加工装置。 29. The control unit according to claim 28, wherein the control unit controls the magnetization adjusting unit so that the mold and the workpiece are parallel based on information detected by the magnetization characteristic detection unit. Processing equipment. 前記各磁歪素子に対し、前記各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項24ないし29のいずれかに記載の加工装置。 30. The processing apparatus according to claim 24, further comprising second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by each magnetic field applying means to each of the magnetostrictive elements. . 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置であって、
前記加工対象物保持部に接続される磁歪素子と、
前記磁歪素子に対し磁界を加える磁界付加手段と、
を具備することを特徴とする加工装置。
A processing apparatus that has a mold holding unit that holds a mold and a processing object holding unit that holds a processing object, and processes the processing object with the mold,
A magnetostrictive element connected to the workpiece holding part;
Magnetic field applying means for applying a magnetic field to the magnetostrictive element;
A processing apparatus comprising:
前記磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項31記載の加工装置。 32. The processing apparatus according to claim 31, further comprising magnetic field adjusting means for adjusting the magnitude of the magnetic field of the magnetic field adding means. 前記磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記磁歪素子に付加されている応力および前記磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項31又は32記載の加工装置。
Magnetization characteristic detection means for detecting the magnetization state of the magnetostrictive element;
Control means for calculating at least one of the stress applied to the magnetostrictive element and the amount of displacement of the magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
33. The processing apparatus according to claim 31 or 32, comprising:
前記磁歪素子に対し、前記磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項31ないし33のいずれかに記載の加工装置。 34. The processing apparatus according to claim 31, further comprising second magnetic field applying means for applying a magnetic field in a direction perpendicular to the magnetic field applied by the magnetic field applying means to the magnetostrictive element. 型を保持する型保持部と、加工対象物を保持する加工対象物保持部と、を有し、前記型で前記加工対象物を加工する加工装置であって、
前記加工対象物保持部に接続される複数の磁歪素子と、
前記各磁歪素子に対し、それぞれ磁界を加える複数の磁界付加手段と、
を具備することを特徴とする加工装置。
A processing apparatus that has a mold holding unit that holds a mold and a processing object holding unit that holds a processing object, and processes the processing object with the mold,
A plurality of magnetostrictive elements connected to the workpiece holding unit;
A plurality of magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements;
A processing apparatus comprising:
前記各磁界付加手段の磁界の大きさを調節する磁界調節手段を具備することを特徴とする請求項35記載の加工装置。 36. The processing apparatus according to claim 35, further comprising magnetic field adjusting means for adjusting the magnitude of the magnetic field of each magnetic field adding means. 前記型と前記加工対象物との相対的な傾きを検出する傾き検出手段と、
前記傾き検出手段が検出した情報に基づき、前記型と前記加工対象物が平行になるように前記磁界調節手段を制御する制御手段と、
を具備することを特徴とする請求項36記載の加工装置。
An inclination detecting means for detecting a relative inclination between the mold and the workpiece;
Control means for controlling the magnetic field adjustment means based on the information detected by the inclination detection means so that the mold and the workpiece are parallel;
The processing apparatus according to claim 36, comprising:
前記各磁歪素子の磁化状態を検出する磁化特性検出手段と、
前記磁化特性検出手段が検出した情報に基づいて、前記各磁歪素子に付加されている応力および前記各磁歪素子の変位量の少なくともいずれか一方を計算する制御手段と、
を具備することを特徴とする請求項35又は36記載の加工装置。
Magnetization characteristic detection means for detecting the magnetization state of each magnetostrictive element;
Control means for calculating at least one of the stress applied to each magnetostrictive element and the amount of displacement of each magnetostrictive element based on the information detected by the magnetization characteristic detecting means;
37. The processing apparatus according to claim 35 or 36, comprising:
前記制御手段は、前記磁化特性検出手段が検出した情報に基づいて、前記型と前記加工対象物とが平行になるように、前記磁化調節手段を制御することを特徴とする請求項38記載の加工装置。 39. The control unit according to claim 38, wherein the control unit controls the magnetization adjusting unit based on the information detected by the magnetization characteristic detection unit so that the mold and the workpiece are parallel. Processing equipment. 前記各磁歪素子に対し、前記各磁界付加手段が加える磁界と直行する方向に磁界を加える第2の磁界付加手段を具備することを特徴とする請求項34ないし39のいずれかに記載の加工装置。


40. The processing apparatus according to claim 34, further comprising second magnetic field applying means for applying a magnetic field to each of the magnetostrictive elements in a direction orthogonal to the magnetic field applied by the magnetic field applying means. .


JP2005020422A 2005-01-27 2005-01-27 Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus Pending JP2006205207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020422A JP2006205207A (en) 2005-01-27 2005-01-27 Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020422A JP2006205207A (en) 2005-01-27 2005-01-27 Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus

Publications (1)

Publication Number Publication Date
JP2006205207A true JP2006205207A (en) 2006-08-10

Family

ID=36962578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020422A Pending JP2006205207A (en) 2005-01-27 2005-01-27 Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus

Country Status (1)

Country Link
JP (1) JP2006205207A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320037A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Mold and release method of mold
WO2011005457A1 (en) * 2009-07-07 2011-01-13 The Boeing Company Curing system and method using electromagnetic force and conductive heat transfer
CN102529284A (en) * 2010-12-23 2012-07-04 富葵精密组件(深圳)有限公司 Press fit device and circuit board press-fit method using same
WO2015148803A1 (en) * 2014-03-26 2015-10-01 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
WO2018214247A1 (en) * 2017-05-24 2018-11-29 苏州江南航天机电工业有限公司 Press and corresponding side plate unit structure
US10254181B2 (en) 2014-03-26 2019-04-09 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
CN115464916A (en) * 2022-10-24 2022-12-13 四川通冠机械设备有限公司 Annular carbon product forming equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550442A (en) * 1991-08-23 1993-03-02 Olympus Optical Co Ltd Preparation and molding apparatus for composite optical element
JPH06194244A (en) * 1992-11-06 1994-07-15 Toyota Motor Corp Pressure sensor using magnetostrictive device
JP2004282953A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Actuator device
WO2004093171A1 (en) * 2003-04-11 2004-10-28 Scivax Corporation Pattern forming apparatus and pattern forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550442A (en) * 1991-08-23 1993-03-02 Olympus Optical Co Ltd Preparation and molding apparatus for composite optical element
JPH06194244A (en) * 1992-11-06 1994-07-15 Toyota Motor Corp Pressure sensor using magnetostrictive device
JP2004282953A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Actuator device
WO2004093171A1 (en) * 2003-04-11 2004-10-28 Scivax Corporation Pattern forming apparatus and pattern forming method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320037A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Mold and release method of mold
US8545201B2 (en) * 2009-07-07 2013-10-01 The Boeing Company Curing system using electromagnetic force
WO2011005457A1 (en) * 2009-07-07 2011-01-13 The Boeing Company Curing system and method using electromagnetic force and conductive heat transfer
CN102470572A (en) * 2009-07-07 2012-05-23 波音公司 Curing system and method using electromagnetic force and conductive heat transfer
US8268226B2 (en) 2009-07-07 2012-09-18 The Boeing Company Curing system and method using electromagnetic force and conductive heat transfer
US20120305197A1 (en) * 2009-07-07 2012-12-06 The Boeing Company Curing method using electromagnetic force
JP2012532760A (en) * 2009-07-07 2012-12-20 ザ・ボーイング・カンパニー Curing system and method utilizing electromagnetic force and conduction heat transfer
CN102529284A (en) * 2010-12-23 2012-07-04 富葵精密组件(深圳)有限公司 Press fit device and circuit board press-fit method using same
WO2015148803A1 (en) * 2014-03-26 2015-10-01 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
US10254181B2 (en) 2014-03-26 2019-04-09 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
AU2015235980B2 (en) * 2014-03-26 2019-08-15 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
WO2018214247A1 (en) * 2017-05-24 2018-11-29 苏州江南航天机电工业有限公司 Press and corresponding side plate unit structure
CN115464916A (en) * 2022-10-24 2022-12-13 四川通冠机械设备有限公司 Annular carbon product forming equipment
CN115464916B (en) * 2022-10-24 2023-11-17 黄骅市晶鑫重型锻压有限公司 Annular carbon product forming equipment

Similar Documents

Publication Publication Date Title
JP2006205207A (en) Die movable mechanism using magnetostrictor, working object movable mechanism, and working apparatus
JP4533358B2 (en) Imprint method, imprint apparatus and chip manufacturing method
JP5409813B2 (en) Imprint apparatus and article manufacturing method
JP5039145B2 (en) Method and apparatus for applying a sheet to a substrate
JP6465577B2 (en) Imprint apparatus and article manufacturing method
JP5139922B2 (en) Laser processing equipment
KR101901041B1 (en) Imprint apparatus and article manufacturing method
JPWO2006011576A1 (en) Tilt adjusting device and pattern forming device with tilt adjusting function
JP5072247B2 (en) Lithographic apparatus and method, and device manufacturing method
JPWO2004093171A1 (en) Pattern forming apparatus and pattern forming method
JP2013162046A (en) Imprint device and article manufacturing method
Xiao et al. Development of an electromagnetic actuated microdisplacement module
JP2006289505A (en) Processing device capable of controlling relative displacement between mold and workpiece or the like
JP6497839B2 (en) Imprint apparatus and article manufacturing method
JP2005186557A (en) Pattern-forming apparatus and form-holding head
JP2005167166A (en) Position controllable pattern formation equipment and position controlling method
JPWO2006082867A1 (en) Hybrid contact / separation system
JP2016162928A (en) Imprint device, imprint method, and method of manufacturing article
JP2005236114A (en) Working apparatus and working method
JP2009050919A (en) Microstructure and its manufacturing method
JP5379636B2 (en) Imprint apparatus and article manufacturing method
KR102545495B1 (en) Imprint apparatus, control method, imprint method and manufacturing method
JP2008294009A (en) Method of microfabrication under controlled pressure, and microfabrication apparatus
JP2001265441A (en) Device and method for micro-positioning method
JP2007276410A (en) Processing object holding device and microfabrication apparatus provided with the same, and processing object for microfabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426