JP2006199850A - Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate - Google Patents

Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate Download PDF

Info

Publication number
JP2006199850A
JP2006199850A JP2005013880A JP2005013880A JP2006199850A JP 2006199850 A JP2006199850 A JP 2006199850A JP 2005013880 A JP2005013880 A JP 2005013880A JP 2005013880 A JP2005013880 A JP 2005013880A JP 2006199850 A JP2006199850 A JP 2006199850A
Authority
JP
Japan
Prior art keywords
heat ray
antimony
tin oxide
doped tin
ray shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005013880A
Other languages
Japanese (ja)
Inventor
Kenichi Fujita
賢一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005013880A priority Critical patent/JP2006199850A/en
Publication of JP2006199850A publication Critical patent/JP2006199850A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat ray-shading component-containing master batch enabling the production of a heat ray-shading transparent resin-molded material having a low haze, an excellent visible light-transmitting capacity and a high heat ray-shading function. <P>SOLUTION: This heat ray-shading component-containing master batch contains an antimony-doped tin oxide and a thermoplastic resin. The fine particles of the antimony-doped tin oxide is surface-treated with at least 1 kind of a surface-treating agent selected from a silane-coupling agent, a titanium-coupling agent, an aluminum-coupling agent and a zirconium coupling agent having an alkoxy or hydroxy and an organic functional group, and also the blending ratio X of the surface-treating agent to the antimony-doped tin oxide (the weight of the surface-treating agent)/(the weight of the antimony-doped tin oxide) is set within the range of 0.05<X<10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築物の屋根材や壁材、自動車、電車、航空機等の開口部に使用される窓材、アーケード、天井ドーム、カーポート等に広く利用される樹脂成形体に係り、特に、可視光透過性が良好でかつ熱線遮蔽機能を有する熱線遮蔽透明樹脂成形体の製造を可能とする熱線遮蔽成分含有マスターバッチと熱線遮蔽透明樹脂成形体および熱線遮蔽透明樹脂積層体に関するものである。   The present invention relates to a resin molded body widely used for roof materials and wall materials of buildings, window materials used in openings of automobiles, trains, aircrafts, arcades, ceiling domes, carports, etc. The present invention relates to a heat ray shielding component-containing master batch, a heat ray shielding transparent resin molding, and a heat ray shielding transparent resin laminate capable of producing a heat ray shielding transparent resin molding having good visible light permeability and having a heat ray shielding function.

従来、各種建築物や車両の窓、ドア等のいわゆる開口部分から入射する太陽光線には、可視光線の他に紫外線や赤外線が含まれている。この太陽光線に含まれている赤外線のうち800〜2500nmの近赤外線は熱線と呼ばれ、開口部分から進入することにより室内の温度を上昇させる原因になる。そこで、近年、各種建築物や車両の窓材等の分野では、可視光線を十分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する熱線遮蔽透明樹脂成形体の需要が急増しており、熱線遮蔽透明樹脂成形体に関する発明が数多く提案されている。   Conventionally, sun rays incident from so-called opening portions such as windows and doors of various buildings and vehicles include ultraviolet rays and infrared rays in addition to visible rays. Of the infrared rays contained in the sunlight, near infrared rays of 800 to 2500 nm are called heat rays, and cause the indoor temperature to rise by entering from the opening. Therefore, in recent years, in the fields of various buildings and vehicle window materials, etc., there is a demand for a heat ray shielding transparent resin molded body that shields heat rays while sufficiently incorporating visible light, and suppresses temperature rise while maintaining brightness. The number of inventions related to heat ray shielding transparent resin moldings has been proposed.

例えば、金属、金属酸化物を透明樹脂フィルムに蒸着して成る熱線反射フィルムをガラス、アクリル板、ポリカーボネート板等の透明基材に接着した熱線遮蔽板(特許文献1〜3参照)が提案されている。しかし、上記熱線反射フィルム自体が非常に高価でかつ接着等の煩雑な工程を要するため高コストとなる。また、透明基材と熱線反射フィルムとの接着性があまり良くないため経時変化によりフィルムの剥離が生じるといった欠点も有している。   For example, there has been proposed a heat ray shielding plate (see Patent Documents 1 to 3) in which a heat ray reflective film formed by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent substrate such as glass, an acrylic plate, or a polycarbonate plate. Yes. However, the heat ray reflective film itself is very expensive and requires a complicated process such as adhesion, resulting in high costs. Moreover, since the adhesiveness of a transparent base material and a heat ray reflective film is not so good, there also exists a fault that peeling of a film arises by a time-dependent change.

また、透明樹脂成形体の表面に金属あるいは金属酸化物を直接蒸着して成る熱線遮蔽板も提案されているが、高真空や精度の高い雰囲気制御を要する高価な物理成膜装置を使用する必要があるため、量産性が悪く、汎用性に乏しい欠点を有している。   In addition, a heat ray shielding plate has been proposed in which a metal or metal oxide is directly deposited on the surface of a transparent resin molded body, but it is necessary to use an expensive physical film forming apparatus that requires high vacuum and high-precision atmosphere control. Therefore, the mass productivity is poor and the versatility is poor.

一方、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂にフタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤が練り込まれた熱線遮蔽板や熱線遮蔽フィルム(特許文献4〜5参照)も提案されている。しかし、熱線を十分に遮蔽するためには多量の近赤外線吸収剤を配合しなければならず、多量に配合する分、可視光線透過能が低下してしまう欠点がある。また、有機化合物である有機近赤外線吸収剤を使用しているため、直射日光に常時晒される建築物や車両の窓材等への適用は耐侯性に問題があり、必ずしも適当であるとは言えなかった。   On the other hand, for example, a heat ray shielding plate in which an organic near-infrared absorber typified by a phthalocyanine compound or an anthraquinone compound is kneaded into a thermoplastic transparent resin such as polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyethylene resin, or polystyrene resin. And heat ray shielding films (see Patent Documents 4 to 5) have also been proposed. However, in order to sufficiently shield the heat rays, a large amount of near-infrared absorbing agent must be blended, and there is a drawback that the visible light transmission ability is reduced by the blending of a large amount. In addition, since organic near-infrared absorbers, which are organic compounds, are used, application to buildings and vehicle window materials that are constantly exposed to direct sunlight has problems with weather resistance and is not necessarily appropriate. There wasn't.

更に、例えば、アクリル樹脂、ポリカーボネート樹脂等の透明樹脂に、熱線反射能を有する酸化チタンあるいは酸化チタンで被覆されたマイカ等の無機粒子を練り込んだ熱線遮蔽板(特許文献6〜7の記載参照)も提案されている。しかし、これ等のものでは熱線遮蔽能を高めるために熱線反射粒子を多量に添加する必要があり、上記有機近赤外線吸収剤を用いる場合と同様、熱線反射粒子の配合量の増大に伴い可視光線透過能が低下してしまう欠点がある。また、熱線反射粒子の添加量を少なくすると可視光線透過能は高まるものの熱線遮蔽能が低下してしまい、熱線遮蔽能と可視光線透過能を同時に満足させることが困難な問題があった。更に、熱線反射粒子を多量に配合すると、基材である透明樹脂成形体の物性、特に耐衝撃強度や靭性が低下するという強度面からの問題も有している。   Further, for example, a heat ray shielding plate in which inorganic particles such as mica coated with titanium oxide or titanium oxide having heat ray reflectivity are kneaded into a transparent resin such as an acrylic resin or a polycarbonate resin (see the description of Patent Documents 6 to 7). ) Has also been proposed. However, in these cases, it is necessary to add a large amount of heat ray reflective particles in order to enhance the heat ray shielding ability, and in the same manner as in the case of using the organic near-infrared absorber, visible light rays are increased along with an increase in the amount of heat ray reflective particles. There is a drawback that the permeability decreases. Further, when the amount of heat ray reflective particles added is reduced, the visible light transmission ability is increased, but the heat ray shielding ability is lowered, and it is difficult to satisfy both the heat ray shielding ability and the visible light transmission ability at the same time. Furthermore, when a large amount of heat ray reflective particles are blended, there is a problem from the strength aspect that physical properties, particularly impact strength and toughness, of the transparent resin molded body as a base material are lowered.

このような技術的背景の下、本出願人は、自由電子を多量に保有するアンチモンドープ酸化錫(以下ATOと記すこともある)に着目し、このアンチモンドープ酸化錫を熱線遮蔽成分とした熱線遮蔽透明樹脂成形体(断熱資材)を既に提案している。   Under such a technical background, the present applicant pays attention to antimony-doped tin oxide (hereinafter sometimes referred to as ATO) having a large amount of free electrons, and uses the antimony-doped tin oxide as a heat ray shielding component. A shielding transparent resin molding (heat insulating material) has already been proposed.

そして、アンチモンドープ酸化錫は、上記酸化チタンやマイカ等の無機粒子と較べて熱線遮蔽機能に優れており、その分、アンチモンドープ酸化錫を多量に配合する必要がないため、上述した問題を解消することが可能となった。   And antimony-doped tin oxide is superior in heat ray shielding function compared to the inorganic particles such as titanium oxide and mica, and it is not necessary to add a large amount of antimony-doped tin oxide, thereby eliminating the above-mentioned problems. It became possible to do.

しかし、透明樹脂にアンチモンドープ酸化錫の微粒子を直接練り込もうとすると微粒子の凝集が進み易く、その結果、ヘイズが高くなって高透過性が要求される用途には利用し難い問題が依然として存在した。   However, if the antimony-doped tin oxide fine particles are directly kneaded into the transparent resin, the fine particles tend to aggregate, and as a result, there still remains a problem that is difficult to use in applications where high haze is required and high permeability is required. did.

尚、高分子系分散剤等を添加して上記微粒子の凝集を防止することも可能であるが、透明樹脂への混練時あるいは樹脂成形時における温度が高くなると上記高分子系分散剤を原因とする変色が起こることがあり、耐熱性が低下する別の問題を有していた。
特開昭61−277437号公報 特開平10−146919号公報 特開2001−179887号公報 特開平6−256541号公報 特開平6−264050号公報 特開平5−78544号公報 特開平2−173060号公報 特開2002−369629号公報 特開2004−141051号公報
Although it is possible to prevent the aggregation of the fine particles by adding a polymer dispersant or the like, if the temperature during kneading into the transparent resin or resin molding becomes high, the polymer dispersant is caused. Discoloration may occur, which has another problem that heat resistance is lowered.
JP-A 61-277437 Japanese Patent Laid-Open No. 10-146919 Japanese Patent Laid-Open No. 2001-179887 JP-A-6-256541 JP-A-6-264050 JP-A-5-78544 JP-A-2-173060 JP 2002-369629 A JP 2004-141051 A

本発明はこのような問題点に着目してなされており、その課題とするところは、ヘイズが低く優れた可視光線透過能を有ししかも高い熱線遮蔽機能を有する熱線遮蔽透明樹脂成形体の製造を可能とする熱線遮蔽成分含有マスターバッチを提供し、合わせて熱線遮蔽透明樹脂成形体および熱線遮蔽透明樹脂積層体を提供することにある。   The present invention has been made paying attention to such problems, and the problem is to produce a heat ray-shielding transparent resin molded article having a low haze, an excellent visible light transmission ability and a high heat ray shielding function. It is to provide a heat ray shielding component-containing masterbatch that makes it possible to provide a heat ray shielding transparent resin molding and a heat ray shielding transparent resin laminate.

そこで、上記課題を解決するため、本発明者はアンチモンドープ酸化錫を微粒子化し、この微粒子表面をアルコキシル基若しくはヒドロキシル基と有機官能基を有するシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択された少なくとも一種の表面処理剤により表面処理したところ、高分子系分散剤等の分散剤を用いなくとも透明樹脂への分散性が著しく改善されることを見出すに至った。本発明はこのような技術的発見に基づき完成されている。   Therefore, in order to solve the above problems, the present inventors finely divided antimony-doped tin oxide, and the surface of the fine particles has a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent having an alkoxyl group or a hydroxyl group and an organic functional group. When the surface treatment was performed with at least one surface treatment agent selected from zirconium coupling agents, it was found that the dispersibility in the transparent resin was remarkably improved without using a dispersant such as a polymer dispersant. It was. The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
熱線遮蔽成分であるアンチモンドープ酸化錫と熱可塑性樹脂を含有し、熱線遮蔽透明樹脂成形体を製造するために使用される熱線遮蔽成分含有マスターバッチを前提とし、
上記アンチモンドープ酸化錫の微粒子が、アルコキシル基若しくはヒドロキシル基と有機官能基を有するシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択された少なくとも一種の表面処理剤により表面処理され、かつ、アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xが0.05<X<10の範囲に設定されていることを特徴とする。
That is, the invention according to claim 1
Containing a heat ray shielding component-containing masterbatch, which contains antimony-doped tin oxide and a thermoplastic resin, which are heat ray shielding components, and is used for producing a heat ray shielding transparent resin molding,
The antimony-doped tin oxide fine particles are formed of at least one surface treatment agent selected from a silane coupling agent having an alkoxyl group or a hydroxyl group and an organic functional group, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent. The surface treatment is performed and the compounding ratio of the surface treatment agent to the antimony-doped tin oxide (weight of the surface treatment agent / weight of the antimony-doped tin oxide) X is set in a range of 0.05 <X <10. And

また、請求項2に係る発明は、
請求項1記載の発明に係る熱線遮蔽成分含有マスターバッチを前提とし、
上記熱可塑性樹脂が、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、および、ポリエステル樹脂から選択される少なくとも一種であることを特徴とし、
請求項3に係る発明は、
請求項1または請求項2記載の発明に係る熱線遮蔽成分含有マスターバッチを前提とし、
上記アンチモンドープ酸化錫が平均粒径800nm以下の微粒子であることを特徴とする。
The invention according to claim 2
Assuming a heat-shielding component-containing masterbatch according to the invention of claim 1,
The thermoplastic resin is at least one selected from acrylic resin, polycarbonate resin, polyetherimide resin, polystyrene resin, polyethersulfone resin, fluorine resin, polyolefin resin, polyvinyl chloride resin, and polyester resin. Features
The invention according to claim 3
Based on the heat ray shielding component-containing masterbatch according to the invention of claim 1 or claim 2,
The antimony-doped tin oxide is a fine particle having an average particle size of 800 nm or less.

次に、請求項4に係る発明は、
熱線遮蔽透明樹脂成形体を前提とし、
請求項1〜請求項3のいずれかに記載の熱線遮蔽成分含有マスターバッチを異種または同種の熱可塑性樹脂成形材料で希釈混練し、所定の形状に成形して得られることを特徴とし、
請求項5に係る発明は、
請求項4記載の発明に係る熱線遮蔽透明樹脂成形体を前提とし、
ヘイズが10%以下であることを特徴とする。
Next, the invention according to claim 4 is:
Assuming a heat-shielding transparent resin molding,
The heat ray shielding component-containing masterbatch according to any one of claims 1 to 3 is obtained by diluting and kneading with a different type or the same type of thermoplastic resin molding material, and molding into a predetermined shape,
The invention according to claim 5
Based on the heat ray shielding transparent resin molding according to the invention of claim 4,
The haze is 10% or less.

また、請求項6に係る発明は、
熱線遮蔽透明樹脂積層体を前提とし、
請求項4または請求項5記載の熱線遮蔽透明樹脂成形体を他の透明基材に積層して得られることを特徴とする。
The invention according to claim 6
Assuming a heat ray shielding transparent resin laminate,
It is obtained by laminating the heat ray shielding transparent resin molding according to claim 4 or 5 on another transparent substrate.

請求項1〜3記載の発明に係る熱線遮蔽成分含有マスターバッチによれば、
熱線遮蔽成分であるアンチモンドープ酸化錫の微粒子が、アルコキシル基若しくはヒドロキシル基と有機官能基を有するシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択された少なくとも一種の表面処理剤により表面処理され、かつ、アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xが0.05<X<10の範囲に設定されているため、高分子系分散剤等の分散剤を用いることなく熱可塑性樹脂への微粒子分散性を改善することが可能となる。
According to the heat ray shielding component containing masterbatch which concerns on invention of Claims 1-3,
Antimony-doped tin oxide fine particles as a heat ray shielding component is at least one selected from a silane coupling agent having an alkoxyl group or a hydroxyl group and an organic functional group, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent. Surface treatment is performed with the surface treatment agent, and the compounding ratio of the surface treatment agent to the antimony-doped tin oxide (weight of surface treatment agent / weight of antimony-doped tin oxide) X is set in a range of 0.05 <X <10. Therefore, it is possible to improve the fine particle dispersibility in the thermoplastic resin without using a dispersant such as a polymer dispersant.

また、請求項4〜5記載の発明に係る熱線遮蔽透明樹脂成形体によれば、
請求項1〜請求項3のいずれかに記載の熱線遮蔽成分含有マスターバッチを異種または同種の熱可塑性樹脂成形材料で希釈混練し、所定の形状に成形して得られており、
請求項6記載の発明に係る熱線遮蔽透明樹脂積層体によれば、
請求項4または請求項5記載の熱線遮蔽透明樹脂成形体を他の透明基材に積層して得られているため、ヘイズが低く優れた可視光線透過能を有ししかも高い熱線遮蔽機能を具備させることが可能となる。
Moreover, according to the heat ray shielding transparent resin molding which concerns on invention of Claims 4-5,
The heat ray shielding component-containing masterbatch according to any one of claims 1 to 3 is obtained by diluting and kneading with a different type or the same type of thermoplastic resin molding material, and molding into a predetermined shape,
According to the heat ray shielding transparent resin laminate according to the invention of claim 6,
Since it is obtained by laminating the heat ray-shielding transparent resin molded product according to claim 4 or 5 on another transparent substrate, it has a low visible haze and an excellent visible ray transmission ability and a high heat ray shielding function. It becomes possible to make it.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明に係る発明は、熱線遮蔽成分であるアンチモンドープ酸化錫と熱可塑性樹脂を含有し、熱線遮蔽透明樹脂成形体を製造するために使用される熱線遮蔽成分含有マスターバッチにおいて、上記アンチモンドープ酸化錫の微粒子が、アルコキシル基若しくはヒドロキシル基と有機官能基を有するシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択された少なくとも一種の表面処理剤により表面処理され、かつ、アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xが0.05<X<10の範囲に設定されていることを特徴としている。   First, the invention according to the present invention includes a heat ray shielding component-containing masterbatch containing antimony-doped tin oxide, which is a heat ray shielding component, and a thermoplastic resin, and used for producing a heat ray shielding transparent resin molded article. Surface treatment with at least one surface treatment agent selected from a silane coupling agent having an alkoxyl group or a hydroxyl group and an organic functional group, a titanium coupling agent, an aluminum coupling agent, or a zirconium coupling agent. And the mixing ratio of the surface treatment agent to the antimony-doped tin oxide (weight of the surface treatment agent / weight of the antimony-doped tin oxide) X is set in a range of 0.05 <X <10. .

そして、本発明において適用されるアンチモンドープ酸化錫は、可視光領域で光の吸収、反射がほとんど無く、1000nm以上の領域でプラズマ共鳴に由来する反射・吸収が大きい特性を有するものである。また、アンチモンドープ酸化錫微粒子の粒径は800nm以下、好ましくは200nm以下がよい。粒子径が200nmよりも大きい微粒子、若しくは微粒子が凝集して200nmよりも大きい粗大粒子は、成形された熱線遮蔽透明樹脂成形体の光散乱源となって透明樹脂成形体が曇って見えるようになる場合があるからである。但し、透光性屋根材等は、透明性よりも不透明な光透過性を要求されることがあり、この場合には粒径を大きくして散乱を助長する構成が好ましい。しかし、800nmより大きくなると熱線遮蔽能そのものも減衰するため800nm以下がよい。   And the antimony dope tin oxide applied in this invention has the characteristic that there is almost no absorption and reflection of light in a visible light region, and reflection and absorption derived from plasma resonance are large in a region of 1000 nm or more. The particle diameter of the antimony-doped tin oxide fine particles is 800 nm or less, preferably 200 nm or less. Fine particles having a particle diameter larger than 200 nm or coarse particles larger than 200 nm due to aggregation of the fine particles become a light scattering source of the molded heat ray shielding transparent resin molded article, and the transparent resin molded article becomes cloudy. Because there are cases. However, the translucent roofing material or the like may be required to have a light translucency that is more opaque than the transparency. In this case, a configuration in which the particle size is increased to promote scattering is preferable. However, when it exceeds 800 nm, the heat ray shielding ability itself is attenuated, so 800 nm or less is preferable.

次に、本発明で使用されるアンチモンドープ酸化錫の微粒子は、金属酸化物特有の表面での光触媒活性を抑制しかつ透明熱可塑性樹脂中への分散性を向上させるため、アルコキシル基若しくはヒドロキシル基と有機官能基を有するシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択される少なくとも一種の表面処理剤により表面処理が施される。   Next, the antimony-doped tin oxide fine particles used in the present invention have an alkoxyl group or a hydroxyl group in order to suppress the photocatalytic activity on the surface specific to the metal oxide and to improve the dispersibility in the transparent thermoplastic resin. Surface treatment is performed with at least one surface treatment agent selected from silane coupling agents having organic functional groups, titanium coupling agents, aluminum coupling agents, and zirconium coupling agents.

そして、これ等の表面処理剤としては、アンチモンドープ酸化錫の微粒子表面と親和性を有しかつ微粒子表面に結合するアルコキシル基若しくはヒドロキシル基と、透明熱可塑性樹脂と親和性を有する有機官能基を含有するものが使用される。また、成形時の熱による分解、劣化、着色等が少ないものが好ましい。   These surface treatment agents include an alkoxyl group or a hydroxyl group that has an affinity for the surface of the fine particles of antimony-doped tin oxide and is bonded to the surface of the fine particles, and an organic functional group that has an affinity for the transparent thermoplastic resin. What is contained is used. Moreover, the thing with few decomposition | disassembly, deterioration, coloring, etc. by the heat | fever at the time of shaping | molding is preferable.

上記アルコキシル基としては、メトキシ基、エトキシ基、イソプロポキシル基等を挙げることができるが、加水分解を受け、アンチモンドープ酸化錫の微粒子表面と結合し得るものであれば特に限定されるものではない。また、上記有機官能基としては、アルキル基、ビニル基、γ-(2-アミノエチル)アミノプロピル基、γ-グリシドキシプロピル基、γ-アニリノプロピル基、γ-メルカプトプロピル基、γ-メタクリロキシ基等を挙げることができるが、透明熱可塑性樹脂と親和性を有するものであれば特に限定されるものではない。   Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an isopropoxyl group. However, the alkoxyl group is not particularly limited as long as it can be hydrolyzed and bonded to the surface of antimony-doped tin oxide fine particles. Absent. Examples of the organic functional group include alkyl groups, vinyl groups, γ- (2-aminoethyl) aminopropyl groups, γ-glycidoxypropyl groups, γ-anilinopropyl groups, γ-mercaptopropyl groups, γ- Although a methacryloxy group etc. can be mentioned, if it has affinity with a transparent thermoplastic resin, it will not specifically limit.

尚、アンチモンドープ酸化錫の熱可塑性樹脂中への分散性をより向上させる目的で、混錬時の熱劣化による変色が起こらないことを条件に有機高分子分散剤を上記カップリング剤と併用することも可能である。   In addition, for the purpose of further improving the dispersibility of the antimony-doped tin oxide in the thermoplastic resin, an organic polymer dispersant is used in combination with the above coupling agent on the condition that discoloration due to thermal deterioration during kneading does not occur. It is also possible.

次に、上記アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xについては、0.05<X<10の範囲に設定されることを要する。表面処理剤の配合比Xが10以上になると、このマスターバッチから得られる熱線遮蔽透明樹脂成形体の機械特性や耐候性が低下する可能性があるからである。また、表面処理剤の配合比Xが0.05以下になると、アンチモンドープ酸化錫に対する表面処理効果が不十分となり、アンチモンドープ酸化錫の分散性が低下して得られる熱線遮蔽透明樹脂成形体の透明性が損なわれる恐れがあるからである。   Next, the compounding ratio X of the surface treatment agent to the antimony-doped tin oxide (weight of surface treatment agent / weight of antimony-doped tin oxide) X needs to be set in the range of 0.05 <X <10. This is because if the compounding ratio X of the surface treatment agent is 10 or more, the mechanical properties and weather resistance of the heat ray shielding transparent resin molded product obtained from this master batch may be lowered. Moreover, when the compounding ratio X of the surface treatment agent is 0.05 or less, the surface treatment effect on the antimony-doped tin oxide becomes insufficient, and the dispersibility of the antimony-doped tin oxide is deteriorated. This is because transparency may be impaired.

また、本発明に係る熱線遮蔽成分含有マスターバッチに適用される熱可塑性樹脂としては、可視光領域の光線透過率が高い透明の熱可塑性樹脂であれば特に制限はなく、例えば3mm厚の板状成形体としたときのJIS R 3106記載の可視光透過率が50%以上で、JIS K7105記載のヘイズが30%以下のものが挙げられる。具体的には、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリエステル樹脂等、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂およびポリオレフィン樹脂を挙げることができる。特に、本発明に係る熱線遮蔽成分含有マスターバッチから得られる熱線遮蔽透明樹脂成形体を各種建築物や車両の窓材等に適用することを目的とした場合、透明性、耐衝撃性、耐侯性等を考慮すると、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、フッ素系樹脂がより好ましい。   Further, the thermoplastic resin applied to the heat ray shielding component-containing masterbatch according to the present invention is not particularly limited as long as it is a transparent thermoplastic resin having a high light transmittance in the visible light region, for example, a plate having a thickness of 3 mm. When formed into a molded body, the visible light transmittance described in JIS R 3106 is 50% or more, and the haze described in JIS K7105 is 30% or less. Specific examples include acrylic resins, polycarbonate resins, polyetherimide resins, polyester resins, polystyrene resins, polyethersulfone resins, fluorine resins, and polyolefin resins. In particular, when the heat ray shielding transparent resin molding obtained from the heat ray shielding component-containing masterbatch according to the present invention is applied to various building or vehicle window materials, etc., transparency, impact resistance, weather resistance In view of the above, acrylic resin, polycarbonate resin, polyetherimide resin, and fluorine resin are more preferable.

そして、ポリカーボネート樹脂としては芳香族ポリカーボネートが好ましく、この芳香族ポリカーボネートとして、2、2−ビス(4−ヒドロキシフェニル)プロパン、2、2−ビス(3、5−ジブロモ−4−ヒドロキシフェニル)プロパンに代表される二価のフェノール系化合物の一種以上と、ホスゲンまたはジフェニルカーボネート等で代表されるカーボネート前駆体とから、界面重合、溶融重合または固相重合等の公知の方法によって得られる重合体が挙げられる。   The polycarbonate resin is preferably an aromatic polycarbonate. As the aromatic polycarbonate, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane is used. A polymer obtained by a known method such as interfacial polymerization, melt polymerization, or solid phase polymerization from one or more of divalent phenolic compounds represented by a carbonate precursor represented by phosgene or diphenyl carbonate or the like. It is done.

また、アクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートを主原料とし、必要に応じて炭素数炭素数1〜8のアルキル基を有するアクリル酸エステル、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル等を共重合成分として用いた重合体または共重合体が挙げられる。また、更に多段で重合したアクリル樹脂を用いることもできる。   As the acrylic resin, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate are used as main raw materials, and acrylic acid esters having an alkyl group having 1 to 8 carbon atoms, vinyl acetate, styrene, acrylonitrile, if necessary. Examples thereof include a polymer or copolymer using methacrylonitrile or the like as a copolymerization component. Further, an acrylic resin polymerized in multiple stages can also be used.

また、上記フッ素系樹脂としては、ポリフッ化エチレン、ポリ2フッ化エチレン、ポリ4フッ化エチレン、エチレン−2フッ化エチレン共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−パーフルオロアルコキシエチレン共重合体等が挙げられる。   Examples of the fluororesin include polyfluorinated ethylene, polydifluorinated ethylene, polytetrafluoroethylene, ethylene-2 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer, tetrafluoroethylene- Examples include perfluoroalkoxyethylene copolymers.

そして、上記表面処理が施されたアンチモンドープ酸化錫微粒子の熱可塑性樹脂への分散方法は、アンチモンドープ酸化錫微粒子が熱可塑性樹脂に均一に分散する方法であれば任意である。例えば、ビーズミル、ボールミル、サンドミル、超音波分散等の方法を用いて上記微粒子が任意の溶剤に分散したアンチモンドープ酸化錫微粒子の分散液を調製し、この分散液と、熱可塑性樹脂の粉粒体若しくはペレット、および必要に応じて他の添加剤をリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、および、バンバリーミキサー、ニーダー、ロール、一軸押出機、二軸押出機等の混練機を用いて溶剤を除去しながら均一に溶融、混合することにより、表面処理が施されたアンチモンドープ酸化錫微粒子を熱可塑性樹脂に均一に分散した混合物を調製することができる。   And the dispersion | distribution method to the thermoplastic resin of the antimony dope tin oxide microparticles | fine-particles which the said surface treatment was given is arbitrary, if the antimony dope tin oxide microparticles | fine-particles disperse | distribute uniformly to a thermoplastic resin. For example, a dispersion of antimony-doped tin oxide fine particles in which the fine particles are dispersed in an arbitrary solvent is prepared using a method such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion. Or pellets, and other additives as necessary, such as ribbon blenders, tumblers, nauter mixers, Henschel mixers, super mixers, planetary mixers, etc., and Banbury mixers, kneaders, rolls, single screw extruders, two It is possible to prepare a mixture in which antimony-doped tin oxide fine particles subjected to surface treatment are uniformly dispersed in a thermoplastic resin by uniformly melting and mixing while removing the solvent using a kneader such as a screw extruder. it can.

また、上記アンチモンドープ酸化錫微粒子の分散液について、その溶剤を真空乾燥等の公知の方法により除去し、得られた粉末と、熱可塑性樹脂の粉粒体若しくはペレット、および必要に応じて他の添加剤を均一に溶融、混合することにより、表面処理が施されたアンチモンドープ酸化錫微粒子を熱可塑性樹脂に均一に分散した混合物を調製することもできる。   Further, for the antimony-doped tin oxide fine particle dispersion, the solvent is removed by a known method such as vacuum drying, and the obtained powder, thermoplastic resin granules or pellets, and, if necessary, other By uniformly melting and mixing the additive, a mixture in which the antimony-doped tin oxide fine particles subjected to the surface treatment are uniformly dispersed in the thermoplastic resin can be prepared.

尚、表面処理が施されたアンチモンドープ酸化錫微粒子が熱可塑性樹脂に均一に分散されていればよく、上述したように混合物の調製方法はこれ等調製方法に限定されない。   In addition, the antimony dope tin oxide fine particle by which the surface treatment was given should just be disperse | distributed uniformly in a thermoplastic resin, and the preparation method of a mixture is not limited to these preparation methods as mentioned above.

次に、得られた混合物を、ベント式一軸若しくは二軸の押出機で混練し、ペレット状に加工することにより、本発明に係る熱線遮蔽成分含有マスターバッチを得ることができる。尚、上記ペレットは、溶融押出されたストランドをカットする最も一般的な方法により得ることができる。従って、その形状としては円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採用することも可能である。かかる場合には球状に近い形状を取ることが一般的である。   Next, the obtained mixture is kneaded with a vented uniaxial or biaxial extruder and processed into pellets, whereby the heat ray shielding component-containing masterbatch according to the present invention can be obtained. The pellets can be obtained by the most common method for cutting melt-extruded strands. Accordingly, examples of the shape include a cylindrical shape and a prismatic shape. It is also possible to employ a so-called hot cut method in which the molten extrudate is directly cut. In such a case, it is common to take a shape close to a sphere.

このように本発明の熱線遮蔽成分含有マスターバッチはいずれの形態または形状を採り得るものであるが、熱線遮蔽透明樹脂成形体を成形するときに熱線遮蔽成分含有マスターバッチの希釈に使用される熱可塑性樹脂成形材料と同一の形態および形状が好ましい。   Thus, although the heat ray shielding component-containing masterbatch of the present invention can take any form or shape, the heat used for diluting the heat ray shielding component-containing masterbatch when molding a heat ray shielding transparent resin molded product. The same form and shape as the plastic resin molding material are preferable.

また、本発明に係る熱線遮蔽成分含有マスターバッチは一般的な添加剤を配合することも可能である。例えば、必要に応じて任意の色調を与えるため、アゾ系染料、シアニン系染料、キノリン系、ペリレン系染料、カーボンブラック等、一般的に熱可塑性樹脂の着色に利用されている染料、顔料の他、ヒンダードフェノール系、リン系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、界面活性剤、帯電防止剤等を、これ等の有効発現量配合したものでもよい。   Moreover, the heat ray shielding component containing masterbatch which concerns on this invention can also mix | blend a general additive. For example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, and other dyes and pigments that are generally used for coloring thermoplastic resins in order to give any color tone as necessary. , Stabilizers such as hindered phenols and phosphorus, mold release agents, hydroxybenzophenone, salicylic acid, HALS, triazole, triazine and other UV absorbers, surfactants, antistatic agents, etc. The effective expression amount may be blended.

このようにして得られた本発明に係る熱線遮蔽成分含有マスターバッチを用いることにより、高コストの物理成膜法や複雑な工程を経ることなく、ヘイズが低く優れた可視光線透過能を有ししかも高い熱線遮蔽機能を有する熱線遮蔽透明樹脂成形体を製造することが可能となる。   By using the thus obtained heat-shielding component-containing masterbatch according to the present invention, it has an excellent visible light transmittance with low haze without going through a high-cost physical film forming method or complicated processes. And it becomes possible to manufacture the heat ray shielding transparent resin molding which has a high heat ray shielding function.

すなわち、本発明に係る熱線遮蔽透明樹脂成形体は、上記熱線遮蔽成分含有マスターバッチを、同種の熱可塑性樹脂成形材料若しくはマスターバッチと相溶性を有する異種の熱可塑性樹脂成形材料で希釈・混練し、所定の形状に成形することによって得られる。   That is, the heat ray shielding transparent resin molding according to the present invention is obtained by diluting and kneading the heat ray shielding component-containing masterbatch with the same type of thermoplastic resin molding material or a different type of thermoplastic resin molding material having compatibility with the masterbatch. It is obtained by molding into a predetermined shape.

そして、本発明に係る熱線遮蔽透明樹脂成形体は、そのヘイズが10%以下であることが好ましい。ヘイズが10%よりも高いと熱線遮蔽透明樹脂成形体が曇ってしまい、外観が損なわれてしまう場合があるからである。また、車両、航空機の窓材等、高い透明性が必要とされる部分に使用される場合に不都合となり、用途が限定される場合があるからである。   And it is preferable that the haze of the heat ray shielding transparent resin molding which concerns on this invention is 10% or less. This is because if the haze is higher than 10%, the heat ray-shielding transparent resin molded product becomes cloudy and the appearance may be impaired. Moreover, it is inconvenient when used in parts that require high transparency, such as window materials for vehicles and aircraft, and the application may be limited.

また、上記熱線遮蔽透明樹脂成形体は任意の形状に成形可能であり、平面状および曲面状に成形することができる。また、熱線遮蔽透明樹脂成形体の厚さは、板状からフィルム状まで必要に応じて任意の厚さに調整することが可能である。更に、平面状に形成した樹脂シートは、後加工によって球面状等任意の形状に成形することができる。この熱線遮蔽透明樹脂成形体の成形方法としては、射出成形、押出成形、圧縮成形または回転成形等の任意の方法を挙げることができる。特に、射出成形により成形品を得る方法と、押出成形により成形品を得る方法が好適である。押出成形により板状、フィルム状の成形品を得るには、Tダイ等の押出機を用いて押出した溶融状態の熱可塑性樹脂を冷却ロールで冷却しながら引き取る方法により製造される。そして、上記射出成形品は、自動車の窓ガラスやルーフ等の車体に好適に使用され、押出成形により得られた板状、フィルム状の成形品は、アーケードやカーポート等の建造物に好適に使用される。   Moreover, the said heat ray shielding transparent resin molding can be shape | molded in arbitrary shapes, and can be shape | molded in planar shape and curved surface shape. Moreover, the thickness of the heat ray shielding transparent resin molded product can be adjusted to an arbitrary thickness as necessary from a plate shape to a film shape. Furthermore, the resin sheet formed in a planar shape can be formed into an arbitrary shape such as a spherical shape by post-processing. Examples of the molding method of the heat ray-shielding transparent resin molded body include arbitrary methods such as injection molding, extrusion molding, compression molding, and rotational molding. In particular, a method of obtaining a molded product by injection molding and a method of obtaining a molded product by extrusion molding are suitable. In order to obtain a plate-like or film-like molded product by extrusion molding, it is produced by a method in which a molten thermoplastic resin extruded using an extruder such as a T-die is taken out while being cooled by a cooling roll. And the said injection molded product is used suitably for vehicle bodies, such as a window glass of a motor vehicle, and a roof, The plate-shaped and film-shaped molded product obtained by extrusion molding are suitable for buildings, such as an arcade and a carport. used.

次に、本発明に係る熱線遮蔽透明樹脂積層体は、熱線遮蔽透明樹脂成形体を無機ガラス、樹脂ガラス、樹脂フィルム等の他の透明基材に積層して得られる。例えば、予めフィルム状に成形した熱線遮蔽透明樹脂成形体を、無機ガラスに熱ラミネート法により積層一体化することで、熱線遮蔽機能、飛散防止機能を有する熱線遮蔽透明樹脂積層体を得ることができる。また、熱ラミネート法、共押出法、プレス成形法、射出成形法等により、熱線遮蔽透明樹脂成形体の成形と同時に他の透明基材に積層一体化することで、熱線遮蔽透明樹脂積層体を得ることも可能である。   Next, the heat ray shielding transparent resin laminate according to the present invention is obtained by laminating the heat ray shielding transparent resin molded article on another transparent substrate such as inorganic glass, resin glass, resin film and the like. For example, a heat ray shielding transparent resin molded body having a heat ray shielding function and a scattering prevention function can be obtained by laminating and integrating a heat ray shielding transparent resin molded body previously formed into a film shape on an inorganic glass by a heat laminating method. . Also, by heat lamination method, coextrusion method, press molding method, injection molding method, etc., heat ray shielding transparent resin laminate can be integrated with other transparent base material simultaneously with the molding of heat ray shielding transparent resin molding. It is also possible to obtain.

そして、上記熱線遮蔽透明樹脂積層体は、相互の基材の持つ利点を有効に発揮させつつ相互の欠点を補完することで、より有用な構造材として使用することができる。   And the said heat ray shielding transparent resin laminated body can be used as a more useful structural material by complementing a mutual fault, exhibiting the advantage which a mutual base material has effectively.

次に、本発明の実施例を具体的に示すが、本発明の技術的範囲はこれ等実施例の内容により制限されるものでない。   Next, although the Example of this invention is shown concretely, the technical scope of this invention is not restrict | limited by the content of these Examples.

尚、アンチモンドープ酸化錫微粒子の平均粒径は、大塚電子製粒度分布計ESL8000により測定した。また、以下に用いる樹脂ペレットの形状は、特に断りがない限り、円柱状で、長さ3mm、直径2.5mmとする。   The average particle size of the antimony-doped tin oxide fine particles was measured with a particle size distribution analyzer ESL8000 manufactured by Otsuka Electronics. In addition, the shape of the resin pellet used below is a columnar shape with a length of 3 mm and a diameter of 2.5 mm unless otherwise specified.

平均粒径30nmのアンチモンドープ酸化錫微粒子20g、トルエン70g、メトキシ基とγ−グリシドキシプロピル基を有するシランカップリング剤(東レダウコーニング製SH6040)10g、水適量を混合し、直径0.5mmのジルコニアボールを用いて30時間ボールミル混合してアンチモンドープ酸化錫微粒子の分散液1kgを調製した(以下、A液という)。更に、真空乾燥機を用いてこのA液からトルエンを除去し、アンチモンドープ酸化錫微粒子の分散粉(以下、A粉という)を得た。   20 g of antimony-doped tin oxide fine particles having an average particle diameter of 30 nm, 70 g of toluene, 10 g of a silane coupling agent having a methoxy group and a γ-glycidoxypropyl group (SH6040 manufactured by Toray Dow Corning), an appropriate amount of water are mixed, and the diameter is 0.5 mm. 1 kg of a dispersion of antimony-doped tin oxide fine particles was prepared (hereinafter referred to as “solution A”). Furthermore, toluene was removed from this A liquid using the vacuum dryer, and the dispersion powder (henceforth A powder) of antimony dope tin oxide microparticles | fine-particles was obtained.

次に、得られたA粉を、熱可塑性樹脂であるポリカーボ−ネート樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、長さ3mm、直径2.5mmの円柱状の熱線遮蔽成分含有マスターバッチ(以下、マスターバッチAという)を得た。   Next, the obtained A powder was added to a polycarbonate resin pellet which is a thermoplastic resin so that the concentration of the antimony-doped tin oxide fine particles was 5% by weight, and mixed uniformly with a blender. The extruded strand was melt-kneaded with an extruder and the extruded strand was cut into pellets to obtain a cylindrical heat ray shielding component-containing masterbatch (hereinafter referred to as masterbatch A) having a length of 3 mm and a diameter of 2.5 mm.

このマスターバッチAを、アンチモンドープ酸化錫微粒子の濃度が0.2重量%となるようにポリカーボ−ネート樹脂のペレットで希釈し、ブレンダーで均一に混合した後、Tダイを用いて厚さ2mmに押出成形し、アンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例1に係る熱線遮蔽透明樹脂成形体を得た。   This master batch A was diluted with polycarbonate resin pellets so that the concentration of antimony-doped tin oxide fine particles was 0.2% by weight, mixed uniformly with a blender, and then made 2 mm thick using a T-die. Extrusion molding was performed to obtain a heat ray shielding transparent resin molding according to Example 1 in the form of a sheet in which antimony-doped tin oxide fine particles were uniformly dispersed throughout the resin.

得られた実施例1に係る熱線遮蔽透明樹脂成形体(ポリカーボネートシート)の分光特性を日立製作所製の分光光度計U−4000を用いて測定し、JIS R3106に従って日射透過率(τe)、可視光透過率(τv)を算出した。また、ヘイズは、村上色材研究所製のヘイズメータM−150を用いて測定し、JIS K7136に従ってヘイズ値を算出した。   The spectral characteristics of the heat ray-shielding transparent resin molding (polycarbonate sheet) according to Example 1 thus obtained were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd., and the solar transmittance (τe) and visible light were measured according to JIS R3106. The transmittance (τv) was calculated. The haze was measured using a haze meter M-150 manufactured by Murakami Color Research Laboratory, and the haze value was calculated according to JIS K7136.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

上記マスターバッチAを、ポリカーボ−ネート樹脂のペレットによりマスターバッチAにおけるアンチモンドープ酸化錫微粒子の濃度が4.0重量%となるように希釈し、ブレンダーで均一に混合した後、0.1mmの厚さで1.9mmのポリカーボネート樹脂上に共押出成形し、厚さ1.9mmのポリカーボネート樹脂(透明基材)とこの基材上に積層された厚さ0.1mmでアンチモンドープ酸化錫微粒子が均一に分散した表層とで構成される実施例2に係る熱線遮蔽透明樹脂積層体(2層シート)を得た。   The master batch A was diluted with pellets of polycarbonate resin so that the concentration of the antimony-doped tin oxide fine particles in the master batch A was 4.0% by weight, mixed uniformly with a blender, and then 0.1 mm thick. Now, co-extrusion molding on 1.9mm polycarbonate resin, 1.9mm thick polycarbonate resin (transparent substrate) and 0.1mm thick laminated on this substrate, antimony-doped tin oxide fine particles are uniform A heat ray-shielding transparent resin laminate (two-layer sheet) according to Example 2 composed of a surface layer dispersed in the film was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

上記A粉を、熱可塑性樹脂であるアクリル樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加した以外は実施例1と同様の方法により熱線遮蔽成分含有マスターバッチ(以下、マスターバッチBという)を得た。   The heat-shielding component-containing masterbatch (hereinafter referred to as “the A powder”) was prepared in the same manner as in Example 1 except that the A powder was added to an acrylic resin pellet as a thermoplastic resin so that the concentration of the antimony-doped tin oxide fine particles was 5% by weight. A master batch B).

次に、このマスターバッチBを、アンチモンドープ酸化錫微粒子の濃度が0.2重量%となるようにアクリル樹脂のペレットで希釈した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例3に係る熱線遮蔽透明樹脂成形体を得た。   Next, the antimony-doped tin oxide fine particles were resinized by the same method as in Example 1 except that this master batch B was diluted with an acrylic resin pellet so that the concentration of the antimony-doped tin oxide fine particles was 0.2% by weight. A heat ray shielding transparent resin molded product according to Example 3 in a sheet form uniformly dispersed throughout was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

上記A粉を、熱可塑性樹脂であるポリエーテルイミド樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加した以外は実施例1と同様の方法により熱線遮蔽成分含有マスターバッチ(以下、マスターバッチCという)を得た。   Heat-shielding component-containing masterbatch by the same method as in Example 1 except that the above powder A was added to a pellet of polyetherimide resin, which is a thermoplastic resin, so that the concentration of antimony-doped tin oxide fine particles was 5% by weight. (Hereinafter referred to as master batch C).

次に、このマスターバッチCを、アンチモンドープ酸化錫微粒子の濃度が0.2重量%となるようにポリエーテルイミド樹脂のペレットで希釈した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例4に係る熱線遮蔽透明樹脂成形体を得た。   Next, antimony-doped tin oxide fine particles were prepared in the same manner as in Example 1 except that this master batch C was diluted with polyetherimide resin pellets so that the concentration of antimony-doped tin oxide fine particles was 0.2% by weight. A heat ray shielding transparent resin molded product according to Example 4 having a sheet shape uniformly dispersed throughout the resin was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

上記A粉を、熱可塑性樹脂であるポリエチレンテレフタレート樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加した以外は実施例1と同様の方法により熱線遮蔽成分含有マスターバッチ(以下、マスターバッチDという)を得た。   Heat-shielding component-containing masterbatch by the same method as in Example 1 except that the powder A was added to a pellet of polyethylene terephthalate resin, which is a thermoplastic resin, so that the concentration of antimony-doped tin oxide fine particles was 5% by weight. Hereinafter, master batch D) was obtained.

次に、このマスターバッチDを、アンチモンドープ酸化錫微粒子の濃度が2.0重量%となるようにポリエチレンテレフタレート樹脂のペレットで希釈し、ブレンダーで均一に混合した後、Tダイを用いて厚さ0.2mmに押出成形し、アンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例5に係る熱線遮蔽透明樹脂成形体を得た。   Next, this master batch D was diluted with polyethylene terephthalate resin pellets so that the concentration of the antimony-doped tin oxide fine particles was 2.0% by weight, mixed uniformly with a blender, and then thickened using a T-die. Extrusion molding was performed to 0.2 mm to obtain a heat ray shielding transparent resin molding according to Example 5 in the form of a sheet in which antimony-doped tin oxide fine particles were uniformly dispersed throughout the resin.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), "addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin" and "ratio of surface treatment agent to antimony-doped tin oxide (ATO)" X "is shown in Table 1 below.

上記A粉を、熱可塑性樹脂であるETFA(エチレン−4フッ化エチレン共重合体)樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加した以外は実施例1と同様の方法により熱線遮蔽成分含有マスターバッチ(以下、マスターバッチEという)を得た。   Example A was the same as Example 1 except that the A powder was added to a pellet of an ETFA (ethylene-tetrafluoroethylene copolymer) resin, which is a thermoplastic resin, so that the concentration of antimony-doped tin oxide particles was 5% by weight. A heat ray shielding component-containing masterbatch (hereinafter referred to as masterbatch E) was obtained by the above method.

次に、このマスターバッチEを、アンチモンドープ酸化錫微粒子の濃度が2.0重量%となるようにETFA樹脂のペレットで希釈した以外は実施例5と同様の方法によりアンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例6に係る熱線遮蔽透明樹脂成形体を得た。   Next, the antimony-doped tin oxide fine particles were obtained by the same method as in Example 5 except that this master batch E was diluted with ETFA resin pellets so that the concentration of antimony-doped tin oxide fine particles was 2.0% by weight. A heat ray shielding transparent resin molded product according to Example 6 having a sheet shape uniformly dispersed throughout was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), "addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin" and "ratio of surface treatment agent to antimony-doped tin oxide (ATO)" X "is shown in Table 1 below.

上記A粉を、熱可塑性樹脂であるポリエチレン樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加した以外は実施例1と同様の方法により熱線遮蔽成分含有マスターバッチ(以下、マスターバッチFという)を得た。   The heat-shielding component-containing masterbatch (hereinafter referred to as “Example A”) was added in the same manner as in Example 1 except that the above powder A was added to pellets of polyethylene resin, which is a thermoplastic resin, so that the concentration of antimony-doped tin oxide particles was 5% by weight. A master batch F).

次に、このマスターバッチFを、アンチモンドープ酸化錫微粒子の濃度が2.0重量%となるようにポリエチレン樹脂のペレットで希釈した以外は実施例5と同様の方法によりアンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例7に係る熱線遮蔽透明樹脂成形体を得た。   Next, the antimony-doped tin oxide fine particles were obtained by the same method as in Example 5 except that this master batch F was diluted with polyethylene resin pellets so that the concentration of the antimony-doped tin oxide fine particles was 2.0% by weight. A heat ray shielding transparent resin molded product according to Example 7 having a sheet shape uniformly dispersed throughout was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

上記A粉を、熱可塑性樹脂であるポリ塩ビニル樹脂のパウダーにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加した以外は実施例1と同様の方法により熱線遮蔽成分含有マスターバッチ(以下、マスターバッチGという)を得た。   A heat-shielding component-containing masterbatch by the same method as in Example 1 except that the powder A was added to the polyvinyl chloride resin powder, which is a thermoplastic resin, so that the concentration of the antimony-doped tin oxide fine particles was 5% by weight. (Hereinafter referred to as master batch G).

次に、このマスターバッチGを、アンチモンドープ酸化錫微粒子の濃度が2.0重量%となるようにポリ塩ビニル樹脂のパウダーで希釈した以外は実施例5と同様の方法によりアンチモンドープ酸化錫微粒子が樹脂全体に均一に分散したシート状の実施例8に係る熱線遮蔽透明樹脂成形体を得た。   Next, antimony-doped tin oxide fine particles were prepared in the same manner as in Example 5 except that this master batch G was diluted with a polyvinyl chloride resin powder so that the concentration of antimony-doped tin oxide fine particles was 2.0% by weight. A heat-shielding transparent resin molded product according to Example 8 having a sheet shape uniformly dispersed throughout the resin was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), "addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin" and "ratio of surface treatment agent to antimony-doped tin oxide (ATO)" X "is shown in Table 1 below.

実施例1のシランカップリング剤に代えてアルコキシル基と有機官能基を有するチタンカップリング剤(日本曹達製T−50)を使用した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子の分散粉(以下、B粉という)を得た。   The antimony-doped tin oxide fine particles were prepared in the same manner as in Example 1 except that a titanium coupling agent having an alkoxyl group and an organic functional group (T-50 manufactured by Nippon Soda Co., Ltd.) was used instead of the silane coupling agent of Example 1. Dispersed powder (hereinafter referred to as B powder) was obtained.

次に、得られたB粉を、熱可塑性樹脂であるポリカーボ−ネート樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加し、実施例1と同様にして熱線遮蔽成分含有マスターバッチ(以下、マスターバッチHという)を得た。   Next, the obtained B powder was added to a polycarbonate resin pellet which is a thermoplastic resin so that the concentration of the antimony-doped tin oxide fine particles was 5% by weight. A contained master batch (hereinafter referred to as master batch H) was obtained.

このマスターバッチHを、アンチモンドープ酸化錫微粒子の濃度が0.2重量%となるようにポリカーボ−ネート樹脂のペレットで希釈し、実施例1と同様にして実施例9に係る熱線遮蔽透明樹脂成形体を得た。   This master batch H was diluted with polycarbonate resin pellets so that the concentration of antimony-doped tin oxide fine particles was 0.2% by weight, and the heat ray shielding transparent resin molding according to Example 9 was performed in the same manner as in Example 1. Got the body.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

実施例1のシランカップリング剤に代えてイソプロポキシル基とアセトアルコキシル基を有するアルミニウムカップリング剤(味の素製プレンアクトAL−M)を使用した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子の分散粉(以下、C粉という)を得た。   An antimony-doped tin oxide was prepared in the same manner as in Example 1 except that an aluminum coupling agent having an isopropoxyl group and an acetoalkoxyl group (Ajinomoto Preneact AL-M) was used instead of the silane coupling agent in Example 1. A fine particle dispersed powder (hereinafter referred to as C powder) was obtained.

次に、得られたC粉を、熱可塑性樹脂であるポリカーボ−ネート樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加し、実施例1と同様にして熱線遮蔽成分含有マスターバッチ(以下、マスターバッチIという)を得た。   Next, the obtained C powder was added to pellets of polycarbonate resin, which is a thermoplastic resin, so that the concentration of antimony-doped tin oxide fine particles was 5% by weight. A contained master batch (hereinafter referred to as master batch I) was obtained.

このマスターバッチIを、アンチモンドープ酸化錫微粒子の濃度が0.2重量%となるようにポリカーボ−ネート樹脂のペレットで希釈し、実施例1と同様にして実施例10に係る熱線遮蔽透明樹脂成形体を得た。   This master batch I was diluted with polycarbonate resin pellets so that the concentration of antimony-doped tin oxide fine particles was 0.2% by weight, and heat ray shielding transparent resin molding according to Example 10 was performed in the same manner as in Example 1. Got the body.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

実施例1のシランカップリング剤に代えてヒドロキシル基と有機官能基を有するジルコニウムカップリング剤(MANCHEM社製APG−X)を使用した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子の分散粉(以下、D粉という)を得た。   In place of the silane coupling agent of Example 1, a zirconium coupling agent having a hydroxyl group and an organic functional group (APG-X manufactured by MANCHEM) was used to produce antimony-doped tin oxide fine particles in the same manner as in Example 1. Dispersed powder (hereinafter referred to as D powder) was obtained.

次に、得られたD粉を、熱可塑性樹脂であるポリカーボ−ネート樹脂のペレットにアンチモンドープ酸化錫微粒子の濃度が5重量%となるように添加し、実施例1と同様にして熱線遮蔽成分含有マスターバッチ(以下、マスターバッチJという)を得た。   Next, the obtained D powder was added to pellets of polycarbonate resin, which is a thermoplastic resin, so that the concentration of antimony-doped tin oxide fine particles was 5% by weight. A contained master batch (hereinafter referred to as master batch J) was obtained.

このマスターバッチJを、アンチモンドープ酸化錫微粒子の濃度が0.2重量%となるようにポリカーボ−ネート樹脂のペレットで希釈し、実施例1と同様にして実施例11に係る熱線遮蔽透明樹脂成形体を得た。   This master batch J was diluted with polycarbonate resin pellets so that the concentration of antimony-doped tin oxide fine particles was 0.2% by weight, and heat ray shielding transparent resin molding according to Example 11 was performed in the same manner as in Example 1. Got the body.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

[比較例1]
シランカップリング剤を添加しなかった以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子の分散粉と熱線遮蔽成分含有マスターバッチを得、かつ、この熱線遮蔽成分含有マスターバッチを用いて実施例1と同様の方法によりアンチモンドープ酸化錫の微粒子が分散したシート状の比較例1に係る熱線遮蔽透明樹脂成形体を得た。
[Comparative Example 1]
A dispersion powder of antimony-doped tin oxide fine particles and a heat ray shielding component-containing masterbatch were obtained in the same manner as in Example 1 except that no silane coupling agent was added, and this heat ray shielding component-containing masterbatch was used. In the same manner as in Example 1, a heat ray shielding transparent resin molded product according to Comparative Example 1 in the form of a sheet in which fine particles of antimony-doped tin oxide were dispersed was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

そして、比較例1においては表面処理剤であるシランカップリング剤が用いられていないため、アンチモンドープ酸化錫微粒子同士の凝集が起こってポリカーボネート中にアンチモンドープ酸化錫の微粒子を均一に分散させることができず、得られた比較例1に係る熱線遮蔽透明樹脂成形体には粗粒が見られた。   And since the silane coupling agent which is a surface treating agent is not used in the comparative example 1, antimony dope tin oxide microparticles | fine-particles aggregate and the antimony dope tin oxide microparticles | fine-particles can disperse | distribute uniformly in a polycarbonate. In the heat ray shielding transparent resin molding according to Comparative Example 1 thus obtained, coarse particles were observed.

この結果、表1に示された日射透過率(τe)の数値が85.6%で、各実施例における日射透過率(τe)の数値(59.5〜60.3%)より高く、十分な熱線遮蔽能が得られなかった。   As a result, the numerical value of solar transmittance (τe) shown in Table 1 is 85.6%, which is higher than the numerical value of solar transmittance (τe) in each example (59.5 to 60.3%). The heat ray shielding ability was not obtained.

また、粗粒が光散乱源となり、そのヘイズ値は、各実施例のヘイズ値(1.5〜2.2%)より著しく高い35.4%で、本来の透明性が損なわれてしまった。   In addition, the coarse particles become a light scattering source, and the haze value thereof is 35.4%, which is significantly higher than the haze value (1.5 to 2.2%) of each example, and the original transparency has been impaired. .

[比較例2]
実施例1におけるアンチモンドープ酸化錫微粒子の分散液において、この分散液中におけるアンチモンドープ酸化錫微粒子の添加量が0.2重量%(20g/1kg)、シランカップリング剤の添加量が0.1重量%(10g/1kg)である条件に代えて、上記分散液中におけるアンチモンドープ酸化錫微粒子の添加量が0.2重量%、シランカップリング剤の添加量0.01重量%となるように濃度調整した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子の分散粉と熱線遮蔽成分含有マスターバッチを得、かつ、この熱線遮蔽成分含有マスターバッチを用いて実施例1と同様の方法によりアンチモンドープ酸化錫の微粒子が分散したシート状の比較例2に係る熱線遮蔽透明樹脂成形体を得た。
[Comparative Example 2]
In the dispersion of antimony-doped tin oxide fine particles in Example 1, the addition amount of antimony-doped tin oxide fine particles in this dispersion was 0.2% by weight (20 g / 1 kg), and the addition amount of the silane coupling agent was 0.1. Instead of the condition of wt% (10 g / 1 kg), the addition amount of the antimony-doped tin oxide fine particles in the dispersion is 0.2 wt% and the addition amount of the silane coupling agent is 0.01 wt%. A dispersion of antimony-doped tin oxide fine particles and a heat ray shielding component-containing masterbatch were obtained by the same method as in Example 1 except that the concentration was adjusted, and the same method as in Example 1 using this heat ray shielding component-containing masterbatch As a result, a heat ray shielding transparent resin molding according to Comparative Example 2 in the form of a sheet in which fine particles of antimony-doped tin oxide were dispersed was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

そして、比較例2においては、アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xが0.05で、上記「0.05<X<10」の範囲外である0.05以下であるため、アンチモンドープ酸化錫微粒子表面を十分に表面処理することができなかった。   In Comparative Example 2, the compounding ratio of the surface treatment agent to the antimony-doped tin oxide (weight of surface treatment agent / weight of antimony-doped tin oxide) X was 0.05, and the above-mentioned “0.05 <X <10”. Therefore, the surface of the antimony-doped tin oxide fine particles could not be sufficiently surface-treated.

このため、アンチモンドープ酸化錫微粒子同士の凝集が起こってポリカーボネート中にアンチモンドープ酸化錫の微粒子を均一に分散させることができず、得られた比較例2に係る熱線遮蔽透明樹脂成形体には粗粒が見られた。   For this reason, aggregation of antimony-doped tin oxide fine particles occurs, and the fine particles of antimony-doped tin oxide cannot be uniformly dispersed in the polycarbonate, and the heat ray-shielding transparent resin molded article according to Comparative Example 2 thus obtained is rough. Grain was seen.

この結果、表1に示された日射透過率(τe)の数値が81.6%で、各実施例における日射透過率(τe)の数値(59.5〜60.3%)より高く、十分な熱線遮蔽能が得られなかった。   As a result, the value of solar transmittance (τe) shown in Table 1 is 81.6%, which is higher than the value of solar transmittance (τe) in each example (59.5 to 60.3%), which is sufficient. The heat ray shielding ability was not obtained.

また、粗粒が光散乱源となり、そのヘイズ値は、各実施例のヘイズ値(1.5〜2.2%)より著しく高い28.7%で、本来の透明性が損なわれてしまった。   Further, the coarse particles become a light scattering source, and the haze value thereof is 28.7% which is remarkably higher than the haze value (1.5 to 2.2%) of each example, and the original transparency is impaired. .

[比較例3]
実施例1におけるアンチモンドープ酸化錫微粒子の分散液において、この分散液中におけるアンチモンドープ酸化錫微粒子の添加量が0.2重量%(20g/1kg)、シランカップリング剤の添加量が0.1重量%(10g/1kg)である条件に代えて、上記分散液中におけるアンチモンドープ酸化錫微粒子の添加量が0.2重量%、シランカップリング剤の添加量2.0重量%となるように濃度調整した以外は実施例1と同様の方法によりアンチモンドープ酸化錫微粒子の分散粉と熱線遮蔽成分含有マスターバッチを得、かつ、この熱線遮蔽成分含有マスターバッチを用いて実施例1と同様の方法によりアンチモンドープ酸化錫の微粒子が分散したシート状の比較例3に係る熱線遮蔽透明樹脂成形体を得た。
[Comparative Example 3]
In the dispersion of antimony-doped tin oxide fine particles in Example 1, the addition amount of antimony-doped tin oxide fine particles in this dispersion was 0.2% by weight (20 g / 1 kg), and the addition amount of the silane coupling agent was 0.1. In place of the condition of wt% (10 g / 1 kg), the amount of antimony-doped tin oxide fine particles added in the dispersion is 0.2 wt% and the amount of silane coupling agent added is 2.0 wt%. A dispersion of antimony-doped tin oxide fine particles and a heat ray shielding component-containing masterbatch were obtained by the same method as in Example 1 except that the concentration was adjusted, and the same method as in Example 1 using this heat ray shielding component-containing masterbatch Thus, a heat ray shielding transparent resin molding according to Comparative Example 3 having a sheet shape in which fine particles of antimony-doped tin oxide were dispersed was obtained.

この光学特性(可視光透過率、日射透過率およびヘイズ)と「透明熱可塑性樹脂へのアンチモンドープ酸化錫(ATO)の添加量」並びに「アンチモンドープ酸化錫(ATO)に対する表面処理剤の配合比X」を以下の表1に示す。   This optical characteristic (visible light transmittance, solar transmittance and haze), “addition amount of antimony-doped tin oxide (ATO) to transparent thermoplastic resin” and “ratio of surface treatment agent to antimony-doped tin oxide (ATO)” X "is shown in Table 1 below.

そして、比較例3においては、アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xが10で、上記「0.05<X<10」の範囲外である10以上であるため、光学特性は各実施例と略同等の特性を有しているが、鉛筆試験の測定で得られた比較例3に係る熱線遮蔽透明樹脂成形体の表面強度が低下してしまった。   In Comparative Example 3, the compounding ratio of the surface treatment agent to antimony-doped tin oxide (weight of surface treatment agent / weight of antimony-doped tin oxide) X is 10, and the range of “0.05 <X <10” above. Since it is 10 or more which is outside, the optical characteristics have substantially the same characteristics as each example, but the surface strength of the heat ray-shielding transparent resin molded body according to Comparative Example 3 obtained by measurement of the pencil test is It has fallen.

Figure 2006199850
Figure 2006199850

本発明に係る熱線遮蔽成分含有マスターバッチを用いて得られる熱線遮蔽透明樹脂成形体若しくは熱線遮蔽透明樹脂積層体は、ヘイズが低く優れた可視光線透過能を有ししかも高い熱線遮蔽機能を具備しているため、建築物の屋根材や壁材、自動車、電車、航空機等の窓材、アーケード、天井ドーム、カーポート等に利用される可能性を有している。   The heat ray shielding transparent resin molded body or heat ray shielding transparent resin laminate obtained using the heat ray shielding component-containing masterbatch according to the present invention has a high heat ray shielding function with low haze and excellent visible light transmittance. Therefore, it has the possibility of being used for roof materials and wall materials of buildings, window materials for automobiles, trains, aircrafts, arcades, ceiling domes, carports and the like.

Claims (6)

熱線遮蔽成分であるアンチモンドープ酸化錫と熱可塑性樹脂を含有し、熱線遮蔽透明樹脂成形体を製造するために使用される熱線遮蔽成分含有マスターバッチにおいて、
上記アンチモンドープ酸化錫の微粒子が、アルコキシル基若しくはヒドロキシル基と有機官能基を有するシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択された少なくとも一種の表面処理剤により表面処理され、かつ、アンチモンドープ酸化錫に対する表面処理剤の配合比(表面処理剤の重量/アンチモンドープ酸化錫の重量)Xが0.05<X<10の範囲に設定されていることを特徴とする熱線遮蔽成分含有マスターバッチ。
In a heat ray shielding component-containing masterbatch containing antimony-doped tin oxide and a thermoplastic resin, which are heat ray shielding components, and used for producing a heat ray shielding transparent resin molded article,
The antimony-doped tin oxide fine particles are formed of at least one surface treatment agent selected from a silane coupling agent having an alkoxyl group or a hydroxyl group and an organic functional group, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent. The surface treatment is performed and the compounding ratio of the surface treatment agent to the antimony-doped tin oxide (weight of the surface treatment agent / weight of the antimony-doped tin oxide) X is set in a range of 0.05 <X <10. A heat-shielding component-containing master batch.
上記熱可塑性樹脂が、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、および、ポリエステル樹脂から選択される少なくとも一種であることを特徴とする請求項1に記載の熱線遮蔽成分含有マスターバッチ。   The thermoplastic resin is at least one selected from acrylic resin, polycarbonate resin, polyetherimide resin, polystyrene resin, polyethersulfone resin, fluorine resin, polyolefin resin, polyvinyl chloride resin, and polyester resin. The heat ray shielding component containing masterbatch of Claim 1 characterized by these. 上記アンチモンドープ酸化錫が平均粒径800nm以下の微粒子であることを特徴とする請求項1または請求項2に記載の熱線遮蔽成分含有マスターバッチ。   The heat ray shielding component-containing masterbatch according to claim 1 or 2, wherein the antimony-doped tin oxide is fine particles having an average particle size of 800 nm or less. 請求項1〜請求項3のいずれかに記載の熱線遮蔽成分含有マスターバッチを異種または同種の熱可塑性樹脂成形材料で希釈混練し、所定の形状に成形して得られることを特徴とする熱線遮蔽透明樹脂成形体。   A heat ray shielding device obtained by diluting and kneading a heat ray shielding component-containing masterbatch according to any one of claims 1 to 3 with a thermoplastic resin molding material of a different kind or the same type and molding the master batch into a predetermined shape. Transparent resin molding. ヘイズが10%以下であることを特徴とする請求項4に記載の熱線遮蔽透明樹脂成形体。   The heat ray shielding transparent resin molding according to claim 4, wherein the haze is 10% or less. 請求項4または請求項5記載の熱線遮蔽透明樹脂成形体を他の透明基材に積層して得られることを特徴とする熱線遮蔽透明樹脂積層体。   A heat ray shielding transparent resin laminate obtained by laminating the heat ray shielding transparent resin molding according to claim 4 or 5 on another transparent substrate.
JP2005013880A 2005-01-21 2005-01-21 Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate Pending JP2006199850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013880A JP2006199850A (en) 2005-01-21 2005-01-21 Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013880A JP2006199850A (en) 2005-01-21 2005-01-21 Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate

Publications (1)

Publication Number Publication Date
JP2006199850A true JP2006199850A (en) 2006-08-03

Family

ID=36958140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013880A Pending JP2006199850A (en) 2005-01-21 2005-01-21 Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate

Country Status (1)

Country Link
JP (1) JP2006199850A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119742A1 (en) * 2006-04-14 2007-10-25 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded plate obtained therefrom
WO2008136317A1 (en) * 2007-04-26 2008-11-13 Sumitomo Metal Mining Co., Ltd. Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JP2008545878A (en) * 2005-05-31 2008-12-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Nanoparticle solar control concentrate
FR2925060A1 (en) * 2007-12-13 2009-06-19 Essilor Int PROCESS FOR PREPARING TRANSPARENT POLYMER MATERIAL COMPRISING THERMOPLASTIC POLYCARBONATE AND MINERAL NANOPARTICLES
JP2010084238A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Polyester fiber for shielding heat ray
JP2011148187A (en) * 2010-01-21 2011-08-04 Mitsubishi Plastics Inc Laminated polyester film
JP2012506794A (en) * 2008-10-28 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Nanoscale IR absorber in multilayer coated moldings
JP2015227435A (en) * 2014-05-30 2015-12-17 台虹科技股▲分▼有限公司 Near infrared absorbable master batch, near infrared absorbable product composed of the same and production method of near infrared absorbable fiber composed of the same
JP7458219B2 (en) 2019-07-05 2024-03-29 東京インキ株式会社 Heat shielding resin composition and heat shielding film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234066A (en) * 1998-12-16 2000-08-29 Mitsubishi Engineering Plastics Corp Clear thermoplastic resin composition and heat-ray- intercepting glazing material prepared therefrom
JP2001192245A (en) * 1995-01-23 2001-07-17 Central Glass Co Ltd Method for manufacturing laminated glass
JP2004168846A (en) * 2002-11-19 2004-06-17 Asahi Glass Co Ltd Composite particulate and its preparation method
JP2004203999A (en) * 2002-12-25 2004-07-22 C I Kasei Co Ltd Thermoplastic resin composition, method for producing the same and molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192245A (en) * 1995-01-23 2001-07-17 Central Glass Co Ltd Method for manufacturing laminated glass
JP2000234066A (en) * 1998-12-16 2000-08-29 Mitsubishi Engineering Plastics Corp Clear thermoplastic resin composition and heat-ray- intercepting glazing material prepared therefrom
JP2004168846A (en) * 2002-11-19 2004-06-17 Asahi Glass Co Ltd Composite particulate and its preparation method
JP2004203999A (en) * 2002-12-25 2004-07-22 C I Kasei Co Ltd Thermoplastic resin composition, method for producing the same and molding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234331A (en) * 2005-05-31 2013-11-21 E I Du Pont De Nemours & Co Methods of producing polymer blends containing nanoparticulate solar control concentrates
JP2008545878A (en) * 2005-05-31 2008-12-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Nanoparticle solar control concentrate
WO2007119742A1 (en) * 2006-04-14 2007-10-25 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded plate obtained therefrom
JP2007284540A (en) * 2006-04-14 2007-11-01 Idemitsu Kosan Co Ltd Polycarbonate resin composition and its molded plate
WO2008136317A1 (en) * 2007-04-26 2008-11-13 Sumitomo Metal Mining Co., Ltd. Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JP2008274047A (en) * 2007-04-26 2008-11-13 Sumitomo Metal Mining Co Ltd Composition for manufacturing heat ray-shielding vinyl chloride film and method of manufacturing the same, and heat ray-shielding vinyl chloride film
KR101507186B1 (en) 2007-04-26 2015-03-30 스미토모 긴조쿠 고잔 가부시키가이샤 Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
US8258226B2 (en) 2007-04-26 2012-09-04 Sumitomo Metal Mining Co., Ltd. Composition for manufacturing heat ray-shielding polyvinyl chloride film and manufacturing method of the same, and heat ray-shielding polyvinyl chloride film
WO2009080974A3 (en) * 2007-12-13 2009-08-20 Essilor Int Method of preparing a transparent polymer material comprising a thermoplastic polycarbonate and mineral nanoparticles
FR2925060A1 (en) * 2007-12-13 2009-06-19 Essilor Int PROCESS FOR PREPARING TRANSPARENT POLYMER MATERIAL COMPRISING THERMOPLASTIC POLYCARBONATE AND MINERAL NANOPARTICLES
JP2011506667A (en) * 2007-12-13 2011-03-03 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) Method for producing transparent polymer material containing thermoplastic polycarbonate and inorganic nanoparticles
JP2010084238A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Polyester fiber for shielding heat ray
JP2012506794A (en) * 2008-10-28 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Nanoscale IR absorber in multilayer coated moldings
JP2011148187A (en) * 2010-01-21 2011-08-04 Mitsubishi Plastics Inc Laminated polyester film
JP2015227435A (en) * 2014-05-30 2015-12-17 台虹科技股▲分▼有限公司 Near infrared absorbable master batch, near infrared absorbable product composed of the same and production method of near infrared absorbable fiber composed of the same
JP7458219B2 (en) 2019-07-05 2024-03-29 東京インキ株式会社 Heat shielding resin composition and heat shielding film

Similar Documents

Publication Publication Date Title
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
US20060052486A1 (en) Resin composition, ultraviolet radiation shielding transparent resin form, and ultraviolet radiation shielding transparent resin laminate
US9605129B2 (en) Polymer composition having heat-absorbing properties and improved colour properties
JP2006199850A (en) Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate
US8968610B2 (en) Polymer composition having heat-absorbing properties and high stability to weathering
US9029440B2 (en) Polymer composition having heat-absorbing properties and high stability to weathering
JP4187999B2 (en) Heat ray shielding resin sheet material and manufacturing method thereof
EP1980391A1 (en) Heat shield sheet
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
KR101877781B1 (en) Vinylidene fluoride-based resin film, solar cell back sheet, and solar cell module
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP4191347B2 (en) Transparent thermoplastic resin composition and heat ray shielding glazing material using the same
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP3866869B2 (en) Polycarbonate resin composition and molded body thereof
JP5614586B2 (en) Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and method for producing heat ray shielding polycarbonate sheet
JP2005232399A (en) Sunlight-screening fine particle, sunlight-screening material and sunlight-screening composite material containing the same, and dispersion used for producing sunlight-screening material or sunlight-screening composite material
JP2009235303A (en) Antimony-doped tin oxide fine particles dispersion for addition to polycarbonate resin, its manufacturing method, and antimony-doped tin oxide dispersed polycarbonate resin molded product
JP2000351904A (en) Heat ray-shielding glazing material and holding thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071102

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100602

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019