JP2006199576A - Method for manufacturing anhydrous gypsum and firing system for anhydrous gypsum - Google Patents

Method for manufacturing anhydrous gypsum and firing system for anhydrous gypsum Download PDF

Info

Publication number
JP2006199576A
JP2006199576A JP2005366427A JP2005366427A JP2006199576A JP 2006199576 A JP2006199576 A JP 2006199576A JP 2005366427 A JP2005366427 A JP 2005366427A JP 2005366427 A JP2005366427 A JP 2005366427A JP 2006199576 A JP2006199576 A JP 2006199576A
Authority
JP
Japan
Prior art keywords
furnace
gypsum
anhydrous gypsum
inner cylinder
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366427A
Other languages
Japanese (ja)
Other versions
JP4777058B2 (en
Inventor
Etsuro Yokoyama
悦郎 横山
Fumikazu Shirasawa
文和 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKOODO KK
Taiheiyo Cement Corp
Original Assignee
NAKOODO KK
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKOODO KK, Taiheiyo Cement Corp filed Critical NAKOODO KK
Priority to JP2005366427A priority Critical patent/JP4777058B2/en
Publication of JP2006199576A publication Critical patent/JP2006199576A/en
Application granted granted Critical
Publication of JP4777058B2 publication Critical patent/JP4777058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture II type anhydrous gypsum of high purity by simple facilities at a low fuel cost with the remarkably reduced generation of sulfur oxide, in manufacturing anhydrous gypsum by firing waste gypsum materials or the like. <P>SOLUTION: The firing system for obtaining anhydrous gypsum is equipped with two stages of furnaces 1, 2 equipped with inner tubes 42, 22 in which a high temperature gas is jetted from an opening of the lower part and main bodies 43, 23 which enclose the inner tubes 42, 22 and whose lower parts are formed to be an inverted conical shape, where supplied gypsum particles are heated and fluidized by the high temperature gas. Gypsum particles M are calcined in the former furnace 1 and the calcined gypsum particles CG are fired in the latter furnace 2 to obtain anhydrous gypsum P. Fuel G is burnt in the inner tube 22 of the latter furnace 2 and the burnt gas is jetted from the opening of the lower part, where gypsum particles CG are fired and anhydrous gypsum P is obtained in the latter furnace 2. The exhaust gas from the latter furnace 2 is supplied via a dust collector 12 to the inner tube 42 of the former furnace 1 and jetted from the opening of the lower part of the inner tube 42 of the former furnace 1 to calcine gypsum particles M in the main body 43. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、石膏廃材等を焼成して無水石膏、特にII型無水石膏を焼成する無水石膏の製造方法及び無水石膏焼成システムに関する。   The present invention relates to a method for producing anhydrous gypsum and a system for calcining anhydrous gypsum by calcining gypsum waste and the like, and calcining anhydrous gypsum, particularly type II anhydrous gypsum.

近年の石膏製品の需要の増加とともに、建築物の解体等に伴う石膏廃材の発生量が増加している。特に、建築現場等で発生する廃石膏ボードについては、解体時の分別が困難であったり、リサイクル市場が不足しているため、そのほとんどが埋立処分されている。   Along with the increase in demand for gypsum products in recent years, the amount of gypsum waste generated due to the dismantling of buildings has increased. In particular, waste gypsum boards generated at construction sites and the like are mostly landfilled because they are difficult to separate at the time of dismantling or the recycling market is insufficient.

廃石膏ボードを埋め立てる場合には、管理型の産業廃棄物最終処分場で処分することとされている。そのため、処理コストの増大を招くとともに、最終処分場の涸渇化の問題があり、石膏廃材の有効利用が期待されている。   When landfilling waste gypsum board, it is supposed to be disposed of at a managed industrial waste final disposal site. For this reason, the processing cost is increased, and there is a problem of depletion of the final disposal site, and effective use of gypsum waste is expected.

そこで、本出願人は、ロータリーキルンを用い、焼点温度を500〜1200℃、窯尻温度を300〜950℃に制御して石膏廃材を焼成することにより、II型無水石膏の含有量が80重量%以上、半水石膏とIII型無水石膏の合計含有量が10重量%以下、CaOの含有量が10重量%以下、全有機炭素量0.3重量%以下の無水石膏類を製造する技術を提案した(特許文献1参照)。   Therefore, the present applicant uses a rotary kiln, and controls the burning point temperature to 500 to 1200 ° C. and the kiln bottom temperature to 300 to 950 ° C. to fire the gypsum waste material, so that the content of type II anhydrous gypsum is 80 wt. % To produce anhydrous gypsum with a total content of hemihydrate gypsum and type III anhydrous gypsum of 10% by weight or less, CaO content of 10% by weight or less, and total organic carbon content of 0.3% by weight or less. Proposed (see Patent Document 1).

また、特許文献2は、無孔の底、材料のための入口及び出口、並びに逆円錐形の容器の底に隣接して開いた熱ガス用の少なくとも1個の下方に向かって延設された管を有する容器を含む粒状材料熱処理装置において、底を管の近くの底で材料を制限するように形成し、ここで管から出る熱ガスが材料を加熱し、循環させるようにした装置、いわゆるコニカルケトル炉を用いて無水石膏を生成すること、及び2基の炉を用いて2段階で反応を行うことに言及している。   Patent Document 2 also extended toward at least one bottom for hot gas opened adjacent to the non-porous bottom, the inlet and outlet for the material, and the bottom of the inverted conical container. In a granular material heat treatment apparatus comprising a vessel with a tube, the bottom is formed to limit the material at the bottom near the tube, where the hot gas exiting the tube heats and circulates the material, so-called It refers to producing anhydrous gypsum using a conical kettle furnace and carrying out the reaction in two stages using two furnaces.

さらに、特許文献3には、石膏を焼成して実質的に硫酸カルシウム硬石膏からなる石膏粉を回収するにあたって、コンベアにより石膏粉を第1のケトル内に供給し、石膏粉を好ましくは約204℃より低い温度まで加熱し、次に、石膏粉をオーバフロー管を経て第2のケトル内に流入させて約260℃〜約426℃の温度まで加熱し、さらに、石膏粉を別のオーバフローチューブを経て第3のケトル内に流入させ、少なくとも約482℃の最終温度まで加熱する方法が開示されている。   Further, in Patent Document 3, when gypsum is baked to recover gypsum powder substantially made of calcium sulfate anhydrite, the gypsum powder is supplied into the first kettle by a conveyor, and the gypsum powder is preferably about 204. The gypsum powder is then heated to a temperature of about 260 ° C. to about 426 ° C. by flowing the gypsum powder through the overflow tube into the second kettle, and the gypsum powder is separated into another overflow tube. Via a third kettle and heated to a final temperature of at least about 482 ° C.

特開2001−146420号公報JP 2001-146420 A 特開昭55−94634号公報JP 55-94634 A 特公表2001−507662号公報Japanese Patent Publication No. 2001-507661

しかし、原料に石膏廃材を用いて無水石膏を製造する場合には、従来のロータリーキルン等を用いて焼成すると、局所的に過剰に加熱される部分が生じ、石膏廃材に高性能減水剤として混和されているナフタレンスルホン酸基が分解されて硫黄酸化物が発生するおそれがあるという問題があった。また、石膏自体も、1000℃以上に加熱すると、熱分解して大量に硫黄酸化物が発生するおそれがあるという問題があった。   However, when gypsum waste is used as a raw material to produce anhydrous gypsum, if it is baked using a conventional rotary kiln or the like, a part that is excessively heated is generated and mixed with gypsum waste as a high-performance water reducing agent. There is a problem that the naphthalene sulfonic acid group is decomposed to generate sulfur oxides. Further, the gypsum itself has a problem that when it is heated to 1000 ° C. or more, it may be thermally decomposed to generate a large amount of sulfur oxide.

また、ロータリーキルン、コニカルケトル炉等、使用する炉の種類に関わらず、製品として得られるII型無水石膏の純度を高く維持するとともに、燃費を低減することも要請されていた。   In addition, regardless of the type of furnace used, such as a rotary kiln, conical kettle furnace, etc., it has been required to maintain high purity of the type II anhydrous gypsum obtained as a product and to reduce fuel consumption.

一方、特許文献2に記載の仮焼法では、2基のコニカルケトル炉を2段階に接続して無水石膏を生成し得ることに言及しているが、実際には、例えば、後段の炉には、分散性の良い粉体のみが供給されるため、単に2基の炉を結合するだけでは、後段の炉の排気とともに大量のダストが前段の炉にもたらされて循環することにより、燃費、電力費の大幅な損失が発生することなどの問題が予見される。   On the other hand, in the calcining method described in Patent Document 2, it is mentioned that two conical kettle furnaces can be connected in two stages to produce anhydrous gypsum. Because only dispersible powder is supplied, simply connecting two furnaces brings together a large amount of dust into the former furnace and circulates together with the exhaust from the latter furnace, resulting in fuel efficiency. Problems such as a significant loss of electricity costs are foreseen.

さらに、特許文献3に記載の無水生成物製造方法では、石膏を多段焼成して無水生成物を製造しているが、燃焼ガスは、炉のチューブ内を流れて加熱にのみ用いられるに過ぎないため、流動媒体として別途圧縮空気を導入し、撹拌羽根を設置する必要があり、システムの構造が複雑で、エネルギー効率も低いという問題があった。   Furthermore, in the anhydrous product manufacturing method described in Patent Document 3, gypsum is fired in multiple stages to produce an anhydrous product, but the combustion gas flows only in the furnace tube and is only used for heating. Therefore, it is necessary to separately introduce compressed air as a fluid medium and to install a stirring blade, and there is a problem that the structure of the system is complicated and the energy efficiency is low.

そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、硫黄酸化物の発生を大幅に抑制することができるとともに、高純度のII型無水石膏を得ることができ、構造が簡単で、燃費及び電力費を低く抑えることなどが可能な無水石膏の製造方法及び無水石膏焼成システムを提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems in the prior art, and can significantly suppress the generation of sulfur oxides and obtain a high-purity type II anhydrous gypsum. An object of the present invention is to provide an anhydrous gypsum manufacturing method and an anhydrous gypsum firing system that have a simple structure and can reduce fuel consumption and power consumption.

上記目的を達成するため、本発明は、下部に開口部を備えた内筒と、該内筒を囲繞し、下部が逆円錐状に形成された本体とを備えた炉を2段設置し、後段の炉の内筒の内部で燃料を燃焼させて該内筒の下部の開口部から燃焼ガスを噴出させ、該後段の炉の本体に前段の炉で仮焼された石膏粒子を供給し、該石膏粒子を焼成して無水石膏を得るとともに、前記後段の炉の排気を除塵機を経て前記前段の炉の内筒に供給し、該前段の炉の内筒の下部の開口部から該排気を噴出させ、該前段の炉の本体に石膏粒子を供給し、該本体の内部で該石膏粒子を仮焼することを特徴とする。   In order to achieve the above-mentioned object, the present invention is provided with two stages of furnaces each including an inner cylinder having an opening in the lower part and a main body surrounding the inner cylinder and having a lower part formed in an inverted conical shape. Combusting the fuel inside the inner cylinder of the latter furnace and injecting combustion gas from the lower opening of the inner cylinder, supplying the gypsum particles calcined in the former furnace to the main body of the latter furnace, The gypsum particles are calcined to obtain anhydrous gypsum, and the exhaust of the latter furnace is supplied to the inner cylinder of the former furnace through a dust remover, and the exhaust is discharged from the opening in the lower part of the inner cylinder of the preceding furnace. The gypsum particles are supplied to the main body of the previous stage furnace, and the gypsum particles are calcined inside the main body.

そして、本発明によれば、石膏粒子を焼成する後段の炉の排気を、前段の炉における石膏粒子の仮焼に利用するため、高温の燃焼廃ガスが系外に排出されることがなく、燃焼廃ガスに含まれるダストをバグフィルタ等で集塵するにあたって、燃焼廃ガスの温度を下げるためのスプレー塔等を設置する必要がなく、構成が簡単でコンパクトなシステムを構成することができる。   And, according to the present invention, the exhaust of the latter furnace for firing the gypsum particles is used for pre-calcining the gypsum particles in the former furnace, so that high-temperature combustion waste gas is not discharged out of the system, When collecting dust contained in the combustion waste gas with a bag filter or the like, it is not necessary to install a spray tower or the like for lowering the temperature of the combustion waste gas, and a simple system and a compact system can be configured.

また、本発明によれば、炉内で石膏粒子を仮焼又は焼成するにあたって、燃焼ガス等によって石膏粒子を加熱しながら流動化させるため、流動媒体として別途圧縮空気を導入したり、撹拌羽根を設置する必要がなく、炉の構造が単純で燃費も低い無水石膏の製造方法を提供することができる。   In addition, according to the present invention, when calcining or calcining gypsum particles in a furnace, the gypsum particles are fluidized while being heated by combustion gas or the like. There is no need to install it, and a method for producing anhydrous gypsum with a simple furnace structure and low fuel consumption can be provided.

さらに、本発明によれば、粉粒体を流動化状態として、高温の燃焼ガス等を接触させて加熱する間接加熱方式を採用し、粉粒体層は完全混合状態となり、全体として略々均一な温度となり、局所的に過剰に加熱されることはないため、原料としての石膏粒子が、石膏自体の分解温度(1000℃以上)や、混和剤として含有されるナフタレンスルホン酸基の分解温度(850℃以上)に加熱されることを避けることができる。これによって、硫黄酸化物の発生を大幅に抑制することができる。   Furthermore, according to the present invention, an indirect heating method is employed in which the powder is fluidized and brought into contact with high-temperature combustion gas and heated, so that the powder layer is in a completely mixed state and is substantially uniform as a whole. Since the temperature of the gypsum particles is not excessively heated locally, the gypsum particles as a raw material have a decomposition temperature of the gypsum itself (1000 ° C. or higher) or a decomposition temperature of a naphthalenesulfonic acid group contained as an admixture ( 850 ° C. or higher) can be avoided. Thereby, generation | occurrence | production of sulfur oxide can be suppressed significantly.

さらにまた、本発明によれば、後段の炉の排気を除塵機を経て前記前段の炉の内筒に供給するため、後段の炉に供給されている仮焼済みの分散性の良い粉体が、除塵機、特に高含塵濃度に対応することのできる除塵機によって、前段の炉に飛散することを防止することができるため、大量の粉体が2基の炉の間で循環することを防止し、燃費及び電力費の大幅な損失を回避することができる。   Furthermore, according to the present invention, since the exhaust from the latter furnace is supplied to the inner cylinder of the former furnace through the dust remover, the calcined powder having good dispersibility supplied to the latter furnace is obtained. The dust remover, especially the dust remover that can handle high dust concentration, can be prevented from scattering into the previous furnace, so that a large amount of powder circulates between the two furnaces. It can prevent and significant loss of fuel consumption and power cost can be avoided.

前記無水石膏の製造方法において、前記前段の炉から排出されるガスの温度を、100℃以上250℃以下に制御することができる。これによって、燃焼廃ガスに含まれるダストをバグフィルタで集塵することができる。   In the anhydrous gypsum manufacturing method, the temperature of the gas discharged from the preceding furnace can be controlled to 100 ° C. or more and 250 ° C. or less. Thereby, the dust contained in the combustion waste gas can be collected by the bag filter.

前記無水石膏の製造方法において、前記後段の炉から排出される燃焼ガスの温度を、330℃以上840℃以下に制御することができる。これによって、硫黄酸化物をほとんど発生させずに、2水石膏を完全にII型無水石膏化することができる。   In the anhydrous gypsum manufacturing method, the temperature of the combustion gas discharged from the subsequent furnace can be controlled to 330 ° C. or higher and 840 ° C. or lower. As a result, the dihydrate gypsum can be completely converted to type II anhydrous gypsum with little generation of sulfur oxides.

前記無水石膏の製造方法において、前記前段の炉から排出されるガスに含まれるダストを集塵し、該前段の炉に戻すことができる。これによって、II型無水石膏純度の低い飛散ダストを製品に混入させることがなくなるとともに、仮焼が不十分な石膏粒子を前段の炉において効率よく仮焼することができる。   In the anhydrous gypsum manufacturing method, dust contained in the gas discharged from the preceding furnace can be collected and returned to the preceding furnace. As a result, scattered dust having low purity of type II anhydrous gypsum is not mixed into the product, and gypsum particles that are insufficiently calcined can be efficiently calcined in the preceding furnace.

前記無水石膏の製造方法において、記除塵機で捕集したダストを前記後段の炉に戻すことができる。これによって、II型無水石膏純度の低い飛散ダストを製品に混入させることがなくなり、高純度のII型無水石膏を製造することができる。   In the anhydrous gypsum manufacturing method, the dust collected by the dust remover can be returned to the subsequent furnace. As a result, scattered dust having low purity of type II anhydrous gypsum is not mixed into the product, and high purity type II anhydrous gypsum can be produced.

前記前段の炉から排出されるガスの温度を、該前段の炉への散水量によって制御することができる。前段の炉からの排出ガス温度が異常に上昇した場合には、例えば、後段のバグフィルタを保護するために排出ガス温度を下げる必要がある。そこで、前段の炉へ散水を行い、排出ガス温度を低下させる。この際、炉内では、石膏粒子が流動化し、常に移動しているので、散水ノズルが閉塞するようなこともなく、効率よくガス温度を制御することができる。   The temperature of the gas discharged from the preceding furnace can be controlled by the amount of water sprayed into the preceding furnace. When the temperature of the exhaust gas from the preceding furnace rises abnormally, for example, it is necessary to lower the exhaust gas temperature in order to protect the subsequent bag filter. Therefore, water is sprayed to the previous furnace to lower the exhaust gas temperature. At this time, since the gypsum particles are fluidized and constantly moving in the furnace, the gas temperature can be controlled efficiently without the water nozzle being blocked.

また、本発明は、下部に開口部を備え、該開口部から高温ガスが噴出する内筒と、該内筒を囲繞し、下部が逆円錐状に形成され、供給された石膏粒子を前記高温ガスによって加熱しながら流動化させる本体とを備えた炉を2段備え、前段の炉で石膏粒子を仮焼し、該仮焼された石膏粒子を後段の炉で焼成して無水石膏を得る無水石膏焼成システムにおいて、前記後段の炉の排気を前記前段の炉の内筒に供給するにあたって、前記後段の炉の排気を除塵する除塵機を備えることを特徴とする。本システムによれば、上述のように、構成が簡単でコンパクトな設備となり、炉の構造も単純で、燃費及び電力費を低減することができる。   Further, the present invention includes an opening in the lower part, an inner cylinder from which the high temperature gas is ejected, and surrounding the inner cylinder, the lower part is formed in an inverted cone shape, and the supplied gypsum particles are Two stages of furnaces equipped with a main body to be fluidized while being heated by gas, gypsum particles are calcined in the former stage, and the calcined gypsum particles are calcined in the latter stage to obtain anhydrous gypsum The gypsum firing system includes a dust remover that dusts the exhaust of the latter furnace when supplying the exhaust of the latter furnace to the inner cylinder of the former furnace. According to the present system, as described above, the equipment is simple and compact, the furnace structure is simple, and fuel consumption and power cost can be reduced.

以上のように、本発明によれば、硫黄酸化物の発生を大幅に抑制することができるとともに、高純度のII型無水石膏を得ることができ、構造が簡単で、燃費及び電力費も低い無水石膏の製造方法及び無水石膏焼成システムを提供することができる。   As described above, according to the present invention, the generation of sulfur oxides can be significantly suppressed, and high-purity type II anhydrous gypsum can be obtained, the structure is simple, and the fuel consumption and power cost are low. An anhydrous gypsum production method and an anhydrous gypsum firing system can be provided.

次に、本発明の実施の形態について図面を参照しながら説明する。尚、以下の説明においては、建築物の解体等に伴って発生する石膏廃材を焼成して無水石膏、特にII型無水石膏を焼成する場合を例にとって説明する。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description, an example will be described in which gypsum waste material generated in accordance with the dismantling of a building is fired to burn anhydrous gypsum, particularly type II anhydrous gypsum.

図1は、本発明にかかる無水石膏焼成システムの一実施の形態を示すフローチャートである。この無水石膏焼成システムは、仮焼炉(前段の炉)1と、焼成炉(後段の炉)2と、仮焼炉1に石膏廃材Mを供給するためのホッパ4、スクリューフィーダ5及びスクリューコンベア6と、仮焼炉1で仮焼された石膏廃材CGを焼成炉2に搬送するためのルーツブロワ3と、仮焼炉1から排出されたガスが導入され、このガスに含まれるダストを除塵する除塵機としてのサイクロン7と、焼成炉2の本体23に圧縮空気CAを供給するコンプレッサ14と、焼成炉2の本体23に燃焼用空気Aを供給するためのルーツブロワ13と、焼成炉2から排出された燃焼ガスが導入され、この燃焼ガスに含まれるダストを除塵する除塵機、特に高含塵濃度に対応することのできる除塵機としてのサイクロン12と、サイクロン7から排出されたガスに含まれるダストを集塵するバグフィルタ9と、集塵後のガスを大気に放出するファン8と、バグフィルタ9で集塵したダストを仮焼炉1又は焼成炉2に戻すためのスクリューコンベア10、11等で構成される。   FIG. 1 is a flowchart showing an embodiment of an anhydrous gypsum firing system according to the present invention. This anhydrous gypsum firing system includes a calcining furnace (front furnace) 1, a calcining furnace (second stage furnace) 2, a hopper 4 for supplying gypsum waste M to the calcining furnace 1, a screw feeder 5, and a screw conveyor. 6, a roots blower 3 for transporting the gypsum waste CG calcined in the calcining furnace 1 to the calcining furnace 2, and a gas discharged from the calcining furnace 1 are introduced, and dust contained in this gas is removed. The cyclone 7 as a dust remover, the compressor 14 that supplies the compressed air CA to the main body 23 of the baking furnace 2, the roots blower 13 for supplying the combustion air A to the main body 23 of the baking furnace 2, and the discharge from the baking furnace 2 To the gas discharged from the cyclone 12 and the cyclone 12 as a dust remover that removes dust contained in the combustion gas, particularly a dust remover that can cope with a high dust concentration. A bag filter 9 for collecting the dust to be collected, a fan 8 for releasing the collected gas to the atmosphere, and a screw conveyor 10 for returning the dust collected by the bag filter 9 to the calcining furnace 1 or the baking furnace 2. , 11 etc.

焼成炉2は、図2乃至図4に示すように、下部にスリット(開口部)25を備えた内筒22と、この内筒22を囲繞するように、下部23aが逆円錐状に形成された本体23とで構成される。   As shown in FIGS. 2 to 4, the firing furnace 2 has an inner cylinder 22 having a slit (opening) 25 in the lower part and a lower part 23 a formed in an inverted conical shape so as to surround the inner cylinder 22. And a main body 23.

内筒22は、本体23の中央部に配置され、上部に燃焼用空気管29を備え、内筒22の中心軸に沿って、燃料としての都市ガスを供給するための燃料供給管21が配置される。また、内筒22の下端部には、複数のスリット25が開設され、このスリット25から燃焼ガスが本体23内に噴出する。尚、内筒22の内部は、燃焼熱によって1200℃程度の高温に曝されるため、内筒22の内壁を冷却することが好ましい。   The inner cylinder 22 is arranged at the center of the main body 23, and includes a combustion air pipe 29 at the upper part, and a fuel supply pipe 21 for supplying city gas as fuel is arranged along the central axis of the inner cylinder 22. Is done. A plurality of slits 25 are formed at the lower end of the inner cylinder 22, and combustion gas is ejected into the main body 23 from the slits 25. In addition, since the inside of the inner cylinder 22 is exposed to a high temperature of about 1200 ° C. by combustion heat, it is preferable to cool the inner wall of the inner cylinder 22.

燃焼用空気管29は、内筒22における燃料の燃焼用の空気を導入するために設けられ、図1に示したルーツブロワ13から空気が供給される。   The combustion air pipe 29 is provided for introducing air for fuel combustion in the inner cylinder 22, and air is supplied from the roots blower 13 shown in FIG.

燃料供給管21は、上方から内筒22の天板22aを貫通するように配置され、燃料供給管21の下端部には、分割炎を得るための多孔板32が設けられる。この燃料供給管21は、上端部の一部を除き、燃料供給管21へ内側から空気を導くための管30によって囲繞されている。   The fuel supply pipe 21 is disposed so as to penetrate the top plate 22a of the inner cylinder 22 from above, and a perforated plate 32 for obtaining a divided flame is provided at the lower end portion of the fuel supply pipe 21. The fuel supply pipe 21 is surrounded by a pipe 30 for guiding air from the inside to the fuel supply pipe 21 except for a part of the upper end portion.

本体23は、上述のように、下部23aが逆円錐状に、上部23bが円筒状に形成され、この本体23の内部に供給された石膏廃材CGが燃焼ガスとの熱交換により無水石膏となる。本体23の天板23cを貫通するように、原料供給管26、飛散ダスト戻し管27が配置され、天板23cには、さらに排気管28が接続される。また、下部23aの内壁に沿って、圧縮空気を導入するためのエアーランス24が配置される。下部23aと上部23bとの境界付近が開口され、この開口部23dに連通する製品排出管33が設けられる。尚、本体23の内部の温度を高く維持する場合には、本体23の内壁に耐火物を配設する。   As described above, the main body 23 has the lower portion 23a formed in an inverted conical shape and the upper portion 23b formed in a cylindrical shape, and the gypsum waste CG supplied to the inside of the main body 23 becomes anhydrous gypsum by heat exchange with the combustion gas. . A raw material supply pipe 26 and a scattered dust return pipe 27 are disposed so as to penetrate the top plate 23c of the main body 23, and an exhaust pipe 28 is further connected to the top plate 23c. An air lance 24 for introducing compressed air is disposed along the inner wall of the lower portion 23a. The vicinity of the boundary between the lower part 23a and the upper part 23b is opened, and a product discharge pipe 33 communicating with the opening part 23d is provided. In addition, when maintaining the temperature inside the main body 23 high, a refractory is provided on the inner wall of the main body 23.

原料供給管26は、石膏廃材CGを本体23の内部に供給するために備えられ、原料供給用に、さらに飛散ダスト戻し管27も備えられる。   The raw material supply pipe 26 is provided for supplying the gypsum waste material CG to the inside of the main body 23, and further a scattering dust return pipe 27 is further provided for supplying the raw material.

排気管28は、本体23の内部と連通し、内筒22で発生した燃焼ガスを本体23の内部を介して系外に排出する。   The exhaust pipe 28 communicates with the inside of the main body 23, and discharges the combustion gas generated in the inner cylinder 22 out of the system through the inside of the main body 23.

エアーランス24は、本体23の下部23aの最下部に圧縮空気を導入するために備えられ、この圧縮空気によって製品としての無水石膏Pが排出される。   The air lance 24 is provided to introduce compressed air into the lowermost portion of the lower portion 23a of the main body 23, and the anhydrous gypsum P as a product is discharged by the compressed air.

製品排出管33は、開口部23dから排出された製品としての無水石膏Pを系外に排出するために設けられる。   The product discharge pipe 33 is provided for discharging anhydrous gypsum P as a product discharged from the opening 23d out of the system.

図1に示した仮焼炉1は、上記焼成炉2の本体23と内筒22と略々同様の本体43及び内筒42を有する。但し、仮焼炉1の内筒42には、燃料が供給されずに、焼成炉2の燃焼ガスがサイクロン12を介して導入されるため、焼成炉2の内筒22に設けられている燃料供給管21、燃焼用空気管29、空気を導くための管30及び多孔板32は、仮焼炉1の内筒42には備えられていない。   The calcining furnace 1 shown in FIG. 1 has a main body 43 and an inner cylinder 42 which are substantially the same as the main body 23 and the inner cylinder 22 of the baking furnace 2. However, since the fuel is not supplied to the inner cylinder 42 of the calcining furnace 1 and the combustion gas of the firing furnace 2 is introduced through the cyclone 12, the fuel provided in the inner cylinder 22 of the firing furnace 2. The supply pipe 21, the combustion air pipe 29, the pipe 30 for guiding air and the perforated plate 32 are not provided in the inner cylinder 42 of the calcining furnace 1.

次に、上記構成を有する無水石膏焼成システムの運転要領について、図1乃至図4を参照しながら説明する。   Next, an operation procedure of the anhydrous gypsum firing system having the above-described configuration will be described with reference to FIGS. 1 to 4.

まず、仮焼炉1による石膏廃材の仮焼について説明する。   First, calcination of gypsum waste material in the calcination furnace 1 will be described.

焼成炉2の排気をサイクロン12を経由して仮焼炉1の内筒42に導入するとともに、ホッパ4、スクリューフィーダ5、スクリューコンベア6を介して仮焼炉1の本体43の内部に石膏廃材Mを供給し、石膏廃材Mを仮焼する。本体43内で石膏廃材Mと高温ガスとが完全混合状態となり、本体43の内部及び仮焼炉1の排ガス温度は、通常、130℃程度に制御されるが、石膏廃材又は製品の種類に応じて100℃以上250℃以下の範囲で制御する。   Exhaust gas from the firing furnace 2 is introduced into the inner cylinder 42 of the calcining furnace 1 through the cyclone 12, and gypsum waste material is introduced into the main body 43 of the calcining furnace 1 through the hopper 4, screw feeder 5, and screw conveyor 6. M is supplied and the gypsum waste material M is calcined. The gypsum waste material M and the high-temperature gas are completely mixed in the main body 43, and the exhaust gas temperature in the main body 43 and the calcining furnace 1 is usually controlled to about 130 ° C., depending on the type of gypsum waste material or product. The temperature is controlled in the range of 100 ° C to 250 ° C.

本体43の内部の粉粒体層の所定の2箇所の差圧を測定し、本体43内の粉粒体レベルが一定となるように仮焼炉1へ石膏廃材Mの供給量を制御する。尚、仮焼炉1の排ガス温度を制御するため、仮焼炉1の本体43に散水Wを行うこともできる。散水Wは、ノズルを介して行うが、本体43の内部の石膏廃材Mは流動化し、常に移動しているので、散水ノズルが閉塞することもなく、安定して均一に散水を行うことができる。   The differential pressure at two predetermined locations of the powder layer inside the main body 43 is measured, and the supply amount of the gypsum waste material M to the calciner 1 is controlled so that the powder particle level in the main body 43 is constant. In addition, in order to control the exhaust gas temperature of the calciner 1, the water spray W can be applied to the main body 43 of the calciner 1. Sprinkling W is performed through a nozzle, but since the gypsum waste material M inside the main body 43 is fluidized and constantly moving, the watering nozzle can be stably and uniformly sprinkled without being blocked. .

仮焼炉1で仮焼された石膏廃材CGは、ルーツブロワ3によって焼成炉2まで搬送される。一方、仮焼炉1の排気は、サイクロン7に導入され、サイクロン7で集塵されたダストD1が仮焼炉1に戻される。また、サイクロン7から排出されたガスは、バグフィルタ9で集塵され、集塵後のガスは、ファン8によって大気に放出される。バグフィルタ9で集塵されたダストD3は、スクリューコンベア10、11を介して仮焼炉1又は焼成炉2に戻すことができるが、このダストD3には、仮焼が不十分な石膏粒子が多く含まれているため、仮焼炉1にダストD3全量を戻すことが好ましい。   The gypsum waste material CG calcined in the calcining furnace 1 is conveyed to the calcining furnace 2 by the roots blower 3. On the other hand, the exhaust from the calciner 1 is introduced into the cyclone 7, and the dust D <b> 1 collected by the cyclone 7 is returned to the calciner 1. Further, the gas discharged from the cyclone 7 is collected by the bag filter 9, and the collected gas is discharged to the atmosphere by the fan 8. The dust D3 collected by the bag filter 9 can be returned to the calcining furnace 1 or the calcining furnace 2 via the screw conveyors 10 and 11, but the dust D3 contains gypsum particles that are insufficiently calcined. Since it is contained in a large amount, it is preferable to return the total amount of dust D3 to the calciner 1.

次に、上記仮焼炉1によって仮焼された石膏廃材CGの焼成炉2による焼成について説明する。   Next, firing of the gypsum waste material CG calcined by the calcining furnace 1 by the calcining furnace 2 will be described.

焼成炉2の内筒22の内部に燃焼用空気管29を介して、ルーツブロワ13から燃焼用空気Aを、燃料供給管21を介して燃料としての都市ガスGを供給する。都市ガスGが内筒22の内部で燃焼し、内筒22の内部は、約1200℃に維持される。一方、ルーツブロワ3によって、仮焼炉1で仮焼された石膏廃材CGが焼成炉2の本体23の内部に供給される。本体23内で石膏廃材CGと高温ガスとが完全混合状態となり、本体23の内部及び焼成炉2の排ガス温度は、通常、460℃程度に制御されるが、石膏廃材CG又は製品の種類に応じて330℃以上840℃以下の範囲で制御する。また、本体23の内部の粉粒体層の所定の2箇所の差圧を測定し、本体23内の粉粒体レベルが一定となるように焼成炉2への石膏廃材CGの供給量を制御する。   The combustion air A is supplied from the Roots blower 13 through the combustion air pipe 29 and the city gas G as fuel is supplied through the fuel supply pipe 21 into the inner cylinder 22 of the firing furnace 2. The city gas G burns inside the inner cylinder 22, and the inside of the inner cylinder 22 is maintained at about 1200 ° C. On the other hand, the gypsum waste material CG calcined in the calcining furnace 1 is supplied into the main body 23 of the calcining furnace 2 by the roots blower 3. The gypsum waste material CG and the high-temperature gas are completely mixed in the main body 23, and the exhaust gas temperature in the main body 23 and the firing furnace 2 is normally controlled to about 460 ° C., depending on the type of gypsum waste material CG or product. In the range of 330 ° C. or higher and 840 ° C. or lower. Moreover, the differential pressure | voltage of two predetermined places of the granular material layer inside the main body 23 is measured, and the supply amount of the gypsum waste material CG to the firing furnace 2 is controlled so that the granular particle level in the main body 23 becomes constant. To do.

内筒22の内部で都市ガスGが燃焼して発生した燃焼ガスは、スリット25から本体23の最下部に噴出する。この噴出した燃焼ガスにより石膏廃材CGが本体23の下部23aにおいて流動化し、燃焼ガスと熱交換する。熱交換が完了すると、石膏廃材CGは、製品としての無水石膏Pに変化し、エアーランス24を介して導入されたコンプレッサ14からの圧縮空気CAにより流動化され、開口部23dから製品排出管33を介して系外に排出される。   The combustion gas generated by burning the city gas G inside the inner cylinder 22 is ejected from the slit 25 to the lowermost part of the main body 23. The jetted combustion gas causes the gypsum waste material CG to fluidize in the lower portion 23a of the main body 23 and exchange heat with the combustion gas. When the heat exchange is completed, the gypsum waste CG is changed to anhydrous gypsum P as a product, fluidized by the compressed air CA from the compressor 14 introduced through the air lance 24, and the product discharge pipe 33 from the opening 23d. It is discharged out of the system through

一方、本体23から排出された燃焼ガスは、サイクロン12に導入され、サイクロン12で除塵されたダストD2が焼成炉2に戻される。ここで、仮焼炉1から焼成炉2に供給された石膏廃材CGは仮焼済みであるため、分散性が良く、燃焼ガスとともに仮焼炉1に飛散しやすいため、サイクロン12で除塵し、大量の粉体状の石膏廃材CGが仮焼炉1と焼成炉2の間で循環することを防止している。サイクロン12から排出されたガスは、仮焼炉1の本体43に導入され、仮焼炉1における石膏廃材Mの仮焼に用いられる。   On the other hand, the combustion gas discharged from the main body 23 is introduced into the cyclone 12, and the dust D <b> 2 removed by the cyclone 12 is returned to the firing furnace 2. Here, since the gypsum waste material CG supplied from the calcining furnace 1 to the calcining furnace 2 has been calcined, it has good dispersibility, and is easily scattered with the combustion gas in the calcining furnace 1, so dust is removed by the cyclone 12, A large amount of powdery gypsum waste CG is prevented from circulating between the calcining furnace 1 and the firing furnace 2. The gas discharged from the cyclone 12 is introduced into the main body 43 of the calcining furnace 1 and used for calcining the gypsum waste material M in the calcining furnace 1.

尚、建築物の解体等に伴って発生する石膏廃材には金物が混入している場合があるが、混入した金物は、仮焼炉1及び焼成炉2において本体43、23の底部に堆積し、無水石膏Pに混入することがなく、仮焼炉1及び焼成炉2の休止時に取り出すことができる。   In addition, there is a case where a metal object is mixed in the gypsum waste material generated when the building is dismantled or the like, but the mixed metal object is deposited on the bottoms of the main bodies 43 and 23 in the calcining furnace 1 and the baking furnace 2. It can be taken out when the calcining furnace 1 and the calcining furnace 2 are stopped without being mixed into the anhydrous gypsum P.

本発明にかかる無水石膏焼成システムの一実施の形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the anhydrous gypsum baking system concerning this invention. 図1の無水石膏焼成システムの焼成炉を示す一部破断正面図である。It is a partially broken front view which shows the baking furnace of the anhydrous gypsum baking system of FIG. 図2のA−A線断面図である(但し、焼成用空気管29及びエアーランス24近傍については、A−A線断面となっていない)。3 is a cross-sectional view taken along the line AA in FIG. 2 (however, the vicinity of the firing air pipe 29 and the air lance 24 is not a cross-sectional view taken along the line AA). 図2の焼成炉の上面図である。FIG. 3 is a top view of the firing furnace of FIG. 2.

符号の説明Explanation of symbols

1 仮焼炉
2 焼成炉
3 ルーツブロワ
4 ホッパ
5 スクリューフィーダ
6 スクリューコンベア
7 サイクロン
8 ファン
9 バグフィルタ
10 スクリューコンベア
11 スクリューコンベア
12 サイクロン
13 ルーツブロワ
14 コンプレッサ
21 燃料供給管
22 (焼成炉の)内筒
22a 天板
23 (焼成炉の)本体
23a 下部
23b 上部
23c 天板
23d 開口部
24 エアーランス
25 スリット
26 原料供給管
27 飛散ダスト戻し管
28 排気管
29 燃焼用空気管
30 燃料供給管へ内側から空気を導くための管
32 多孔板
33 製品排出管
42 (仮焼炉の)内筒
43 (仮焼炉の)本体
A 燃焼用空気
CA 圧縮空気
CG 仮焼された石膏廃材
D1〜D3 ダスト
G 都市ガス
M 石膏廃材
P 無水石膏
W 水(散水)
DESCRIPTION OF SYMBOLS 1 Calcining furnace 2 Firing furnace 3 Roots blower 4 Hopper 5 Screw feeder 6 Screw conveyor 7 Cyclone 8 Fan 9 Bag filter 10 Screw conveyor 11 Screw conveyor 12 Cyclone 13 Roots blower 14 Compressor 21 Fuel supply pipe 22 (Causing furnace) inner cylinder 22a Plate 23 (of the baking furnace) Main body 23a Lower part 23b Upper part 23c Top plate 23d Opening 24 Air lance 25 Slit 26 Raw material supply pipe 27 Scattering dust return pipe 28 Exhaust pipe 29 Combustion air pipe 30 Air is introduced from the inside to the fuel supply pipe Pipe 32 for porous plate 33 Product discharge pipe 42 Inner cylinder 43 (for calcining furnace) Body A (for calcining furnace) Main body A Combustion air CA Compressed air CG Calcined gypsum waste materials D1 to D3 Dust G City gas M Gypsum Waste material P Anhydrous gypsum W Water (watering)

Claims (7)

下部に開口部を備えた内筒と、該内筒を囲繞し、下部が逆円錐状に形成された本体とを備えた炉を2段設置し、
後段の炉の内筒の内部で燃料を燃焼させて該内筒の下部の開口部から燃焼ガスを噴出させ、該後段の炉の本体に前段の炉で仮焼された石膏粒子を供給し、該石膏粒子を焼成して無水石膏を得るとともに、
前記後段の炉の排気を除塵機を経て前記前段の炉の内筒に供給し、該前段の炉の内筒の下部の開口部から該排気を噴出させ、該前段の炉の本体に石膏粒子を供給し、該本体の内部で該石膏粒子を仮焼することを特徴とする無水石膏の製造方法。
Two stages of furnaces including an inner cylinder having an opening in the lower part, a main body surrounding the inner cylinder and having a lower part formed in an inverted cone shape,
Combusting the fuel inside the inner cylinder of the latter furnace and injecting combustion gas from the lower opening of the inner cylinder, supplying the gypsum particles calcined in the former furnace to the main body of the latter furnace, Calcining the gypsum particles to obtain anhydrous gypsum,
The exhaust from the latter furnace is supplied to the inner cylinder of the former furnace through a dust remover, and the exhaust is ejected from an opening in the lower part of the inner cylinder of the former furnace, so that gypsum particles are placed on the main body of the former furnace. , And calcining the gypsum particles inside the main body.
前記前段の炉から排出されるガスの温度を、100℃以上250℃以下に制御することを特徴とする請求項1に記載の無水石膏の製造方法。   The method for producing anhydrous gypsum according to claim 1, wherein the temperature of the gas discharged from the preceding furnace is controlled to 100 ° C. or more and 250 ° C. or less. 前記後段の炉から排出される燃焼ガスの温度を、330℃以上840℃以下に制御することを特徴とする請求項1又は2に記載の無水石膏の製造方法。   The method for producing anhydrous gypsum according to claim 1, wherein the temperature of the combustion gas discharged from the subsequent furnace is controlled to 330 ° C. or higher and 840 ° C. or lower. 前記前段の炉から排出されるガスに含まれるダストを集塵し、該前段の炉に戻すことを特徴とする請求項1、2又は3に記載の無水石膏の製造方法。   The method for producing anhydrous gypsum according to claim 1, wherein dust contained in the gas discharged from the preceding furnace is collected and returned to the preceding furnace. 前記除塵機で捕集したダストを前記後段の炉に戻すことを特徴とする請求項1乃至4のいずれかに記載の無水石膏の製造方法。   The method for producing anhydrous gypsum according to any one of claims 1 to 4, wherein the dust collected by the dust remover is returned to the subsequent furnace. 前記前段の炉から排出されるガスの温度を、該前段の炉への散水量によって制御することを特徴とする請求項1乃至5のいずれかに記載の無水石膏の製造方法。   The method for producing anhydrous gypsum according to any one of claims 1 to 5, wherein the temperature of the gas discharged from the preceding furnace is controlled by the amount of water sprayed into the preceding furnace. 下部に開口部を備え、該開口部から高温ガスが噴出する内筒と、該内筒を囲繞し、下部が逆円錐状に形成され、供給された石膏粒子を前記高温ガスによって加熱しながら流動化させる本体とを備えた炉を2段備え、前段の炉で石膏粒子を仮焼し、該仮焼された石膏粒子を後段の炉で焼成して無水石膏を得る無水石膏焼成システムにおいて、
前記後段の炉の排気を前記前段の炉の内筒に供給するにあたって、前記後段の炉の排気を除塵する除塵機を備えることを特徴とする無水石膏焼成システム。
An opening is provided in the lower part, an inner cylinder from which the hot gas is ejected, and an inner cylinder surrounding the inner cylinder, the lower part is formed in an inverted cone shape, and the supplied gypsum particles are heated while being heated by the hot gas. In the anhydrous gypsum calcining system comprising two stages of furnaces with a main body to be converted, calcining gypsum particles in the preceding furnace, and calcining the calcined gypsum particles in the subsequent furnace to obtain anhydrous gypsum,
An anhydrous gypsum firing system, comprising: a dust remover that removes dust from the exhaust of the latter furnace when supplying the exhaust of the latter furnace to the inner cylinder of the preceding furnace.
JP2005366427A 2004-12-22 2005-12-20 Anhydrous gypsum manufacturing method and anhydrous gypsum firing system Active JP4777058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366427A JP4777058B2 (en) 2004-12-22 2005-12-20 Anhydrous gypsum manufacturing method and anhydrous gypsum firing system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004370359 2004-12-22
JP2004370359 2004-12-22
JP2005366427A JP4777058B2 (en) 2004-12-22 2005-12-20 Anhydrous gypsum manufacturing method and anhydrous gypsum firing system

Publications (2)

Publication Number Publication Date
JP2006199576A true JP2006199576A (en) 2006-08-03
JP4777058B2 JP4777058B2 (en) 2011-09-21

Family

ID=36957900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366427A Active JP4777058B2 (en) 2004-12-22 2005-12-20 Anhydrous gypsum manufacturing method and anhydrous gypsum firing system

Country Status (1)

Country Link
JP (1) JP4777058B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104555448A (en) * 2015-01-06 2015-04-29 上海建冶路桥机器设备有限公司 Continuous powder surface modification system
JP2016060648A (en) * 2014-09-16 2016-04-25 日工株式会社 Device and method for heat treatment of granular powder
JP2016155725A (en) * 2015-02-25 2016-09-01 吉野石膏株式会社 Gypsum calcination furnace and gypsum calcination method
WO2016136485A1 (en) * 2015-02-25 2016-09-01 吉野石膏株式会社 Apparatus and method for calcination of gypsum
JP2016217605A (en) * 2015-05-19 2016-12-22 日工株式会社 Particulate matter heat treatment device and processing method
JP2017009163A (en) * 2015-06-19 2017-01-12 日工株式会社 Particulate matter heat treatment device and heat treatment method for waste gypsum
CN107619207A (en) * 2016-07-15 2018-01-23 平邑开元新型建材有限公司 gypsum steam calcining furnace
CN107902932A (en) * 2017-11-21 2018-04-13 郑州三迪建筑科技有限公司 A kind of ardealite calciner plant
CN110803877A (en) * 2019-11-25 2020-02-18 江苏一夫科技股份有限公司 Device and method for producing II type anhydrous gypsum from desulfurized gypsum
CN110803878A (en) * 2019-11-25 2020-02-18 江苏一夫科技股份有限公司 Device and method for producing II type anhydrous gypsum by using phosphogypsum
CN111517682A (en) * 2020-04-26 2020-08-11 四川蓝鼎新材料有限公司 A high-efficient calcining device for gesso production
CN113149488A (en) * 2021-04-15 2021-07-23 昆明理工大学 Method for preparing II type anhydrous gypsum by fluidized roasting of beta-hemihydrate gypsum
CN113321434A (en) * 2021-06-30 2021-08-31 郑州三迪建筑科技有限公司 Phosphogypsum calcining method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291799A (en) * 1976-01-29 1977-08-02 Onoda Cement Co Ltd Process and apparatus for calcining wetted powdery gypsum
JPS5554029A (en) * 1978-10-18 1980-04-21 Sumitomo Cement Co Ltd Calcination of powder
JPS5594634A (en) * 1979-01-08 1980-07-18 Bpb Industries Ltd Calcination method and its device
JPH07332861A (en) * 1994-06-03 1995-12-22 Daido Steel Co Ltd Waste melting treatment apparatus
JPH10101385A (en) * 1996-09-25 1998-04-21 Sicowa Verfahrenstech Baustoffe Gmbh & Co Kg Production of suppressively soluble calcium sulfate anhydride-11
JP2000314593A (en) * 1999-04-30 2000-11-14 Kawasaki Heavy Ind Ltd External-heating type rotary kiln
WO2004056465A1 (en) * 2002-12-23 2004-07-08 Outokumpu Technology Oy Method and apparatus for heat treatment in a fluidized bed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291799A (en) * 1976-01-29 1977-08-02 Onoda Cement Co Ltd Process and apparatus for calcining wetted powdery gypsum
JPS5554029A (en) * 1978-10-18 1980-04-21 Sumitomo Cement Co Ltd Calcination of powder
JPS5594634A (en) * 1979-01-08 1980-07-18 Bpb Industries Ltd Calcination method and its device
JPH07332861A (en) * 1994-06-03 1995-12-22 Daido Steel Co Ltd Waste melting treatment apparatus
JPH10101385A (en) * 1996-09-25 1998-04-21 Sicowa Verfahrenstech Baustoffe Gmbh & Co Kg Production of suppressively soluble calcium sulfate anhydride-11
JP2000314593A (en) * 1999-04-30 2000-11-14 Kawasaki Heavy Ind Ltd External-heating type rotary kiln
WO2004056465A1 (en) * 2002-12-23 2004-07-08 Outokumpu Technology Oy Method and apparatus for heat treatment in a fluidized bed

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060648A (en) * 2014-09-16 2016-04-25 日工株式会社 Device and method for heat treatment of granular powder
CN104555448A (en) * 2015-01-06 2015-04-29 上海建冶路桥机器设备有限公司 Continuous powder surface modification system
CN107406319B (en) * 2015-02-25 2020-06-12 吉野石膏株式会社 Gypsum calcining device and gypsum calcining method
JP2016155725A (en) * 2015-02-25 2016-09-01 吉野石膏株式会社 Gypsum calcination furnace and gypsum calcination method
WO2016136485A1 (en) * 2015-02-25 2016-09-01 吉野石膏株式会社 Apparatus and method for calcination of gypsum
CN107406319A (en) * 2015-02-25 2017-11-28 吉野石膏株式会社 Gypsum calcining apparatus and gypsum calcining method
US10350564B2 (en) 2015-02-25 2019-07-16 Yoshino Gypsum Co., Ltd. Apparatus and method for calcination of gypsum
RU2695722C2 (en) * 2015-02-25 2019-07-25 Йосино Джипсум Ко., Лтд. Device and method for calcination of gypsum
JP2016217605A (en) * 2015-05-19 2016-12-22 日工株式会社 Particulate matter heat treatment device and processing method
JP2017009163A (en) * 2015-06-19 2017-01-12 日工株式会社 Particulate matter heat treatment device and heat treatment method for waste gypsum
CN107619207A (en) * 2016-07-15 2018-01-23 平邑开元新型建材有限公司 gypsum steam calcining furnace
CN107902932A (en) * 2017-11-21 2018-04-13 郑州三迪建筑科技有限公司 A kind of ardealite calciner plant
CN110803878A (en) * 2019-11-25 2020-02-18 江苏一夫科技股份有限公司 Device and method for producing II type anhydrous gypsum by using phosphogypsum
CN110803877A (en) * 2019-11-25 2020-02-18 江苏一夫科技股份有限公司 Device and method for producing II type anhydrous gypsum from desulfurized gypsum
CN110803877B (en) * 2019-11-25 2024-05-14 一夫科技股份有限公司 Device and method for producing II-type anhydrous gypsum from desulfurized gypsum
CN111517682A (en) * 2020-04-26 2020-08-11 四川蓝鼎新材料有限公司 A high-efficient calcining device for gesso production
CN113149488A (en) * 2021-04-15 2021-07-23 昆明理工大学 Method for preparing II type anhydrous gypsum by fluidized roasting of beta-hemihydrate gypsum
CN113321434A (en) * 2021-06-30 2021-08-31 郑州三迪建筑科技有限公司 Phosphogypsum calcining method

Also Published As

Publication number Publication date
JP4777058B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4777058B2 (en) Anhydrous gypsum manufacturing method and anhydrous gypsum firing system
US5743728A (en) Method and system for multi-stage calcining of gypsum to produce an anhydrite product
US10101087B2 (en) Method of comprehensively utilizing high-temperature slag balls exiting rotary kiln in kiln process for producing phosphoric acid, and process system thereof
CN101445333A (en) Method for calcining active lime by taking tail gas from sealing type calcium carbide furnace as fuel for rotary kiln
CN103256608A (en) Sludge incineration method
CN109970375A (en) A kind of building gypsum plaster production line
CN103058536A (en) Heat-accumulation dividing-wall heating rotary kiln device
CN101817649B (en) Method and equipment for calculating materials
JP2008081329A (en) Method for manufacturing gypsum dihydrate having large particle size
CN103836948B (en) A kind of fluidizing reactor of high-carbon molybdenum-nickel ore and system
CN212108419U (en) Roasting equipment for roasting industrial waste miscellaneous salt
CN101852542A (en) Vertical kiln
CN105293497B (en) A kind of hot method of oxygen smelts calcium carbide technique
CN102127634B (en) Molybdenite concentrate suspended-state roasting process and equipment
CN101456684A (en) Lime burner using solid fuels
CN108314335A (en) A kind of light-burned MgO suspension kilns coproduction Mg (OH)2Production technology and device
CN206692570U (en) Industry by-product gypsum calciner
CN204125385U (en) A kind of suspension cylinder formula also flows the two thorax kiln of accumulation of heat
CN111302673A (en) High-temperature magnesium oxide calcining device and calcining method thereof
CN114620726B (en) CO-production of high purity CO by calcination of small particle carbonate ore 2 Reactor and method thereof
CN103482889B (en) Heat accumulating type material calcinating device
JP2689502B2 (en) How to control gypsum firing equipment
JP4202838B2 (en) Anhydrous gypsum manufacturing method and anhydrous gypsum firing system
JP3905716B2 (en) Method for controlling ground improvement material manufacturing apparatus
CN106927704B (en) Industry by-product gypsum calciner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4777058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250