JP2006194569A - Refrigerating system - Google Patents

Refrigerating system Download PDF

Info

Publication number
JP2006194569A
JP2006194569A JP2005116984A JP2005116984A JP2006194569A JP 2006194569 A JP2006194569 A JP 2006194569A JP 2005116984 A JP2005116984 A JP 2005116984A JP 2005116984 A JP2005116984 A JP 2005116984A JP 2006194569 A JP2006194569 A JP 2006194569A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigeration system
condensing
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005116984A
Other languages
Japanese (ja)
Inventor
Shunji Komatsu
俊二 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005116984A priority Critical patent/JP2006194569A/en
Publication of JP2006194569A publication Critical patent/JP2006194569A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating system having excellent refrigerating capacity without causing a lowering of durability of a compressor even if using a CO<SB>2</SB>refrigerant, and to provide a showcase using the refrigerating system. <P>SOLUTION: The refrigerating system 2 has a condensing unit 14, wherein a gas cooler 24, an expander 26, a first heat exchanger 28, a receiver 30 and a second heat exchanger 32 are sequentially interposed in the flow direction of the CO<SB>2</SB>refrigerant in a condensing passage 22 of the condensing unit 14 through which the CO<SB>2</SB>refrigerant flows. The expander 26 expands the CO<SB>2</SB>refrigerant and supplies the CO<SB>2</SB>refrigerant in the wet state to the first heat exchanger 28, and the receiver 30 supplies only the liquid CO<SB>2</SB>refrigerant out of the CO<SB>2</SB>refrigerant to the second heat exchanger 32. The refrigerating system 2 also has a cooling fluid circulating circuit 19 which supplies a cooling fluid lower in temperature than the condensing temperature of the CO<SB>2</SB>refrigerant, to each of the first and second heat exchangers 28, 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、CO2冷媒を用いた冷凍システム及び当該冷凍システムを用いたショーケースに関する。 The present invention relates to a refrigeration system using a CO 2 refrigerant and a showcase using the refrigeration system.

近年、地球環境への配慮から、その地球温暖化係数が小さい冷媒を用いた冷凍回路の開発が進められている。この種の冷媒の一例としては自然系のCO2(炭酸)ガスがある。CO2ガスを冷媒に用いた場合、圧縮機で圧縮された冷媒はガスクーラにて冷却されるが、従来の冷媒が凝縮器で凝縮する場合に比べ、ガスクーラでのCO2冷媒のエンタルピ変化量は小さい。従って、この場合、蒸発器での冷媒の吸熱量も小さくなり、冷凍回路の冷凍能力も低下してしまう。 In recent years, in consideration of the global environment, development of a refrigeration circuit using a refrigerant having a low global warming potential has been promoted. An example of this type of refrigerant is natural CO 2 (carbonic acid) gas. When CO 2 gas is used as the refrigerant, the refrigerant compressed by the compressor is cooled by the gas cooler, but the amount of change in the enthalpy of the CO 2 refrigerant at the gas cooler is smaller than when the conventional refrigerant is condensed by the condenser. small. Therefore, in this case, the amount of heat absorbed by the refrigerant in the evaporator also decreases, and the refrigeration capacity of the refrigeration circuit also decreases.

そこで、特許文献1が開示する冷凍回路では、ガスクーラで冷却された冷媒を更に内部熱交換器で冷却している。この冷凍回路によれば、内部熱交換器によりCO2冷媒のエンタルピを更に減少させることで、冷凍能力が向上するものと考えられる。
特開2002-225549号公報
Therefore, in the refrigeration circuit disclosed in Patent Document 1, the refrigerant cooled by the gas cooler is further cooled by the internal heat exchanger. According to this refrigeration circuit, it is considered that the refrigeration capacity is improved by further reducing the enthalpy of the CO 2 refrigerant by the internal heat exchanger.
JP 2002-225549 A

しかしながら、特許文献1の冷凍回路では、蒸発器からのCO2冷媒が内部熱交換器を経て圧縮機へ戻る構成となっているため、圧縮機に吸入されるCO2冷媒の吸入温度が上昇してしまう。この結果、圧縮機から吐出される冷媒の吐出温度も上昇するので、圧縮機への熱的負荷が大きくなり、圧縮機の耐久性が低下するという問題がある。
本発明は上述の事情に基づいてなされたもので、その目的とするところは、CO2冷媒を用いても、圧縮機の耐久性低下を招くことなく良好な冷凍能力を有する冷凍システム、及びこの冷凍システムを用いたショーケースを提供することにある。
However, in the refrigeration circuit of Patent Document 1, since the CO 2 refrigerant from the evaporator returns to the compressor through the internal heat exchanger, the suction temperature of the CO 2 refrigerant sucked into the compressor rises. End up. As a result, since the discharge temperature of the refrigerant discharged from the compressor also rises, there is a problem that the thermal load on the compressor increases and the durability of the compressor decreases.
The present invention has been made based on the above-described circumstances, and the object of the present invention is to provide a refrigeration system having a good refrigeration capacity without causing a decrease in the durability of the compressor even if a CO 2 refrigerant is used, and The object is to provide a showcase using a refrigeration system.

上記の目的を達成するべく、本発明によれば、CO2冷媒が循環する循環流路に前記冷媒の流れ方向でみて圧縮機、凝縮ユニット、膨張弁及び蒸発器が順次介挿された冷凍システムであって、前記凝縮ユニットは、前記循環流路の一部を構成する前記CO2冷媒の凝縮流路と、前記凝縮流路に介挿され、前記CO2冷媒を空冷するガスクーラと、前記凝縮流路中、前記ガスクーラの下流に介挿され、前記ガスクーラから送出されたCO2冷媒を膨張させて、湿り状態のCO2冷媒を送出する膨張器と、前記凝縮流路中、前記膨張器の下流に介挿され、前記膨張器から送出されたCO2冷媒を熱交換により冷却する第1熱交換器と、前記凝縮流路中、前記第1熱交換器の下流に介挿され、前記第1熱交換器から送出されたCO2冷媒のうち液状のCO2冷媒のみを送出するレシーバと、前記凝縮流路中、前記レシーバよりも下流に介挿され、前記レシーバからの前記液状のCO2冷媒を熱交換により冷却する第2熱交換器と、前記第1及び第2熱交換器のそれぞれに前記CO2冷媒の凝縮温度よりも低い温度の冷却流体を供給する冷却流体循環回路とを具備したことを特徴とする冷凍システム(請求項1)及び当該冷凍システムを備えたことを特徴とするショーケース(請求項3)が提供される。 In order to achieve the above object, according to the present invention, a refrigeration system in which a compressor, a condensing unit, an expansion valve, and an evaporator are sequentially inserted in a circulation flow path through which a CO 2 refrigerant circulates in the flow direction of the refrigerant. The condensing unit includes a condensing channel for the CO 2 refrigerant that forms part of the circulation channel, a gas cooler that is inserted in the condensing channel and that cools the CO 2 refrigerant, and the condensing unit. An expander that is inserted downstream of the gas cooler in the flow path, expands the CO 2 refrigerant sent from the gas cooler, and sends out the wet CO 2 refrigerant; and in the condensation flow path, A first heat exchanger that is inserted downstream and cools the CO 2 refrigerant delivered from the expander by heat exchange; and is inserted downstream of the first heat exchanger in the condensation channel; C of liquid out of the CO 2 refrigerant sent from first heat exchanger A receiver for transmitting only 2 refrigerant in the condensing flow path, is inserted downstream from the receiver, and the second heat exchanger the CO 2 refrigerant of the liquid from the receiver is cooled by heat exchange, said first A refrigeration system (Claim 1) and a refrigeration system comprising a cooling fluid circulation circuit that supplies a cooling fluid having a temperature lower than the condensation temperature of the CO 2 refrigerant to each of the first and second heat exchangers. A showcase (claim 3) is provided, characterized in that it comprises a system.

好適な態様として、前記冷却流体は冷却水である(請求項2)。   In a preferred aspect, the cooling fluid is cooling water (Claim 2).

本発明の請求項1及び2の冷凍システムは、冷媒としてCO2ガスを用いているので、地球環境に優しい。
その上、これらの冷凍システムは、冷媒としてCO2ガスを用いているけれども、圧縮機の耐久性低下を招くことなく良好な冷凍能力を有する。これらの冷凍システムでは、圧縮機から吐出されたCO2冷媒は、凝縮ユニットのガスクーラにて冷却され、そのエンタルピが減少する。この後、CO2冷媒は膨張器により膨張して湿り状態になり、湿り状態のCO2冷媒は、第1熱交換器にて冷却されることで、そのエンタルピが更に減少する。そして、第1熱交換器から流出したCO2冷媒のうち、レシーバにより液状態のCO2冷媒のみが第2熱交換器に供給され、液状態のCO2冷媒は第2熱交換器にて過冷却されることで、そのエンタルピがまた更に減少する。このように、この冷凍システムの場合、凝縮ユニットによりCO2冷媒が過冷却され、凝縮ユニットでのCO2冷媒のエンタルピ減少量が大きいので、蒸発器でのCO2冷媒の吸熱量も大きい。この結果、この冷凍システムは良好な冷凍能力を有する。そして、この冷凍システムの場合、第1及び第2熱交換器には、冷却流体循環回路によりCO2冷媒の凝縮温度よりも低温の冷却流体が供給されるので、蒸発器から圧縮機に戻る過程にてCO2冷媒の温度が上昇することはない。従って、この冷凍システムは、温度上昇による圧縮機の耐久性低下を招くことなく、良好な冷凍能力を有する。
Since the refrigeration system according to claims 1 and 2 of the present invention uses CO 2 gas as the refrigerant, it is friendly to the global environment.
In addition, although these refrigeration systems use CO 2 gas as a refrigerant, they have a good refrigeration capacity without causing a decrease in the durability of the compressor. In these refrigeration systems, the CO 2 refrigerant discharged from the compressor is cooled by the gas cooler of the condensing unit, and its enthalpy is reduced. Thereafter, the CO 2 refrigerant is expanded by the expander to be in a wet state, and the wet CO 2 refrigerant is cooled by the first heat exchanger, whereby the enthalpy is further reduced. Of the CO 2 refrigerant that has flowed out of the first heat exchanger, only the liquid CO 2 refrigerant is supplied to the second heat exchanger by the receiver, and the liquid CO 2 refrigerant passes through the second heat exchanger. By being cooled, its enthalpy is further reduced. Thus, in the case of this refrigeration system, the CO 2 refrigerant is supercooled by the condensing unit, and the amount of enthalpy reduction of the CO 2 refrigerant in the condensing unit is large, so that the endothermic amount of the CO 2 refrigerant in the evaporator is also large. As a result, this refrigeration system has a good refrigeration capacity. In the case of this refrigeration system, a cooling fluid having a temperature lower than the condensation temperature of the CO 2 refrigerant is supplied to the first and second heat exchangers by the cooling fluid circulation circuit, so that the process of returning from the evaporator to the compressor In this case, the temperature of the CO 2 refrigerant does not increase. Therefore, this refrigeration system has a good refrigeration capacity without causing a decrease in the durability of the compressor due to a temperature rise.

とりわけ、請求項2の冷凍システムは、冷却水を使用することで新たな設備や動力を必要とせず、省エネの観点からも地球環境に優しい。
請求項3のショーケースは固定して設置されることから、凝縮ユニットの第1及び第2熱交換器は、冷却流体循環回路の設置も容易であり、請求項1及び2の冷凍システムに好適する。
In particular, the refrigeration system according to claim 2 does not require new equipment or power by using cooling water, and is friendly to the global environment from the viewpoint of energy saving.
Since the showcase of claim 3 is fixedly installed, the first and second heat exchangers of the condensing unit can be easily installed with a cooling fluid circulation circuit, and are suitable for the refrigeration system of claims 1 and 2. To do.

図1は、一実施例のショーケースに適用された冷凍システム2の概略を示し、冷凍システム2によりショーケースの商品収納室4は所望の設定温度に冷却される。
冷凍システム2は、自然系冷媒であるCO2冷媒(以下、単に冷媒と称す)を循環させる循環流路6を有し、この循環流路6は、ショーケースの底に設けられた機械室8から、商品収納室4の下部に底板により区画された冷却ユニット収容室10に亘って設置されている。機械室8内を延びる循環流路6の部分には、圧縮機12、凝縮ユニット14、膨張弁16が順次介挿され、冷却ユニット収容室10内を延びる循環流路6の部分に蒸発器18が介挿されている。また、冷凍システム2は、凝縮ユニット14に冷却水を供給する冷却流体循環回路19を有し、具体的には、冷却流体循環回路19は、冷却水の供給源として、ショーケースを設置する建物に既設された冷却水循環装置20を含む。
FIG. 1 shows an outline of a refrigeration system 2 applied to a showcase of one embodiment, and the product storage chamber 4 of the showcase is cooled to a desired set temperature by the refrigeration system 2.
The refrigeration system 2 has a circulation channel 6 for circulating a CO 2 refrigerant (hereinafter simply referred to as a refrigerant), which is a natural refrigerant, and this circulation channel 6 is a machine room 8 provided at the bottom of the showcase. From the bottom of the product storage chamber 4, the cooling unit storage chamber 10 is defined by a bottom plate. A compressor 12, a condensing unit 14, and an expansion valve 16 are sequentially inserted in a portion of the circulation flow path 6 extending in the machine chamber 8, and an evaporator 18 is disposed in a portion of the circulation flow path 6 extending in the cooling unit housing chamber 10. Is inserted. In addition, the refrigeration system 2 includes a cooling fluid circulation circuit 19 that supplies cooling water to the condensing unit 14, and specifically, the cooling fluid circulation circuit 19 is a building in which a showcase is installed as a cooling water supply source. The cooling water circulation device 20 that is already installed is included.

この冷凍システム2の凝縮ユニット14は、圧縮機12から膨張弁16に亘る循環流路6の流域(以下、凝縮流路といい、符号22を付す)に設けられ、凝縮流路22には、冷媒の流れ方向でみて、ガスクーラ24、膨張器26、第1熱交換器28、レシーバ30、及び第2熱交換器32が順次介挿されている。ガスクーラ24の近傍には、ガスクーラ24を空冷するためのファン34が設けられており、一方、第1及び第2熱交換器28,32の各々には、冷却水循環装置20から冷媒の凝縮温度よりも低温の冷却水を供給するための冷却水流路36が接続されている。   The condensing unit 14 of the refrigeration system 2 is provided in a flow area of the circulation flow path 6 (hereinafter referred to as a condensation flow path, denoted by reference numeral 22) extending from the compressor 12 to the expansion valve 16. The gas cooler 24, the expander 26, the first heat exchanger 28, the receiver 30, and the second heat exchanger 32 are sequentially inserted when viewed in the flow direction of the refrigerant. A fan 34 for air-cooling the gas cooler 24 is provided in the vicinity of the gas cooler 24. On the other hand, each of the first and second heat exchangers 28 and 32 has a refrigerant condensing temperature from the cooling water circulation device 20. Also, a cooling water passage 36 for supplying low-temperature cooling water is connected.

以下、図3に示したモリエル線図を参照し、冷凍システム2の動作について説明する。
圧縮機12は給電を受けてその電動モータが作動されることで、循環流路6の復路からガス状態の冷媒(a)を吸い込んで圧縮し、高温高圧の超臨界状態の冷媒(b)にして循環流路6の往路に吐出する。つまり、圧縮機12は冷媒を圧縮しながら冷媒の流動を生成させる。
The operation of the refrigeration system 2 will be described below with reference to the Mollier diagram shown in FIG.
The compressor 12 is supplied with electric power and the electric motor is operated, so that the refrigerant (a) in the gas state is sucked and compressed from the return path of the circulation flow path 6 to be a high-temperature and high-pressure supercritical refrigerant (b). Then, it discharges to the outward path of the circulation channel 6. That is, the compressor 12 generates a refrigerant flow while compressing the refrigerant.

圧縮機12からの冷媒(b)は、凝縮流路22に流入して凝縮ユニット14を通過する。この際、冷媒(b)は、ガスクーラ24を流れるときに、ガスクーラ24がファン34からの送風を受けることで空冷され、エンタルピiが減少した状態の冷媒(c)になる。この後、冷媒(c)は、膨張器26を流れるときに膨張し、圧力P及び温度が低下した状態の冷媒(d)になる。この冷媒(d)は、図3から明らかなように、気相及び液相の冷媒を含む湿り状態にある。冷媒(d)は、第1熱交換器28により冷媒(d)の凝縮温度よりも低温の循環冷却水との熱交換により冷却された後、レシーバ30により気相の冷媒と液相の冷媒(e)とに分離される。レシーバ30からは液相の冷媒(e)のみが凝縮流路22に流出し、冷媒(e)は、第2熱交換器32にて冷媒(e)の凝縮温度よりも低温の循環冷却水との熱交換により冷却され、過冷却状態の冷媒(f)になる。   The refrigerant (b) from the compressor 12 flows into the condensation flow path 22 and passes through the condensation unit 14. At this time, when the refrigerant (b) flows through the gas cooler 24, the gas cooler 24 receives air from the fan 34 and is cooled by air to become the refrigerant (c) in a state where the enthalpy i is reduced. Thereafter, the refrigerant (c) expands when it flows through the expander 26, and becomes the refrigerant (d) in a state where the pressure P and the temperature are lowered. As is apparent from FIG. 3, this refrigerant (d) is in a wet state including gas-phase and liquid-phase refrigerants. The refrigerant (d) is cooled by heat exchange with circulating cooling water having a temperature lower than the condensation temperature of the refrigerant (d) by the first heat exchanger 28, and then the gas-phase refrigerant and the liquid-phase refrigerant ( e). Only the liquid-phase refrigerant (e) flows out from the receiver 30 into the condensing flow path 22, and the refrigerant (e) is cooled with circulating cooling water having a temperature lower than the condensing temperature of the refrigerant (e) in the second heat exchanger 32. The refrigerant is cooled by the heat exchange, and becomes a supercooled refrigerant (f).

第2熱交換器32つまり凝縮ユニット14から流出した冷媒(f)は、膨張弁16を通過する際に膨張して圧力P及び温度が低下した状態の冷媒(g)になる。この後、冷媒(g)は、蒸発器18内にて、冷媒(g)に含まれる液相の冷媒が気化熱を吸収し、エンタルピiが増加したガス状態の冷媒(a)になる。この際、図示しない送風ファンにより蒸発器18から商品収納室4内に向かう風を起こせば、蒸発器18を通過する際に気化熱を奪われた冷風が商品収納室4内に送風され、これにより商品収納室4の温度が調整される。なお、蒸発器18で気化したガス状態の冷媒(a)は圧縮機12に吸入され、上述したa〜gのサイクルが繰り返される。   The refrigerant (f) flowing out of the second heat exchanger 32, that is, the condensation unit 14, expands when passing through the expansion valve 16, and becomes a refrigerant (g) in a state where the pressure P and temperature are lowered. Thereafter, the refrigerant (g) becomes a gaseous refrigerant (a) in which the liquid phase refrigerant contained in the refrigerant (g) absorbs the heat of vaporization and the enthalpy i increases in the evaporator 18. At this time, if a wind directed from the evaporator 18 into the product storage chamber 4 is generated by a blower fan (not shown), the cool air deprived of vaporization heat when passing through the evaporator 18 is blown into the product storage chamber 4. Thus, the temperature of the product storage chamber 4 is adjusted. In addition, the refrigerant | coolant (a) of the gas state vaporized with the evaporator 18 is suck | inhaled by the compressor 12, and the cycle of ag mentioned above is repeated.

上述したショーケースは、冷凍システム2の冷媒としてCO2ガスを用いているので、地球環境に優しい。
また、冷凍システム2は、冷媒としてCO2ガスを用いているけれども、圧縮機12の耐久性低下を招くことなく良好な冷凍能力を有する。冷凍システム2では、凝縮ユニット14によりCO2冷媒が過冷却され、凝縮ユニット14でのCO2冷媒のエンタルピ減少量が大きいので、蒸発器18でのCO2冷媒の吸熱量も大きい。この結果、この冷凍システム2は良好な冷凍能力を有する。そして、冷凍システム2の場合、第1及び第2熱交換器28,32には、冷却流体循環回路19により、それぞれの内部を流れるCO2冷媒の凝縮温度よりも低温の冷却流体が供給されるので、蒸発器18から圧縮機12に戻る過程にてCO2冷媒の温度が上昇することはない。従って、この冷凍システム2は、温度上昇による圧縮機12の耐久性低下を招くことなく、良好な冷凍能力を有する。
Since the showcase described above uses CO 2 gas as the refrigerant of the refrigeration system 2, it is friendly to the global environment.
Further, although the refrigeration system 2 uses CO 2 gas as a refrigerant, the refrigeration system 2 has a good refrigeration capacity without causing a decrease in durability of the compressor 12. In the refrigeration system 2, the CO 2 refrigerant is supercooled by the condensing unit 14, and the enthalpy reduction amount of the CO 2 refrigerant in the condensing unit 14 is large, so that the endothermic amount of the CO 2 refrigerant in the evaporator 18 is also large. As a result, the refrigeration system 2 has a good refrigeration capacity. In the case of the refrigeration system 2, the first and second heat exchangers 28 and 32 are supplied with a cooling fluid having a temperature lower than the condensation temperature of the CO 2 refrigerant flowing through the cooling fluid circulation circuit 19. Therefore, the temperature of the CO 2 refrigerant does not rise in the process of returning from the evaporator 18 to the compressor 12. Therefore, the refrigeration system 2 has a good refrigeration capacity without causing a decrease in the durability of the compressor 12 due to a temperature rise.

本発明は、上述した一実施例に限定されるものではなく種々の変更が可能である。
例えば、一実施例では、第1及び第2熱交換器28,32に冷却流体として冷却水を供給したけれども、他の流体を供給してもよい。ただし、冷凍システム2の第1及び第2熱交換器28,32に対して、建物に既設された冷却水循環装置20から循環冷却水を供給すれば、冷却流体を供給するための新たな設備や動力を必要とせず、省エネの観点からも地球環境に優しい。なお、第1及び第2熱交換器28,32と冷却水循環装置20との間を接続する冷却水流路36の構成は特に限定されない。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, in one embodiment, although the cooling water is supplied as the cooling fluid to the first and second heat exchangers 28 and 32, other fluids may be supplied. However, if circulating cooling water is supplied to the first and second heat exchangers 28 and 32 of the refrigeration system 2 from the cooling water circulation device 20 already installed in the building, new equipment for supplying cooling fluid, It does not require power and is friendly to the global environment from the viewpoint of energy saving. In addition, the structure of the cooling water flow path 36 which connects between the 1st and 2nd heat exchangers 28 and 32 and the cooling water circulation apparatus 20 is not specifically limited.

また、一実施例のショーケースに適用された冷凍システム2は、冷凍冷蔵庫や室内用空調装置等にも好適する。これら冷凍冷蔵庫や空調装置も、ショーケースと同様に床や天井等に固定して設置されることから、第1及び第2熱交換器28,32と建物に既設された冷却水循環装置20との間に冷却水流路36を容易に設けることができる。   The refrigeration system 2 applied to the showcase of one embodiment is also suitable for a refrigerator-freezer, an indoor air conditioner, and the like. Since these refrigerator-freezers and air conditioners are also fixedly installed on the floor, ceiling, etc. as in the case of the showcase, between the first and second heat exchangers 28 and 32 and the cooling water circulation device 20 already installed in the building. The cooling water flow path 36 can be easily provided.

本発明の一実施例のショーケースを構成する冷凍システムの概略を示した図である。It is the figure which showed the outline of the refrigerating system which comprises the showcase of one Example of this invention. 図1の冷凍システムに適用された凝縮ユニットの概略を示す図である。It is a figure which shows the outline of the condensation unit applied to the refrigeration system of FIG. 図1の冷凍システムの動作を説明するモリエール線図である。FIG. 2 is a Mollier chart illustrating the operation of the refrigeration system of FIG. 1.

符号の説明Explanation of symbols

2 冷凍システム
4 商品収納室
6 循環流路
8 機械室
12 圧縮機
14 凝縮ユニット
16 膨張弁
18 蒸発器
19 冷却流体循環回路
20 冷却水循環装置
22 凝縮流路
24 ガスクーラ
26 膨張器
28 第1熱交換器
30 レシーバ
32 第2熱交換器
DESCRIPTION OF SYMBOLS 2 Refrigeration system 4 Commodity storage room 6 Circulation flow path 8 Machine room 12 Compressor 14 Condensing unit 16 Expansion valve 18 Evaporator 19 Cooling fluid circulation circuit 20 Cooling water circulation device 22 Condensation flow path 24 Gas cooler 26 Expander 28 1st heat exchanger 30 receiver 32 second heat exchanger

Claims (3)

CO2冷媒が循環する循環流路に前記冷媒の流れ方向でみて圧縮機、凝縮ユニット、膨張弁及び蒸発器が順次介挿された冷凍システムであって、
前記凝縮ユニットは、
前記循環流路の一部を構成する前記CO2冷媒の凝縮流路と、
前記凝縮流路に介挿され、前記CO2冷媒を空冷するガスクーラと、
前記凝縮流路中、前記ガスクーラの下流に介挿され、前記ガスクーラから送出されたCO2冷媒を膨張させて、湿り状態のCO2冷媒を送出する膨張器と、
前記凝縮流路中、前記膨張器の下流に介挿され、前記膨張器から送出されたCO2冷媒を熱交換により冷却する第1熱交換器と、
前記凝縮流路中、前記第1熱交換器の下流に介挿され、前記第1熱交換器から送出されたCO2冷媒のうち液状のCO2冷媒のみを送出するレシーバと、
前記凝縮流路中、前記レシーバよりも下流に介挿され、前記レシーバからの前記液状のCO2冷媒を熱交換により冷却する第2熱交換器と、
前記第1及び第2熱交換器のそれぞれに前記CO2冷媒の凝縮温度よりも低い温度の冷却流体を供給する冷却流体循環回路と
を具備したことを特徴とする冷凍システム。
A refrigeration system in which a compressor, a condensing unit, an expansion valve, and an evaporator are sequentially inserted in a circulation flow path in which a CO 2 refrigerant circulates in the flow direction of the refrigerant,
The condensing unit is
A condensation flow path of the CO 2 refrigerant constituting a part of the circulation flow path;
A gas cooler interposed in the condensing flow path to air-cool the CO 2 refrigerant;
An expander that is inserted downstream of the gas cooler in the condensing channel, expands the CO 2 refrigerant sent from the gas cooler, and sends out the wet CO 2 refrigerant;
A first heat exchanger that is inserted downstream of the expander in the condensation channel and cools the CO 2 refrigerant sent from the expander by heat exchange;
A receiver that is inserted downstream of the first heat exchanger in the condensing channel and that sends out only the liquid CO 2 refrigerant out of the CO 2 refrigerant sent out from the first heat exchanger;
A second heat exchanger that is interposed downstream of the receiver in the condensation channel and cools the liquid CO 2 refrigerant from the receiver by heat exchange;
A refrigeration system comprising: a cooling fluid circulation circuit that supplies a cooling fluid having a temperature lower than the condensation temperature of the CO 2 refrigerant to each of the first and second heat exchangers.
前記冷却流体は冷却水であることを特徴とする請求項1記載の冷凍システム。   The refrigeration system according to claim 1, wherein the cooling fluid is cooling water. 請求項1又は2に記載の冷凍システムを備えたことを特徴とするショーケース。   A showcase comprising the refrigeration system according to claim 1.
JP2005116984A 2004-12-17 2005-04-14 Refrigerating system Pending JP2006194569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116984A JP2006194569A (en) 2004-12-17 2005-04-14 Refrigerating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004366080 2004-12-17
JP2005116984A JP2006194569A (en) 2004-12-17 2005-04-14 Refrigerating system

Publications (1)

Publication Number Publication Date
JP2006194569A true JP2006194569A (en) 2006-07-27

Family

ID=36800791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116984A Pending JP2006194569A (en) 2004-12-17 2005-04-14 Refrigerating system

Country Status (1)

Country Link
JP (1) JP2006194569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107141A (en) * 2008-10-31 2010-05-13 Daikin Ind Ltd Refrigerating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088364A (en) * 1998-09-11 2000-03-31 Nippon Soken Inc Supercritical refrigerating cycle
JP2001241785A (en) * 2000-02-28 2001-09-07 Mitsui Eng & Shipbuild Co Ltd Co2 refrigerant heat pump and snow melting device
JP2001349623A (en) * 2000-06-06 2001-12-21 Daikin Ind Ltd Freezer device
JP2002022307A (en) * 2000-07-07 2002-01-23 Hitachi Ltd Air conditioner
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
JP2002225549A (en) * 2001-02-05 2002-08-14 Toyota Industries Corp Air-conditioning system for vehicle
JP2004175232A (en) * 2002-11-27 2004-06-24 Japan Climate Systems Corp Air conditioner for vehicle
JP2004354023A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Cooling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088364A (en) * 1998-09-11 2000-03-31 Nippon Soken Inc Supercritical refrigerating cycle
JP2001241785A (en) * 2000-02-28 2001-09-07 Mitsui Eng & Shipbuild Co Ltd Co2 refrigerant heat pump and snow melting device
JP2001349623A (en) * 2000-06-06 2001-12-21 Daikin Ind Ltd Freezer device
JP2002022307A (en) * 2000-07-07 2002-01-23 Hitachi Ltd Air conditioner
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
JP2002225549A (en) * 2001-02-05 2002-08-14 Toyota Industries Corp Air-conditioning system for vehicle
JP2004175232A (en) * 2002-11-27 2004-06-24 Japan Climate Systems Corp Air conditioner for vehicle
JP2004354023A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107141A (en) * 2008-10-31 2010-05-13 Daikin Ind Ltd Refrigerating device

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
JP6125000B2 (en) Dual refrigeration equipment
JP4553964B2 (en) Cooling device for communication equipment and control method thereof
WO2015071967A1 (en) Refrigeration system
CN102575860B (en) Air conditioning device
JP2008002759A (en) Binary refrigerating system and cold storage
JP2007218459A (en) Refrigerating cycle device and cool box
JP2009133624A (en) Refrigerating/air-conditioning device
JP2005257197A (en) Natural circulation parallel usage type air conditioner, and control method for natural circulation parallel usage type air conditioner
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP2006017427A (en) Cooling system
JP4651452B2 (en) Refrigeration air conditioner
JP2001004235A (en) Steam compression refrigeration cycle
JP2008051370A (en) Water cooling type refrigerating system and cold storage equipped with the same
JP2009002564A (en) Refrigerant cooling circuit
JPH11351680A (en) Cooling equipment
JP2016223743A (en) Air conditioner
JP2006194569A (en) Refrigerating system
JP2003302117A (en) Heat radiation system for stirling engine and cooling chamber having the same
JP2000337722A (en) Vapor compression type refrigeration cycle
JPH0791753A (en) Air conditioner
KR100613502B1 (en) Heat pump type air conditioner
JP2008107057A (en) Air conditioner
JP2007093086A (en) Refrigerating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Effective date: 20100415

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101006