JP2006198623A - Solid wire for gas shield arc welding - Google Patents

Solid wire for gas shield arc welding Download PDF

Info

Publication number
JP2006198623A
JP2006198623A JP2005009880A JP2005009880A JP2006198623A JP 2006198623 A JP2006198623 A JP 2006198623A JP 2005009880 A JP2005009880 A JP 2005009880A JP 2005009880 A JP2005009880 A JP 2005009880A JP 2006198623 A JP2006198623 A JP 2006198623A
Authority
JP
Japan
Prior art keywords
toughness
amount
wire
arc welding
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009880A
Other languages
Japanese (ja)
Inventor
Toshio Murakami
俊夫 村上
Hitoshi Hatano
等 畑野
Hiroshi Niidate
宏 新舘
Toshihiko Nakano
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005009880A priority Critical patent/JP2006198623A/en
Publication of JP2006198623A publication Critical patent/JP2006198623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid wire for gas shield arc welding, which can achieve the welded metal having excellent strength and toughness, and also can achieve excellent detachability of slag even when a heat input is large and an interpass temperature is high. <P>SOLUTION: The solid wire for gas shield arc welding contains, by mass, 0 to 0.020% of C, 0.5 to 1.5% of Si, 1.1 to 1.9% of Mn, 0.003 to 0.030% of S, 0.1 to 1.0% of Cu, 0.1 to 0.8% of Mo, 0.1 to 0.3% of Ti, 0.0010 to 0.0080% of B, and the balance Fe and unavoidable impurities. The content of Cu described above includes the film plated on the wire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大入熱で、パス間温度が高くても溶接可能で、しかもスラグ剥離性に優れたガスシールドアーク溶接用ソリッドワイヤに関する。   The present invention relates to a solid wire for gas shielded arc welding that has high heat input, can be welded even when the temperature between passes is high, and has excellent slag peelability.

炭酸ガス等をシールドガスとして用いるガスシールドアーク溶接法は、溶接能率が高く、全姿勢での溶接が可能であるため、建築、橋梁、造船分野などの鉄骨の製作、建造等において多用されている。近年、作業能率を改善するため、大入熱及び高いパス間温度で溶接することが求められているが、従来の溶接用ワイヤを用いた溶接では、溶着金属(deposited metal)の強度、靭性が得られず、所望の機械的特性が得られなかった。   The gas shielded arc welding method using carbon dioxide gas as the shielding gas has high welding efficiency and can be welded in all positions, so it is widely used in the construction and construction of steel frames in the fields of construction, bridges, shipbuilding, etc. . In recent years, in order to improve work efficiency, welding with high heat input and high interpass temperature is required, but welding with a conventional welding wire has the strength and toughness of the deposited metal. The desired mechanical properties could not be obtained.

そこで、このような大入熱及び高いパス間温度でも溶接可能なワイヤが種々提案されている。例えば、特開平10−230387号公報(特許文献1)には、重量%でC:0.02〜0.10%、Si:0.65〜1.10%、Mn:1.75−2.50%、Ti:0.16−0.45%、B:0.003−0.010%、S:0.020%以下を含み、残部Fe及び不可避的不純物からなり、B量とTi量、B量とS量とを所定の関係の下に規制したワイヤが記載されている。また、特開平11−90678号公報(特許文献2)や特開平11−239892号公報(特許文献3)にも、Ti、B、N、Al及び/又はZrを所定量添加したワイヤや、さらにC、Si、Mn、P、S、Mo、V及び/又はNb、Oを所定量添加し、あるいは添加量の上限を規制したワイヤが記載されている。   Therefore, various wires that can be welded even with such high heat input and high interpass temperature have been proposed. For example, in Japanese Patent Laid-Open No. 10-230387 (Patent Document 1), C: 0.02 to 0.10%, Si: 0.65 to 1.10%, Mn: 1.75-2. 50%, Ti: 0.16-0.45%, B: 0.003-0.010%, S: 0.020% or less, consisting of Fe and unavoidable impurities, B amount and Ti amount, A wire in which the B amount and the S amount are regulated under a predetermined relationship is described. Further, Japanese Patent Laid-Open No. 11-90678 (Patent Document 2) and Japanese Patent Laid-Open No. 11-239892 (Patent Document 3) also include a wire added with a predetermined amount of Ti, B, N, Al and / or Zr, A wire is described in which a predetermined amount of C, Si, Mn, P, S, Mo, V and / or Nb, O is added, or the upper limit of the amount added is restricted.

前記ワイヤにより、大入熱溶接に対応できるようになったものの、パス間温度が500℃を超える溶接条件では十分な特性が得られていなかった。一方、近年、500℃超のパス間温度でも溶接可能なワイヤが、特開2004−98143号公報(特許文献4)に提案されている。このワイヤは、C、Si、Mn、Mo、Ti、B、V及び/又はNbを所定量が含み、さらに大入熱、高パス間温度の溶接条件下で溶接金属の靭性が確保されるように、前記成分の添加量をPtsというパラメータによって規制するとともに、Mn、Mo、Si、Tiの関係をVcqというパラメータによって規制したものである。
特開平10−230387号公報 特開平11−90678号公報 特開平11−239892号公報 特開2004−98143号公報
Although the wire can cope with high heat input welding, sufficient characteristics have not been obtained under welding conditions in which the interpass temperature exceeds 500 ° C. On the other hand, in recent years, a wire that can be welded even at a temperature between passes exceeding 500 ° C. has been proposed in Japanese Patent Application Laid-Open No. 2004-98143 (Patent Document 4). This wire contains a predetermined amount of C, Si, Mn, Mo, Ti, B, V and / or Nb so that the toughness of the weld metal is ensured under welding conditions of high heat input and high interpass temperature. In addition, the amount of the component added is regulated by a parameter called Pts, and the relationship between Mn, Mo, Si, and Ti is regulated by a parameter called Vcq.
JP-A-10-230387 Japanese Patent Laid-Open No. 11-90678 Japanese Patent Laid-Open No. 11-239892 JP 2004-98143 A

しかしながら、入熱量が大きくなると、スラグの剥離性が劣化するため、スラグを強制的に除去しながら各層を溶接しなけばならず、作業性が著しく低下するという問題があり、引いてはガスシールドアーク溶接法の特長である高い溶接能率が十分に発揮されず、溶接効率の低下を余儀なくされている。
本発明はかかる問題に鑑みなされもので、大入熱、高パス間温度の溶接条件においても、溶着金属が強度、靭性に優れ、しかもスラグ剥離性に優れたガスシールドアーク溶接用ワイヤを提供することを目的とする。
However, when the amount of heat input increases, the slag peelability deteriorates, so each layer must be welded while forcibly removing the slag, and there is a problem that workability is significantly reduced. The high welding efficiency that is a feature of the arc welding method is not fully exhibited, and the welding efficiency is inevitably lowered.
The present invention has been made in view of such a problem, and provides a gas shielded arc welding wire in which a weld metal is excellent in strength and toughness even under welding conditions of high heat input and high-pass temperature and excellent in slag removability. For the purpose.

本発明のガスシールドアーク溶接用ソリッドワイヤは、mass%で、
C:0〜0.020%、
Si:0.5〜1.5%、
Mn:1.1〜1.9%、
S:0.003〜0.030%、
Cu:0.1〜1.0%、
Mo:0.1〜0.8%、
Ti:0.1〜0.3%、
B:0.0010〜0.0080%
を含み、残部Fe及び不可避的不純物からなるものである。前記Cuの含有量には、ワイヤのめっき皮膜によるものが含まれる。以下、成分含有量は単に「%」と表示する。
The solid wire for gas shielded arc welding of the present invention is mass%,
C: 0 to 0.020%,
Si: 0.5 to 1.5%
Mn: 1.1 to 1.9%,
S: 0.003-0.030%,
Cu: 0.1 to 1.0%
Mo: 0.1 to 0.8%,
Ti: 0.1 to 0.3%,
B: 0.0010 to 0.0080%
And the balance Fe and inevitable impurities. The Cu content includes a wire plating film. Hereinafter, the component content is simply expressed as “%”.

本発明のワイヤの組成は、大入熱、500℃超のパス間温度の溶接条件下での引張強度及び靭性を確保しつつ、優れたスラグ剥離性を発現するように設計されたものである。すなわち、Mnを1.1〜1.9%に規制しつつ、Sを0.003〜0.030%添加することで、大入熱溶接時の焼付きを抑制しつつ、スラグ剥離性を向上させ、さらにMo及びBの添加量を適正化することで、大入熱溶接時の粒界フェライトを抑制して、強度靭性バランスを改善すると共に低C化と低Si化によって溶着金属のC量を減少させ、その最高硬さを低下させて耐低温割れ性を改善したものである。   The composition of the wire of the present invention is designed to exhibit excellent slag releasability while ensuring tensile strength and toughness under welding conditions of high heat input and interpass temperature exceeding 500 ° C. . That is, while controlling Mn to 1.1 to 1.9% and adding S to 0.003 to 0.030%, slag peelability is improved while suppressing seizure during high heat input welding. Furthermore, by optimizing the amount of addition of Mo and B, the grain boundary ferrite at the time of high heat input welding is suppressed, the strength toughness balance is improved, and the C amount of the deposited metal is reduced by lowering C and lowering Si. , And its cold resistance is improved by reducing its maximum hardness.

前記ワイヤにおいて、Feの一部に代えて、(1) Al:0.1%以下、(2) Cr、Niの1種もしくは2種を合計で0.01〜2.0%、(3) Nb,V,Zr,Ta,W,Hfの1種もしくは2種以上を合計で0.002〜0.1%、(4) REM:0.005〜0.2%のいずれかのグループより選択された元素を単独で、あるいは複合添加することができる。これによって、溶着金属の機械的特性、あるいはスラグ剥離性をより向上させることがきる。   In the wire, in place of a part of Fe, (1) Al: 0.1% or less, (2) one or two of Cr and Ni in a total of 0.01 to 2.0%, (3) Select one or more of Nb, V, Zr, Ta, W, and Hf from a group of 0.002 to 0.1% in total, (4) REM: 0.005 to 0.2% These elements can be added alone or in combination. As a result, the mechanical properties of the weld metal or the slag peelability can be further improved.

本発明のガスシールドアーク溶接用ソリッドワイヤによれば、大入熱、高パス間温度での溶接を行っても溶着金属の強度、靭性に優れ、さらに低Mn量下で適量のSを添加したので優れたスラグ剥離性を得ることができ、作業性及び溶接効率を向上させることができる。   According to the solid wire for gas shielded arc welding of the present invention, the weld metal is excellent in strength and toughness even when welding is performed at high heat input and high pass temperature, and an appropriate amount of S is added under a low Mn amount. Therefore, excellent slag peelability can be obtained, and workability and welding efficiency can be improved.

本発明のガスシールドアーク溶接用ソリッドワイヤは、C:0〜0.020%、Si:0.5〜1.5%、Mn:1.1〜1.9%、S:0.003〜0.030%、Cu:0.1〜1.0%、Mo:0.1〜0.8%、Ti:0.1〜0.3%、B:0.0010〜0.0080%を含み、残部Fe及び不可避的不純物からなるものである。以下、成分限定理由について説明する。   The solid wire for gas shielded arc welding of the present invention includes C: 0 to 0.020%, Si: 0.5 to 1.5%, Mn: 1.1 to 1.9%, S: 0.003 to 0 0.030%, Cu: 0.1 to 1.0%, Mo: 0.1 to 0.8%, Ti: 0.1 to 0.3%, B: 0.0010 to 0.0080%, It consists of the remainder Fe and inevitable impurities. Hereinafter, the reason for component limitation will be described.

C:0〜0.020%
Cは溶着金属の強度を向上させる作用を有するが、むしろ耐低温割れ性、安定した強度・靭性バランスを確保するには低い方がよく、本発明では無添加でも差し支えない。本発明ではC量は低いほど、含まないものでのよいが、C濃度を過度に低減させるには、製造上、コスト高を招来するので、C量の下限は好ましくは0.001%程度とするのがよい。一方、0.020%を超えると、強度が過大になり、溶着金属の靭性が劣化する。このため、上限を0.020%とし、好ましくは0.015%、より好ましくは0.010%とするのがよい。
C: 0 to 0.020%
C has the effect of improving the strength of the deposited metal, but rather it is better to ensure low-temperature cracking resistance and a stable strength / toughness balance. In the present invention, the lower the amount of C, the better it may not be included. However, in order to reduce the C concentration excessively, the manufacturing cost increases, so the lower limit of the amount of C is preferably about 0.001%. It is good to do. On the other hand, if it exceeds 0.020%, the strength becomes excessive and the toughness of the deposited metal deteriorates. For this reason, the upper limit is 0.020%, preferably 0.015%, more preferably 0.010%.

Si:0.5〜1.5%
Siは脱酸元素であり、溶着金属中の溶存酸素量を低下させる。また、Si量を上記範囲にコントロールすることで、雰囲気のCO2 の還元を抑制して溶着金属中のC量を低下させ、耐低温割れ性を改善する効果がある。0.5%未満では溶存酸素量の低減が十分でなく、溶着金属の靭性が劣化する。このため、Si量の下限を0.5%とし、好ましくは0.6%とするのがよい。一方、過多に添加すると、固溶強化により強度が過大になり、溶着金属の靭性が劣化するようになる。このため、その上限を1.5%とし、好ましくは0.9%とするのがよい。
Si: 0.5 to 1.5%
Si is a deoxidizing element and reduces the amount of dissolved oxygen in the deposited metal. Moreover, by controlling the amount of Si within the above range, there is an effect of suppressing the reduction of CO 2 in the atmosphere and reducing the amount of C in the deposited metal, thereby improving the cold cracking resistance. If it is less than 0.5%, the amount of dissolved oxygen is not sufficiently reduced, and the toughness of the deposited metal deteriorates. For this reason, the lower limit of the Si content is 0.5%, preferably 0.6%. On the other hand, if added excessively, the strength becomes excessive due to solid solution strengthening, and the toughness of the deposited metal is deteriorated. For this reason, the upper limit is 1.5%, preferably 0.9%.

Mn:1.1〜1.9%
Mnは、脱酸元素として作用すると共に、強度、靭性を改善する効果がある。Mn量が過少になると大入熱時の機械的特性が劣化するので、Mn量の下限を1.1%とし、好ましくは1.3%、より好ましくは1.4%とするのがよい。一方、過多になると溶接時にスラグが焼き付き易くなり、スラグ剥離性が劣化する。このため、その上限を1.9%とし、好ましくは1.8%、より好ましくは1.7%とするのがよい。
Mn: 1.1 to 1.9%
Mn acts as a deoxidizing element and has the effect of improving strength and toughness. If the amount of Mn is too small, the mechanical properties at the time of large heat input deteriorate, so the lower limit of the amount of Mn is 1.1%, preferably 1.3%, more preferably 1.4%. On the other hand, when the amount is excessive, the slag is easily seized during welding, and the slag peelability is deteriorated. For this reason, the upper limit is made 1.9%, preferably 1.8%, more preferably 1.7%.

S:0.003〜0.030%
Sは本発明では重要な元素であり、スラグの焼き付きを防止し、スラグ剥離性を改善するために必須の元素である。0.003%未満ではかかる作用が不足し、スラグ剥離性が劣化する。一方、0.030%を超えると固溶Sがγ粒界に偏析し、靭性が劣化するようになる。このため、本発明ではS量の上限を0.003%、好ましくは0.01%とし、その上限を0.030%、好ましくは0.02%とする。
S: 0.003-0.030%
S is an important element in the present invention, and is an essential element for preventing seizure of slag and improving slag peelability. If it is less than 0.003%, such an action is insufficient, and the slag peelability deteriorates. On the other hand, if it exceeds 0.030%, the solid solution S segregates at the γ grain boundary, and the toughness deteriorates. Therefore, in the present invention, the upper limit of the S amount is 0.003%, preferably 0.01%, and the upper limit is 0.030%, preferably 0.02%.

Cu:0.1〜1.0%(導電性めっき皮膜として付与される量を含む。)
Cuは溶着金属の靭性を改善する作用があり、また心線の導電性めっき皮膜として不可避的に含有される。0.1%未満では導電性を確保することができず、溶接作業性が劣化する。一方、1.0%を超えるとCuが微細に析出し、強度、靭性バランスが劣化するようになる。このため、Cu量の下限を0.1%、好ましくは0.15%とし、その上限を1.0%、好ましくは0.8%とする。
Cu: 0.1 to 1.0% (including an amount given as a conductive plating film)
Cu has the effect of improving the toughness of the deposited metal and is unavoidably contained as a conductive plating film for the core wire. If it is less than 0.1%, the conductivity cannot be ensured, and the welding workability deteriorates. On the other hand, if it exceeds 1.0%, Cu precipitates finely, and the strength and toughness balance deteriorates. For this reason, the lower limit of the Cu amount is 0.1%, preferably 0.15%, and the upper limit is 1.0%, preferably 0.8%.

Mo:0.1〜0.8%
MoはBと複合して添加することで、粒界フェライトの生成を抑制し、大入熱溶接時の強度靭性バランスを改善する作用を有する。0.1%未満ではかかる作用が過小であり、一方0.8%を超えると固溶強化による強度が高くなり過ぎて強度靭性バランスが却って悪化する。このため、Mo量の下限を0.1%、好ましくは0.15%とし、その上限を0.8%、好ましくは0.6%とする。
Mo: 0.1 to 0.8%
Mo is added in combination with B, thereby suppressing the formation of grain boundary ferrite and improving the strength-toughness balance during high heat input welding. If it is less than 0.1%, such action is too small. On the other hand, if it exceeds 0.8%, the strength due to solid solution strengthening becomes too high, and the strength-toughness balance deteriorates. For this reason, the lower limit of the amount of Mo is set to 0.1%, preferably 0.15%, and the upper limit is set to 0.8%, preferably 0.6%.

Ti:0.1〜0.3%
Tiは酸化物を形成し、これが粒内変態の核として振舞うので、組織の微細化、靭性の改善作用を有する。0.1%未満ではかかる作用が過小であり、0.3%を超えると溶着金属の組織微細化作用が失われるようになる。このため、Ti量の下限を0.1%、好ましくは0.15%とし、その上限を0.3%、好ましくは0.25%とする。
Ti: 0.1 to 0.3%
Ti forms an oxide, which acts as a nucleus of intragranular transformation, and thus has an effect of refining the structure and improving toughness. If it is less than 0.1%, such an action is too small, and if it exceeds 0.3%, the microstructure refining action of the weld metal is lost. For this reason, the lower limit of the Ti amount is 0.1%, preferably 0.15%, and the upper limit is 0.3%, preferably 0.25%.

B:0.0010〜0.0080%
Bは粒界フェライトの生成を抑制し、これにより強度靭性バランスを改善する作用を有する。0.0010%未満ではかかる作用が過小であり、一方0.080%を超えると大入熱時の溶着金属の靭性が却って劣化するようになる。このため、B量の下限を0.0010%、好ましくは0.0015%とし、その上限を0.0080%、好ましくは0.0060%とする。
B: 0.0010 to 0.0080%
B has the effect of suppressing the formation of grain boundary ferrite, thereby improving the balance of strength and toughness. If it is less than 0.0010%, such an effect is too small. On the other hand, if it exceeds 0.080%, the toughness of the deposited metal at the time of large heat input deteriorates. For this reason, the lower limit of the B amount is 0.0010%, preferably 0.0015%, and the upper limit is 0.0080%, preferably 0.0060%.

本発明のワイヤは、典型的には上記基本成分の他、残部Feで形成されるが、Feの一部に代えて、(1) Al:0.1%以下、(2) Cr、Niの1種もしくは2種を合計で0.01〜2.0%、(3) Nb,V,Zr,Ta,W,Hfの1種もしくは2種以上を合計で0.002〜0.1%、(4) REM:0.005〜0.2%のいずれかのグループより選択された元素を単独で、あるいは複合添加することができる。これによって、溶着金属の機械的特性をより向上させることがきる。以下、これらの特性向上元素の限定理由について説明する。   The wire of the present invention is typically formed by the balance of Fe in addition to the above basic components, but instead of a part of Fe, (1) Al: 0.1% or less, (2) Cr, Ni 1 or 2 types in total 0.01 to 2.0%, (3) Nb, V, Zr, Ta, W, Hf 1 type or 2 types in total 0.002 to 0.1%, (4) REM: An element selected from any group of 0.005 to 0.2% can be added alone or in combination. As a result, the mechanical properties of the weld metal can be further improved. Hereinafter, the reasons for limiting these characteristic improving elements will be described.

Al:0.1%以下
Alは固溶NをAlNとして固定し、これにより母材靭性を改善する作用を有する。このため、好ましくは0.001%以上添加するのがよい。しかし、過多に添加すると固溶強化が過大となり、却って靭性が劣化するようになる。このため、Al量の上限を0.1%、好ましくは0.03%とする。
Al: 0.1% or less Al has the effect of fixing solid solution N as AlN, thereby improving the base metal toughness. For this reason, it is preferable to add 0.001% or more. However, if added excessively, the solid solution strengthening becomes excessive and the toughness deteriorates on the contrary. For this reason, the upper limit of the Al content is set to 0.1%, preferably 0.03%.

Cr、Ni:合計で0.01〜2.0%
これらの元素は粒界フェライトの生成を抑制する作用及び組織微細化作用を有し、強度靭性バランスを改善する。0.01%未満ではかかる作用効果が過小となり、一方2.0%を超えると大入熱溶接の際の溶着金属中にMA(Martensite-Austenite Constituent:マルテンサイトおよびオーステナイトの混合物)が形成されるようになり、靭性が劣化する。このため、1種又は2種の合計量で下限を0.01%とし、上限を2.0%とする。
Cr, Ni: 0.01 to 2.0% in total
These elements have the effect of suppressing the formation of grain boundary ferrite and the effect of refining the structure, and improve the strength toughness balance. If it is less than 0.01%, such an effect is too small. On the other hand, if it exceeds 2.0%, MA (Martensite-Austenite Constituent) is formed in the weld metal during high heat input welding. And toughness deteriorates. For this reason, the lower limit is 0.01% and the upper limit is 2.0% with the total amount of one or two kinds.

Nb,V,Zr,Ta,W,Hf量:合計で0.002〜0.1%
これらの元素は、Mo,Bと共に複合添加することにより、粒界フェライトの生成を抑制する効果を有する。しかし、過多に添加すると、強度が過大となり、却って強度靭性バランスが劣化するようになる。このため、これらの元素の1種もしくは2種以上の合計で下限を0.002%、上限を0.1%とする。
Nb, V, Zr, Ta, W, Hf amount: 0.002 to 0.1% in total
By adding these elements together with Mo and B, these elements have an effect of suppressing the formation of grain boundary ferrite. However, if added excessively, the strength becomes excessive and the strength-toughness balance deteriorates on the contrary. Therefore, the lower limit is 0.002% and the upper limit is 0.1% in the total of one or more of these elements.

REM:0.005〜0.2%
REMは介在物を微細化し、これにより溶着金属組織を微細化することで強度靭性バランスを改善する作用を有する。一方、過多に添加するとこれらの効果が失われて却って強度靭性を劣化させるようになる。このため本発明では、REM量の下限を0.005%とし、その上限を0.2%とする。
REM: 0.005 to 0.2%
REM has the effect of improving the strength-toughness balance by refining the inclusions and thereby refining the weld metal structure. On the other hand, if added excessively, these effects are lost and the strength toughness is deteriorated. Therefore, in the present invention, the lower limit of the REM amount is 0.005%, and the upper limit is 0.2%.

本発明の溶接ワイヤを製造するに際し、特別な製造条件は必要でなく、常法により製造することができる。すなわち、上記成分の鋼を溶製し、鋳塊を得る。この場合、Cu添加量については、伸線後に施される銅めっきによって付与される量(ワイヤ線径により異なるが、通常、ワイヤ質量に対して0.1〜0.3%程度)を考慮して、鋼成分を決定する。鋳塊は必要に応じて熱間鍛造等が施された後、熱間圧延され、さらに冷間伸線が施されて素線に形成される。素線は、必要に応じて500〜900℃程度の温度で焼鈍され、酸洗された後、銅めっきが施され、さらに必要に応じて仕上伸線が施されて目標線径とされる。その後、必要に応じ潤滑剤が付与され、溶接用ワイヤとされる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。
When producing the welding wire of the present invention, no special production conditions are required, and it can be produced by a conventional method. That is, the steel having the above components is melted to obtain an ingot. In this case, regarding the amount of Cu added, the amount given by copper plating applied after wire drawing (depending on the wire diameter, but usually about 0.1 to 0.3% with respect to the wire mass) is taken into consideration. To determine the steel composition. The ingot is subjected to hot forging or the like as necessary, then hot rolled, and further cold drawn to form a strand. The element wire is annealed at a temperature of about 500 to 900 ° C. if necessary, pickled, then copper-plated, and further subjected to finish drawing as necessary to obtain a target wire diameter. Thereafter, a lubricant is applied as necessary to obtain a welding wire.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not interpreted limitedly by this Example.

目標のワイヤ組成(ただし、Cuを含まない。)となるように所定成分の鋼150kgをVIF(真空誘導炉)にて真空下で溶製し、その鋳塊を155mm角に熱間鍛造した後、1000℃に加熱し、熱間圧延で55mmφに圧延し、伸線して1.4mm%の素線を得た。さらに、この素線を酸洗した後、銅めっきを施した。銅めっきは、成分がCuおよび不可避的不純物からなり、ワイヤ重量に対してCu量が0.2%程度となるようにめっき量を調整した。このようにして製造された溶接ワイヤの組成を表1に示す。   After 150 kg of steel with a predetermined component is melted under vacuum in a VIF (vacuum induction furnace) so as to achieve the target wire composition (but not including Cu), the ingot is hot forged to 155 mm square , Heated to 1000 ° C., rolled to 55 mmφ by hot rolling, and drawn to obtain a 1.4 mm% strand. Furthermore, after pickling this strand, copper plating was performed. The copper plating was composed of Cu and inevitable impurities, and the plating amount was adjusted so that the Cu amount was about 0.2% with respect to the wire weight. The composition of the welding wire thus produced is shown in Table 1.

上記のようにして製造された溶接ワイヤを用いて下記の条件にて溶接試験を行った。
溶接電流:450A
溶接電圧:44V
ワイヤ送り速度:30cm/min
入熱量:39.6kJ/cm
予熱:なし
シールドガス:CO2 、流量25L/min
パス間管理条件:連続、最終パス間温度600〜650℃
母材鋼板:SM490、形状22mm厚×100mm幅×200mm長
開先形状:35°レ型開先、ギャップ7mm
A welding test was performed using the welding wire manufactured as described above under the following conditions.
Welding current: 450A
Welding voltage: 44V
Wire feed speed: 30cm / min
Heat input: 39.6kJ / cm
Preheating: None Shielding gas: CO 2 , Flow rate 25 L / min
Interpass management conditions: continuous, final interpass temperature 600-650 ° C
Base material steel plate: SM490, shape 22 mm thickness x 100 mm width x 200 mm long groove shape: 35 ° lave groove, gap 7 mm

溶接後、溶着金属から試験片を採取し、JISZ3111に従って引張試験、衝撃試験を行い、引張強さ(TS)及び衝撃値(vE0℃)を求めた。TS:520MPa以上、vE0℃:80J以上であれば強度強靭バランスは良好であり、合格レベルと評価することができる。
また、溶接後、母材鋼板温度が250℃に低下した段階でビードから刷毛で剥離したスラグを取り除き、スラグ剥離性を調べた。スラグ剥離性は、刷毛によるスラグの除去後、ビードの外観を写真撮影し、その写真を画像解析して、ビート全体のピクセル数をA、スラグが剥離してピード表面が見えている領域のピクセル数をBとし、剥離率:B/A×100(%)を求め、その値ににより評価した。剥離率が20%以上であれば連続溶接が問題なく行うことができるので、20%以上を合格レベルと評価することができる。以上の試験結果を表2にまとめて示す。表2中、機械的性質、スラグ剥離性の評価が「○」のものは合格レベルにあることを示す。
After welding, a test piece was collected from the deposited metal, and subjected to a tensile test and an impact test according to JISZ3111 to obtain a tensile strength (TS) and an impact value (vE0 ° C.). If TS: 520 MPa or more and vE0 ° C .: 80 J or more, the strength-toughness balance is good and can be evaluated as an acceptable level.
In addition, after welding, when the base steel plate temperature dropped to 250 ° C., the slag peeled off with the brush was removed from the bead, and the slag peelability was examined. For slag peelability, after removing the slag with a brush, take a picture of the appearance of the bead, analyze the photograph, and the number of pixels in the entire beat is A, and the pixels in the area where the slag is peeled and the peade surface is visible The number was B, and the peel rate: B / A × 100 (%) was determined and evaluated according to the value. If the peeling rate is 20% or more, continuous welding can be performed without any problem, so that 20% or more can be evaluated as an acceptable level. The above test results are summarized in Table 2. In Table 2, when the evaluation of mechanical properties and slag peelability is “◯”, it indicates that it is at an acceptable level.

表2より、発明例に係る試料No. 1,9,19〜30は、強度靭性バランスが良好で、しかもスラグ剥離性も合格レベルに達していることがわかる。
一方、比較例については、試料No. 2はC量が高過ぎるため、強度が高くなり過ぎ、溶着金属の衝撃特性が劣化している。また、Siに関して、Si量が過少なNo. 3では強度が451MPaと劣化しており、Si量が過多のNo. 4では固溶強化により強度が高くなり過ぎ、靭性が54Jと劣化した。また、Mnに関して、No. 5はMn量が低過ぎるため、粒界フェライトの形成を抑制できず、強度、靭性が共に劣化し、Mn量が過多のNo. 6では良好な強度、靭性が得られるが、スラグ剥離性が著しく悪化した。また、Sに関して、S量が0.001%と過少なNo. 7ではスラグ剥離性が2%と非常に悪く、一方S量が過多のNo. 8では、スラグ剥離性は改善しているものの、靭性が劣化が著しい。また、試料No. 10はCu量が高過ぎるため、Cuの析出により強度が向上したものの、靭性が劣化した。また、Moに関して、Moが無添加のNo. 11では、粒界フェライトの形成を抑制できず、靭性が低下し、一方Moが過多のNo. 12では、強度が上がり過ぎて靭性が劣化した。また、試料No. 14はAl量が0.25%と高過ぎるため、固溶強化により強度が高くなったが、靭性が劣化した。また、Tiに関して、Ti量が0.02%と過少なNo. 15では、TiO2 を核とした粒内変態が生じず、組織が粗大になり、靭性を確保することができず、一方Ti量が0.48%と過多のNo. 16では、Ti炭化物が形成され、強度が高くなったが、靭性が劣化した。 また、Bについて、B無添加のNo. 17では、粒界フェライトの形成を抑制できず、強度、靭性を確保することができず、一方B量が過多のNo. 18では、溶着金属の靭性が25Jとかなり低下した。
From Table 2, it can be seen that Samples Nos. 1, 9, and 19 to 30 according to the inventive examples have a good balance of strength and toughness, and the slag peelability has also reached an acceptable level.
On the other hand, as for the comparative example, since the sample No. 2 has an excessively high C content, the strength is too high and the impact characteristics of the weld metal are deteriorated. Further, regarding Si, No. 3 with an excessive amount of Si deteriorated in strength to 451 MPa, and No. 4 with an excessive amount of Si excessively increased in strength due to solid solution strengthening, and toughness deteriorated to 54 J. Regarding Mn, No. 5 is too low in Mn content, so formation of grain boundary ferrite cannot be suppressed, both strength and toughness deteriorate, and No. 6 with excessive Mn content provides good strength and toughness. However, the slag peelability was significantly deteriorated. In addition, regarding S, when the amount of S is 0.001% and the No. 7 is too low, the slag peelability is very poor at 2%, while when the amount of S is too much, the slag peelability is improved. The toughness is significantly deteriorated. Sample No. 10 had an excessively high amount of Cu, so the toughness deteriorated although the strength was improved by the precipitation of Cu. Regarding No. 11 with no Mo added, the formation of intergranular ferrite could not be suppressed and the toughness decreased. On the other hand, with No. 12 containing an excessive amount of Mo, the strength increased and the toughness deteriorated. Sample No. 14 had an Al content too high at 0.25%, so the strength was increased by solid solution strengthening, but the toughness deteriorated. In addition, with respect to Ti, when the Ti content is too small, 0.02%, intragranular transformation with TiO 2 as the core does not occur, the structure becomes coarse, and toughness cannot be ensured. In No. 16, which is an excessive amount of 0.48%, Ti carbide was formed and the strength increased, but the toughness deteriorated. With regard to B, in the case of No. 17 containing no B, the formation of grain boundary ferrite cannot be suppressed, and the strength and toughness cannot be secured. On the other hand, in the case of No. 18 having an excessive amount of B, the toughness of the deposited metal However, it decreased considerably to 25J.

Figure 2006198623
Figure 2006198623

Figure 2006198623
Figure 2006198623

Claims (5)

mass%で、
C:0〜0.020%、
Si:0.5〜1.5%、
Mn:1.1〜1.9%、
S:0.003〜0.030%、
Cu:0.1〜1.0%、
Mo:0.1〜0.8%、
Ti:0.1〜0.3%、
B:0.0010〜0.0080%
を含み、残部Fe及び不可避的不純物からなる、大入熱特性及びスラグ剥離性に優れたガスシールドアーク溶接用ソリッドワイヤ。
mass%
C: 0 to 0.020%,
Si: 0.5 to 1.5%
Mn: 1.1 to 1.9%,
S: 0.003-0.030%,
Cu: 0.1 to 1.0%
Mo: 0.1 to 0.8%,
Ti: 0.1 to 0.3%,
B: 0.0010 to 0.0080%
A solid wire for gas shielded arc welding that is excellent in large heat input characteristics and slag peelability, comprising the balance Fe and inevitable impurities.
さらに、Feの一部に代えて、Alを0.1%以下含む、請求項1に記載したガスシールドアーク溶接用ソリッドワイヤ。   The solid wire for gas shielded arc welding according to claim 1, further comprising 0.1% or less of Al in place of a part of Fe. さらに、Feの一部に代えて、Cr、Niの1種もしくは2種を合計で0.01〜2.0%含む、請求項1又は2に記載したガスシールドアーク溶接用ソリッドワイヤ。   The solid wire for gas shielded arc welding according to claim 1 or 2, further comprising 0.01 to 2.0% of one or two of Cr and Ni instead of a part of Fe. さらに、Feの一部に代えて、Nb,V,Zr,Ta,W,Hfの1種もしくは2種以上を合計で0.002〜0.1%含む、請求項1から3のいずれか1項に記載したガスシールドアーク溶接用ソリッドワイヤ。   Furthermore, it replaces with a part of Fe, and contains 1 type or 2 types or more of Nb, V, Zr, Ta, W, and Hf in total 0.002-0.1% of any one of Claim 1 to 3 The solid wire for gas shielded arc welding described in the item. さらに、Feの一部に代えて、REMを0.005〜0.2%を含む、請求項1から4のいずれか1項に記載したガスシールドアーク溶接用ソリッドワイヤ。
Furthermore, it replaces with a part of Fe, The solid wire for gas shielded arc welding of any one of Claim 1 to 4 containing 0.005-0.2% of REM.
JP2005009880A 2005-01-18 2005-01-18 Solid wire for gas shield arc welding Pending JP2006198623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009880A JP2006198623A (en) 2005-01-18 2005-01-18 Solid wire for gas shield arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009880A JP2006198623A (en) 2005-01-18 2005-01-18 Solid wire for gas shield arc welding

Publications (1)

Publication Number Publication Date
JP2006198623A true JP2006198623A (en) 2006-08-03

Family

ID=36957063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009880A Pending JP2006198623A (en) 2005-01-18 2005-01-18 Solid wire for gas shield arc welding

Country Status (1)

Country Link
JP (1) JP2006198623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414799A (en) * 2015-12-23 2016-03-23 宜昌猴王焊丝有限公司 Solid cored welding wire of low-alloy and high-strength steel and application of solid cored welding wire
WO2021053900A1 (en) * 2019-09-17 2021-03-25 株式会社神戸製鋼所 Wire for gas-shielded arc welding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239367A (en) * 2000-02-28 2001-09-04 Kawasaki Steel Corp Gas shielded arc welding method
JP2002079395A (en) * 2000-07-05 2002-03-19 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2002103082A (en) * 2000-09-25 2002-04-09 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2004188428A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
JP2004249353A (en) * 2003-02-21 2004-09-09 Jfe Steel Kk Steel wire for carbon dioxide gas shielded arc welding, and welding method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239367A (en) * 2000-02-28 2001-09-04 Kawasaki Steel Corp Gas shielded arc welding method
JP2002079395A (en) * 2000-07-05 2002-03-19 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2002103082A (en) * 2000-09-25 2002-04-09 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2004188428A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
JP2004249353A (en) * 2003-02-21 2004-09-09 Jfe Steel Kk Steel wire for carbon dioxide gas shielded arc welding, and welding method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414799A (en) * 2015-12-23 2016-03-23 宜昌猴王焊丝有限公司 Solid cored welding wire of low-alloy and high-strength steel and application of solid cored welding wire
WO2021053900A1 (en) * 2019-09-17 2021-03-25 株式会社神戸製鋼所 Wire for gas-shielded arc welding
JP2021045761A (en) * 2019-09-17 2021-03-25 株式会社神戸製鋼所 Wire for gas shield arc-welding
JP7244393B2 (en) 2019-09-17 2023-03-22 株式会社神戸製鋼所 Wire for gas-shielded arc welding

Similar Documents

Publication Publication Date Title
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JP4902489B2 (en) High strength Cr-Mo steel weld metal
KR20130127943A (en) Ni-base alloy weld metal, strip electrode, and welding method
CN112626372B (en) Titanium alloy sheet material and method for producing same
CN112621021A (en) H0Cr19Ni24Mn7Mo6VN welding wire and preparation method thereof
JP2009178737A (en) Solid wire for carbon dioxide shielded arc welding
JP6255284B2 (en) Solid wire for gas metal arc welding
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP3941528B2 (en) Carbon dioxide shielded arc welding wire
JP2005230906A (en) Gas shielded arc welding method
JP2006198623A (en) Solid wire for gas shield arc welding
JP4228490B2 (en) Pulse CO2 welding method
JPH04143255A (en) Austenitic stainless steel wire rod excellent in mig welding workability
JP2005232515A (en) Thick steel plate having excellent high heat input welded join toughness
JP5562749B2 (en) Cu-Mn brazing wire fine wire and method for producing the same
JP5480705B2 (en) Copper plated solid wire for carbon dioxide shielded arc welding
JP2022102850A (en) SOLID WIRE FOR GAS SHIELD ARC WELDING USED FOR WELD OF LOW Si STEEL, JOINTING METHOD OF LOW Si STEEL, AND REPAIR METHOD OF LOW Si STEEL
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP4529482B2 (en) Fillet welding method
JP2021143407A (en) Duplex stainless steel and manufacturing method thereof
JP3969323B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP6662174B2 (en) Steel plate
JP6331746B2 (en) Ferritic stainless steel welding wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A02 Decision of refusal

Effective date: 20110223

Free format text: JAPANESE INTERMEDIATE CODE: A02