JP2006202451A - Magnetic recording medium and its manufacturing method - Google Patents

Magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2006202451A
JP2006202451A JP2005015857A JP2005015857A JP2006202451A JP 2006202451 A JP2006202451 A JP 2006202451A JP 2005015857 A JP2005015857 A JP 2005015857A JP 2005015857 A JP2005015857 A JP 2005015857A JP 2006202451 A JP2006202451 A JP 2006202451A
Authority
JP
Japan
Prior art keywords
layer
fept
magnetic recording
recording medium
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005015857A
Other languages
Japanese (ja)
Inventor
Akira Yano
亮 矢野
Tetsunori Kanda
哲典 神田
Satoru Matsunuma
悟 松沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005015857A priority Critical patent/JP2006202451A/en
Publication of JP2006202451A publication Critical patent/JP2006202451A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium wherein recording can be satisfactorily performed by using only a magnetic head and which is provided with a FePt regular alloy film having excellent thermal stability and perpendicular magnetic characteristics as a recording layer. <P>SOLUTION: In the magnetic recording medium provided with an under layer consisting essentially of Fe and O, the recording layer formed on the under layer and consisting essentially of an FePt alloy and a coercive force controlling layer formed on the recording layer and consisting essentially of SiO<SB>2</SB>, crystals of the recording layer are oriented perpendicularly to a film surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気記録媒体及びその製造方法に関し、特に、高密度記録が可能な垂直磁気記録媒体及びその製造方法に関する。   The present invention relates to a magnetic recording medium and a manufacturing method thereof, and more particularly to a perpendicular magnetic recording medium capable of high density recording and a manufacturing method thereof.

近年の高度情報化社会の進展に伴い、情報記録装置の大容量化・高密度化に対するニーズは高まる一方である。現在、情報記録装置の主力を担う磁気記録装置においても、その大容量化のニーズに応えるために面記録密度の向上が図られている。また、磁気記録装置だけでなく磁気記録媒体においても同様に面記録密度の向上が図られている。磁気記録媒体で面記録密度を向上させるためにはより微細な記録ビットを磁気記録膜(記録層)に形成しなければならない。記録ビットを微細に記録するための方法として、記録磁化方向を膜面に垂直に記録させる方式、いわゆる垂直磁気記録方式が知られている。垂直磁気記録方式に用いられる記録層の材料としては従来、CoCr系合金膜が用いられてきた。   With the progress of the advanced information society in recent years, there is a growing need for large capacity and high density information recording devices. At present, even in the magnetic recording apparatus that plays the main role of the information recording apparatus, the surface recording density is being improved in order to meet the needs for increasing the capacity. Further, not only the magnetic recording apparatus but also the magnetic recording medium is similarly improved in the surface recording density. In order to improve the surface recording density in the magnetic recording medium, finer recording bits must be formed on the magnetic recording film (recording layer). As a method for recording a recording bit finely, a method of recording a recording magnetization direction perpendicular to a film surface, a so-called perpendicular magnetic recording method is known. Conventionally, a CoCr alloy film has been used as a material for a recording layer used in the perpendicular magnetic recording system.

磁気記録媒体においては、今後更なる面記録密度の向上が期待されており、それを実現するためには、媒体ノイズをさらに低減させる必要がある。媒体ノイズを低減させるためには、磁化反転単位を微細化することが必須である。しかしながら、磁化反転単位を微細化しすぎると、熱的に磁化状態が不安定になる現象、いわゆる熱減磁が発生することが知られている。それゆえ、より低ノイズで高密度記録可能な磁気記録媒体を得るためには、記録磁化の熱安定性をさらに高める必要がある。その方法としては、記録層にCoCr系合金よりもさらに高い磁気異方性を有する材料を用いる方法が挙げられる。   In the magnetic recording medium, further improvement in surface recording density is expected in the future, and in order to realize this, it is necessary to further reduce the medium noise. In order to reduce the medium noise, it is essential to make the magnetization reversal unit fine. However, it is known that when the magnetization reversal unit is made too fine, a phenomenon that the magnetization state is thermally unstable, so-called thermal demagnetization occurs. Therefore, in order to obtain a magnetic recording medium capable of high density recording with lower noise, it is necessary to further increase the thermal stability of the recording magnetization. As the method, a method using a material having higher magnetic anisotropy than the CoCr-based alloy for the recording layer can be mentioned.

CoCr系合金よりもさらに高い磁気異方性を有する材料としては、例えば、FePt合金が検討されている(例えば、非特許文献1参照)。FePt合金が規則相(L1相)を有する場合、そのFePt合金はCoCr系合金に比べて1桁以上高い磁気異方性エネルギーを有する。そのような規則相のFePt合金は、FePt合金を蒸着法又はスパッタ法などによって薄膜状に作製した後、600℃程度の温度で熱処理することにより形成される。 As a material having a magnetic anisotropy higher than that of a CoCr-based alloy, for example, an FePt alloy has been studied (for example, see Non-Patent Document 1). If the FePt alloy having rules phase (L1 0 phase), the FePt alloy has high magnetic anisotropy energy by one digit or more as compared to CoCr alloy. Such an ordered FePt alloy is formed by forming a FePt alloy into a thin film by vapor deposition or sputtering, and then heat-treating it at a temperature of about 600 ° C.

M.Watanabe and M.Homma:Jpn.J.Appl.phys.Vol.66,p.1692(1995)M.M. Watanabe and M.M. Hamma: Jpn. J. et al. Appl. phys. Vol. 66, p. 1692 (1995)

FePt合金膜を垂直磁気記録媒体の記録層として適用するためには、上述した方法でFePt合金膜を規則化すると同時に、FePt合金膜の規則相合金結晶の磁化容易軸であるc軸を膜面に対して垂直方向に優先配向させなければならない。また、FePt合金膜の磁化容易軸であるc軸を膜面に対して垂直方向に優先配向できたとしても、FePt合金は上述したようにCoCr系合金に比べて1桁以上高い磁気異方性エネルギーを有するので、規則化したFePt合金膜(以下では、FePt規則合金膜ともいう)の保磁力は10kOe以上の非常に大きな値になる。それゆえ、このような非常に高い保磁力を有するFePt規則合金膜に、熱アシスト記録方式等を用いないで磁気ヘッドのみで磁化情報を記録する際には、磁気ヘッドの磁界強度にも限界があるので、情報記録が不十分になるおそれがある。   In order to apply the FePt alloy film as the recording layer of the perpendicular magnetic recording medium, the FePt alloy film is ordered by the above-described method, and at the same time, the c axis which is the easy axis of magnetization of the ordered phase alloy crystal of the FePt alloy film is used as the film surface. Must be preferentially oriented vertically. Even if the c-axis, which is the easy axis of magnetization of the FePt alloy film, can be preferentially oriented in the direction perpendicular to the film surface, the FePt alloy has a magnetic anisotropy higher by one digit or more than the CoCr-based alloy as described above. Since it has energy, the coercive force of the ordered FePt alloy film (hereinafter also referred to as FePt ordered alloy film) has a very large value of 10 kOe or more. Therefore, when magnetic information is recorded on such an FePt ordered alloy film having a very high coercive force by using only a magnetic head without using a heat-assisted recording method, the magnetic field strength of the magnetic head has a limit. As a result, there is a risk that information recording will be insufficient.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、FePt規則合金膜を記録層として備える垂直磁気記録媒体に対して磁気ヘッドのみで情報記録を行っても、十分に記録が可能であり、且つ、より優れた熱安定性及び垂直磁気特性を有する高密度磁気記録媒体及び磁気気記録媒体の製造方法を提供することである。   The present invention has been made to solve the above problems, and the object of the present invention is sufficient even when information recording is performed only with a magnetic head on a perpendicular magnetic recording medium having a FePt ordered alloy film as a recording layer. It is possible to provide a high-density magnetic recording medium and a method for producing a magnetic recording medium that are capable of recording at the same time and that have better thermal stability and perpendicular magnetic characteristics.

本発明者らは、本願出願以前に、FeとOを主成分とする層と、Feを主成分とする層と、Ptを主成分とする層とをこの順で積層し、その後に前記積層膜を所定温度に加熱して、Feを主成分とする層及びPtを主成分とする層の間で相互拡散を生じさせ、FeおよびPtを合金化させることにより、FePt規則合金結晶のc軸が膜面に対して垂直方向に優先配向したFePt規則合金膜を形成することを特徴とする磁気記録媒体の製造方法を提供した(特願2004−176420参照)。以下に、この製造方法の概要を簡単に説明する。   Prior to the filing of the present application, the present inventors laminated a layer containing Fe and O as main components, a layer containing Fe as a main component, and a layer containing Pt as a main component in this order. The film is heated to a predetermined temperature to cause mutual diffusion between the layer containing Fe as the main component and the layer containing Pt as the main component, and by alloying Fe and Pt, the c-axis of the FePt ordered alloy crystal Provided a method for producing a magnetic recording medium, characterized in that an FePt ordered alloy film preferentially oriented in the direction perpendicular to the film surface is formed (see Japanese Patent Application No. 2004-176420). Below, the outline | summary of this manufacturing method is demonstrated easily.

この製造方法では、Fe及びOを主成分とするFe酸化物層によって、その上に形成されるFeを主成分とする層及びPtを主成分とする層の結晶配向が制御される。また、積層膜を加熱することにより、Feを主成分とする層とPtを主成分とする層との間でFeとPtとが相互に拡散して規則合金化するとともに、FePt規則合金結晶のc軸が膜面に対して垂直方向に優先配向する。   In this manufacturing method, the crystal orientation of the layer mainly composed of Fe and the layer mainly composed of Pt formed thereon is controlled by the Fe oxide layer mainly composed of Fe and O. Further, by heating the laminated film, Fe and Pt diffuse to each other between the layer mainly composed of Fe and the layer mainly composed of Pt to form an ordered alloy, and the FePt ordered alloy crystal The c-axis is preferentially oriented in the direction perpendicular to the film surface.

なお、上記製造方法では、Fe及びOを主成分とする第1の層の厚さは10nmより薄いことが望ましいことが分かっている。Fe及びOを主成分とする第1の層の厚さが10nm以上になると、積層膜を加熱することにより形成されたFePt規則合金膜のc軸の垂直配向性が低下する。これは、Fe及びOを主成分とする第1の層が厚くなりすぎると、第1の層を形成する個々の粒子の成長方向に乱れが生じ、その乱れが、第1の層上に形成されるFe層(第2の層)やPt層(第3の層)にも受け継がれるためであると考えられる。   In the above manufacturing method, it has been found that the thickness of the first layer containing Fe and O as main components is preferably less than 10 nm. When the thickness of the first layer containing Fe and O as main components is 10 nm or more, the c-axis vertical orientation of the FePt ordered alloy film formed by heating the laminated film is lowered. This is because if the first layer mainly composed of Fe and O becomes too thick, disorder occurs in the growth direction of the individual particles forming the first layer, and the disorder is formed on the first layer. This is considered to be inherited by the Fe layer (second layer) and Pt layer (third layer).

また、上記製造方法では、Feを主成分とする第2の層の厚さとPtを主成分とする第3の層の厚さは、各々、1nmより厚く、4nmより薄いことが望ましいことが分かっている。この膜厚範囲以外では、加熱により合金化された後のFePt規則合金膜のc軸の垂直配向性が悪化する。これは、Feを主成分とする第2の層およびPtを主成分とする第3の層の厚さを上記膜厚範囲以外にすると、それぞれの層自身の結晶方位に乱れが生じ、その乱れが合金化後のFePt規則合金膜の配向性にも悪影響を及ぼすためであると考えられる。   Further, in the above manufacturing method, it is found that the thickness of the second layer containing Fe as the main component and the thickness of the third layer containing Pt as the main component are each preferably greater than 1 nm and less than 4 nm. ing. Outside this film thickness range, the c-axis vertical orientation of the FePt ordered alloy film after alloying by heating deteriorates. This is because, if the thickness of the second layer containing Fe as a main component and the thickness of the third layer containing Pt as a main component are outside the above film thickness range, the crystal orientation of each layer itself is disturbed. This is considered to be because it adversely affects the orientation of the FePt ordered alloy film after alloying.

上述のように、本発明者らが本願出願以前に提供した上記製造方法を用いると、容易にFePt合金膜を規則化するとともに、FePt規則合金膜の磁化容易軸であるc軸を容易に膜面に対して垂直方向に優先配向させることができる。しかしながら、上述したように、FePt規則合金膜の保磁力は非常に大きいので、従来用いられる磁気ヘッドのみでFePt規則合金膜に情報を記録する場合には記録が不十分になるおそれもある。   As described above, when the above-described manufacturing method provided by the present inventors before the application of the present application is used, the FePt alloy film is easily ordered and the c-axis which is the easy axis of magnetization of the FePt ordered alloy film is easily formed. Preferential orientation can be performed in a direction perpendicular to the plane. However, as described above, since the coercive force of the FePt ordered alloy film is very large, when information is recorded on the FePt ordered alloy film only by a conventionally used magnetic head, there is a possibility that the recording becomes insufficient.

そこで、本発明は上記課題を解決するためになされたものであり、本発明の第1の態様に従えば、磁気記録媒体であって、Fe及びOを主成分とする下地層と、上記下地層上に形成されたFePt合金を主体とする記録層と、上記記録層上に形成されたSiOを主成分とする保磁力制御層とを備え、上記記録層の結晶が膜面に対して垂直配向していることを特徴とする磁気記録媒体が提供される。 Accordingly, the present invention has been made to solve the above-mentioned problems. According to the first aspect of the present invention, there is provided a magnetic recording medium, comprising: an underlayer comprising Fe and O as main components; A recording layer mainly composed of an FePt alloy formed on the base layer and a coercive force control layer mainly composed of SiO 2 formed on the recording layer, wherein the crystal of the recording layer is A magnetic recording medium is provided that is vertically oriented.

本発明の磁気記録媒体は、記録層としてFePt規則合金膜を用いた垂直磁気記録媒体であり、FePt規則合金膜のc軸の垂直配向を維持するとともに、FePt規則合金膜の保磁力を磁気ヘッドのみで十分記録することができるような値に調整されている磁気記録媒体である。本発明の磁気記録媒体では、FePt規則合金膜の保磁力はFePt規則合金膜上に形成された保磁力制御層により調整される。   The magnetic recording medium of the present invention is a perpendicular magnetic recording medium that uses an FePt ordered alloy film as a recording layer, maintains the c-axis perpendicular orientation of the FePt ordered alloy film, and uses the coercive force of the FePt ordered alloy film as a magnetic head. The magnetic recording medium is adjusted to such a value that can be recorded sufficiently by itself. In the magnetic recording medium of the present invention, the coercive force of the FePt ordered alloy film is adjusted by the coercive force control layer formed on the FePt ordered alloy film.

本発明の磁気記録媒体では、上記保磁力制御層の膜厚が1nmより厚く且つ9nmより薄いことが好ましい。FePt規則合金膜(記録層)上に形成されるSiOを主成分とする保磁力制御層の厚さが9nm以上となると、保磁力制御層からFePt規則合金膜中に拡散するSiO成分が多くなりすぎて、FePt規則合金膜の規則化度やc軸配向性が低下する。また、逆に、SiOを主成分とする第4の層の厚さが1nm以下になると、FePt規則合金膜中に拡散するSiO成分が少なくなりすぎて、FePt規則合金膜の保磁力調整効果がなくなる。 In the magnetic recording medium of the present invention, the coercive force control layer preferably has a thickness of more than 1 nm and less than 9 nm. When the thickness of the coercive force control layer mainly composed of SiO 2 formed on the FePt ordered alloy film (recording layer) is 9 nm or more, the SiO 2 component diffused from the coercive force control layer into the FePt ordered alloy film is reduced. Too much increases the degree of ordering and the c-axis orientation of the FePt ordered alloy film. Conversely, when the thickness of the fourth layer containing SiO 2 as a main component is 1 nm or less, the SiO 2 component diffused into the FePt ordered alloy film becomes too small, and the coercive force adjustment of the FePt ordered alloy film is performed. No effect.

本発明の第2の態様に従えば、磁気記録媒体の製造方法であって、Fe及びOを主成分とする第1の層を形成することと、第1の層上に、Feを主成分とする第2の層を形成することと、第2の層上に、Ptを主成分とする第3の層を形成することと、第3の層上に、SiOを主成分とする第4の層を形成することと、上記積層膜を所定温度で加熱することとを含み、上記所定温度が第2の層と第3の層との間でFe及びPtの相互拡散が生じ、FeとPtとが合金化する温度であり、上記加熱することにより形成されたFeとPtとの合金膜の結晶が膜面に対して垂直配向していることを特徴とする磁気記録媒体の製造方法が提供される。 According to a second aspect of the present invention, there is provided a method for manufacturing a magnetic recording medium, comprising forming a first layer containing Fe and O as main components and forming Fe as a main component on the first layer. Forming a second layer as a main component, forming a third layer containing Pt as a main component on the second layer, and forming a second layer containing SiO 2 as a main component on the third layer. 4 and heating the laminated film at a predetermined temperature, and the predetermined temperature causes mutual diffusion of Fe and Pt between the second layer and the third layer, and Fe And Pt are alloying temperatures, and the crystal of the alloy film of Fe and Pt formed by heating is oriented perpendicularly to the film surface. Is provided.

本発明の磁気記録媒体の製造方法では、第4の層を1nmより厚く且つ9nmより薄い膜厚で形成することが好ましい。   In the method for manufacturing a magnetic recording medium of the present invention, it is preferable to form the fourth layer with a thickness greater than 1 nm and less than 9 nm.

また、本発明の磁気記録媒体では、上記所定温度が300〜700℃であることが好ましい。   In the magnetic recording medium of the present invention, the predetermined temperature is preferably 300 to 700 ° C.

本発明の磁気記録媒体の製造方法は、記録層としてFePt規則合金膜を用いた垂直磁気記録媒体の製造方法であって、FePt規則合金膜のc軸の垂直配向を維持するととも、FePt規則合金膜の保磁力を磁気ヘッドのみで十分記録することができるような値に調整することが可能な製造方法である。具体的には、本発明の製造方法では、次のような手順及び原理により垂直磁気記録媒体を作製する。   A method of manufacturing a magnetic recording medium of the present invention is a method of manufacturing a perpendicular magnetic recording medium using an FePt ordered alloy film as a recording layer, and maintains the perpendicular orientation of the c-axis of the FePt ordered alloy film, and also includes an FePt ordered alloy. In this manufacturing method, the coercive force of the film can be adjusted to a value that can be sufficiently recorded only by the magnetic head. Specifically, in the manufacturing method of the present invention, a perpendicular magnetic recording medium is manufactured according to the following procedure and principle.

まず、Fe及びOを主成分とする第1の層、Feを主成分とする第2の層、Ptを主成分とする第3の層及びSiOを主成分とする第4の層を、この順で積層する。次いで、これらの積層膜を所定温度に加熱して、Feを主成分とする第2の層とPtを主成分とする第3の層との間でFeとPtとの相互拡散を生じさせ、Fe及びPtを合金化させる。そして、この加熱によりFePt合金膜を規則化させるとともに、FePt規則合金膜のc軸を膜面に対して垂直方向に優先配向させる。この際、加熱温度は300〜700℃にすることが好ましく、300℃より低い温度では、FeとPtとが十分に合金化せず、700℃より高い温度では、SiO成分がFePt規則合金膜の結晶格子中にまで侵入してFePt規則合金膜の規則化度やc軸配向性が低下する。 First, a first layer composed mainly of Fe and O, a second layer composed mainly of Fe, a third layer composed mainly of Pt, and a fourth layer composed mainly of SiO 2 , Laminate in this order. Next, these laminated films are heated to a predetermined temperature to cause mutual diffusion of Fe and Pt between the second layer containing Fe as a main component and the third layer containing Pt as a main component, Fe and Pt are alloyed. Then, the FePt alloy film is ordered by this heating, and the c-axis of the FePt ordered alloy film is preferentially oriented in the direction perpendicular to the film surface. At this time, the heating temperature is preferably 300 to 700 ° C., and at temperatures lower than 300 ° C., Fe and Pt are not sufficiently alloyed, and at temperatures higher than 700 ° C., the SiO 2 component is FePt ordered alloy film. The crystal lattice penetrates into the crystal lattice, and the degree of ordering and the c-axis orientation of the FePt ordered alloy film are lowered.

また、本発明の製造方法では、上述のように積層膜を所定温度で加熱した際に、FePt規則合金膜上に形成されたSiOを主成分とする第4の層中のSiOもFePt規則合金膜中に拡散浸入する。第4の層中のSiOがFePt合金層に拡散すると、FePt規則合金膜の膜面に垂直な方向の保磁力が低下する。そして、この際のFePt規則合金膜の膜面に垂直な方向の保磁力の低下量がSiOを主成分とする第4の層の厚さにより変化し、第4の層が厚いほどFePt規則合金膜の膜面に垂直な方向の保磁力が低くなることを、本発明者らは、検証実験から見出した。すなわち、本発明の磁気記録媒体の製造方法では、FePt規則合金膜の膜面に垂直な方向の保磁力をSiOを主成分とする第4の層の厚さによって制御することができる。具体的には、第4の層を1nmより厚く且つ9nmより薄い膜厚で形成することにより、FePt規則合金膜の垂直な方向の保磁力を適度な大きさに調整することができることが分かった。 In the manufacturing method of the present invention, when the laminated film as above was heated at a predetermined temperature, SiO 2 of the fourth layer in which SiO 2 as a main component formed on FePt ordered alloy film also FePt Diffusion penetrates into the ordered alloy film. When SiO 2 in the fourth layer diffuses into the FePt alloy layer, the coercive force in the direction perpendicular to the film surface of the FePt ordered alloy film decreases. At this time, the amount of decrease in coercive force in the direction perpendicular to the film surface of the FePt ordered alloy film varies depending on the thickness of the fourth layer containing SiO 2 as a main component, and the thicker the fourth layer, the more FePt ordered. The present inventors have found from a verification experiment that the coercive force in the direction perpendicular to the film surface of the alloy film is lowered. That is, in the method for manufacturing a magnetic recording medium of the present invention, the coercive force in the direction perpendicular to the film surface of the FePt ordered alloy film can be controlled by the thickness of the fourth layer containing SiO 2 as a main component. Specifically, it was found that the coercive force in the perpendicular direction of the FePt ordered alloy film can be adjusted to an appropriate size by forming the fourth layer with a thickness of more than 1 nm and less than 9 nm. .

上述のように、本発明の磁気記録媒体の製造方法では、SiOを主成分とする第4の層の膜厚を適宜調整することにより、情報記録に用いる磁気ヘッドの起磁力に合わせてFePt規則合金膜の膜面に垂直な方向の保磁力を調整(低減)することができる。それゆえ、本発明の製造方法を用いて作製された磁気記録媒体では、磁気ヘッドのみでも十分記録可能となり、より安定した情報記録が可能になる。 As described above, in the method for manufacturing a magnetic recording medium according to the present invention, the thickness of the fourth layer containing SiO 2 as a main component is appropriately adjusted, so that the FePt is adjusted in accordance with the magnetomotive force of the magnetic head used for information recording. The coercive force in the direction perpendicular to the film surface of the ordered alloy film can be adjusted (reduced). Therefore, the magnetic recording medium manufactured using the manufacturing method of the present invention can be recorded sufficiently with only the magnetic head, and more stable information recording is possible.

また、本発明の磁気記録媒体によれば、製造段階でFePt規則合金膜上に形成されるSiOを主成分とする層(保磁力制御層)の膜厚により、情報記録時に用いる磁気ヘッドの性能に合わせて適宜FePt規則合金膜(記録層)の膜面に垂直な保磁力が調整されているので、情報記録時に記録磁界が不十分となるおそれが無くなり、安定した情報記録が可能になる。 Further, according to the magnetic recording medium of the present invention, the thickness of the layer (coercive force control layer) containing SiO 2 as a main component (coercive force control layer) formed on the FePt ordered alloy film in the manufacturing stage can be reduced. Since the coercive force perpendicular to the film surface of the FePt ordered alloy film (recording layer) is appropriately adjusted according to the performance, there is no possibility that the recording magnetic field becomes insufficient at the time of information recording, and stable information recording becomes possible. .

本発明の磁気記録媒体の製造方法によれば、記録層として用いるFePt規則合金膜のc軸を膜面に対して垂直方向に優先配向させたまま、保磁力を所望の値に制御することができる。それゆえ、優れた熱安定性及び垂直磁気特性を有する垂直磁気記録媒体を製造することができるとともに、情報記録時に用いる磁気ヘッドの性能に合わせて、適宜FePt規則合金膜の膜面に垂直な方向の保磁力を調整することができるので、より安定した情報記録が可能な垂直磁気記録媒体を製造することができる。   According to the method for manufacturing a magnetic recording medium of the present invention, the coercive force can be controlled to a desired value while the c-axis of the FePt ordered alloy film used as the recording layer is preferentially oriented in the direction perpendicular to the film surface. it can. Therefore, a perpendicular magnetic recording medium having excellent thermal stability and perpendicular magnetic characteristics can be manufactured, and the direction perpendicular to the film surface of the FePt ordered alloy film is appropriately selected according to the performance of the magnetic head used for information recording. Therefore, a perpendicular magnetic recording medium capable of more stable information recording can be manufactured.

以下に、本発明の磁気記録媒体及びその製造方法の実施例を具体的に説明するが、本発明はこれに限定されるものではない。   Examples of the magnetic recording medium and the manufacturing method thereof according to the present invention will be specifically described below, but the present invention is not limited thereto.

実施例1では、図1に示すように、基板1上に、Fe−O層2(下地層)、FePt層3(記録層)及びSiO層4(保磁力制御層)が順次接して設けられた磁気記録ディスク10を作製した。以下に、この例の磁気記録ディスク1の作製方法を図2を用いて説明する。 In Example 1, as shown in FIG. 1, an Fe—O layer 2 (underlayer), an FePt layer 3 (recording layer), and a SiO 2 layer 4 (coercive force control layer) are sequentially provided on a substrate 1. The obtained magnetic recording disk 10 was produced. Hereinafter, a method for producing the magnetic recording disk 1 of this example will be described with reference to FIG.

まず、基板1として、ディスク状の結晶化ガラス基板を用意した。次いで、用意した基板1を洗浄した後、スパッタ装置に装着した。次いで、図2(a)に示すように、基板1上に、膜厚0.5nmのFe−O層2を形成した。Fe−O層2は、ArとOの混合ガス中でFeターゲットをDCスパッタすることにより形成した。なお、スパッタ時のガス圧は1.0Paとした。次いで、図2(b)に示すように、Fe−O層2上に、膜厚3nmのFe層3aを形成した。Fe層3aはArガス中でFeターゲットをDCスパッタすることにより形成した。なお、スパッタ時のガス圧は0.9Paとした。次いで、図2(c)に示すように、Fe層3a上に、膜厚3nmのPt層3bを形成した。Pt層3bはArガス中でPtターゲットをDCスパッタすることにより形成した。そして、図2(d)に示すように、Pt層3b上に、膜厚3nmのSiO層4を形成した。SiO層4はArガス中でSiOターゲットをRFスパッタすることにより形成した。なお、スパッタ時のガス圧は0.9Paとした。 First, a disk-shaped crystallized glass substrate was prepared as the substrate 1. Next, the prepared substrate 1 was washed and then mounted on a sputtering apparatus. Next, as shown in FIG. 2A, an Fe—O layer 2 having a thickness of 0.5 nm was formed on the substrate 1. The Fe—O layer 2 was formed by DC sputtering of a Fe target in a mixed gas of Ar and O 2 . The gas pressure during sputtering was 1.0 Pa. Next, as shown in FIG. 2B, a 3 nm-thick Fe layer 3 a was formed on the Fe—O layer 2. The Fe layer 3a was formed by DC sputtering of an Fe target in Ar gas. The gas pressure during sputtering was 0.9 Pa. Next, as shown in FIG. 2C, a Pt layer 3b having a thickness of 3 nm was formed on the Fe layer 3a. The Pt layer 3b was formed by DC sputtering of a Pt target in Ar gas. Then, as shown in FIG. 2 (d), on the Pt layer 3b, to form the SiO 2 layer 4 having a film thickness of 3 nm. The SiO 2 layer 4 was formed by RF sputtering a SiO 2 target in Ar gas. The gas pressure during sputtering was 0.9 Pa.

次に、上述のようにして形成した積層膜を、真空中で加熱処理し、Fe層3aとPt層3bとの間で相互熱拡散を起こさせて、FePt規則合金薄膜(FePt層3)を形成した(図2(e)の状態)。この加熱処理には基板対向型の赤外線ランプヒーターを用い、投入電力は1800W(加熱温度約600℃)、加熱時間は30秒とした。以上のようにして、この例の磁気記録ディスク10を作製した。   Next, the laminated film formed as described above is heat-treated in vacuum to cause mutual thermal diffusion between the Fe layer 3a and the Pt layer 3b, thereby forming an FePt ordered alloy thin film (FePt layer 3). It formed (state of FIG.2 (e)). A substrate-facing infrared lamp heater was used for this heat treatment, the input power was 1800 W (heating temperature about 600 ° C.), and the heating time was 30 seconds. The magnetic recording disk 10 of this example was produced as described above.

実施例2で作製した磁気記録ディスクでは、SiO層の厚さを5nmとした。SiO層の膜厚を変えたこと以外は実施例1と同様の方法で磁気記録ディスクを作製した。 In the magnetic recording disk produced in Example 2, the thickness of the SiO 2 layer was 5 nm. A magnetic recording disk was produced in the same manner as in Example 1 except that the thickness of the SiO 2 layer was changed.

実施例3で作製した磁気記録ディスクでは、SiO層の厚さを7nmとした。SiO層の膜厚を変えたこと以外は実施例1と同様の方法で磁気記録ディスクを作製した。 In the magnetic recording disk manufactured in Example 3, the thickness of the SiO 2 layer was 7 nm. A magnetic recording disk was produced in the same manner as in Example 1 except that the thickness of the SiO 2 layer was changed.

[比較例1]
比較例1では、SiO層を備えない磁気記録ディスクを作製した。SiO層を備えないこと以外は実施例1と同様の方法で磁気記録ディスクを作製した。
[Comparative Example 1]
In Comparative Example 1, a magnetic recording disk having no SiO 2 layer was produced. A magnetic recording disk was produced in the same manner as in Example 1 except that the SiO 2 layer was not provided.

[比較例2]
比較例2では、Fe−O層を備えない磁気記録ディスクを作製した。Fe−O層を備えないこと以外は実施例1と同様の方法で磁気記録ディスクを作製した。
[Comparative Example 2]
In Comparative Example 2, a magnetic recording disk without an Fe—O layer was produced. A magnetic recording disk was produced in the same manner as in Example 1 except that the Fe—O layer was not provided.

[比較例3]
比較例3で作製した磁気記録ディスクでは、SiO層の厚さを9nmとした。SiO層の膜厚を変えたこと以外は実施例1と同様の方法で磁気記録ディスクを作製した。
[Comparative Example 3]
In the magnetic recording disk manufactured in Comparative Example 3, the thickness of the SiO 2 layer was 9 nm. A magnetic recording disk was produced in the same manner as in Example 1 except that the thickness of the SiO 2 layer was changed.

この例では、実施例1〜3及び比較例1〜3で作製した磁気記録ディスクにおけるFePt層(FePt規則合金膜)の磁気特性を試料共振型磁力計を用いて測定した。具体的には、FePt層の膜面に垂直な方向(以下では単に垂直方向ともいう)及び膜面に平行な方向(以下では面内方向ともいう)の磁気ヒステリシス曲線を測定し、それぞれの磁気ヒステリシス曲線からFePt層の垂直方向及び面内方向の保磁力(Hc)を算出した。なお、FePt層の垂直方向の保磁力Hcが大きく且つ面内方向の保磁力Hcが小さいほど、優良な垂直磁化膜である。   In this example, the magnetic properties of the FePt layer (FePt ordered alloy film) in the magnetic recording disks produced in Examples 1 to 3 and Comparative Examples 1 to 3 were measured using a sample resonance magnetometer. Specifically, magnetic hysteresis curves in a direction perpendicular to the film surface of the FePt layer (hereinafter also simply referred to as a vertical direction) and a direction parallel to the film surface (hereinafter also referred to as an in-plane direction) are measured. The coercivity (Hc) in the vertical direction and in-plane direction of the FePt layer was calculated from the hysteresis curve. Note that the higher the coercive force Hc in the vertical direction of the FePt layer and the smaller the coercive force Hc in the in-plane direction, the better the perpendicular magnetic film.

また、実施例1〜3及び比較例1〜3で作製したFePt層の結晶構造を、X線回折装置を用いて解析した。X線源にはCu−kα線を用い、θ―2θ曲線を測定した。FePt規則合金膜のc軸が垂直方向に優先配向している場合には、FePt(001)面とFePt(002)面からの回折ピークが観測される。   Moreover, the crystal structure of the FePt layer produced in Examples 1-3 and Comparative Examples 1-3 was analyzed using the X-ray-diffraction apparatus. A Cu-kα ray was used as the X-ray source, and a θ-2θ curve was measured. When the c-axis of the FePt ordered alloy film is preferentially oriented in the vertical direction, diffraction peaks from the FePt (001) plane and the FePt (002) plane are observed.

上述の測定結果を下記の表1に示した。なお、表1には、実施例1〜3及び比較例1〜3で作製したFePt層の垂直方向の保磁力Hc及び面内方向の保磁力Hc、並びに、X線回折で観測された回折ピークだけでなく、それらの測定結果とFe−O層の膜厚及びSiO層の膜厚との関係が明確になるように、実施例1〜3及び比較例1〜3で作製した磁気ディスクのFe−O層の膜厚及びSiO層の膜厚も一緒に記載した。 The above measurement results are shown in Table 1 below. In Table 1, the coercive force Hc in the vertical direction and the coercive force Hc in the in-plane direction of the FePt layers prepared in Examples 1 to 3 and Comparative Examples 1 to 3 and diffraction peaks observed by X-ray diffraction are shown. In addition to the measurement results and the relationship between the film thickness of the Fe—O layer and the film thickness of the SiO 2 layer, the magnetic disks produced in Examples 1 to 3 and Comparative Examples 1 to 3 were clarified. The film thickness of the Fe—O layer and the film thickness of the SiO 2 layer are also shown together.

Figure 2006202451
Figure 2006202451

表1から明らかなように、実施例1〜3のいずれのFePt層においても、垂直方向の保磁力Hcが面内方向の保磁力Hcよりも大きくなるとともに、X線回折ではFePt(001)とFePt(002)の回折ピークが観測された。この結果から、実施例1〜3で形成されたFePt層が、FePt規則合金結晶のc軸が垂直方向に優先配向した優良な垂直磁化膜であると判断できる。   As is apparent from Table 1, in any of the FePt layers of Examples 1 to 3, the coercive force Hc in the vertical direction is larger than the coercive force Hc in the in-plane direction, and in X-ray diffraction, FePt (001) A diffraction peak of FePt (002) was observed. From this result, it can be determined that the FePt layers formed in Examples 1 to 3 are excellent perpendicular magnetization films in which the c-axis of the FePt ordered alloy crystal is preferentially oriented in the vertical direction.

また、表1から明らかなように、SiO層の厚さが増すにつれてFePt層の垂直方向の保磁力Hcが低下することが分かった。これは、製造段階で積層膜を所定温度で加熱した際(図2(d)〜図2(e)の工程)に、SiO層からFePt層中にSiOが拡散浸入するためであると考えられる。この結果から、FePt層上に形成されるSiO層の膜厚を調整することにより、FePt層のc軸の垂直配向を維持したまま、垂直方向の保磁力Hcを所望の値に制御する(低下させる)ことができることが分かった。 Further, as is apparent from Table 1, it was found that the coercive force Hc in the vertical direction of the FePt layer decreases as the thickness of the SiO 2 layer increases. This is because SiO 2 diffuses and enters from the SiO 2 layer into the FePt layer when the laminated film is heated at a predetermined temperature in the manufacturing stage (steps of FIGS. 2D to 2E). Conceivable. From this result, by adjusting the film thickness of the SiO 2 layer formed on the FePt layer, the vertical coercive force Hc is controlled to a desired value while maintaining the c-axis vertical alignment of the FePt layer ( It was found that it can be reduced).

なお、比較例1で形成されたFePt層は、表1から明らかなように、垂直方向の保磁力Hcが面内方向の保磁力Hcよりも大きく、X線回折ではFePt(001)とFePt(002)の回折ピークが観測されることから、優良な垂直磁化膜であると判断できる。しかしながら、FePt層の垂直方向の保磁力Hcが14.6kOeと非常に高いので、通常の磁気ヘッドのみで記録することは困難である。   As is clear from Table 1, the FePt layer formed in Comparative Example 1 has a coercive force Hc in the vertical direction larger than the coercive force Hc in the in-plane direction, and FePt (001) and FePt ( 002) is observed, it can be determined that the film is an excellent perpendicular magnetization film. However, since the coercive force Hc in the vertical direction of the FePt layer is very high at 14.6 kOe, it is difficult to perform recording with only a normal magnetic head.

比較例2で形成されたFePt層は、表1から明らかなように、垂直方向の保磁力Hcと面内方向の保磁力Hcの差が小さく、X線回折ではFePt(001)及びFePt(002)の回折ピークだけでなく、FePt(111)の回折ピークも観測された。すなわち、比較例2ではFePt層のc軸の垂直配向性が低下していることを示している。これは、比較例2ではFePt層の結晶配向性を制御するためのFe−O層を設けなかったためである。   As is apparent from Table 1, the FePt layer formed in Comparative Example 2 has a small difference between the coercive force Hc in the vertical direction and the coercive force Hc in the in-plane direction, and FePt (001) and FePt (002) in X-ray diffraction. ) As well as a diffraction peak of FePt (111) was observed. That is, Comparative Example 2 shows that the c-axis vertical alignment of the FePt layer is lowered. This is because in Comparative Example 2, the Fe—O layer for controlling the crystal orientation of the FePt layer was not provided.

また、比較例3で形成されたFePt層は、表1から明らかなように、垂直方向の保磁力Hcが非常に小さく、X線回折ではFePt(111)の回折ピークのみが観測された。すなわち、比較例3で形成されたFePt層では、FePt層のc軸が垂直配向していないことが分かった。これは、SiO層からFePt層中に拡散するSiO成分が多くなりすぎたために、FePt層のc軸配向性が低下したものと考えられる。 Further, as apparent from Table 1, the FePt layer formed in Comparative Example 3 had a very small coercive force Hc in the vertical direction, and only the diffraction peak of FePt (111) was observed in X-ray diffraction. That is, it was found that the c-axis of the FePt layer was not vertically aligned in the FePt layer formed in Comparative Example 3. This is presumably because the c-axis orientation of the FePt layer was lowered because the SiO 2 component diffusing from the SiO 2 layer into the FePt layer was excessive.

上記表1の結果から、FePt層上に形成されるSiO層の膜厚を1nmより厚くし且つ9nmより薄くすることにより(SiO層の膜厚をFePt層の膜厚の約20%より厚くし且つ約150%より薄くすることにより)、より好ましくはSiO層の膜厚を3nm〜7nm(SiO層の膜厚をFePt層の膜厚の約50%〜約120%)にすることにより、FePt層のc軸の垂直配向を維持したまま、FePt層の垂直方向の保磁力Hcを情報記録時に用いる磁気ヘッドで十分に記録可能となるような所望の値に調整することができることが分かった。 From the results of Table 1 above, by making the film thickness of the SiO 2 layer formed on the FePt layer thicker than 1 nm and thinner than 9 nm (the film thickness of the SiO 2 layer is about 20% of the film thickness of the FePt layer). The thickness of the SiO 2 layer is preferably 3 nm to 7 nm (the thickness of the SiO 2 layer is about 50% to about 120% of the thickness of the FePt layer). Accordingly, the coercive force Hc in the vertical direction of the FePt layer can be adjusted to a desired value that can be sufficiently recorded by the magnetic head used for information recording while maintaining the vertical orientation of the c-axis of the FePt layer. I understood.

なお、実施例1〜3で形成したFePt層の垂直方向の保磁力Hcは、表1から明らかなように、比較例1で形成したFePt層の垂直方向の保磁力より小さくなる。しかしながら、実施例1〜3で形成したFePt層の垂直方向の保磁力Hcは、従来の垂直磁気記録媒体に用いられるCoCr系合金膜の保磁力と比べると十分大きな値であり、実施例1〜3で作製した磁気ディスクは、従来と比べても一層優れた熱安定性及び垂直磁気特性を有する高密度記録可能な磁気記録媒体であることが分かる。   In addition, as apparent from Table 1, the coercive force Hc in the vertical direction of the FePt layers formed in Examples 1 to 3 is smaller than the coercive force in the vertical direction of the FePt layer formed in Comparative Example 1. However, the coercive force Hc in the vertical direction of the FePt layers formed in Examples 1 to 3 is sufficiently large compared to the coercivity of the CoCr-based alloy film used in the conventional perpendicular magnetic recording medium. It can be seen that the magnetic disk manufactured in 3 is a magnetic recording medium capable of high-density recording, which has better thermal stability and perpendicular magnetic characteristics than conventional ones.

また、上記実施例1〜3では、基板上にFe−O層、FePt層及びSiO層を積層した磁気ディスクについて説明したが、本発明はこれに限定されない。Fe−O層自体にFePt層及びSiO層を支持する機能を有する場合には、基板を備えなくても良い。 Further, in the above embodiments 1 to 3, Fe-O layer on a substrate, has been described a magnetic disk obtained by laminating FePt layer and SiO 2 layer, the present invention is not limited thereto. When the Fe—O layer itself has a function of supporting the FePt layer and the SiO 2 layer, the substrate may not be provided.

上述のように、本発明の磁気記録媒体の製造方法及び磁気記録媒体では、記録層として用いるFePt規則合金膜のc軸を膜面に対して垂直方向に優先配向させたまま、FePt規則合金膜の膜面に垂直な方向の保磁力を所望の値に制御することができる。それゆえ、本発明の磁気記録媒体の製造方法及び磁気記録媒体によれば、熱安定性と垂直磁気特性とに優れた高密度磁気記録媒体の製造方法及び磁気記録媒体を提供することができ、テラバイトクラスの磁気記録媒体及びその製造方法として好適である。   As described above, in the method of manufacturing a magnetic recording medium and the magnetic recording medium of the present invention, the FePt ordered alloy film with the c-axis of the FePt ordered alloy film used as the recording layer preferentially oriented in the direction perpendicular to the film surface. The coercive force in the direction perpendicular to the film surface can be controlled to a desired value. Therefore, according to the method for manufacturing a magnetic recording medium and the magnetic recording medium of the present invention, it is possible to provide a method for manufacturing a high-density magnetic recording medium excellent in thermal stability and perpendicular magnetic characteristics, and a magnetic recording medium, It is suitable as a terabyte class magnetic recording medium and a method for manufacturing the same.

図1は、実施例1で作製した磁気記録媒体の概略断面図である。FIG. 1 is a schematic cross-sectional view of the magnetic recording medium manufactured in Example 1. 図2(a)〜(e)は、実施例1の磁気記録媒体の製造方法の手順を示した図である。2A to 2E are diagrams showing the procedure of the method for manufacturing the magnetic recording medium of Example 1. FIG.

符号の説明Explanation of symbols

1 基板
2 Fe−O層
3 FePt層
3a Fe層
3b Pt層
4 SiO
1 Substrate 2 Fe—O layer 3 FePt layer 3a Fe layer 3b Pt layer 4 SiO 2 layer

Claims (5)

磁気記録媒体であって、
Fe及びOを主成分とする下地層と、
上記下地層上に形成されたFePt合金を主体とする記録層と、
上記記録層上に形成されたSiOを主成分とする保磁力制御層とを備え、
上記記録層の結晶が膜面に対して垂直配向していることを特徴とする磁気記録媒体。
A magnetic recording medium,
An underlayer mainly composed of Fe and O;
A recording layer mainly composed of an FePt alloy formed on the underlayer;
A coercive force control layer mainly composed of SiO 2 formed on the recording layer,
A magnetic recording medium, wherein the crystal of the recording layer is oriented perpendicular to the film surface.
上記保磁力制御層の膜厚が1nmより厚く且つ9nmより薄いことを特徴とする請求項1に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the coercive force control layer has a thickness greater than 1 nm and less than 9 nm. 磁気記録媒体の製造方法であって、
Fe及びOを主成分とする第1の層を形成することと、
第1の層上に、Feを主成分とする第2の層を形成することと、
第2の層上に、Ptを主成分とする第3の層を形成することと、
第3の層上に、SiOを主成分とする第4の層を形成することと、
上記積層膜を所定温度で加熱することとを含み、
上記所定温度が第2の層と第3の層との間でFe及びPtの相互拡散が生じ、FeとPtとが合金化する温度であり、上記加熱することにより形成されたFeとPtとの合金膜の結晶が膜面に対して垂直配向していることを特徴とする磁気記録媒体の製造方法。
A method for manufacturing a magnetic recording medium, comprising:
Forming a first layer mainly composed of Fe and O;
Forming a second layer mainly composed of Fe on the first layer;
Forming a third layer mainly composed of Pt on the second layer;
Forming a fourth layer mainly composed of SiO 2 on the third layer;
Heating the laminated film at a predetermined temperature,
The predetermined temperature is a temperature at which interdiffusion of Fe and Pt occurs between the second layer and the third layer, and Fe and Pt are alloyed. Fe and Pt formed by heating A method for producing a magnetic recording medium, characterized in that the crystal of the alloy film is oriented perpendicularly to the film surface.
第4の層を1nmより厚く且つ9nmより薄い膜厚で形成することを特徴とする請求項3に記載の磁気記録媒体の製造方法。 4. The method of manufacturing a magnetic recording medium according to claim 3, wherein the fourth layer is formed with a thickness greater than 1 nm and less than 9 nm. 上記所定温度が300〜700℃であることを特徴とする請求項3または4に記載の磁気記録媒体の製造方法。 The method for manufacturing a magnetic recording medium according to claim 3 or 4, wherein the predetermined temperature is 300 to 700 ° C.
JP2005015857A 2005-01-24 2005-01-24 Magnetic recording medium and its manufacturing method Withdrawn JP2006202451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015857A JP2006202451A (en) 2005-01-24 2005-01-24 Magnetic recording medium and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015857A JP2006202451A (en) 2005-01-24 2005-01-24 Magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006202451A true JP2006202451A (en) 2006-08-03

Family

ID=36960304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015857A Withdrawn JP2006202451A (en) 2005-01-24 2005-01-24 Magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006202451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399051B1 (en) 2011-09-29 2013-03-19 HGST Netherlands B.V. Method for making a patterned perpendicular magnetic recording disk having a FePt or CoPt chemically ordered recording layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399051B1 (en) 2011-09-29 2013-03-19 HGST Netherlands B.V. Method for making a patterned perpendicular magnetic recording disk having a FePt or CoPt chemically ordered recording layer

Similar Documents

Publication Publication Date Title
JP3950838B2 (en) High density magnetic recording medium using FePtC thin film and method of manufacturing the same
JP5145437B2 (en) Magnetic recording medium
JP5617112B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US9899050B2 (en) Multiple layer FePt structure
JP2834392B2 (en) Metal thin film type magnetic recording medium and method of manufacturing the same
JP6439869B2 (en) Method for manufacturing magnetic recording medium
US20120171519A1 (en) MULTILAYER STRUCTURE WITH HIGH ORDERED FePt LAYER
JP2002190108A (en) Magnetic recording medium and its production method
CN100578626C (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording/reproducing apparatus
JP2004079148A (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
US20110020669A1 (en) Magnetic recording medium
WO2017002348A1 (en) Magnetic recording medium
JP2004213869A (en) Vertical magnetic recording medium and its manufacturing method
JP4673735B2 (en) Magnetic recording medium and method for manufacturing the same
JP2006202451A (en) Magnetic recording medium and its manufacturing method
WO2013187217A1 (en) MAGNETIC RECORDING MEDIUM USING FERROMAGNETIC-PARAMAGNETIC PHASE TRANSITION IN FePt ALLOY
JP2006294121A (en) Magnetic recording medium and its manufacturing method
JP2006236486A (en) Magnetic recording medium and its manufacturing method
JP2006294077A (en) Magnetic recording medium and its manufacturing method
JP4072324B2 (en) Magnetic recording medium and method for manufacturing the same
JP2006344336A (en) Recording medium and manufacturing method of the recording medium
JP2006004460A (en) Method for manufacturing magnetic recording medium
JP5344433B2 (en) Magnetic recording medium and method for producing magnetic recording medium
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP2004342205A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401