JP2006193822A - Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device - Google Patents

Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device Download PDF

Info

Publication number
JP2006193822A
JP2006193822A JP2005047938A JP2005047938A JP2006193822A JP 2006193822 A JP2006193822 A JP 2006193822A JP 2005047938 A JP2005047938 A JP 2005047938A JP 2005047938 A JP2005047938 A JP 2005047938A JP 2006193822 A JP2006193822 A JP 2006193822A
Authority
JP
Japan
Prior art keywords
plating
plating solution
plated
anode electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005047938A
Other languages
Japanese (ja)
Inventor
Yoshihide Iwasaki
良英 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005047938A priority Critical patent/JP2006193822A/en
Priority to US11/792,812 priority patent/US20080105555A1/en
Priority to PCT/JP2005/022539 priority patent/WO2006064711A1/en
Priority to TW094144464A priority patent/TW200636095A/en
Publication of JP2006193822A publication Critical patent/JP2006193822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05008Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body, e.g.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05022Disposition the internal layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05569Disposition the external layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • H01L2224/1148Permanent masks, i.e. masks left in the finished device, e.g. passivation layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the degradation of qualities of a plated film, which occurs due to a fine solid foreign material originating in a black film when using a face-down type jet-flow plating apparatus, without impairing the operationality. <P>SOLUTION: The face-down type plating apparatus has a barrier plate 7 installed between a semiconductor wafer 1 and an anodic electrode 5. The barrier plate 7 isolates the semiconductor wafer 1 from the electrode 5, and partitions a plating tank 100 into a chamber for a substrate to be plated and an anodic electrode chamber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、めっき装置及びめっき方法に関するものであり、より詳しくは、被めっき面に配線用の微細なめっきを形成するめっき装置、めっき方法、半導体装置、及び半導体装置の製造方法に関するものである。   The present invention relates to a plating apparatus and a plating method, and more particularly to a plating apparatus, a plating method, a semiconductor device, and a semiconductor device manufacturing method for forming fine plating for wiring on a surface to be plated. .

現在、半導体ウェハ等へ配線を形成するために、金属めっきによる手法が採用されている。従来の金属めっきに用いる装置としては、フェースダウン方式の噴流めっき装置、ラック方式の縦型めっき装置、または、フェースアップ方式の噴流めっき装置が知られている。   Currently, in order to form wiring on a semiconductor wafer or the like, a technique by metal plating is employed. As a conventional apparatus used for metal plating, a face down type jet plating apparatus, a rack type vertical plating apparatus, or a face up type jet plating apparatus is known.

フェースダウン方式の噴流めっき装置は、図7に示すように、半導体ウェハ1’を保持するウェハ保持具2’と、カップ3’と、カップ3内にめっき液を供給するためのめっき液噴射管4’と、陽極電極5’とを備えている。陽極電極5’は、一般に、含リン銅からなっている。カップ3’の内部には、陽極電極5’が設けられている。そして、カップ3’には、ウェハ保持具2’が設けられており、半導体ウェハ1’は、ウェハ保持具2’により、カップ3’の上部に保持されている。フェースダウン方式の噴流めっき装置では、めっき液噴射管4’は、半導体ウェハ1’の下方に設けられている。このため、めっき液噴射管4’より噴射しためっき液が、半導体ウェハ1’の下方より供給されることになる。これにより、被めっき面のめっきが施される。   As shown in FIG. 7, the face-down type jet plating apparatus includes a wafer holder 2 ′ that holds a semiconductor wafer 1 ′, a cup 3 ′, and a plating solution spray pipe for supplying a plating solution into the cup 3. 4 'and anode electrode 5'. The anode electrode 5 'is generally made of phosphorous copper. An anode electrode 5 'is provided inside the cup 3'. The cup 3 'is provided with a wafer holder 2', and the semiconductor wafer 1 'is held on the top of the cup 3' by the wafer holder 2 '. In the face-down type jet plating apparatus, the plating solution injection pipe 4 ′ is provided below the semiconductor wafer 1 ′. For this reason, the plating solution sprayed from the plating solution spray tube 4 ′ is supplied from below the semiconductor wafer 1 ′. Thereby, plating of the to-be-plated surface is performed.

なお、図7には示していないが、フェースダウン方式の噴流めっき装置は、カップ3’を内包するように設けられためっき液槽、めっき液供給源としてのめっき液貯槽、めっき液をめっき装置内に循環させるポンプ、めっき液中の固形異物をろ過するフィルター、及びこれらを接続する配管を備えている。   Although not shown in FIG. 7, the face-down type jet plating apparatus includes a plating solution tank provided so as to contain the cup 3 ′, a plating solution storage tank as a plating solution supply source, and a plating solution plating apparatus. A pump that circulates inside, a filter that filters solid foreign matters in the plating solution, and a pipe that connects them are provided.

フェースダウン方式の噴流めっき装置では、めっき液貯層中のめっき液は、ポンプによりフィルターを経て、カップ3’の下部へと至る。そして、カップ3’の下部から供給されためっき液は、めっき液噴射管4’を通って、陽極電極5’を経て半導体ウェハ1の被めっき面へと至る。そして、その後、めっき液は、カップ3’上部の辺縁部(ウェハ保持具2’とカップ3’との隙間)より、カップ3’外部へ漏れ出てめっき液槽にて回収され、再度、めっき液貯層へ還流される。   In the face-down type jet plating apparatus, the plating solution in the plating solution reservoir passes through the filter by the pump and reaches the lower portion of the cup 3 '. Then, the plating solution supplied from the lower portion of the cup 3 ′ passes through the plating solution injection pipe 4 ′, reaches the surface to be plated of the semiconductor wafer 1 through the anode electrode 5 ′. After that, the plating solution leaks out of the cup 3 ′ from the edge of the upper portion of the cup 3 ′ (the gap between the wafer holder 2 ′ and the cup 3 ′) and is collected in the plating solution tank. It is returned to the plating solution reservoir.

このようなフェースダウン方式の噴流めっき装置は、例えば特許文献1に開示されている。特許文献1に開示されている、フェースダウン方式の噴流めっき装置では、「めっき処理槽に流入しためっき液の一部を、陽極電極に設けた貫通孔又は陽極電極の周囲からめっき処理槽外部に流出せしめる流出口」が設けられている。また、陽極電極として、プラチナに体表される不溶解性電極を適用しためっき装置も知られている。   Such a face-down type jet plating apparatus is disclosed in Patent Document 1, for example. In the face-down type jet plating apparatus disclosed in Patent Document 1, “a part of the plating solution that has flowed into the plating treatment tank is transferred from the through hole provided in the anode electrode or the periphery of the anode electrode to the outside of the plating treatment tank. There is an “outflow outlet”. A plating apparatus using an insoluble electrode represented by platinum as an anode electrode is also known.

また、ラック方式の縦型めっき装置は、図8に示すように、陽極電極6’’と、ラック24と、めっき処理槽12とを備えている。陽極電極6’’は、一般的に内部起毛の布性のアノードバッグ13内に設置されている。陽極電極6’’としては、球状の含リン銅をチタン製のバスケットに入れたもの、もしくは含リン銅から成る銅板が用いられる。また、ラック24は、半導体ウェハ1への給電部を備え、かつ半導体ウェハ1よりやや内径の小さい穴を穿った板状の治具である。そして、めっき処理槽12は、ラック24への半導体ウェハ1の固定と裏面の絶縁を兼ねるウェハ抑え25及びめっき液を攪拌する図示しないスキージを備えている。   The rack type vertical plating apparatus includes an anode electrode 6 ″, a rack 24, and a plating tank 12 as shown in FIG. The anode electrode 6 ″ is generally installed in a cloth-like anode bag 13 having an internally brushed surface. As the anode electrode 6 ″, spherical phosphorous copper contained in a titanium basket or a copper plate made of phosphorous copper is used. The rack 24 is a plate-like jig that includes a power feeding portion for the semiconductor wafer 1 and has a hole that has a slightly smaller inner diameter than the semiconductor wafer 1. The plating tank 12 is provided with a wafer restraint 25 that serves as both fixing of the semiconductor wafer 1 to the rack 24 and insulation of the back surface, and a squeegee (not shown) for stirring the plating solution.

なお、図8には示していないが、ラック方式の縦型めっき装置は、めっき液槽、めっき液供給源としてのめっき液貯槽、めっき液をめっき装置内に循環させるポンプ、めっき液中の固形異物をろ過するフィルター、これらを接続する配管、及び付属装置を備えている。   Although not shown in FIG. 8, the rack type vertical plating apparatus includes a plating solution tank, a plating solution storage tank as a plating solution supply source, a pump for circulating the plating solution in the plating apparatus, and a solid in the plating solution. It includes a filter that filters foreign matter, piping that connects them, and an accessory device.

めっき液は、貯槽からポンプによってフィルターを経て注入口14へと至る。そして、めっき処理槽12槽内で陽極電極6を内包するアノードバッグ13近傍を流動する。その後、半導体ウェハ1表面の被めっき面へと至り、めっき処理槽12上縁よりダム15へと流出しダムの一部の設けられた図示しない戻り管を経てめっき液貯槽へと還流する。このようなラック方式の縦型めっき装置は、例えば特許文献2に開示されている。   The plating solution reaches from the storage tank to the inlet 14 through a filter by a pump. Then, it flows in the vicinity of the anode bag 13 containing the anode electrode 6 in the plating treatment tank 12. Then, it reaches the surface to be plated on the surface of the semiconductor wafer 1, flows out from the upper edge of the plating treatment tank 12 to the dam 15, and returns to the plating solution storage tank through a return pipe (not shown) provided with a part of the dam. Such a rack-type vertical plating apparatus is disclosed in Patent Document 2, for example.

また、フェースアップ方式の噴流めっき装置は、半導体ウェハの被めっき面を上に向けて配置し、かつ被めっき面に対向させて陽極電極を配置して、めっき液が、半導体ウェハの上方より供給されるような構成である。   Further, the face-up type jet plating apparatus is arranged with the surface to be plated of the semiconductor wafer facing upward, and the anode electrode is disposed to face the surface to be plated, and the plating solution is supplied from above the semiconductor wafer. It is the composition which is done.

このようなフェースアップ方式の噴流めっき装置は、例えば特許文献3及び4に開示されている。特許文献3に開示されている、フェースアップ方式の噴流めっき装置では、ブラックフィルムの乾燥による剥離を防止する目的で、陽極室の底部にイオン交換膜又は多孔性中性膜が設けられ、陽極室内がめっき液で満たされるようにしている。また、特許文献4に開示されている、フェースアップ方式の噴流めっき装置では、陽極室の底部に多数の細孔が形成された多孔体が設けられている。   Such face-up type jet plating apparatuses are disclosed in Patent Documents 3 and 4, for example. In the face-up type jet plating apparatus disclosed in Patent Document 3, an ion exchange membrane or a porous neutral membrane is provided at the bottom of the anode chamber for the purpose of preventing peeling due to drying of the black film. Is filled with the plating solution. In the face-up type jet plating apparatus disclosed in Patent Document 4, a porous body having a large number of pores formed at the bottom of the anode chamber is provided.

また、上述のめっき装置と異なる構成のものとして、例えば特許文献5には、めっき処理槽を陰イオン交換膜で陰極室と陽極室に隔離し、陽極として不溶性電極を使用して電気銅めっきを行う半導体ウェハの電気銅めっき装置が開示されている。   In addition, as a configuration different from the above-described plating apparatus, for example, Patent Document 5 discloses that a plating tank is separated into a cathode chamber and an anode chamber by an anion exchange membrane, and electrolytic copper plating is performed using an insoluble electrode as an anode. An electro copper plating apparatus for performing a semiconductor wafer is disclosed.

これら従来のめっき装置において、半導体ウェハの被めっき面全面に均一なめっき液の層流を作ることは、めっき処理において極めて重要である。それゆえ、半導体ウェハの被めっき面の中央部から周辺部への層流を作ることは、めっきの仕上がりを大きく左右する。   In these conventional plating apparatuses, it is extremely important in the plating process to make a uniform laminar flow of the plating solution over the entire surface to be plated of the semiconductor wafer. Therefore, creating a laminar flow from the central portion to the peripheral portion of the surface to be plated of the semiconductor wafer greatly affects the finish of plating.

従来のフェースアップ方式の噴流めっき装置は、側方の流入口・流出口から、半導体ウェハの被めっき面全面に均一なめっき液の層流を作るために、その構造上、半導体ウェハを回転させることで、相対的に一様なめっき液の層流を得るような構成となっている。このため、従来のフェースアップ方式の噴流めっき装置では、半導体ウェハを保持する機構に加え、半導体ウェハを回転させる機構を付加する必要があり、装置が大掛かりになってしまう。   The conventional face-up type jet plating apparatus rotates the semiconductor wafer due to its structure in order to create a uniform laminar flow of the plating solution from the side inlet / outlet to the entire surface to be plated of the semiconductor wafer. Thus, a relatively uniform laminar flow of the plating solution is obtained. For this reason, in the conventional face-up type jet plating apparatus, it is necessary to add a mechanism for rotating the semiconductor wafer in addition to the mechanism for holding the semiconductor wafer, which makes the apparatus large.

一方、フェースダウン方式の噴流めっき装置では、半導体ウェハの被めっき面の中央部からめっき液を噴流することが可能であるため、めっき装置と半導体ウェハとは固定されており、より簡便な装置を実現できる。
特開2001−24307号公報(平成13年1月26日公開) 特開2000−87299号公報(平成12年3月28日公開) 特開2001−49498号公報(平成13年2月20日公開) 特開2001−24303号公報(平成13年1月26日公開) 特開2003−73889号公報(平成15年3月12日公開)
On the other hand, in the face-down type jet plating apparatus, since the plating solution can be jetted from the center of the surface to be plated of the semiconductor wafer, the plating apparatus and the semiconductor wafer are fixed, and a simpler apparatus can be obtained. realizable.
JP 2001-24307 A (published January 26, 2001) JP 2000-87299 A (published March 28, 2000) JP 2001-49498 A (published February 20, 2001) JP 2001-24303 A (published January 26, 2001) JP 2003-73889 A (published on March 12, 2003)

しかしながら、上記従来のフェースダウン方式の噴流めっき装置には、以下の問題が生じる。   However, the conventional face-down type jet plating apparatus has the following problems.

フェースダウン方式の噴流めっき装置では、微小な固形異物が被めっき面に付着し、めっき品質の低下を招くという問題が生じる。この原因は、ポンプによりめっき液貯槽から供給されためっき液が、フィルターにてろ過された後、カップ下部から供給され陽極電極近傍を経て半導体ウェハの被めっき面へと至る経路のうち、陽極電極表面にある。陽極電極が、含リン銅を含む場合、その表面にはブラックフィルムと呼ばれる黒色皮膜が形成される。このブラックフィルムは、塩素(Cl)やリン(P)を含む一価の銅の錯体(Cuからなり、陽極溶解により発生した一価の銅イオンと化合した結果生じたものである。 In the face-down type jet plating apparatus, there is a problem that minute solid foreign substances adhere to the surface to be plated, resulting in a decrease in plating quality. This is because the plating solution supplied from the plating solution storage tank by the pump is filtered by a filter, and then supplied from the lower part of the cup to the surface to be plated of the semiconductor wafer through the vicinity of the anode electrode. On the surface. When the anode electrode contains phosphorous copper, a black film called a black film is formed on the surface. This black film is made of a monovalent copper complex (Cu + ) containing chlorine (Cl) and phosphorus (P), and is formed as a result of combining with monovalent copper ions generated by anodic dissolution.

このブラックフィルムは、下記(1)式に示す銅の不均化反応を抑制することで、スライムの発生を抑制する効果がある。
2Cu→Cu+Cu2+ (1)
しかしながら、一方で、一旦形成されたブラックフィルムは、陽極電極表面から剥離しやすくなる。剥離した微小なブラックフィルムは、めっき液の流れと共に、半導体ウェハの被めっき面へ運ばれる。その結果、半導体ウェハのめっき面にブラックフィルムが付着するという問題が生じる。
This black film has the effect of suppressing the generation of slime by suppressing the copper disproportionation reaction represented by the following formula (1).
2Cu + → Cu + Cu 2+ (1)
However, on the other hand, the black film once formed is easily peeled off from the surface of the anode electrode. The peeled micro black film is transported to the plated surface of the semiconductor wafer along with the flow of the plating solution. As a result, the problem that a black film adheres to the plating surface of a semiconductor wafer arises.

また、陽極電極として、不溶解性電極を適用することで、上記ブラックフィルムによる問題を防止することが可能である。しかしながら、この場合、陽極電極表面において、めっき液中の添加剤が、酸化分解しめっき液の消費量が増大したり、酸化分解で生成された分解生成物により、めっき液が汚染するという問題が生じる。   Moreover, it is possible to prevent the problem by the said black film by applying an insoluble electrode as an anode electrode. However, in this case, there is a problem that the additive in the plating solution is oxidized and decomposed on the surface of the anode electrode to increase the consumption of the plating solution, or the plating solution is contaminated by decomposition products generated by the oxidative decomposition. Arise.

一方、上記従来のラック式の縦型めっき装置では、内部起毛の布性アノードバッグ内に、含リン銅を含む陽極電極が設置されているので、ブラックフィルムに起因する固形異物による、半導体ウェハへの付着は防止することが可能である。しかしながら、このような縦型めっき装置では、半導体ウェハをめっき処理槽内に保持するために、半導体ウェハをラックに固定するという操作が必要になる。このため、この操作による生産性の低下、めっき品質の低下、及び自動化の妨げという問題が生じる。   On the other hand, in the conventional rack type vertical plating apparatus, since the anode electrode containing phosphorous copper is installed in the internally raised cloth-like anode bag, the semiconductor wafer is caused by the solid foreign matter caused by the black film. The adhesion of can be prevented. However, such a vertical plating apparatus requires an operation of fixing the semiconductor wafer to the rack in order to hold the semiconductor wafer in the plating tank. For this reason, the problem of the fall of productivity by this operation, the fall of plating quality, and the prevention of automation arises.

本発明は、上記問題点に鑑みなされたものであり、その目的は、フェースダウン方式の噴流めっき装置において、操作性を損なうことなく、ブラックフィルム等に起因する微小な固形異物による、めっき品質の低下を防止することができるめっき装置、めっき方法、半導体装置、及び半導体装置の製造方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to improve the plating quality due to the minute solid foreign matters caused by the black film or the like without impairing the operability in the face-down type jet plating apparatus. An object of the present invention is to provide a plating apparatus, a plating method, a semiconductor device, and a method for manufacturing a semiconductor device that can prevent a decrease.

本発明のめっき装置は、上記の課題を解決するために、内部に陽極電極が設けられためっき処理槽を備え、上記めっき処理槽内にめっき液を流入し、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら上記陽極電極と上記被めっき基板との間を通電することでめっきを行うめっき装置であって、上記めっき処理槽は、第1の円筒カップと、該第1の円筒カップよりも外径が小さい第2の円筒カップとを備え、第1の円筒カップと第2の円筒カップとからなる2重構造であり、上記第1の円筒カップには、上記陽極電極が配されており、その底部には、めっき液をめっき処理槽へ流入するためのめっき液流入口が設けられており、第1の円筒カップと第2の円筒カップとの互いの側壁により形成された間隙により、上記陽極電極室へ流入するめっき液を上記めっき処理槽の外部に流出するためのめっき液流出口が設けられており、上記第2の円筒カップの底部は、上記陽極電極と上記被めっき基板と隔離する隔壁からなり、めっき処理槽は、隔壁と第1の円筒カップとに囲まれた陽極電極室と、隔壁と第1の円筒カップとに囲まれた被めっき基板室とに区分されているとともに、さらに、上記被めっき基板の被めっき面へめっき液を噴射するためのめっき液噴射管を備え、上記めっき液噴射管が、上記隔壁を貫通するとともに、上記めっき液流入口から流入しためっき液の層流が、第1の円筒カップへ流入するめっき液の層流と、第2の円筒カップへ流入するめっき液の層流とに分離するように設けられていることを特徴としている。 In order to solve the above-described problems, the plating apparatus of the present invention includes a plating treatment tank in which an anode electrode is provided, and flows a plating solution into the plating treatment tank so that a plating surface of the substrate to be plated is formed. A plating apparatus for performing plating by energizing between the anode electrode and the substrate to be plated while contacting a jet of plating solution from below, wherein the plating tank includes a first cylindrical cup, A second cylindrical cup having an outer diameter smaller than that of the first cylindrical cup, and has a double structure including the first cylindrical cup and the second cylindrical cup, and the first cylindrical cup includes: The anode electrode is disposed, and a plating solution inlet for flowing the plating solution into the plating treatment tank is provided at the bottom thereof, and the first cylindrical cup and the second cylindrical cup are mutually connected. The gap formed by the side wall A plating solution outlet for allowing the plating solution flowing into the electrode chamber to flow out of the plating bath is provided, and the bottom of the second cylindrical cup is isolated from the anode electrode and the substrate to be plated. The plating tank is divided into an anode electrode chamber surrounded by the partition wall and the first cylindrical cup, and a substrate substrate chamber surrounded by the partition wall and the first cylindrical cup. Furthermore, a plating solution injection pipe for injecting a plating solution onto the surface to be plated of the substrate to be plated is provided, and the plating solution injection tube penetrates the partition wall and also contains the plating solution flowing from the plating solution inlet. The laminar flow is provided so as to be separated into a laminar flow of the plating solution flowing into the first cylindrical cup and a laminar flow of the plating solution flowing into the second cylindrical cup .

本発明のめっき装置は、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら上記陽極電極と上記被めっき基板との間を通電することでめっきを行う、すなわち、フェースダウン方式でめっきを行うものである。   The plating apparatus of the present invention performs plating by energizing between the anode electrode and the substrate to be plated while bringing a jet of plating solution into contact with the surface to be plated of the substrate to be plated from below, that is, a face The plating is performed by the down method.

なお、上記「被めっき基板室」とは、上記隔壁により隔離された領域のうち、被めっき基板を含む空間のことをいう。また、上記「陽極電極室」とは、上記隔壁により隔離された領域のうち、陽極電極を含む空間のことをいう。   The “substrate to be plated chamber” refers to a space including the substrate to be plated in the region isolated by the partition wall. The “anode electrode chamber” refers to a space including the anode electrode in a region isolated by the partition wall.

また、上記の構成によれば、上記陽極電極と上記被めっき基板とが上記隔壁により隔離され、上記めっき処理槽が被めっき基板室と陽極電極室とに区分されているので、陽極電極に起因するパーティクルなどによるめっき面の汚染を防止できる。   In addition, according to the above configuration, the anode electrode and the substrate to be plated are separated by the partition wall, and the plating treatment tank is divided into a substrate substrate chamber and an anode electrode chamber. It is possible to prevent contamination of the plating surface due to particles that are generated.

以上のように、上記の構成によれば、操作性を損なうことなく、ブラックフィルム等に起因する微小な固形異物による、めっき品質の低下を防止することができるめっき装置を提供することができる。   As described above, according to the above-described configuration, it is possible to provide a plating apparatus that can prevent deterioration in plating quality due to minute solid foreign matters caused by a black film or the like without impairing operability.

また、本発明のめっき装置では、さらに、上記被めっき基板の被めっき面へめっき液を噴射するためのめっき液噴射管を備え、上記めっき液噴射管が、上記隔壁を貫通するとともに、上記被めっき基板室と上記陽極電極室との両方にめっき液が流入するように設けられていることが好ましい。   The plating apparatus of the present invention further includes a plating solution injection pipe for injecting a plating solution onto the surface to be plated of the substrate to be plated, and the plating solution injection pipe penetrates the partition wall, and It is preferable that the plating solution flow into both the plating substrate chamber and the anode electrode chamber.

上記の構成によれば、めっき液噴射管が、上記隔壁を貫通するとともに、上記被めっき基板室と上記陽極電極室との両方にめっき液が流入するように設けられているので、めっき処理槽に流入するめっき液を、上記めっき基板領域に流入するめっき液の層流と、上記陽極電極室に流入するめっき液の層流とに分離することができる。これにより、めっき処理槽内にめっき液を流入すると、被めっき基板の被めっき面へ十分な流速及び流量をもって、めっき液を噴流することが可能になる。   According to the above configuration, the plating solution spray pipe penetrates the partition wall and is provided so that the plating solution flows into both the substrate substrate chamber and the anode electrode chamber. The plating solution flowing into the plating substrate can be separated into a laminar flow of the plating solution flowing into the plating substrate region and a laminar flow of the plating solution flowing into the anode electrode chamber. As a result, when the plating solution flows into the plating tank, the plating solution can be jetted at a sufficient flow rate and flow rate to the surface to be plated of the substrate to be plated.

「上記被めっき基板室と上記陽極電極室との両方にめっき液が流入するような」構成としては、例えば、上記めっき処理槽は、第1の円筒カップと第2の円筒カップとを備え、上記第1の円筒カップには、上記陽極電極が配されており、その底部には、めっき液をめっき処理槽へ流入するためのめっき液流入口が設けられており、上記第2の円筒カップの底部は、上記隔壁からなり、上記めっき液噴射管が、上記隔壁を貫通するとともに、上記めっき液流入口から流入しためっき液の層流が、第1の円筒カップへ流入するめっき液の層流と、第2の円筒カップへ流入するめっき液の層流とに分離するように設けられている構成が挙げられる。   As a configuration in which “the plating solution flows into both the substrate substrate chamber and the anode electrode chamber”, for example, the plating tank includes a first cylindrical cup and a second cylindrical cup, The anode electrode is disposed on the first cylindrical cup, and a plating solution inlet for flowing the plating solution into the plating treatment tank is provided at the bottom thereof, and the second cylindrical cup is provided. The bottom portion of the plating solution includes the partition wall, and the plating solution spray pipe penetrates the partition wall, and the layer of the plating solution flowing from the plating solution inlet flows into the first cylindrical cup. The structure provided so that it may isolate | separate into a flow and the laminar flow of the plating solution which flows into a 2nd cylindrical cup is mentioned.

本発明のめっき装置では、上記陽極電極室に流入するめっき液が、上記被めっき基板室へ到達しないようになっていることが好ましい。   In the plating apparatus of the present invention, it is preferable that the plating solution flowing into the anode electrode chamber does not reach the substrate substrate chamber.

上記の構成によれば、めっき処理槽から流入しためっき液は、めっき液噴射管によって被めっき基板室に流入しためっき液と、陽極電極室に流入しためっき液とに分離される。陽極電極室に流入しためっき液は、陽極電極と被めっき基板との間を通電することで、陽極電極に起因するパーティクルを含むめっき液になる。このめっき液は、隔壁を通過することで、パーティクルが除去される。このため、上記の構成によれば、陽極電極に起因するパーティクルは被めっき面に到達しない。それゆえ、パーティクルによるめっき面の汚染を防止することができる。また、さらに、上記陽極電極室へ流入するめっき液を、上記めっき処理槽の外部に流出するめっき液流出口が設けられていてもよい。   According to said structure, the plating solution which flowed from the plating processing tank is isolate | separated into the plating solution which flowed into the to-be-plated substrate chamber by the plating solution injection pipe, and the plating solution which flowed into the anode electrode chamber. The plating solution flowing into the anode electrode chamber becomes a plating solution containing particles caused by the anode electrode by energizing between the anode electrode and the substrate to be plated. Particles are removed from the plating solution by passing through the partition walls. For this reason, according to said structure, the particle resulting from an anode electrode does not arrive at a to-be-plated surface. Therefore, contamination of the plated surface by particles can be prevented. Furthermore, a plating solution outlet for flowing the plating solution flowing into the anode electrode chamber out of the plating treatment tank may be provided.

また、本発明のめっき装置では、上記めっき処理槽における、上記隔壁を含む上記陽極電極と上記被めっき基板とを隔離する部分の一部または全部が、めっき液中に浸漬した状態で、めっき液中のイオンを透過する透過部材からなることが好ましい。   Further, in the plating apparatus of the present invention, in the plating treatment tank, a part or all of the part that separates the anode electrode including the partition and the substrate to be plated is immersed in the plating solution. It is preferable that it consists of a transmissive member that transmits ions therein.

上記の構成によれば、透過部材は、めっき液に浸漬した状態で、めっき液中のイオンを透過するので、めっき液に電圧を印加すると、めっき液中のイオンは透過部材を透過する。一方、陽極電極に起因するパーティクルは透過部材を透過しない。したがって、上記の構成によれば、陽極電極に流入しためっき液を、イオンとパーティクルとを分離することが可能になる。   According to said structure, since the permeable member permeate | transmits the ion in a plating solution in the state immersed in the plating solution, when a voltage is applied to a plating solution, the ion in a plating solution will permeate | transmit a permeable member. On the other hand, particles resulting from the anode electrode do not pass through the transmission member. Therefore, according to said structure, it becomes possible to isolate | separate ion and a particle from the plating solution which flowed into the anode electrode.

また、上記透過部材が、半透膜であってもよい。   The permeable member may be a semipermeable membrane.

また、上記透過部材が、イオン交換膜を含んでいてもよい。   Further, the permeable member may include an ion exchange membrane.

また、本発明のめっき装置では、上記隔壁の厚さが、50μm以上200μm以下であることが好ましい。   Moreover, in the plating apparatus of this invention, it is preferable that the thickness of the said partition is 50 micrometers or more and 200 micrometers or less.

また、本発明のめっき装置では、上記隔壁が、炭化水素系カチオン交換膜を含むことが好ましい。   Moreover, in the plating apparatus of this invention, it is preferable that the said partition contains a hydrocarbon type cation exchange membrane.

また、本発明のめっき装置では、さらに、上記めっき処理槽へ供給するめっき液を貯留するめっき液供給源と、上記めっき液供給源に貯留されためっき液を上記めっき処理槽へ供給するめっき液供給手段と、上記めっき液供給手段より供給されためっき液をろ過するめっき液ろ過手段とを備え、上記めっき液供給源に貯留されためっき液は、上記めっき液供給手段と上記めっき液ろ過手段とを介して、上記めっき処理槽へ供給され、上記めっき処理槽に供給されためっき液は、再び上記めっき液供給源へ供給されることが好ましい。   In the plating apparatus of the present invention, a plating solution supply source for storing a plating solution to be supplied to the plating treatment tank, and a plating solution for supplying the plating solution stored in the plating solution supply source to the plating treatment tank. A plating solution filtering unit that filters the plating solution supplied from the plating solution supply unit, and the plating solution stored in the plating solution supply source includes the plating solution supply unit and the plating solution filtering unit. It is preferable that the plating solution supplied to the plating treatment tank and supplied to the plating treatment vessel is supplied again to the plating solution supply source.

また、上記めっき液は、銅成分を含み、かつ、導電性の液体であることが好ましい。   Moreover, it is preferable that the said plating solution is a conductive liquid containing a copper component.

めっき液には、各種金属を形成するために様々なめっき液がある。上記の構成によれば、銅を含有するめっき液を用いることで、被めっき基板の被めっき面に銅めっきを形成することができる。なお、「銅成分」とは、金属銅、銅イオン、または、銅イオンを含む化合物のことをいう。   There are various plating solutions for forming various metals. According to said structure, copper plating can be formed in the to-be-plated surface of a to-be-plated board | substrate by using the plating solution containing copper. The “copper component” refers to metallic copper, copper ions, or a compound containing copper ions.

また、上記めっき液は、めっき液1リットルに対して、14g以上40g以下の銅成分を含むことが好ましい。   Moreover, it is preferable that the said plating solution contains 14 g or more and 40 g or less of copper components with respect to 1 liter of plating solutions.

また、上記陽極電極は、含リン銅からなる溶解性陽極電極であることが好ましい。   The anode electrode is preferably a soluble anode electrode made of phosphorous copper.

陽極電極として純銅を含む陽極電極に用いると、陽極電極からの異物発生量が増加する。一方、上記の構成によれば、陽極電極は、含リン銅からなる溶解性陽極電極であるので、陽極電極表面にブラックフィルムと呼ばれる黒色皮膜が形成され、これによって異物の原因となる銅錯体イオン(Cu)がトラップされる。 When used for an anode electrode containing pure copper as the anode electrode, the amount of foreign matter generated from the anode electrode increases. On the other hand, according to the above configuration, since the anode electrode is a soluble anode electrode made of phosphorous copper, a black film called a black film is formed on the surface of the anode electrode, thereby causing a copper complex ion that causes foreign matter. (Cu + ) is trapped.

また、上記被めっき基板が、半導体ウェハであってもよい。   Further, the substrate to be plated may be a semiconductor wafer.

本発明のめっき方法は、上記の課題を解決するために、めっき処理槽内にめっき液を流入し、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら、上記めっき処理槽内に配設した陽極電極と上記被めっき基板との間を通電することでめっきを行うめっき方法であって、上記めっき処理槽は、第1の円筒カップと、該第1の円筒カップよりも外径が小さい第2の円筒カップとを備え、第1の円筒カップと第2の円筒カップとからなる2重構造であり、上記被めっき基板の被めっき面へ噴流するめっき液の層流と、上記陽極電極近傍に流入しためっき液の層流とを分離し、第1の円筒カップと第2の円筒カップとの互いの側壁により形成された間隙を、めっき液流出口として、上記陽極電極室へ流入するめっき液を上記めっき処理槽の外部に流出させることを特徴としている。 In order to solve the above-described problems, the plating method of the present invention allows the plating solution to flow into the plating tank, and the plating solution is brought into contact with the plating surface of the substrate to be plated from the lower side while the plating solution is in contact with the plating surface. A plating method for performing plating by energizing between an anode electrode disposed in a processing tank and the substrate to be plated, wherein the plating tank includes a first cylindrical cup and the first cylindrical cup A plating liquid layer having a second cylindrical cup having a smaller outer diameter than the first cylindrical cup and having a double structure comprising the first cylindrical cup and the second cylindrical cup, and jetting to the plating surface of the substrate to be plated. And the gap formed by the side walls of the first cylindrical cup and the second cylindrical cup as a plating solution outlet, and the laminar flow of the plating solution flowing in the vicinity of the anode electrode The plating solution flowing into the anode electrode chamber It is characterized in that to flow out of the processing tank.

上記の構成によれば、上記被めっき基板の被めっき面へ噴流するめっき液の層流と、上記陽極電極近傍に流入しためっき液の層流とを分離してめっきを行うので、陽極電極に起因するパーティクルなどによるめっき面の汚染を防止でき、操作性を損なうことなく、ブラックフィルム等に起因する微小な固形異物による、めっき品質の低下を防止することができる。   According to the above configuration, the plating is performed by separating the laminar flow of the plating solution jetted to the surface to be plated of the substrate to be plated and the laminar flow of the plating solution flowing in the vicinity of the anode electrode. Contamination of the plating surface due to the resulting particles and the like can be prevented, and deterioration of the plating quality due to minute solid foreign matters resulting from the black film or the like can be prevented without impairing operability.

本発明の半導体装置の製造方法は、上記の課題を解決するために、めっき処理槽内にめっき液を流入し、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら、上記めっき処理槽内に配設した陽極電極と上記被めっき基板との間を通電することでめっきを行うめっき工程を含む半導体装置の製造方法であって、上記めっき処理槽は、第1の円筒カップと、該第1の円筒カップよりも外径が小さい第2の円筒カップとを備え、第1の円筒カップと第2の円筒カップとからなる2重構造であり、上記めっき工程において、めっき処理槽内で陽極電極と被めっき面とを隔壁により隔離して配置し、めっき液の噴流のうち、上記被めっき基板の被めっき面に対する噴流と、上記陽極電極近傍に流入しためっき液の噴流とを分離してめっきを行うとともに、第1の円筒カップと第2の円筒カップとの互いの側壁により形成された間隙を、めっき液流出口として、上記陽極電極室へ流入するめっき液を上記めっき処理槽の外部に流出させることを特徴としている。 In order to solve the above problems, the semiconductor device manufacturing method of the present invention allows a plating solution to flow into the plating tank, and a jet of the plating solution is brought into contact with the plating surface of the substrate to be plated from below. A method of manufacturing a semiconductor device including a plating step of performing plating by energizing between an anode electrode disposed in the plating treatment tank and the substrate to be plated, wherein the plating treatment tank includes A cylindrical cup and a second cylindrical cup having an outer diameter smaller than that of the first cylindrical cup, and a double structure comprising the first cylindrical cup and the second cylindrical cup, In the plating tank, the anode electrode and the surface to be plated are separated from each other by a partition wall, and among the jets of the plating solution, the jet to the surface to be plated of the substrate to be plated and the plating solution flowing into the vicinity of the anode electrode Separated from the jet In addition, the plating solution flowing into the anode electrode chamber is used as the plating solution outlet with the gap formed by the side walls of the first cylindrical cup and the second cylindrical cup as the plating solution outlet. It is characterized by flowing out .

上記の構成によれば、上記めっき工程において、めっき処理槽内で陽極電極と被めっき面とを隔壁により隔離して配置してめっきを行うので、陽極電極に起因するパーティクルなどによるめっき面の汚染を防止できる。   According to the above configuration, in the plating step, plating is performed with the anode electrode and the surface to be plated separated from each other by the partition walls in the plating treatment tank, so that the plating surface is contaminated by particles caused by the anode electrode. Can be prevented.

それゆえ、上記の半導体装置の製造方法により、陽極電極表面のブラックフィルム等に起因する微小な固形異物の付着がなく、かつ高品質なめっき配線を備えた半導体装置を得ることが可能になる。   Therefore, according to the manufacturing method of the semiconductor device described above, it is possible to obtain a semiconductor device that has no fine solid foreign matter due to a black film or the like on the surface of the anode electrode and has high-quality plated wiring.

また、本発明の半導体装置の製造方法では、上記めっき工程において、めっき液の噴流のうち、上記被めっき基板の被めっき面に対する噴流と、上記陽極電極近傍に流入しためっき液の噴流とを分離してめっきを行うことが好ましい。   Further, in the method of manufacturing a semiconductor device of the present invention, in the plating step, out of the plating solution jet, the jet to the surface to be plated of the substrate to be plated and the jet of the plating solution flowing in the vicinity of the anode electrode are separated. It is preferable to perform plating.

これにより、めっき工程にて、めっき処理槽内にめっき液を流入する場合、被めっき基板の被めっき面へ十分な流速及び流量をもって、めっき液を噴流することが可能になる。   As a result, when the plating solution flows into the plating tank in the plating process, the plating solution can be jetted with a sufficient flow velocity and flow rate to the surface to be plated of the substrate to be plated.

また、本発明の半導体装置の製造方法では、上記めっき工程において、上記陽極電極近傍に流入するめっき液が、上記被めっき基板の被めっき面へ到達しないように、めっき液を流入させることが好ましい。   In the method for manufacturing a semiconductor device of the present invention, it is preferable that the plating solution is allowed to flow in the plating step so that the plating solution flowing in the vicinity of the anode electrode does not reach the surface to be plated of the substrate to be plated. .

上記の構成によれば、陽極電極と被めっき基板との間を通電することにより発生するパーティクルを含むめっき液が、被めっき基板の被めっき面に到達しないので、パーティクルによるめっき面の汚染を防止することができる。また、本発明の半導体装置の製造方法では、上記めっき工程において、上記陽極電極近傍に流入するめっき液を、上記めっき処理槽の外部に流出させてもよい。   According to the above configuration, the plating solution containing particles generated by energizing between the anode electrode and the substrate to be plated does not reach the surface to be plated of the substrate to be plated, and thus prevents the plating surface from being contaminated by particles. can do. In the method for manufacturing a semiconductor device of the present invention, in the plating step, the plating solution flowing into the vicinity of the anode electrode may be allowed to flow out of the plating treatment tank.

また、本発明の半導体装置の製造方法では、上記めっき処理槽における、上記隔壁を含む上記陽極電極と上記被めっき基板とを隔離する部分の一部または全部が、めっき液中に浸漬した状態で、めっき液中のイオンを透過する透過部材からなることが好ましい。   Further, in the method for manufacturing a semiconductor device of the present invention, a part or all of the part for isolating the anode electrode including the partition and the substrate to be plated in the plating tank is immersed in a plating solution. Preferably, it is made of a transmission member that transmits ions in the plating solution.

上記の構成によれば、めっき液に電圧を印加すると、めっき液中のイオンは透過部材を透過する一方、陽極電極に起因するパーティクルは透過部材を透過しない。したがって、上記の構成によれば、陽極電極近傍に流入しためっき液を、イオンとパーティクルとを分離することが可能になる。   According to the above configuration, when a voltage is applied to the plating solution, ions in the plating solution are transmitted through the transmissive member, whereas particles caused by the anode electrode are not transmitted through the transmissive member. Therefore, according to said structure, it becomes possible to isolate | separate ion and a particle from the plating solution which flowed in the anode electrode vicinity.

また、本発明の半導体装置の製造方法では、上記透過部材が、半透膜であってもよい。   In the method for manufacturing a semiconductor device of the present invention, the permeable member may be a semipermeable membrane.

また、本発明の半導体装置の製造方法では、上記透過部材が、イオン交換膜を含んでいてもよい。   In the method for manufacturing a semiconductor device of the present invention, the transmission member may include an ion exchange membrane.

また、本発明の半導体装置の製造方法では、上記隔壁の厚さが、50μm以上200μm以下であることが好ましい。   In the method for manufacturing a semiconductor device of the present invention, it is preferable that the partition wall has a thickness of 50 μm or more and 200 μm or less.

また、本発明の半導体装置の製造方法では、上記隔壁が、炭化水素系カチオン交換膜を含むことが好ましい。   In the method for manufacturing a semiconductor device of the present invention, it is preferable that the partition wall includes a hydrocarbon cation exchange membrane.

また、本発明の半導体装置の製造方法では、上記めっき工程は、さらに、めっき液供給源に貯留されためっき液を上記めっき処理槽へ供給するめっき液供給段階と、めっき液供給工程にて供給されためっき液をろ過するめっき液ろ過段階と、上記めっき処理槽に供給されためっき液を、再び上記めっき液供給源へ供給するめっき液循環段階とを含むことが好ましい。   In the method for manufacturing a semiconductor device of the present invention, the plating process is further performed by a plating solution supply stage for supplying a plating solution stored in a plating solution supply source to the plating treatment tank, and a plating solution supply step. It is preferable to include a plating solution filtration step for filtering the plated plating solution, and a plating solution circulation step for supplying the plating solution supplied to the plating treatment tank to the plating solution supply source again.

なお、上記めっき液循環段階とは、めっき液供給段階にてめっき液供給源から供給されためっき液が、めっき液ろ過段階を経て、めっき処理槽へ供給した後、再びめっき液をめっき液供給源に供給する段階のことをいう。具体的には、本発明のめっき装置において、めっき液供給源に貯留されためっき液を、めっき液供給手段とめっき液ろ過手段とを介して、上記めっき処理槽へ供給し、上記めっき処理槽に供給されためっき液を、再び上記めっき液供給源へ供給することをいう。   The plating solution circulation stage means that the plating solution supplied from the plating solution supply source in the plating solution supply step is supplied to the plating treatment tank through the plating solution filtration step, and then the plating solution is supplied again. The stage of supplying to the source. Specifically, in the plating apparatus of the present invention, the plating solution stored in the plating solution supply source is supplied to the plating treatment tank through the plating solution supply means and the plating solution filtration means, and the plating treatment tank This means that the plating solution supplied to is supplied again to the plating solution supply source.

また、本発明の半導体装置の製造方法では、上記めっき液は、銅成分を含み、かつ、導電性の液体であることが好ましい。   In the method for manufacturing a semiconductor device of the present invention, the plating solution preferably contains a copper component and is a conductive liquid.

上記めっき液は、めっき液1リットルに対して、14g以上40g以下の銅成分を含むことが好ましい。   The plating solution preferably contains 14 g or more and 40 g or less of a copper component with respect to 1 liter of the plating solution.

また、本発明の半導体装置の製造方法では、上記陽極電極は、含リン銅からなる溶解性陽極電極であることが好ましい。   In the method for manufacturing a semiconductor device of the present invention, the anode electrode is preferably a soluble anode electrode made of phosphorous copper.

また、本発明の半導体装置の製造方法では、上記被めっき基板が、半導体ウェハであってもよい。   In the method for manufacturing a semiconductor device of the present invention, the substrate to be plated may be a semiconductor wafer.

また、本発明の半導体装置の製造方法では、さらに、上記めっき工程前に、上記被めっき基板の被めっき面にシード層を形成するシード層形成工程と、上記シード層形成工程にて形成されたシード層表面に、フォトレジストを塗布するフォトレジスト塗布工程と、上記フォトレジストを露光し、現像することでパターン形状を形成するフォトレジストパターン形成工程とを含むことが好ましい。   Further, in the method for manufacturing a semiconductor device of the present invention, the seed layer forming step of forming a seed layer on the surface to be plated of the substrate to be plated and the seed layer forming step before the plating step are formed. It is preferable to include a photoresist coating process for coating the surface of the seed layer with a photoresist and a photoresist pattern forming process for forming a pattern shape by exposing and developing the photoresist.

本発明の半導体装置は、上記の課題を解決するために、上述の半導体装置の製造方法により製造されたことを特徴としている。   In order to solve the above problems, a semiconductor device of the present invention is manufactured by the above-described method for manufacturing a semiconductor device.

上記の構成によれば、半導体装置は、上述の半導体装置の製造方法により製造されているので、陽極電極表面のブラックフィルム等に起因する微小な固形異物の付着がなく、かつ高品質なめっき配線を備えた半導体装置を提供することができる。   According to the above configuration, since the semiconductor device is manufactured by the above-described manufacturing method of the semiconductor device, there is no adhesion of minute solid foreign matters due to the black film on the surface of the anode electrode, and high-quality plated wiring Can be provided.

本発明のめっき装置は、以上のように、上記めっき処理槽は、第1の円筒カップと、該第1の円筒カップよりも外径が小さい第2の円筒カップとを備え、第1の円筒カップと第2の円筒カップとからなる2重構造であり、上記第1の円筒カップには、上記陽極電極が配されており、その底部には、めっき液をめっき処理槽へ流入するためのめっき液流入口が設けられており、第1の円筒カップと第2の円筒カップとの互いの側壁により形成された間隙により、上記陽極電極室へ流入するめっき液を上記めっき処理槽の外部に流出するためのめっき液流出口が設けられており、上記第2の円筒カップの底部は、上記陽極電極と上記被めっき基板と隔離する隔壁からなり、めっき処理槽は、隔壁と第1の円筒カップとに囲まれた陽極電極室と、隔壁と第1の円筒カップとに囲まれた被めっき基板室とに区分されているとともに、さらに、上記被めっき基板の被めっき面へめっき液を噴射するためのめっき液噴射管を備え、上記めっき液噴射管が、上記隔壁を貫通するとともに、上記めっき液流入口から流入しためっき液の層流が、第1の円筒カップへ流入するめっき液の層流と、第2の円筒カップへ流入するめっき液の層流とに分離するように設けられている。また、本発明のめっき方法は、以上のように、上記めっき処理槽は、第1の円筒カップと、該第1の円筒カップよりも外径が小さい第2の円筒カップとを備え、第1の円筒カップと第2の円筒カップとからなる2重構造であり、上記被めっき基板の被めっき面へ噴流するめっき液の層流と、上記陽極電極近傍に流入しためっき液の層流とを分離し、第1の円筒カップと第2の円筒カップとの互いの側壁により形成された間隙を、めっき液流出口として、上記陽極電極室へ流入するめっき液を上記めっき処理槽の外部に流出させる。それゆえ、陽極電極に起因するパーティクルなどによるめっき面の汚染を防止でき、操作性を損なうことなく、ブラックフィルム等に起因する微小な固形異物による、めっき品質の低下を防止することができる。 As described above , the plating apparatus of the present invention includes the first cylindrical cup, the first cylindrical cup, and the second cylindrical cup having an outer diameter smaller than that of the first cylindrical cup, and the first cylinder. It has a double structure consisting of a cup and a second cylindrical cup, the anode electrode is arranged on the first cylindrical cup, and a plating solution flows into the plating tank at the bottom of the anode electrode. A plating solution inlet is provided, and the plating solution flowing into the anode electrode chamber is brought out of the plating treatment tank by a gap formed by the side walls of the first cylindrical cup and the second cylindrical cup. A plating solution outlet for flowing out is provided, and the bottom of the second cylindrical cup is composed of a partition wall that separates the anode electrode and the substrate to be plated, and the plating tank includes the partition wall and the first cylinder. An anode electrode chamber surrounded by a cup And a plating substrate chamber surrounded by the first cylindrical cup, and further comprising a plating solution injection pipe for injecting a plating solution onto the plating surface of the plating substrate, The liquid injection pipe penetrates the partition wall, and the laminar flow of the plating solution flowing from the plating solution inflow port flows into the laminar flow of the plating solution flowing into the first cylindrical cup and the second cylindrical cup. It is provided so as to be separated into a laminar flow of the plating solution . In the plating method of the present invention, as described above, the plating tank includes a first cylindrical cup and a second cylindrical cup having an outer diameter smaller than that of the first cylindrical cup. And a laminar flow of the plating solution jetted to the plating surface of the substrate to be plated and a laminar flow of the plating solution flowing in the vicinity of the anode electrode. The gap formed by the side walls of the first cylindrical cup and the second cylindrical cup is separated as a plating solution outlet, and the plating solution flowing into the anode electrode chamber flows out of the plating treatment tank. Let Therefore, contamination of the plating surface due to particles caused by the anode electrode can be prevented, and deterioration of the plating quality due to minute solid foreign matters caused by the black film or the like can be prevented without impairing operability.

さらに、本発明の半導体装置の製造方法は、以上のように、上記めっき処理槽は、第1の円筒カップと、該第1の円筒カップよりも外径が小さい第2の円筒カップとを備え、第1の円筒カップと第2の円筒カップとからなる2重構造であり、上記めっき工程において、めっき処理槽内で陽極電極と被めっき面とを隔壁により隔離して配置し、めっき液の噴流のうち、上記被めっき基板の被めっき面に対する噴流と、上記陽極電極近傍に流入しためっき液の噴流とを分離してめっきを行うとともに、第1の円筒カップと第2の円筒カップとの互いの側壁により形成された間隙を、めっき液流出口として、上記陽極電極室へ流入するめっき液を上記めっき処理槽の外部に流出させる。また、本発明の半導体装置は、上記の半導体装置の製造方法により製造されたものである。それゆえ、陽極電極表面のブラックフィルム等に起因する微小な固形異物の付着がなく、かつ高品質なめっき配線を備えた半導体装置を得ることが可能になる。 Furthermore, in the method for manufacturing a semiconductor device of the present invention, as described above, the plating tank includes a first cylindrical cup and a second cylindrical cup having an outer diameter smaller than that of the first cylindrical cup. , A double structure comprising a first cylindrical cup and a second cylindrical cup. In the plating step, the anode electrode and the surface to be plated are separated from each other by a partition in the plating treatment tank, and the plating solution Among the jets, plating is performed by separating the jet on the surface to be plated of the substrate to be plated and the jet of the plating solution flowing in the vicinity of the anode electrode, and the first cylindrical cup and the second cylindrical cup The plating solution flowing into the anode electrode chamber is caused to flow out of the plating treatment tank using the gap formed by the side walls as a plating solution outlet . The semiconductor device of the present invention is manufactured by the above-described method for manufacturing a semiconductor device. Therefore, it is possible to obtain a semiconductor device that does not have a minute solid foreign matter due to a black film or the like on the surface of the anode electrode and has a high-quality plated wiring.

〔実施の形態1〕
本発明の実施の一形態について図1〜図6に基づいて説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to FIGS.

図1は、本実施形態のめっき装置に設けられためっき処理槽の概略構成を示す断面図である。図1に示すように、めっき処理槽100は、半導体ウェハ(被めっき基板)1を保持するウェハ保持具2、カップ3、めっき液噴射管4、陽極電極5、陽極電極5を支持する支持体6、及び、隔壁7を備えている。カップ3は、内筒31と外筒32とを備えている。   FIG. 1 is a cross-sectional view illustrating a schematic configuration of a plating tank provided in the plating apparatus of the present embodiment. As shown in FIG. 1, a plating treatment tank 100 includes a wafer holder 2 that holds a semiconductor wafer (substrate to be plated) 1, a cup 3, a plating solution spray tube 4, an anode electrode 5, and a support that supports the anode electrode 5. 6 and a partition wall 7 are provided. The cup 3 includes an inner cylinder 31 and an outer cylinder 32.

内筒(第2の円筒カップ)31及び外筒(第1の円筒カップ)32は、上面が開放された略円筒形の容器であり、内筒31の外径が外筒32の外径よりも小さくなるような構成である。また、外筒32の最も低い中央の部分には、めっき液が流入するめっき液流入口Eが形成されている。   The inner cylinder (second cylindrical cup) 31 and the outer cylinder (first cylindrical cup) 32 are substantially cylindrical containers whose upper surfaces are open, and the outer diameter of the inner cylinder 31 is larger than the outer diameter of the outer cylinder 32. The configuration is also small. A plating solution inlet E through which the plating solution flows is formed at the lowest central portion of the outer cylinder 32.

内筒31の底部には、ドーナツ状の隔壁7が設けられ、内筒31と外筒32とを仕切る。すなわち、隔壁7は、半導体ウェハ1の被めっき面Wと陽極電極5との間に設けられており、陽極電極5と半導体ウェハ1とを隔離する。これにより、めっき処理槽100が被めっき基板室と陽極電極室とに区分されている。なお、めっき処理槽100において「被めっき基板室」とは、内筒31と隔壁7とに囲まれた空間のことをいう。また、「陽極電極室」とは、外筒32と隔壁7とに囲まれた空間のことをいう。   A donut-shaped partition wall 7 is provided at the bottom of the inner cylinder 31 to partition the inner cylinder 31 and the outer cylinder 32. That is, the partition wall 7 is provided between the surface to be plated W of the semiconductor wafer 1 and the anode electrode 5, and isolates the anode electrode 5 from the semiconductor wafer 1. As a result, the plating tank 100 is divided into a substrate substrate chamber and an anode electrode chamber. In the plating treatment tank 100, the “substrate substrate substrate” refers to a space surrounded by the inner cylinder 31 and the partition walls 7. The “anode electrode chamber” refers to a space surrounded by the outer cylinder 32 and the partition walls 7.

また、図1に示すように、めっき液噴射管4は、隔壁7の中央部の穴を貫通するように設けられている。支持体6は、外筒32に接続されており、めっき液を透過する構造を有している。さらに、支持体6上には、陽極電極5が設けられている。陽極電極5は、めっき液噴射管4の下端よりも上方側に位置する。   Further, as shown in FIG. 1, the plating solution spray tube 4 is provided so as to pass through the hole in the central portion of the partition wall 7. The support 6 is connected to the outer cylinder 32 and has a structure that allows the plating solution to pass therethrough. Further, an anode electrode 5 is provided on the support 6. The anode electrode 5 is located above the lower end of the plating solution spray tube 4.

隔壁7は、炭化水素系カチオン交換膜を備えている。しかしながら、隔壁7は、陽極電極5及び支持体6近傍、すなわち陽極電極室に流入しためっき液中の金属イオンを透過することが可能な構成を有する透過部材を備えていれば、特に限定されるものではない。例えば、隔壁7は、イオン交換膜、中性膜、または、多孔質性セラミック等を備えていてもよい。また、隔壁7が炭化水素系カチオン交換膜を備えている場合、炭化水素系カチオン交換膜として、具体的には、セレミオン(商標登録)(旭硝子エンジニアリング製 炭化水素系カチオン交換膜)、またはネオセプタCM−1(商標登録)(株式会社アトムス製 炭化水素系カチオン交換膜)が挙げられる。隔壁7の具体的な構成については、後述する。   The partition wall 7 includes a hydrocarbon cation exchange membrane. However, the partition wall 7 is particularly limited as long as the partition wall 7 includes a transmission member having a configuration capable of transmitting metal ions in the plating solution flowing into the anode electrode 5 and the support body 6, that is, in the anode electrode chamber. It is not a thing. For example, the partition wall 7 may include an ion exchange membrane, a neutral membrane, or a porous ceramic. Further, when the partition wall 7 is provided with a hydrocarbon cation exchange membrane, specifically, as the hydrocarbon cation exchange membrane, specifically, Selemion (registered trademark) (hydrocarbon cation exchange membrane manufactured by Asahi Glass Engineering Co., Ltd.) or Neoceptor CM -1 (trademark registration) (hydrocarbon cation exchange membrane manufactured by Atoms Co., Ltd.). A specific configuration of the partition wall 7 will be described later.

また、隔壁7は、金属イオン以外にも添加剤成分としての陽イオン(金属イオンと同様の電気的性質のイオン)を透過するものであってもよい。   In addition to the metal ions, the partition walls 7 may transmit a cation as an additive component (ions having the same electrical properties as the metal ions).

めっき液噴射管4、及び支持体6は、ポリプロピレンからなる。また、陽極電極5は、含リン銅からなる溶解性陽極電極である。しかしながら、めっき液噴射管4及び支持体6は、寸法安定性が確保され、かつめっき液に対し耐性を有するものであれば、特に限定されるものではない。例えば、めっき液噴射管4及び支持体6は、硬質塩化ビニルからなっていてもよい。   The plating solution spray tube 4 and the support 6 are made of polypropylene. The anode 5 is a soluble anode made of phosphorous copper. However, the plating solution injection tube 4 and the support 6 are not particularly limited as long as dimensional stability is ensured and the plating solution has resistance to the plating solution. For example, the plating solution spray tube 4 and the support 6 may be made of hard vinyl chloride.

ここで、本発明に適用しうる半導体ウェハ1の寸法は、めっき処理槽100の各種部材の寸法に応じて適宜設定することが可能である。例えば、半導体ウェハ1としては、直径100mmないし500mm程度のものが適用可能である。より具体的には、直径150mm程度のものが、半導体ウェハ1として適用できる。   Here, the dimensions of the semiconductor wafer 1 applicable to the present invention can be set as appropriate according to the dimensions of various members of the plating tank 100. For example, the semiconductor wafer 1 having a diameter of about 100 mm to 500 mm can be applied. More specifically, a semiconductor wafer having a diameter of about 150 mm can be applied as the semiconductor wafer 1.

また、内筒31は、その底部に隔壁7が密着して固定されている。内筒31の内径は、半導体ウェハ1の被めっき面Wよりも小さければよい。   In addition, the inner cylinder 31 has a partition wall 7 closely attached to the bottom thereof. The inner diameter of the inner cylinder 31 only needs to be smaller than the plated surface W of the semiconductor wafer 1.

このように、内筒31の内径が半導体ウェハ1の被めっき面Wよりも小さい場合、めっき液噴射管4から噴射しためっき液は、めっき処理槽100外部の大気に接触することなく、半導体ウェハ1の被めっき面Wへ噴流される。このため、本発明のめっき装置では、大気と遮断してめっきを行うことができ、大気からの浮遊異物によるめっき液の汚染や、めっき液の蒸発、めっき液の蒸発やミストによる周辺環境の汚染を防止できる。   Thus, when the inner diameter of the inner cylinder 31 is smaller than the surface to be plated W of the semiconductor wafer 1, the plating solution sprayed from the plating solution spray tube 4 does not come into contact with the atmosphere outside the plating bath 100, and the semiconductor wafer. 1 to be plated. For this reason, in the plating apparatus of the present invention, plating can be performed while being shielded from the atmosphere, contamination of the plating solution by floating foreign matters from the atmosphere, evaporation of the plating solution, contamination of the surrounding environment by evaporation of the plating solution and mist. Can be prevented.

また、内筒31の高さは、50mmないしは100mmであればよい。ここでは、内筒31の寸法は、外径150mm 内径140mm 厚さ5mm 高さ80mmであり、円筒状のものである。   Moreover, the height of the inner cylinder 31 should just be 50 mm thru | or 100 mm. Here, the dimensions of the inner cylinder 31 are an outer diameter of 150 mm, an inner diameter of 140 mm, a thickness of 5 mm, and a height of 80 mm, and are cylindrical.

また、外筒32の高さは、後述するように、めっき液噴射管4から噴射しためっき液が半導体ウェハ1の被めっき面Wの中心部から外周部に渡って、十分に当接することができ、かつ、外筒32の上端が内筒31の上端よりも低ければ、特に限定されない。ここでは、外筒32は内径160mmとしたが、外筒32の高さは後に記するようにめっき液噴射管4から噴流しためっき液が半導体ウェハ1の表面外周部まで十分に接することができれば良く、外筒32の上端が内筒31の上端よりも低ければよい。   Further, the height of the outer cylinder 32 is such that the plating solution sprayed from the plating solution spray tube 4 is sufficiently in contact from the center of the surface to be plated W of the semiconductor wafer 1 to the outer peripheral portion, as will be described later. If it can do and the upper end of the outer cylinder 32 is lower than the upper end of the inner cylinder 31, it will not specifically limit. Here, the outer cylinder 32 has an inner diameter of 160 mm, but the height of the outer cylinder 32 is sufficient if the plating solution jetted from the plating solution injection tube 4 can sufficiently contact the outer peripheral portion of the surface of the semiconductor wafer 1 as will be described later. It is sufficient that the upper end of the outer cylinder 32 is lower than the upper end of the inner cylinder 31.

また、内筒31は外径150mmであり、外筒32は内径160mmである。そして、内筒31と外筒32との間隙は5mmとしている。しかしながら、内筒31と外筒32との間隙は、これに限定されるものでない。内筒31と外筒32との間隙を少なくすることにより、後述するように、内筒31と外筒32とにおいて、互いの上端の高さの差を大きくすることができる。このように内筒31と外筒32との間隙を少なくすることで、液体の持つ粘性ゆえに抵抗(圧力)が高まり、よって内筒を高くしても内筒の上端部までめっき液が到達する。これにより、設計上の自由度を大きくすることができる。   The inner cylinder 31 has an outer diameter of 150 mm, and the outer cylinder 32 has an inner diameter of 160 mm. The gap between the inner cylinder 31 and the outer cylinder 32 is 5 mm. However, the gap between the inner cylinder 31 and the outer cylinder 32 is not limited to this. By reducing the gap between the inner cylinder 31 and the outer cylinder 32, the difference in height between the upper ends of the inner cylinder 31 and the outer cylinder 32 can be increased as will be described later. By reducing the gap between the inner cylinder 31 and the outer cylinder 32 in this way, the resistance (pressure) increases due to the viscosity of the liquid, so that the plating solution reaches the upper end of the inner cylinder even if the inner cylinder is raised. . Thereby, the freedom degree in design can be enlarged.

また、隔壁7は、外径140mm内径40mmのドーナツ状の形状を有している。そして、隔壁7は、その外周が内筒31に密着される一方、その内周がめっき液噴射管4に密着されて、固定されている。しかしながら、隔壁7の寸法は、これに限定されるものではない。   The partition wall 7 has a donut shape with an outer diameter of 140 mm and an inner diameter of 40 mm. The outer periphery of the partition wall 7 is in close contact with the inner cylinder 31, while the inner periphery thereof is in close contact with the plating solution injection pipe 4 and is fixed. However, the dimension of the partition 7 is not limited to this.

また、支持体6は、外筒32とめっき液噴射管4との間に設けられている。支持体6は、外筒32の底部から上方に20mm、もしくは少なくとも5mmの空隙で設置されている。また、支持体6には、上下方向の貫通孔が多数形成されている。   Further, the support 6 is provided between the outer cylinder 32 and the plating solution injection pipe 4. The support 6 is installed with a gap of 20 mm or at least 5 mm upward from the bottom of the outer cylinder 32. The support 6 is formed with a number of through holes in the vertical direction.

また、隔壁7の厚さは、好ましくは50μm以上200μm以下、より好ましくは50以上100μm以下で、使用可能である。隔壁7の厚さが50μmよりも小さい場合、めっきに要する電流が必要以上に多くなり、めっきの効率が下がるので、好ましくない。また、隔壁7の厚さが、200μmよりも大きい場合、めっき面外観に黒色の「ヤケ」と呼ばれる不良を発生するので好ましくない。   Moreover, the thickness of the partition wall 7 is preferably 50 μm or more and 200 μm or less, more preferably 50 or more and 100 μm or less. When the thickness of the partition wall 7 is smaller than 50 μm, the current required for plating increases more than necessary, which is not preferable. Moreover, when the thickness of the partition wall 7 is larger than 200 μm, it is not preferable because a defect called black “burn” occurs in the appearance of the plated surface.

また、隔壁7の内筒31への取り付けは、2〜10mm厚のカップ部材に、0.2mm〜9mm径の円形または1辺が0.2mm〜9mm長の正方形、長方形、または四変形の開口を有している。なお、隔壁7(セレミオン隔壁)が真円でなくともよく、極端には四角形であってもよい。   In addition, the partition wall 7 is attached to the inner cylinder 31 in a cup member having a thickness of 2 to 10 mm, a circular shape having a diameter of 0.2 mm to 9 mm, or a square, a rectangle, or four deformed openings having a side length of 0.2 mm to 9 mm. have. Note that the partition wall 7 (the selemion partition wall) does not have to be a perfect circle, and may be an extremely rectangular shape.

また、含リン銅からなる陽極電極5の寸法は、外径150mm内径50mm厚さ8mである。しかしながら、陽極電極5の寸法は、これに限定されるものでなく、支持体6と隔壁7との間隙及び外筒32と当該陽極電極5との間隙を通過するめっき液の流動を妨げない範囲で任意に選択が可能である。また、陽極電極5に含まれる含リン銅は、特に限定されないが、0.04〜0.06%のリンが含まれていればよい。   The dimensions of the anode electrode 5 made of phosphorous-containing copper are an outer diameter of 150 mm, an inner diameter of 50 mm, and a thickness of 8 m. However, the dimension of the anode electrode 5 is not limited to this, and a range that does not hinder the flow of the plating solution passing through the gap between the support 6 and the partition wall 7 and the gap between the outer cylinder 32 and the anode electrode 5. Can be selected arbitrarily. Moreover, although the phosphorous copper contained in the anode electrode 5 is not specifically limited, it should just contain 0.04-0.06% phosphorus.

めっき液噴射管4は、隔壁7を貫通し隔壁7より20mm上方へと伸びている。しかしながら、めっき液噴射管4は、これに限定されるものでなく、陽極電極5よりも下方から隔壁7まで到達していればよい。   The plating solution injection pipe 4 penetrates the partition wall 7 and extends 20 mm above the partition wall 7. However, the plating solution spray tube 4 is not limited to this, and it is only necessary to reach the partition wall 7 from below the anode electrode 5.

以上、めっき処理槽100における、半導体ウェハ1、カップ3(内筒31及び外筒32)、めっき液噴射管4、陽極電極5、支持体6、及び隔壁7の寸法等を説明したが、めっき処理槽100における各種部材の寸法は、めっき処理槽100の大きさ、あるいは適用する半導体ウェハ1の大きさ等に応じて、適宜設定することが可能である。   In the above, the dimensions of the semiconductor wafer 1, the cup 3 (inner cylinder 31 and outer cylinder 32), the plating solution injection pipe 4, the anode electrode 5, the support 6, and the partition wall 7 in the plating treatment tank 100 have been described. The dimensions of various members in the processing bath 100 can be appropriately set according to the size of the plating processing bath 100 or the size of the semiconductor wafer 1 to be applied.

以下、半導体ウェハ1を保持するウェハ保持具2の具体的構成について、図2に基づいて説明する。図2は、めっき処理槽100のウェハ保持具2の構成の一例を示す断面図である。ウェハ保持具2は、図2に示すように、Oリング21と、コンタクト材22と、ウェハ保持リング23とを備えている。ウェハ保持リング23は、内筒31の上端部と所定の間隙を維持して、図示しない支柱に保持されている。そして、Oリング21及びコンタクト材22は、ウェハ保持リング23上に設けられており、保持する半導体ウェハ1との密着性を確保している。   Hereinafter, a specific configuration of the wafer holder 2 that holds the semiconductor wafer 1 will be described with reference to FIG. FIG. 2 is a cross-sectional view showing an example of the configuration of the wafer holder 2 of the plating tank 100. As shown in FIG. 2, the wafer holder 2 includes an O-ring 21, a contact material 22, and a wafer holding ring 23. The wafer holding ring 23 is held by a support (not shown) while maintaining a predetermined gap from the upper end portion of the inner cylinder 31. The O-ring 21 and the contact material 22 are provided on the wafer holding ring 23 to ensure adhesion with the semiconductor wafer 1 to be held.

また、コンタクト材22は、半導体ウェハ1の外周部に均等な間隔で3箇所設けられている。しかしながら、コンタクト材22は、これに限定されることなく、半導体ウェハ1の外周部に均等な間隔で4箇所以上設けられていてもよい。さらには、コンタクト材22が半導体ウェハ1の外周部全周を接する構造であってもよい。   Further, three contact members 22 are provided at equal intervals on the outer periphery of the semiconductor wafer 1. However, the contact material 22 is not limited to this, and four or more locations may be provided on the outer peripheral portion of the semiconductor wafer 1 at equal intervals. Further, the contact material 22 may be in contact with the entire outer periphery of the semiconductor wafer 1.

ウェハ保持リング23の内径は140mmとしたがこれに限定されることなく、外形が円形である必要がないことは勿論のこと装置筐体等と一体構造であってもよい。   The inner diameter of the wafer holding ring 23 is 140 mm. However, the present invention is not limited to this, and the outer shape of the wafer holding ring 23 need not be circular, and may be integrated with the apparatus housing or the like.

以下、ウェハ保持具2の各種部材について説明する。   Hereinafter, various members of the wafer holder 2 will be described.

Oリング21は、半導体ウェハ1との密着性が確保され、かつめっき液に対して耐性を有するものであれば、特に限定されるものではない。例えば、Oリング21として、シリコーンゴムが挙げられる。具体的には、バイトン(商標登録)(デュポン ダウ エラストマー ジャパン製)が挙げられる。   The O-ring 21 is not particularly limited as long as adhesion with the semiconductor wafer 1 is ensured and resistance to the plating solution is obtained. For example, as the O-ring 21, silicone rubber can be used. Specifically, Viton (trademark registration) (made by DuPont Dow Elastomer Japan) is mentioned.

また、コンタクト材22は、半導体ウェハ1との密着が確保され、かつ導電性で使用するめっき液に耐性があるものであれば、特に限定されるものではない。例えば、チタンに金属めっきが施された部材が挙げられる。具体的には、コンタクト材22としては、チタンにプラチナめっきを施したもの、チタンに金めっきを施したもの、樹脂に金めっきなどを施したもの、または、その組み合わせたものが挙げられる。   Further, the contact material 22 is not particularly limited as long as the contact with the semiconductor wafer 1 is ensured and is conductive and resistant to the plating solution used. For example, the member by which metal plating was given to titanium is mentioned. Specifically, the contact material 22 includes a material obtained by subjecting titanium to platinum plating, a material obtained by subjecting titanium to gold plating, a material obtained by subjecting resin to gold plating, or a combination thereof.

また、ウェハ保持リング23は、寸法安定性が確保され、かつ使用するめっき液に耐性があるものであれば、特に限定されるものではない。ウェハ保持リング23としては、例えば、硬質塩化ビニルまたはポリプロピレンからなるものが挙げられる。   The wafer holding ring 23 is not particularly limited as long as dimensional stability is ensured and the plating solution to be used is resistant. Examples of the wafer holding ring 23 include those made of hard vinyl chloride or polypropylene.

次に、めっき処理槽100において、半導体ウェハ1の被めっき面Wと陽極電極5との間に設けられている隔壁7の構造の一例について、図3を参照して、以下に説明する。図3は、めっき処理槽100において、内筒31と隔壁7とに囲まれた領域(被めっき基板室)の構成を示し、上の図は、半導体ウェハ1の被めっき面W側からみた上面図であり、下の図は、断面図である。   Next, an example of the structure of the partition wall 7 provided between the surface to be plated W of the semiconductor wafer 1 and the anode electrode 5 in the plating treatment tank 100 will be described with reference to FIG. FIG. 3 shows a configuration of a region (a substrate chamber to be plated) surrounded by the inner cylinder 31 and the partition wall 7 in the plating treatment tank 100, and the upper diagram is an upper surface of the semiconductor wafer 1 as viewed from the plating surface W side. The figure below is a cross-sectional view.

図3に示すように、隔壁7は、被めっき面W側から見てドーナツ形状を有している。そして、隔壁7の中央部には、めっき液噴射管4が貫通している。また、隔壁7の外周部は、内筒31の底部に固定されている。   As shown in FIG. 3, the partition wall 7 has a donut shape when viewed from the plated surface W side. The plating solution spray tube 4 penetrates through the central portion of the partition wall 7. Further, the outer peripheral portion of the partition wall 7 is fixed to the bottom portion of the inner cylinder 31.

また、隔壁7は、半透膜(透過部材)71と、半透膜支持体72・73とを備えている。隔壁7は、半透膜支持体72・73が、半透膜71を狭持した構成である。そして、陽極電極5側には、半透膜支持体72が配置されており、半導体ウェハ1の被めっき面W側には半透膜支持体73が配置されている。   The partition wall 7 includes a semipermeable membrane (permeable member) 71 and semipermeable membrane supports 72 and 73. The partition 7 has a configuration in which the semipermeable membrane supports 72 and 73 sandwich the semipermeable membrane 71. A semipermeable membrane support 72 is disposed on the anode electrode 5 side, and a semipermeable membrane support 73 is disposed on the plated surface W side of the semiconductor wafer 1.

それゆえ、半導体ウェハ1と陽極電極5との間を通電することで、陽極電極5側(陽極電極室)に流入しためっき液は、半透膜支持体72にて透過される。そして、半透膜71にて、めっき液中の金属イオンが透過される。そして、半透膜71にて透過されためっき液中の金属イオンは、半透膜支持体73を透過して、半導体ウェハ1の被めっき面W側(被めっき基板室)へ流入する。この際、半透膜71では、めっき液中の金属イオンのみが透過され、めっき液中のパーティクルは透過されない。したがって、隔壁7により、めっき液中の金属イオンとパーティクルとを分離することが可能になり、陽極電極5に起因するパーティクルによるめっき面の汚染を防ぐことができる。   Therefore, when the semiconductor wafer 1 and the anode electrode 5 are energized, the plating solution flowing into the anode electrode 5 side (anode electrode chamber) is transmitted through the semipermeable membrane support 72. Then, the metal ions in the plating solution are transmitted through the semipermeable membrane 71. Then, the metal ions in the plating solution transmitted through the semipermeable membrane 71 pass through the semipermeable membrane support 73 and flow into the surface to be plated W (substrate substrate chamber) of the semiconductor wafer 1. At this time, in the semipermeable membrane 71, only metal ions in the plating solution are transmitted, and particles in the plating solution are not transmitted. Therefore, the partition walls 7 can separate the metal ions and the particles in the plating solution and prevent the plating surface from being contaminated by the particles due to the anode electrode 5.

半透膜71は、めっき液に浸漬した状態で、めっき液中の金属イオンを透過するものであれば、特に限定されるものではない。例えば、半透膜71としては、炭化水素系カチオン交換膜、中性膜、または、多孔質性セラミック等が挙げられる。また、半透膜71が炭化水素系カチオン交換膜である場合、半透膜71として、具体的には、セレミオン(商標登録)(旭硝子エンジニアリング製 炭化水素系カチオン交換膜)、またはネオセプタCM−1(商標登録)(株式会社アトムス製 炭化水素系カチオン交換膜)が挙げられる。   The semipermeable membrane 71 is not particularly limited as long as it transmits metal ions in the plating solution while being immersed in the plating solution. For example, examples of the semipermeable membrane 71 include a hydrocarbon-based cation exchange membrane, a neutral membrane, or a porous ceramic. Further, when the semipermeable membrane 71 is a hydrocarbon cation exchange membrane, specifically, as the semipermeable membrane 71, Selemion (trademark registration) (hydrocarbon cation exchange membrane manufactured by Asahi Glass Engineering Co., Ltd.) or Neoceptor CM-1 (Trademark registration) (hydrocarbon cation exchange membrane manufactured by Atoms Co., Ltd.).

また、半透膜支持体72・73は、めっき液を透過する構造を有し、かつ、寸法安定性が確保され、めっき液に対し耐性を有するものであれば、特に限定されるものではない。例えば、半透膜支持体72・73としては、ポリプロピレン、または硬質塩化ビニルからなるものが挙げられる。   Moreover, the semipermeable membrane supporting bodies 72 and 73 are not particularly limited as long as they have a structure that allows the plating solution to pass therethrough, have dimensional stability, and have resistance to the plating solution. . For example, examples of the semipermeable membrane supports 72 and 73 include those made of polypropylene or hard vinyl chloride.

次に、半透膜71の構造について、イオン交換膜を含むイオン交換膜を例に挙げて、以下に説明する。図5は、イオン交換膜の構造を説明するための説明図である。また、図6は、イオン交換膜の選択透過性を説明するための説明図である。   Next, the structure of the semipermeable membrane 71 will be described below by taking an ion exchange membrane including an ion exchange membrane as an example. FIG. 5 is an explanatory diagram for explaining the structure of the ion exchange membrane. Moreover, FIG. 6 is explanatory drawing for demonstrating the selective permeability of an ion exchange membrane.

「イオン交換膜」とは、図5に示すように、イオンを選択透過させる膜のことをいう。このイオン交換膜は、大きく分けて陽イオン交換膜と陰イオン交換膜に区分される。陽イオン交換膜は、図5に示すように、めっき液に浸漬された状態で、通電すると、陽イオン(M)を選択的に透過し、陰イオン(B)を透過しない。 The “ion exchange membrane” refers to a membrane that selectively permeates ions, as shown in FIG. This ion exchange membrane is roughly classified into a cation exchange membrane and an anion exchange membrane. As shown in FIG. 5, when the cation exchange membrane is energized while being immersed in the plating solution, it selectively transmits cations (M + ) and does not transmit anions (B ).

陽イオン交換膜には、図6に示すように、マイナス電荷の置換基が固定されている。このため、陰イオン(B)はマイナス電荷の置換基の反発を受け、透過できない。一方、陽イオン(M)は、マイナス電荷の置換基の反発を受けないので、透過する。すなわち、陽イオン交換膜を透過できるイオンは、陽イオン(M)だけということになる。 As shown in FIG. 6, a negatively charged substituent is fixed on the cation exchange membrane. For this reason, the anion (B ) is repelled by a negatively charged substituent and cannot penetrate. On the other hand, the cation (M + ) is permeated because it is not repelled by the negatively charged substituent. That is, the only ion that can permeate the cation exchange membrane is the cation (M + ).

一方、陰イオン交換膜は、上記の作用と反対の作用になる。これらイオン交換膜の選択透過は、電気透析装置の電気エネルギーによって行われる。なお、この電気透析装置の電気エネルギーは、特に限定されず、直流電流、パルス電流、または、交流電流による電気エネルギーであってもよい。   On the other hand, the anion exchange membrane has the opposite action to the above action. The selective permeation of these ion exchange membranes is performed by the electric energy of the electrodialysis apparatus. In addition, the electric energy of this electrodialysis apparatus is not specifically limited, The electric energy by a direct current, a pulse current, or an alternating current may be sufficient.

次に、本発明のめっき装置の構成について、図4を参照して説明する。図4は、本発明のめっき装置の構成を示す概略図である。   Next, the structure of the plating apparatus of this invention is demonstrated with reference to FIG. FIG. 4 is a schematic view showing the configuration of the plating apparatus of the present invention.

本発明のめっき装置は、図4に示すように、半導体ウェハ1の被めっき面Wにめっき処理を行うめっき処理槽100と、めっき処理槽100を内包するめっき液槽8と、めっき液供給源としてのめっき液貯槽9と、めっき液をめっき装置内に循環させるポンプ10と、めっき液中の固形異物をろ過するフィルター11と、これらを接続する配管Tを備えている。   As shown in FIG. 4, the plating apparatus of the present invention includes a plating bath 100 that performs plating on the surface W to be plated of the semiconductor wafer 1, a plating bath 8 that contains the plating bath 100, and a plating solution supply source. As a plating solution storage tank 9, a pump 10 for circulating the plating solution in the plating apparatus, a filter 11 for filtering solid foreign matters in the plating solution, and a pipe T for connecting them.

本発明のめっき装置では、めっき液貯槽9中のめっき液は、ポンプ10によりフィルター11を経て、めっき処理槽100の下部に形成されためっき液流入口Eへと至る。そして、めっき液流入口Eから供給されためっき液は、めっき液噴射管4を通って、半導体ウェハ1の被めっき面Wへと至る。そして、その後、めっき液は、内筒31上部の辺縁部(ウェハ保持具2と内筒31との隙間)より、めっき処理槽100外部へ漏れ出てめっき液槽8にて回収され、再度、めっき液貯槽9へ還流される。   In the plating apparatus of the present invention, the plating solution in the plating solution storage tank 9 passes through the filter 11 by the pump 10 and reaches the plating solution inlet E formed in the lower portion of the plating treatment tank 100. Then, the plating solution supplied from the plating solution inlet E passes through the plating solution injection pipe 4 and reaches the surface to be plated W of the semiconductor wafer 1. After that, the plating solution leaks out of the plating treatment tank 100 from the edge of the upper portion of the inner cylinder 31 (the gap between the wafer holder 2 and the inner cylinder 31) and is collected in the plating solution tank 8, and again. Then, it is returned to the plating solution storage tank 9.

めっき液槽8、めっき液貯槽9、及び配管Tは、寸法安定性が確保され、かつ使用するめっき液に耐性がある材質であれば、特に限定されるものではない。これらの材質としては、例えば、硬質塩化ビニルまたはポリプロピレンが挙げられる。   The plating solution tank 8, the plating solution storage tank 9, and the pipe T are not particularly limited as long as dimensional stability is ensured and the material is resistant to the plating solution used. Examples of these materials include hard vinyl chloride or polypropylene.

また、ポンプ10は、使用するめっき液に耐性があり、かつ、めっき液に悪影響を与えずに流動させることができれば、特に限定されるものではない。ポンプ10としては、例えば、イワキ製;商品名 マグネットポンプMD−70R、または、;商品名 イワキ製マグネットポンプMD−30RないしMD−100Rが挙げられる。また、ポンプ10の材質に関しても、寸法安定性が確保され、かつ使用するめっき液に耐性がある材質であれば、特に限定されるものではない。ポンプ10の材質としては、例えば、硬質塩化ビニルまたはポリプロピレンが挙げられる。   The pump 10 is not particularly limited as long as it is resistant to the plating solution to be used and can flow without adversely affecting the plating solution. Examples of the pump 10 include Iwaki; trade name magnet pump MD-70R; or trade name: Iwaki magnet pumps MD-30R to MD-100R. The material of the pump 10 is not particularly limited as long as dimensional stability is ensured and the material is resistant to the plating solution used. Examples of the material of the pump 10 include hard vinyl chloride or polypropylene.

また、フィルター11は、目標とするめっきパターンの最小間隔のおよそ1/2の粒径の捕集効率が100%であり、かつ使用するめっき液への耐性を備えめっき液に悪影響を与えずに流動させることができれば、特に限定されるものではない。フィルター11としては、例えば、日本ポール社製;商品名 ポリプロピレン製カートリッジフィルタHDCII(J012;1.2μm径粒子捕集効率100%)、日本ポール社製;商品名 ポリプロピレン製カートリッジフィルタHDCII(J006;1.0μm径粒子捕集効率100%)、テフロン(登録商標)製フィルター、または中空糸膜フィルターが挙げられる。また、フィルター11の材質に関しても、寸法安定性が確保され、かつ使用するめっき液に耐性がある材質であれば、特に限定されるものではない。フィルター11の材質としては、例えば、硬質塩化ビニルまたはポリプロピレンが挙げられる。   In addition, the filter 11 has a collection efficiency of 100% of the particle size of about 1/2 of the minimum interval of the target plating pattern, and has resistance to the plating solution to be used without adversely affecting the plating solution. If it can be made to flow, it will not be specifically limited. The filter 11 is, for example, manufactured by Nippon Pole Co., Ltd .; trade name polypropylene cartridge filter HDCII (J012; 1.2 μm diameter particle collection efficiency 100%), manufactured by Nippon Pole Co., Ltd .; trade name polypropylene cartridge filter HDCII (J006; 1) 0.0 μm diameter particle collection efficiency 100%), Teflon (registered trademark) filter, or hollow fiber membrane filter. The material of the filter 11 is not particularly limited as long as dimensional stability is ensured and the material is resistant to the plating solution to be used. Examples of the material of the filter 11 include hard vinyl chloride or polypropylene.

また、図4では示していないが、配管Tの途中には弁、流量計、空気抜き管などが接続され、同じく図示しない制御装置によりめっき液の流動の制御が可能であり、更に図示しないめっき用電源部によって被めっき面と陽極電極5との間に電圧を印加することができる。   Although not shown in FIG. 4, a valve, a flow meter, an air vent pipe, etc. are connected in the middle of the pipe T, and the flow of the plating solution can be controlled by a control device (not shown). A voltage can be applied between the surface to be plated and the anode electrode 5 by the power supply unit.

次に、本発明のめっき装置におけるめっき処理の一例として、半導体ウェハ1の被めっき面Wに銅めっきを行う場合について、以下詳細に説明する。   Next, as an example of the plating process in the plating apparatus of the present invention, a case where copper plating is performed on the plated surface W of the semiconductor wafer 1 will be described in detail below.

まず、ウェハ保持具2には、半導体ウェハ1の被めっき面Wが下側になるように、半導体ウェハ1が設置されている。半導体ウェハ1は、図示しないウェハ抑えによりOリング21及びコンタクト材22に密着されている。   First, the semiconductor wafer 1 is installed on the wafer holder 2 so that the surface to be plated W of the semiconductor wafer 1 is on the lower side. The semiconductor wafer 1 is brought into close contact with the O-ring 21 and the contact material 22 by holding the wafer (not shown).

図4に示すように、めっき液貯槽9内のめっき液が、図示しない制御装置により制御されたポンプ10により、フィルター11に送られる。めっき液は、フィルター11にて、フィルター11の開口径以上の固形異物が除去され、配管を経てめっき処理槽100のめっき液流入口Eに流入する。カップ3の外筒32下部のめっき液流入口Eより流入しためっき液は、めっき液噴射管4を経て内筒31内に流入する。なお、上記めっき液は、添加剤と金属銅換算で約25g/Lの銅を含む銅めっき液(商品名 ミクロファブCu200 日本エレクトロプレイティング・エンジニヤース製)である。   As shown in FIG. 4, the plating solution in the plating solution storage tank 9 is sent to the filter 11 by a pump 10 controlled by a control device (not shown). The plating solution removes solid foreign matters having an opening diameter larger than that of the filter 11 by the filter 11 and flows into the plating solution inlet E of the plating treatment tank 100 through the pipe. The plating solution flowing in from the plating solution inlet E at the lower part of the outer cylinder 32 of the cup 3 flows into the inner cylinder 31 through the plating solution injection pipe 4. The plating solution is a copper plating solution (trade name: Microfab Cu200 manufactured by Nippon Electroplating Engineers) containing about 25 g / L of copper in terms of additive and metallic copper.

また、めっき液流入口Eに流入しためっき液のうち一部のめっき液は、外筒32底部と支持体6との間隙に流入する。外筒32底部と支持体6との間隙に流入しためっき液(以下、陽極電極室に流入しためっき液と記す)は、支持体6に穿たれた貫通孔を経て陽極電極5周囲を包み込むように上昇し隔壁7に沿って外周方向へ流動する。そして、内筒31と外筒32との間隙を通過してめっき処理槽100外へ流出される。なお、このめっき装置において、陽極電極5は、0.04〜0.06%のリンを含む含リン銅からなっている。   A part of the plating solution that has flowed into the plating solution inlet E flows into the gap between the bottom of the outer cylinder 32 and the support 6. A plating solution flowing into the gap between the bottom of the outer cylinder 32 and the support 6 (hereinafter referred to as a plating solution flowing into the anode electrode chamber) wraps around the anode electrode 5 through a through hole formed in the support 6. And flows in the outer circumferential direction along the partition wall 7. Then, it passes through the gap between the inner cylinder 31 and the outer cylinder 32 and flows out of the plating treatment tank 100. In this plating apparatus, the anode electrode 5 is made of phosphorous copper containing 0.04 to 0.06% phosphorus.

一方、めっき液噴射管4を経て内筒31内に流入しためっき液(以下、被めっき基板室に流入しためっき液と記す)は、そのめっき液の運動エネルギーと、陽極電極室に流入しためっき液が内筒31と外筒32との間隙を通過してめっき処理槽100外へ流出するときの抵抗とにより、圧力が高められる。このため、被めっき基板室に流入しためっき液の液面が半導体ウェハ1の被めっき面Wに到達する。そして、被めっき基板室に流入しためっき液は、半導体ウェハ1表面の被めっき面Wの外周へと流動する。そして、内筒31とウェハ保持リング23との間隙を通過して、めっき処理槽100外へ流出する。   On the other hand, the plating solution flowing into the inner cylinder 31 through the plating solution injection pipe 4 (hereinafter referred to as plating solution flowing into the substrate chamber to be plated) is the kinetic energy of the plating solution and the plating solution flowing into the anode electrode chamber. The pressure is increased by the resistance when the liquid passes through the gap between the inner cylinder 31 and the outer cylinder 32 and flows out of the plating bath 100. For this reason, the surface of the plating solution that has flowed into the substrate substrate chamber reaches the surface W to be plated of the semiconductor wafer 1. Then, the plating solution flowing into the plating substrate chamber flows to the outer periphery of the surface to be plated W on the surface of the semiconductor wafer 1. Then, it passes through the gap between the inner cylinder 31 and the wafer holding ring 23 and flows out of the plating bath 100.

内筒31と外筒32との間隙を通過してめっき処理槽100外へ流出しためっき液、及び内筒31とウェハ保持リング23との間隙を通過してめっき処理槽100外へ流出した液は、混合してめっき液槽8に溢れ出る。めっき液槽8内のめっき液は、高低差によってめっき液貯槽9へと還流する。   A plating solution that has flowed out of the plating treatment tank 100 through the gap between the inner cylinder 31 and the outer cylinder 32, and a liquid that has flowed out of the plating treatment tank 100 through the gap between the inner cylinder 31 and the wafer holding ring 23. Are mixed and overflow into the plating bath 8. The plating solution in the plating solution tank 8 returns to the plating solution storage tank 9 due to the difference in height.

このとき、半導体ウェハ1の被めっき面Wを陰極とし、被めっき面Wと陽極電極5との間に、図示しないめっき用電源によって電流を制御しながら電圧を印加すると、陽極電極5表面ではめっき液中の添加剤が所定の作用を為し、めっき液中に銅イオンが発生する。そして、発生した金属イオンは、隔壁7を透過して内筒31内を経て陰極電極となった半導体ウェハ1表面に至る。そして、半導体ウェハ1の被めっき面Wでは、めっき液中の添加剤が所定の作用を為しながら、銅イオンは銅として析出しめっきされる。   At this time, when a surface to be plated of the semiconductor wafer 1 is used as a cathode and a voltage is applied between the surface to be plated W and the anode electrode 5 while a current is controlled by a power source for plating (not shown), the surface of the anode electrode 5 is plated. Additives in the solution perform a predetermined action, and copper ions are generated in the plating solution. The generated metal ions pass through the partition walls 7 and reach the surface of the semiconductor wafer 1 that has become the cathode electrode through the inner cylinder 31. And on the to-be-plated surface W of the semiconductor wafer 1, copper ions are deposited and plated as copper while the additive in the plating solution performs a predetermined action.

なお、本発明のめっき装置において、ポンプ10によりフィルター11へ送られるめっき液の流量は、半導体ウェハ1の寸法、またはめっき処理槽100の寸法に応じて、適宜設定することができる。具体的には、毎分20L程度又は毎分2ないし20L程度の流量である。   In the plating apparatus of the present invention, the flow rate of the plating solution sent to the filter 11 by the pump 10 can be appropriately set according to the size of the semiconductor wafer 1 or the size of the plating treatment tank 100. Specifically, the flow rate is about 20 L / min or about 2 to 20 L / min.

また、被めっき面Wと陽極電極5との間に印加される電圧、及び電圧印加時間もまた、半導体ウェハ1の寸法、またはめっき処理槽100の寸法に応じて、適宜設定することができる。具体的には、被めっき面Wでの電流密度が1平方センチメートルあたり20mAとなるように制御しながら、25分間電圧が印加される。   In addition, the voltage applied between the surface to be plated W and the anode electrode 5 and the voltage application time can also be appropriately set according to the dimensions of the semiconductor wafer 1 or the dimensions of the plating bath 100. Specifically, the voltage is applied for 25 minutes while controlling the current density on the surface to be plated W to be 20 mA per square centimeter.

なお、内筒31内は、フィルター11を経てフィルター開口径以上の固形異物を除去されためっき液で満たされており、陽極電極室に流入しためっき液は、隔壁7とめっき液の流れにより内筒31内には流入できない。そして、めっき液中の銅イオンのみが隔壁7を透過して内筒31内に至るため、陽極電極5表面のブラックフィルム等に起因する微小な固形異物の付着がない。また、従来のように、ブラックフィルム等に起因する微小な固形異物の付着を防止するために不溶解性電極を使用する必要がないため、めっき液中の添加剤の酸化分解による添加剤消費量の増大や分解生成物によるめっき液の汚染によるめっき品質の低下のない高品質なめっきを得ることができる。   The inner cylinder 31 is filled with a plating solution from which solid foreign matters larger than the filter opening diameter have been removed through the filter 11, and the plating solution that has flowed into the anode electrode chamber is filled by the flow of the partition walls 7 and the plating solution. It cannot flow into the cylinder 31. Since only the copper ions in the plating solution pass through the partition wall 7 and reach the inner cylinder 31, there is no adhesion of minute solid foreign matters due to the black film or the like on the surface of the anode electrode 5. In addition, since it is not necessary to use an insoluble electrode to prevent the adhesion of minute solid foreign substances caused by black film or the like as in the past, additive consumption due to oxidative decomposition of the additive in the plating solution It is possible to obtain a high-quality plating that does not deteriorate the plating quality due to the increase in the thickness and contamination of the plating solution by decomposition products.

ここで、めっき液として、銅めっき液(ミクロファブCu200 日本エレクトロプレイティング・エンジニヤース製)を用いたが、これに限定されることなく、これ以外の所望の性能を達成できるめっき液であれば、これに限定されることがないのは勿論である。   Here, a copper plating solution (Microfab Cu200 manufactured by Nippon Electroplating Engineers) was used as the plating solution, but the plating solution is not limited to this, and any other plating performance can be achieved. Of course, it is not limited to this.

また、本発明のめっき装置では、隔壁7の一部または全部が、めっき液中の金属イオンを透過する透過部材からなる場合について説明したが、これに限定されない。本発明のめっき装置では、隔壁7を底面とする内筒31における、半導体ウェハ1の被めっき面Wと陽極電極5とを隔離する部分、すなわち、被めっき基板室における、陽極電極と被めっき基板とを隔離する部分の一部または全部が、めっき液中の金属イオンを透過する透過部材からなっていてもよい。例えば、内筒31の一部または全部が、めっき液中の金属イオンを透過する透過部材からなっていてもよい。   Further, in the plating apparatus of the present invention, the case where a part or all of the partition walls 7 are made of a transmissive member that transmits metal ions in the plating solution has been described, but the present invention is not limited to this. In the plating apparatus of the present invention, the portion of the inner cylinder 31 having the partition wall 7 as a bottom surface that separates the surface to be plated W of the semiconductor wafer 1 from the anode electrode 5, that is, the anode electrode and the substrate to be plated in the substrate chamber to be plated. A part or all of the part that separates the electrodes from each other may be made of a transmission member that transmits metal ions in the plating solution. For example, a part or all of the inner cylinder 31 may be made of a transmission member that transmits metal ions in the plating solution.

また、フェースダウン方式のめっき装置においては、カップ下部より上昇するめっき液が、カップとウェハ保持具との間の隙間よりカップ外へ流出しますが、このとき上昇するめっき液の流量を大きくすることで液面が盛り上がるとともに、半導体ウェハとの表面張力(親水性)によって隙間よりも高い位置にある半導体ウェハの被めっき面を濡らしながらカップ周辺部へ流動しカップ外へ流出する。   In face-down type plating equipment, the plating solution that rises from the bottom of the cup flows out of the cup through the gap between the cup and the wafer holder. At this time, the flow rate of the rising plating solution is increased. As a result, the liquid level rises, and the surface to be plated of the semiconductor wafer at a position higher than the gap is wetted by the surface tension (hydrophilicity) with the semiconductor wafer, and flows to the cup periphery and flows out of the cup.

ここで、半導体ウェハの被めっき面全面に均一なめっき液の流れを作ることは、めっき時の銅イオンの供給にとってきわめて重要で、ウェハ表面で中央部から周辺部への層流を作ることはめっき仕上がりを大きく左右する。   Here, creating a uniform plating solution flow over the entire surface to be plated of a semiconductor wafer is extremely important for the supply of copper ions during plating, and creating a laminar flow from the center to the periphery on the wafer surface The plating finish is greatly affected.

従来のフェースダウン方式で陽極電極と半導体ウェハとの間に隔壁を設けることは、ウェハへのめっき液の接触ができなくなり、めっき自体不可能となる。   Providing a partition wall between the anode electrode and the semiconductor wafer by the conventional face-down method makes it impossible to contact the plating solution with the wafer and makes the plating itself impossible.

本発明においては、この問題を解決するために、カップの構造を従来の構造から内筒、外筒からなる2重構造とし、かつ、陽極電極より下から隔壁を貫通してウェハ側にめっき液噴射管を設け、ウェハ表面に至るめっきに関与する液と、陽極電極近傍を流れカップ外に排出される液とをこのノズルの入り口で分けることにより、ウェハ中央より十分な流速と流量をもってめっき液を噴流させウェハ表面で層流をつくることと陽極近傍を通り隔壁に沿ってカップ外に流出する流れを作ることができる。   In the present invention, in order to solve this problem, the cup structure is changed from a conventional structure to a double structure including an inner cylinder and an outer cylinder, and the plating solution is formed on the wafer side through the partition wall from below the anode electrode. By providing an injection tube and separating the liquid involved in plating reaching the wafer surface and the liquid flowing near the anode electrode and discharged outside the cup at the inlet of this nozzle, the plating liquid has a sufficient flow velocity and flow rate from the center of the wafer. And a laminar flow on the wafer surface and a flow that flows out of the cup along the partition wall near the anode.

また、従来のフェースアップ方式の噴流めっき装置では、その構造上、側方の流入・流出口からウェハ表面に一様にめっき液の流れを作るために、ウェハを回転させることで相対的に一様な流れを得ようとしている。このため、ウェハ保持側の機構に回転機構を付加する必要があり、大掛かりな装置となる。   Further, in the conventional face-up type jet plating apparatus, due to its structure, in order to create a uniform plating solution flow from the side inflow / outflow to the surface of the wafer, the wafer is rotated relatively. I'm trying to get a similar flow. For this reason, it is necessary to add a rotation mechanism to the mechanism on the wafer holding side, resulting in a large-scale apparatus.

これに対して本発明のめっき装置では、半導体ウェハ中央部からめっき液を噴出することが可能であるため、めっき処理槽と半導体ウェハとは固定されており、より簡便な装置構造を実現できる。   On the other hand, in the plating apparatus of the present invention, since the plating solution can be ejected from the central portion of the semiconductor wafer, the plating tank and the semiconductor wafer are fixed, and a simpler apparatus structure can be realized.

本発明のめっき装置は、基板にめっきを形成するためのフェースダウン方式の噴流めっき装置であって、めっきカップ内で陽極電極と被めっき面を隔離して配置されている構成であるともいえる。また、前記めっき装置は前記めっきカップ内にめっき液を導入する。   The plating apparatus of the present invention is a face-down type jet plating apparatus for forming a plating on a substrate, and can be said to have a configuration in which an anode electrode and a surface to be plated are separated from each other in a plating cup. The plating apparatus introduces a plating solution into the plating cup.

この結果、めっき装置はめっきカップ内にめっき液を流入することで被めっき面にめっき液を接触せしめ、めっきカップ内に配置した陽極電極と被めっき面間に通電することでめっきを行うめっき方法において、前記めっきカップ内の陽極電極近傍に流入しためっき液は流動によって被めっき面に到達しないか、もしくは前記めっき装置はめっきカップ内にめっき液を流入することで被めっき面にめっき液を接触せしめ、めっきカップ内に配置した陽極電極と被めっき面間に通電することでめっきを行うめっき方法において、前記めっきカップ内の陽極電極近傍に流入しためっき液は被めっき面に到達せずにめっきカップ外部に流出させることが可能である。   As a result, the plating apparatus performs plating by bringing the plating solution into contact with the surface to be plated by flowing the plating solution into the plating cup, and performing plating between the anode electrode disposed in the plating cup and the surface to be plated. In this case, the plating solution flowing into the vicinity of the anode electrode in the plating cup does not reach the surface to be plated due to the flow, or the plating apparatus contacts the plating solution on the surface to be plated by flowing the plating solution into the plating cup. In the plating method in which the plating is performed by energizing between the anode electrode disposed in the plating cup and the surface to be plated, the plating solution flowing in the vicinity of the anode electrode in the plating cup does not reach the surface to be plated. It is possible to flow out of the cup.

前記めっき装置は前記めっきカップ内で陽極電極と被めっき面を隔離する構造の一部もしくは全部が、電解液中に浸漬することによってイオンを透過することができる材質が半透膜であるか、イオン交換膜であるか、または電解液中に浸漬することによってイオンを透過することができるその他の材質から成る。   In the plating apparatus, a part or the whole of the structure for isolating the anode electrode and the surface to be plated in the plating cup is a material that can transmit ions by being immersed in an electrolytic solution, or a semipermeable membrane. It is an ion exchange membrane or is made of other materials that can permeate ions when immersed in an electrolyte.

一方、前記めっき装置において前記めっき液は銅を含有する導電性の液体又は銅を含有する導電性の液体にその他の成分を添加した導電性の液体である。更に前記めっき液はめっき液1リットル中に金属銅として14乃至は40gの銅成分を含む。一方、前記めっき装置において、前記陽極電極は含リン銅からなる溶解性陽極電極板である。
〔実施の形態2〕
次に、本実施形態では、半導体装置、及び半導体装置の製造方法の一例として、上記実施の形態1において被めっき基板として用いた半導体ウェハ1及びその製造方法について、図9〜図12に基づいて、以下詳細に説明する。図9は、本実施形態で用いた半導体ウェハ1の概略構成を示す模式図である。また、図10は、めっき工程後の、半導体ウェハ1に形成された半導体チップ33の概略構成を示し、図10(a)は、平面図であり、図10(b)は、断面図である。
On the other hand, in the plating apparatus, the plating solution is a conductive liquid containing copper or a conductive liquid obtained by adding other components to a conductive liquid containing copper. Further, the plating solution contains 14 to 40 g of a copper component as metallic copper in 1 liter of the plating solution. On the other hand, in the plating apparatus, the anode electrode is a soluble anode electrode plate made of phosphorous copper.
[Embodiment 2]
Next, in the present embodiment, as an example of the semiconductor device and the method for manufacturing the semiconductor device, the semiconductor wafer 1 used as the substrate to be plated in the first embodiment and the method for manufacturing the semiconductor wafer 1 will be described with reference to FIGS. The details will be described below. FIG. 9 is a schematic diagram showing a schematic configuration of the semiconductor wafer 1 used in the present embodiment. 10 shows a schematic configuration of the semiconductor chip 33 formed on the semiconductor wafer 1 after the plating step, FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view. .

図9に示すように、半導体ウェハ1表面には、半導体チップ41が複数形成されている。また、半導体ウェハ1の周辺には、コンタクト部42が設けられている。このコンタクト部42には、図示しないめっきシード層が露出されている。そして、コンタクト部42は、給電のために、図2に示すコンタクト材22と接するようになっている。   As shown in FIG. 9, a plurality of semiconductor chips 41 are formed on the surface of the semiconductor wafer 1. A contact portion 42 is provided around the semiconductor wafer 1. A plating seed layer (not shown) is exposed at the contact portion 42. And the contact part 42 contacts the contact material 22 shown in FIG. 2 for electric power feeding.

また、図10(a)に示すように、半導体チップ41には、フォトレジスト層18が任意の形状で形成されている。さらに、図10(b)に示すように、めっき工程後の半導体チップ41の表面には、シード層19が形成されている。そして、シード層19の表面には、配線めっき層16及びフォトレジスト層18が形成されている。また、シード層19において、配線めっき層16及びフォトレジスト層18側と反対側には、パッド17が設けられている。そして、半導体チップ41では、配線めっき層16とパッド17とが電気的に接するようになっている。   Further, as shown in FIG. 10A, the photoresist layer 18 is formed in an arbitrary shape on the semiconductor chip 41. Further, as shown in FIG. 10B, a seed layer 19 is formed on the surface of the semiconductor chip 41 after the plating step. A wiring plating layer 16 and a photoresist layer 18 are formed on the surface of the seed layer 19. In the seed layer 19, a pad 17 is provided on the side opposite to the wiring plating layer 16 and the photoresist layer 18 side. In the semiconductor chip 41, the wiring plating layer 16 and the pad 17 are in electrical contact.

次に、本実施形態における半導体装置の製造方法の手順について、図11に基づいて、以下に説明する。図11は、本実施形態における半導体装置の製造方法の手順を示す断面図である。   Next, the procedure of the semiconductor device manufacturing method according to the present embodiment will be described below with reference to FIG. FIG. 11 is a cross-sectional view showing the procedure of the semiconductor device manufacturing method according to the present embodiment.

本実施形態における半導体装置の製造方法は、図11に示すように、半導体チップ41表面にシード層19を形成するシード層形成工程と、シード層19上にフォトレジスト層18を塗布するフォトレジスト塗布工程と、このフォトレジスト層18に任意の形状のパターンを形成するフォトレジストパターン形成工程と、フォトレジストパターンに金属をめっきし、配線めっき層を形成するめっき工程と、フォトレジスト層18を剥離する剥離工程と、シード層19をエッチングするエッチング工程とを含んでいる。なお、図11(a)は、シード層形成工程前の半導体チップ41の一部の概略構成を示しており、図11(b)は、シード層形成工程後の半導体チップ41の一部の概略構成を示しており、図11(c)は、フォトレジスト塗布工程後の半導体チップ41の一部の概略構成を示しており、図11(d)は、フォトレジストパターン形成工程後の半導体チップ41の一部の概略構成を示しており、図11(e)は、めっき工程後の半導体チップ41の一部の概略構成を示しており、図11(f)は、剥離工程後の半導体チップ41の一部の概略構成を示しており、図11(g)は、エッチング工程後の半導体チップ41の一部の概略構成を示している。   As shown in FIG. 11, the semiconductor device manufacturing method according to the present embodiment includes a seed layer forming step for forming the seed layer 19 on the surface of the semiconductor chip 41, and a photoresist coating for applying the photoresist layer 18 on the seed layer 19. A step of forming a pattern of an arbitrary shape on the photoresist layer 18; a plating step of plating a metal on the photoresist pattern to form a wiring plating layer; and peeling off the photoresist layer 18. A peeling process and an etching process for etching the seed layer 19 are included. FIG. 11A shows a schematic configuration of a part of the semiconductor chip 41 before the seed layer forming process, and FIG. 11B shows a schematic configuration of a part of the semiconductor chip 41 after the seed layer forming process. FIG. 11C shows a schematic configuration of a part of the semiconductor chip 41 after the photoresist coating process, and FIG. 11D shows the semiconductor chip 41 after the photoresist pattern forming process. 11 (e) shows a schematic configuration of a part of the semiconductor chip 41 after the plating process, and FIG. 11 (f) shows a semiconductor chip 41 after the peeling process. FIG. 11G shows a schematic configuration of a part of the semiconductor chip 41 after the etching process.

図11(a)に示すように、シード層形成前の半導体チップ41には、その表面に、電気信号を外部と交換するためのパッド17が設けられている。   As shown in FIG. 11A, a pad 17 for exchanging electrical signals with the outside is provided on the surface of the semiconductor chip 41 before the seed layer is formed.

図11(b)に示すように、シード層形成工程では、このような半導体チップ41の表面にシード層19を形成する。具体的には、スパッタリング装置内にて、半導体チップ41を含む半導体ウェハ1を、パッド形成面にシード層が形成されるように配置する。そして、半導体ウェハ1表面に、バリアメタルとなるチタン層を1000Å形成し、次に銅層を3000Å形成する。そして、この銅層を、めっきのためのシード層19とする。このシード層19は、後述するめっき工程において、めっき材(配線めっき層16)の成長を促進する役割を果たす。   As shown in FIG. 11B, the seed layer 19 is formed on the surface of the semiconductor chip 41 in the seed layer forming step. Specifically, the semiconductor wafer 1 including the semiconductor chip 41 is disposed in the sputtering apparatus so that the seed layer is formed on the pad forming surface. Then, 1000 チ タ ン of a titanium layer serving as a barrier metal is formed on the surface of the semiconductor wafer 1, and then 3000 銅 of a copper layer is formed. This copper layer is used as a seed layer 19 for plating. The seed layer 19 plays a role of promoting the growth of a plating material (wiring plating layer 16) in a plating process described later.

ここで、シード層形成工程にて、バリアメタルとしてチタン層を形成している。しかしながら、バリアメタルとなる層は、これに限定されるものではなく、クロム層であってもよい。また、チタンとタングステンとの合金からなる層であってもよい。さらには、これら以外に、バリア効果を得られる金属からなる層であればよい。   Here, a titanium layer is formed as a barrier metal in the seed layer forming step. However, the layer serving as the barrier metal is not limited to this, and may be a chromium layer. Further, it may be a layer made of an alloy of titanium and tungsten. In addition to these, any layer made of a metal capable of obtaining a barrier effect may be used.

さらに、チタン層の厚みを1000Åとしているが、これに限定されることなく、バリア性を確保できれば、500Å以上の任意の厚みであってもよい。また、めっきのためのシード層19としての銅層の厚みを3000Åとしているが、これに限定されることなく、めっき工程において均一な電流密度を確保できる厚みであれば、銅層の厚みは、1000Å以上の任意の厚みであってもよい。   Furthermore, although the thickness of the titanium layer is 1000 mm, the thickness is not limited thereto, and may be any thickness of 500 mm or more as long as barrier properties can be secured. Moreover, although the thickness of the copper layer as the seed layer 19 for plating is 3000 mm, the thickness of the copper layer is not limited to this as long as a uniform current density can be secured in the plating step. An arbitrary thickness of 1000 mm or more may be used.

図11(c)に示すように、フォトレジスト塗布工程では、シード層19が形成された半導体チップ41を含む半導体ウェハ1にフォトレジスト層18を塗布する。フォトレジスト塗布工程では、フォトレジスト(東京応化製;商品名 PMER P−LA900)を回転塗布装置により、毎分1500回転で30秒間、半導体ウェハ1表面に回転塗布し、115℃で5分間加熱する。   As shown in FIG. 11C, in the photoresist application process, the photoresist layer 18 is applied to the semiconductor wafer 1 including the semiconductor chip 41 on which the seed layer 19 is formed. In the photoresist coating process, a photoresist (manufactured by Tokyo Ohka; trade name PMER P-LA900) is spin-coated on the surface of the semiconductor wafer 1 at 1500 rpm for 30 seconds by a spin coater and heated at 115 ° C. for 5 minutes. .

ここで、フォトレジストとして上記PMER P−LA900を用いている。しかしながら、フォトレジストは、これに限定されるものではなく、後述するめっき工程に対して耐性であればよい。フォトレジストとしては、例えば東京応化製;商品名 PMER N−CA3000であってもよい。さらには、フォトレジストの塗布方法も回転塗布に限定されるものではない。例えば、東京応化製;商品名 ORDYL MP100 Seriesなどのドライフィルムによって、半導体ウェハ1表面にフォトレジスト層18を形成してもよい。   Here, the PMER P-LA900 is used as a photoresist. However, the photoresist is not limited to this and may be resistant to the plating process described later. As a photoresist, Tokyo Ohka make; brand name PMER N-CA3000 may be sufficient, for example. Furthermore, the method of applying the photoresist is not limited to spin coating. For example, the photoresist layer 18 may be formed on the surface of the semiconductor wafer 1 by a dry film such as a product made by Tokyo Ohka; trade name: ORDYL MP100 Series.

また、フォトレジスト塗布工程では、フォトレジストを、回転塗布装置により毎分1500回転で30秒間回転塗布し、115℃で5分間加熱している。しかしながら、回転塗布方法は、これに限定されるものではなく、例えば、毎分1000回転〜3000回転にて十分に均一な膜厚となるまで回転させた後、100℃〜120℃で5分程度加熱してもよい。   In the photoresist coating process, the photoresist is spin-coated at 1500 rpm for 30 seconds by a spin coater and heated at 115 ° C. for 5 minutes. However, the spin coating method is not limited to this. For example, the spin coating method is rotated at 1000 to 3000 revolutions per minute until a sufficiently uniform film thickness is obtained, and then at 100 to 120 ° C. for about 5 minutes. You may heat.

図11(d)に示すように、フォトレジストパターン形成工程では、フォトレジスト塗布工程にて形成されたフォトレジスト層18に任意の形状のパターンを形成する。具体的には、フォトレジスト塗布工程後に、半導体チップ41を含む半導体ウェハ1を、図示しない露光装置にセットする。そして、フォトレジスト層18にg線(436nm)を照射する。その後、図示しない現像装置により、2.38%−TMAH水溶液にて、フォトレジスト層18の現像を行い、配線めっきを成すべき部分のフォトレジストを除去する。   As shown in FIG. 11D, in the photoresist pattern forming step, a pattern having an arbitrary shape is formed on the photoresist layer 18 formed in the photoresist coating step. Specifically, after the photoresist coating process, the semiconductor wafer 1 including the semiconductor chip 41 is set in an exposure apparatus (not shown). Then, the photoresist layer 18 is irradiated with g-rays (436 nm). Thereafter, the photoresist layer 18 is developed with a 2.38% -TMAH aqueous solution by a developing device (not shown), and the photoresist in a portion to be subjected to wiring plating is removed.

ここで、フォトレジスト層18にg線(436nm)を照射している。しかしながら、露光時にフォトレジスト層18に照射する光は、フォトレジストを露光させることができる光であれば、特に限定されるものではない。フォトレジスト層18に照射する光として、例えば、i線(365nm)や深紫外線(約200乃至300nm)であってもよい。また、フォトレジストパターン形成工程では、2.38%−TMAH水溶液にてフォトレジスト層18の現像を行っている。しかしながら、TMAH水溶液の濃度は、これに限定されるものではない。例えば、TMAH水溶液の濃度としては、1〜3%の濃度であってもよい。さらには、25%−TMAH水溶液を、現像するのに適当な濃度にまで、純水で希釈してもよい。   Here, the photoresist layer 18 is irradiated with g-rays (436 nm). However, the light applied to the photoresist layer 18 at the time of exposure is not particularly limited as long as the light can expose the photoresist. The light applied to the photoresist layer 18 may be, for example, i-line (365 nm) or deep ultraviolet light (about 200 to 300 nm). In the photoresist pattern forming step, the photoresist layer 18 is developed with a 2.38% -TMAH aqueous solution. However, the concentration of the TMAH aqueous solution is not limited to this. For example, the concentration of the TMAH aqueous solution may be 1 to 3%. Furthermore, a 25% -TMAH aqueous solution may be diluted with pure water to a concentration suitable for development.

図11(e)に示すように、めっき工程では、上記フォトレジストパターン形成工程にてフォトレジスト層18に任意の形状のパターンを形成した結果、シード層19が露出した部分にめっきを行っている。具体的には、フォトレジストパターン形成工程後に、半導体チップ41を含む半導体ウェハ1を、図1に示すめっき装置に設置する。すなわち、めっき装置のウェハ保持具2に半導体ウェハ1を設置する。そして、図示しないウェハ抑えにより、Oリング21及びコンタクト材22を、半導体チップ41のコンタクト部42に密着させる。なお、半導体ウェハ1をめっき装置に設置した後のめっき工程に関しては、上記実施の形態1にて説明しためっき方法と同様であるので、ここでは説明を省略する。   As shown in FIG. 11E, in the plating process, plating is performed on a portion where the seed layer 19 is exposed as a result of forming a pattern of an arbitrary shape on the photoresist layer 18 in the photoresist pattern forming process. . Specifically, after the photoresist pattern forming step, the semiconductor wafer 1 including the semiconductor chip 41 is installed in the plating apparatus shown in FIG. That is, the semiconductor wafer 1 is installed on the wafer holder 2 of the plating apparatus. Then, the O ring 21 and the contact material 22 are brought into close contact with the contact portion 42 of the semiconductor chip 41 by holding the wafer (not shown). Since the plating process after the semiconductor wafer 1 is installed in the plating apparatus is the same as the plating method described in the first embodiment, the description thereof is omitted here.

また、剥離工程では、図11(f)に示すように、めっき工程後の半導体チップ41に形成されているフォトレジスト層18を剥離する。具体的には、図11(e)に示す半導体チップ41を含む半導体ウェハ1を、図示しない剥離装置に投入する。そして、半導体ウェハ1を、剥離液(東京応化製;商品名 104剥離液)に70度―20分間浸漬し、時折震盪する。これにより半導体ウェハ1表面に形成されたフォトレジスト層18が剥離される。   In the peeling process, as shown in FIG. 11F, the photoresist layer 18 formed on the semiconductor chip 41 after the plating process is peeled off. Specifically, the semiconductor wafer 1 including the semiconductor chip 41 shown in FIG. 11E is put into a peeling device (not shown). Then, the semiconductor wafer 1 is immersed in a stripping solution (manufactured by Tokyo Ohka; trade name: 104 stripping solution) for 70 ° -20 minutes, and occasionally shaken. As a result, the photoresist layer 18 formed on the surface of the semiconductor wafer 1 is peeled off.

ここで、剥離工程では、半導体ウェハ1を、上記104剥離液に70℃−20分間浸漬し時折震盪している。しかしながら、浸漬時間は、これに限定されるものではなく、例えば15〜25分間の浸漬であってもよい。また、剥離液として、例えば三菱ガス化学製R−100を用い、50℃で8〜15分間浸漬し時折震盪してもよい。あるいは、剥離液としてアセトンを用いてもよい。   Here, in the peeling process, the semiconductor wafer 1 is immersed in the 104 peeling solution at 70 ° C. for 20 minutes and occasionally shaken. However, immersion time is not limited to this, For example, immersion for 15 to 25 minutes may be sufficient. Further, for example, R-100 manufactured by Mitsubishi Gas Chemical Co., Ltd. may be used as the stripping solution, and it may be immersed for 8 to 15 minutes at 50 ° C. and occasionally shaken. Alternatively, acetone may be used as the stripping solution.

次に、エッチング工程では、図11(g)に示すように、配線めっき層16が形成されていないシード層19をエッチングにより除去する。具体的には、図11(f)に示す半導体チップ41を含む半導体ウェハ1を、図示しないエッチング装置に投入する。そして、半導体ウェハ1を、25℃の10%−過硫酸アンモニウム水溶液に1分30秒浸漬しつつ震淘して、銅めっき配線部(配線めっき層16)以外の銅(Cu)からなるシード層19(表面に配線めっき層16が形成されていないシード層19)をエッチングする。   Next, in the etching step, as shown in FIG. 11G, the seed layer 19 where the wiring plating layer 16 is not formed is removed by etching. Specifically, the semiconductor wafer 1 including the semiconductor chip 41 shown in FIG. 11F is put into an etching apparatus (not shown). Then, the semiconductor wafer 1 is shaken while being immersed in a 10% -ammonium persulfate aqueous solution at 25 ° C. for 1 minute 30 seconds, and a seed layer 19 made of copper (Cu) other than the copper plating wiring portion (wiring plating layer 16). (Seed layer 19 where wiring plating layer 16 is not formed on the surface) is etched.

ここで、エッチング工程では、半導体ウェハ1を、25℃の10%−過硫酸アンモニウム水溶液に1分30秒浸漬しつつ震淘することとしている。しかしながら、エッチングに用いる水溶液は、これに限定されるものではなく、例えば、10%−水酸化ナトリウム水溶液や40%−塩化第二鉄水溶液、その他の水溶液であってもよい。また、水溶液の温度も、これに限定されるものではなく、15℃〜40℃であってもよい。   Here, in the etching process, the semiconductor wafer 1 is shaken while being immersed in a 10% -ammonium persulfate aqueous solution at 25 ° C. for 1 minute 30 seconds. However, the aqueous solution used for etching is not limited to this, and may be, for example, a 10% -sodium hydroxide aqueous solution, a 40% -ferric chloride aqueous solution, or other aqueous solutions. Moreover, the temperature of aqueous solution is not limited to this, 15 degreeC-40 degreeC may be sufficient.

さらに、エッチング工程では、次に、半導体ウェハ1を、90℃の25%−TMAHに1時間浸漬しつつ震淘する。これにより、銅めっき配線部(配線めっき層16)以外の図示しないバリアメタルとしてのチタン層(表面に配線めっき層16が形成されていないチタン層)がエッチングされる。   Further, in the etching step, the semiconductor wafer 1 is then shaken while being immersed in 25% -TMAH at 90 ° C. for 1 hour. As a result, a titanium layer (a titanium layer on which the wiring plating layer 16 is not formed) as a barrier metal (not shown) other than the copper plating wiring portion (wiring plating layer 16) is etched.

ここで、チタン層をエッチングするために、90℃の25%−TMAHに1時間浸漬しつつ震淘することとしている。しかしながら、チタン層をエッチングするために用いる水溶液は、これに限定されるものではなく、例えば、塩酸、フッ酸と硝酸との混合液等であってもよい。   Here, in order to etch the titanium layer, it is assumed that it is shaken while being immersed in 25% -TMAH at 90 ° C. for 1 hour. However, the aqueous solution used for etching the titanium layer is not limited to this, and may be, for example, hydrochloric acid, a mixed solution of hydrofluoric acid and nitric acid, or the like.

このように上記シード層形成工程からめっき工程を経て製造された半導体チップ41を含む半導体ウェハ1は、上記めっき工程にて、ブラックフィルム等に起因する微小な固形異物によりめっき品質の低下が無くなる。それゆえ、本実施形態の半導体装置の製造方法では、ブラックフィルム等に起因する微小な固形異物による配線間のショート等を防ぐことが可能になり、半導体チップ表面により微細な配線パターンを形成することが可能になる。   As described above, the semiconductor wafer 1 including the semiconductor chip 41 manufactured through the plating process from the seed layer forming process is free from the deterioration of the plating quality due to the minute solid foreign matters caused by the black film or the like in the plating process. Therefore, in the manufacturing method of the semiconductor device of the present embodiment, it is possible to prevent a short circuit between wirings due to a minute solid foreign matter caused by a black film or the like, and to form a fine wiring pattern on the surface of the semiconductor chip. Is possible.

また、このように半導体ウェハ1上に配線めっき層16が形成された半導体チップ41には、外部接続端子が設置される。以下、配線めっき層16が形成された半導体チップ41に外部接続端子を設置する外部接続端子設置工程について、図12に基づいて、詳細に説明する。図12は、配線めっき層16が形成された半導体チップ41に外部接続端子26を設置する外部接続端子設置工程を示す断面図である。   In addition, external connection terminals are installed on the semiconductor chip 41 in which the wiring plating layer 16 is formed on the semiconductor wafer 1 in this way. Hereinafter, the external connection terminal installation step of installing external connection terminals on the semiconductor chip 41 on which the wiring plating layer 16 is formed will be described in detail with reference to FIG. FIG. 12 is a cross-sectional view showing an external connection terminal installation process in which the external connection terminals 26 are installed on the semiconductor chip 41 on which the wiring plating layer 16 is formed.

上記外部接続端子設置工程は、配線めっき層16が半導体チップ41表面にオーバーコート層を形成するオーバーコート層形成工程と、オーバーコート層に任意の形状のパターンを形成するオーバーコート層パターン形成工程と、オーバーコート層のパターン形状に基づいて外部接続端子を配線めっき層16に形成する外部接続端子形成工程とを含んでいる。なお、図12(a)は、オーバーコート層形成工程前の配線めっき層16が形成された半導体チップ41の一部の概略構成を示し、図12(b)は、オーバーコート層形成工程後の半導体チップ41の一部の概略構成を示し、図12(c)は、オーバーコート層パターン形成工程後の半導体チップ41の一部の概略構成を示し、図12(d)は、外部接続端子形成工程後の半導体チップ41の一部の概略構成を示している。   The external connection terminal installation step includes an overcoat layer forming step in which the wiring plating layer 16 forms an overcoat layer on the surface of the semiconductor chip 41, and an overcoat layer pattern forming step in which an arbitrary shape pattern is formed on the overcoat layer. And an external connection terminal forming step of forming external connection terminals on the wiring plating layer 16 based on the pattern shape of the overcoat layer. 12A shows a schematic configuration of a part of the semiconductor chip 41 on which the wiring plating layer 16 before the overcoat layer forming step is formed, and FIG. 12B shows a state after the overcoat layer forming step. 12 shows a schematic configuration of a part of the semiconductor chip 41, FIG. 12C shows a schematic configuration of a part of the semiconductor chip 41 after the overcoat layer pattern forming step, and FIG. 12D shows the formation of external connection terminals. The schematic structure of a part of the semiconductor chip 41 after the process is shown.

図12(a)に示すように、半導体ウェハ1上に配線めっき層16が形成された半導体チップ41では、配線めっき層16の下(パッド17が形成されている側)に、シード層19が形成されている。配線めっき層16は、このシード層19を介して、半導体チップ41上に設けられているパッド17と電気的に接続している。   As shown in FIG. 12A, in the semiconductor chip 41 in which the wiring plating layer 16 is formed on the semiconductor wafer 1, the seed layer 19 is formed under the wiring plating layer 16 (on the side where the pad 17 is formed). Is formed. The wiring plating layer 16 is electrically connected to the pad 17 provided on the semiconductor chip 41 through the seed layer 19.

図12(b)に示すように、オーバーコート層塗布工程では、配線めっき16が形成された半導体チップ41を含む半導体ウェハ1にオーバーコート層20を形成する。具体的には、オーバーコート層20(住友ベークライト製;商品名 CRC−8000シリーズ)を回転塗布装置により毎分1500回転で30秒間回転塗布し、130℃で5分間加熱する。   As shown in FIG. 12B, in the overcoat layer application step, the overcoat layer 20 is formed on the semiconductor wafer 1 including the semiconductor chip 41 on which the wiring plating 16 is formed. Specifically, the overcoat layer 20 (manufactured by Sumitomo Bakelite; trade name CRC-8000 series) is spin-coated at 1500 rpm for 30 seconds by a spin coater and heated at 130 ° C. for 5 minutes.

ここで、上記オーバーコート層塗布工程では、オーバーコート層20として上記CRC−8000シリーズを用いている。しかしながら、オーバーコート層20に用いる材料は、これに限定されるものではなく、例えば日立化成製;商品名 HD−8800シリーズであってもよい。さらには、オーバーコート層20として、商品名 HD−8000シリーズ等の感光性耐熱性樹脂を用いてもよい。   Here, in the overcoat layer coating step, the CRC-8000 series is used as the overcoat layer 20. However, the material used for the overcoat layer 20 is not limited to this, for example, Hitachi Chemical make; brand name HD-8800 series may be sufficient. Furthermore, as the overcoat layer 20, a photosensitive heat-resistant resin such as a trade name HD-8000 series may be used.

また、上記オーバーコート層塗布工程では、回転塗布装置により毎分1500回転で30秒間回転塗布し、130℃で5分間加熱している。しかしながら、オーバーコート層の塗布方法は、これに限定されるものではなく、例えば、毎分1000回転〜3000回転にて十分に均一な膜厚となるまで、半導体ウェハを回転させた後、120℃〜140℃で5分程度加熱してもよい。   Further, in the overcoat layer coating step, spin coating is performed at 1500 rpm for 30 seconds by a spin coating apparatus, and heating is performed at 130 ° C. for 5 minutes. However, the method for applying the overcoat layer is not limited to this. For example, after the semiconductor wafer is rotated until the film thickness becomes sufficiently uniform at 1000 to 3000 rotations per minute, You may heat at about -140 degreeC for about 5 minutes.

図12(c)に示すように、オーバーコート層パターン形成工程では、オーバーコート層20に、任意の形状のパターンを形成する。具体的には、オーバーコート層塗布工程後に、半導体チップ41を含む半導体ウェハ1を、図示しない露光装置にセットする。そして、露光装置によりオーバーコート層20にg線(436nm)を照射する。その後、図示しない現像装置により、2.38%−TMAH水溶液にてオーバーコート層20の現像を行い、外部接続端子を形成する部分に相当するオーバーコート層20を除去する。そして、除去後、300℃の窒素雰囲気下で、2時間硬化処理を行う。このオーバーコート層パターン形成工程により、半導体チップ41では、外部接続端子を形成する部分で、配線めっき層16が露出した状態になる。   As shown in FIG. 12C, in the overcoat layer pattern forming step, a pattern having an arbitrary shape is formed on the overcoat layer 20. Specifically, after the overcoat layer coating step, the semiconductor wafer 1 including the semiconductor chip 41 is set in an exposure apparatus (not shown). Then, the overcoat layer 20 is irradiated with g-rays (436 nm) by an exposure apparatus. Thereafter, the overcoat layer 20 is developed with a 2.38% -TMAH aqueous solution by a developing device (not shown), and the overcoat layer 20 corresponding to the portion where the external connection terminal is formed is removed. Then, after removal, a curing treatment is performed for 2 hours in a nitrogen atmosphere at 300 ° C. By this overcoat layer pattern forming step, the wiring plating layer 16 is exposed in the portion where the external connection terminal is formed in the semiconductor chip 41.

ここで、上記オーバーコート層パターン形成工程では、露光装置によりオーバーコート層20にg線(436nm)を照射している。しかしながら、オーバーコート層20に照射する光は、オーバーコート層を露光させることができる光であれば、特に限定されるものではない。オーバーコート層20に照射する光としては、例えば、i線(365nm)や深紫外線(約200乃至300nm)であってもよい。   Here, in the overcoat layer pattern forming step, the exposure apparatus irradiates the overcoat layer 20 with g-rays (436 nm). However, the light with which the overcoat layer 20 is irradiated is not particularly limited as long as it can expose the overcoat layer. The light applied to the overcoat layer 20 may be i-line (365 nm) or deep ultraviolet light (about 200 to 300 nm), for example.

また、上記オーバーコート層パターン形成工程では、2.38%−TMAH水溶液にて、オーバーコート層20の現像を行っている。しかしながら、TMAH水溶液の濃度は、これに限定されるものではない。例えば、TMAH水溶液の濃度としては、1〜3%の濃度であってもよい。さらには、25%−TMAH水溶液を、現像するのに適当な濃度にまで、純水で希釈してもよい。   In the overcoat layer pattern forming step, the overcoat layer 20 is developed with a 2.38% -TMAH aqueous solution. However, the concentration of the TMAH aqueous solution is not limited to this. For example, the concentration of the TMAH aqueous solution may be 1 to 3%. Furthermore, a 25% -TMAH aqueous solution may be diluted with pure water to a concentration suitable for development.

さらに、上記オーバーコート層パターン形成工程では、外部接続端子を形成する部分に相当するオーバーコート層20を除去した後、300℃の窒素雰囲気下で2時間硬化処理を行うこととしている。しかしながら、オーバーコート層除去後の工程は、これに限定されるものではない。例えば、オーバーコート層除去後に、250〜350℃にて、1.5時間〜3時間の保持時間を有する工程であってもよい。また、その工程の前後に、昇温過程及び降温過程を有してもよい。   Further, in the overcoat layer pattern forming step, the overcoat layer 20 corresponding to the portion where the external connection terminals are formed is removed, and then a curing process is performed in a nitrogen atmosphere at 300 ° C. for 2 hours. However, the process after removing the overcoat layer is not limited to this. For example, it may be a step having a holding time of 1.5 to 3 hours at 250 to 350 ° C. after removing the overcoat layer. Moreover, you may have a temperature rising process and a temperature-falling process before and after the process.

図12(d)に示すように、外部接続端子形成工程では、オーバーコート層パターン形成工程にて、オーバーコート層20を除去した部分に、外部接続端子26を形成する。具体的には、図示しないボール搭載機に、半導体チップ41を含む半導体ウェハ1を設置する。そして、外部接続端子形成用の配線めっき層16が露出した部分に、図示しないフラックスを塗布する。そして、フラックスを塗布した部分に、図示しないツールに保持された外部接続端子26としての半田ボールを設置する。その後、半田ボールが設置された半導体チップ41を含む半導体ウェハ1を、245℃のリフロー装置により、半田ボールを再溶融させ冷却させることにより、配線めっき層16に外部接続端子26としての半田ボールを接合させる。   As shown in FIG. 12D, in the external connection terminal forming step, the external connection terminal 26 is formed in the portion where the overcoat layer 20 is removed in the overcoat layer pattern forming step. Specifically, the semiconductor wafer 1 including the semiconductor chip 41 is installed on a ball mounting machine (not shown). Then, a flux (not shown) is applied to a portion where the wiring plating layer 16 for forming the external connection terminals is exposed. Then, solder balls as external connection terminals 26 held by a tool (not shown) are installed on the portion where the flux is applied. Thereafter, the semiconductor wafer 1 including the semiconductor chip 41 on which the solder balls are installed is remelted and cooled by a reflow apparatus at 245 ° C., so that the solder balls as the external connection terminals 26 are attached to the wiring plating layer 16. Join.

ここで、外部接続端子26としての半田ボールは、SnAg3.0Cu0.5(千住金属工業製;商品名 M705)からなっている。しかしながら、半田ボールは、これに限定されるものではなく、例えば、Sn63Pb37からなっていてもよい。また、他の鉛フリー半田からなっていてもよい。   Here, the solder ball as the external connection terminal 26 is made of SnAg3.0Cu0.5 (manufactured by Senju Metal Industry Co., Ltd .; trade name M705). However, the solder ball is not limited to this, and may be made of, for example, Sn63Pb37. Moreover, you may consist of another lead-free solder.

また、上記外部接続端子形成工程では、リフロー装置による加熱温度を245℃としている。しかしながら、リフロー装置による加熱温度は、これに限定されるものではなく、例えば240〜250℃であってもよい。   In the external connection terminal forming step, the heating temperature by the reflow device is 245 ° C. However, the heating temperature by a reflow apparatus is not limited to this, For example, 240-250 degreeC may be sufficient.

なお本発明は、以上説示した各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the configurations described above, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention.

本発明のめっき装置は、以上のように、操作性を損なうことなく、ブラックフィルム等に起因する微小な固形異物による、めっき品質の低下を防止することができる。このため、本発明は、半導体産業に適用することができる。   As described above, the plating apparatus of the present invention can prevent the deterioration of the plating quality due to the minute solid foreign matters caused by the black film or the like without impairing the operability. Therefore, the present invention can be applied to the semiconductor industry.

本発明の実施の一形態のめっき装置に設けられためっき処理槽の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the plating processing tank provided in the plating apparatus of one Embodiment of this invention. 上記めっき処理槽のウェハ保持具の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the wafer holder of the said plating process tank. 上記めっき処理槽において、内筒と隔壁とに囲まれた領域の構成を示し、上の図は、半導体ウェハの被めっき面側からみた上面図であり、下の図は、断面図である。In the above-described plating tank, the structure of the region surrounded by the inner cylinder and the partition is shown. The upper figure is a top view as seen from the surface to be plated of the semiconductor wafer, and the lower figure is a sectional view. 本発明の実施の一形態のめっき装置の構成を示す概略図である。It is the schematic which shows the structure of the plating apparatus of one Embodiment of this invention. イオン交換膜の構造を説明するための説明図である。It is explanatory drawing for demonstrating the structure of an ion exchange membrane. イオン交換膜の選択透過性を説明するための説明図である。It is explanatory drawing for demonstrating the selective permeability of an ion exchange membrane. 従来のフェースダウン方式の噴流めっき装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional face down type jet plating apparatus. 従来のラック方式の縦型めっき装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional rack type | formula vertical plating apparatus. 本実施形態で用いた半導体ウェハの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the semiconductor wafer used by this embodiment. めっき工程後の、半導体ウェハに形成された半導体チップの概略構成を示し、(a)は、平面図であり、(b)は、断面図である。The schematic structure of the semiconductor chip formed in the semiconductor wafer after a plating process is shown, (a) is a top view, (b) is sectional drawing. 本実施形態における半導体ウェハの製造方法の手順を示す断面図であり、(a)は、シード層形成工程前の半導体チップの一部の概略構成を示しており、(b)は、シード層形成工程後の半導体チップの一部の概略構成を示しており、(c)は、フォトレジスト塗布工程後の半導体チップの一部の概略構成を示しており、(d)は、フォトレジストパターン形成工程後の半導体チップの一部の概略構成を示しており、(e)は、めっき工程後の半導体チップの一部の概略構成を示しており、(f)は、剥離工程後の半導体チップの一部の概略構成を示しており、(g)は、エッチング工程後の半導体チップの一部の概略構成を示している。It is sectional drawing which shows the procedure of the manufacturing method of the semiconductor wafer in this embodiment, (a) has shown schematic structure of a part of semiconductor chip before a seed layer formation process, (b) is seed layer formation 2 shows a schematic configuration of a part of the semiconductor chip after the process, (c) shows a schematic configuration of a part of the semiconductor chip after the photoresist coating process, and (d) shows a photoresist pattern forming process. 2 shows a schematic configuration of a part of the semiconductor chip after, (e) shows a schematic configuration of a part of the semiconductor chip after the plating process, and (f) shows one of the semiconductor chips after the peeling process. The schematic structure of a part is shown, (g) has shown the schematic structure of a part of semiconductor chip after an etching process. 配線めっき層が形成された半導体ウェハに外部接続端子を設置する外部接続端子設置工程を示す断面図であり、(a)は、オーバーコート層形成工程前の配線めっき層が形成された半導体チップの一部の概略構成を示し、(b)は、オーバーコート層形成工程後の半導体チップの一部の概略構成を示し、(c)は、オーバーコート層パターン形成工程後の半導体チップの一部の概略構成を示し、(d)は、外部接続端子形成工程後の半導体チップの一部の概略構成を示している。It is sectional drawing which shows the external connection terminal installation process which installs an external connection terminal in the semiconductor wafer in which the wiring plating layer was formed, (a) of the semiconductor chip in which the wiring plating layer before the overcoat layer formation process was formed (B) shows a schematic configuration of a part of the semiconductor chip after the overcoat layer forming step, and (c) shows a part of the semiconductor chip after the overcoat layer pattern forming step. A schematic configuration is shown, and (d) shows a schematic configuration of a part of the semiconductor chip after the external connection terminal forming step.

符号の説明Explanation of symbols

1 半導体ウェハ(被めっき基板)
2 ウェハ保持具
3 カップ
4 めっき液噴射管
5 陽極電極
6 支持体
7 隔壁
8 めっき液槽
9 めっき液貯槽(めっき液供給源)
10 ポンプ(めっき供給手段)
11 フィルター(めっき液ろ過手段)
16 配線めっき層
17 パッド
18 フォトレジスト層
19 シード層
20 オーバーコート層
26 外部接続端子
31 内筒(第2の円筒カップ)
32 外筒(第1の円筒カップ)
41 半導体チップ
100 めっき処理槽
1 Semiconductor wafer (substrate to be plated)
2 Wafer Holder 3 Cup 4 Plating Solution Injection Pipe 5 Anode Electrode 6 Support 7 Bulkhead 8 Plating Solution Tank 9 Plating Solution Storage Tank (Plating Solution Supply Source)
10 Pump (plating supply means)
11 Filter (Plating solution filtration means)
16 Wiring plating layer 17 Pad 18 Photoresist layer 19 Seed layer 20 Overcoat layer 26 External connection terminal 31 Inner cylinder (second cylindrical cup)
32 outer cylinder (first cylindrical cup)
41 Semiconductor chip 100 plating tank

Claims (32)

内部に陽極電極が設けられためっき処理槽を備え、上記めっき処理槽内にめっき液を流入し、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら上記陽極電極と上記被めっき基板との間を通電することでめっきを行うめっき装置であって、
めっき処理槽には、上記被めっき基板と上記陽極電極との間に、隔壁が設けられており、
上記陽極電極と上記被めっき基板とが上記隔壁により隔離され、上記めっき処理槽が被めっき基板室と陽極電極室とに区分されていることを特徴とするめっき装置。
A plating bath provided with an anode electrode therein; a plating solution is allowed to flow into the plating bath; and the anode electrode A plating apparatus for performing plating by energizing between the substrate to be plated,
In the plating tank, a partition is provided between the substrate to be plated and the anode electrode.
The plating apparatus, wherein the anode electrode and the substrate to be plated are separated by the partition, and the plating tank is divided into a substrate substrate chamber and an anode electrode chamber.
さらに、上記被めっき基板の被めっき面へめっき液を噴射するためのめっき液噴射管を備え、
上記めっき液噴射管が、上記隔壁を貫通するとともに、上記被めっき基板室と上記陽極電極室との両方にめっき液が流入するように設けられていることを特徴とする請求項1に記載のめっき装置。
Furthermore, a plating solution injection pipe for injecting a plating solution onto the surface to be plated of the substrate to be plated is provided,
2. The plating solution spray pipe according to claim 1, wherein the plating solution spray pipe penetrates the partition wall and is provided so that the plating solution flows into both the substrate substrate chamber and the anode electrode chamber. Plating equipment.
上記めっき処理槽は、第1の円筒カップと第2の円筒カップとを備え、
上記第1の円筒カップには、上記陽極電極が配されており、その底部には、めっき液をめっき処理槽へ流入するためのめっき液流入口が設けられており、
上記第2の円筒カップの底部は、上記隔壁からなり、
上記めっき液噴射管が、上記隔壁を貫通するとともに、上記めっき液流入口から流入しためっき液の層流が、第1の円筒カップへ流入するめっき液の層流と、第2の円筒カップへ流入するめっき液の層流とに分離するように設けられていることを特徴とする請求項2に記載のめっき装置。
The plating treatment tank includes a first cylindrical cup and a second cylindrical cup,
The anode electrode is disposed on the first cylindrical cup, and a plating solution inlet for flowing the plating solution into the plating treatment tank is provided at the bottom thereof,
The bottom of the second cylindrical cup consists of the partition wall,
The plating solution injection pipe penetrates the partition wall, and the laminar flow of the plating solution that flows from the plating solution inlet flows into the laminar flow of the plating solution that flows into the first cylindrical cup and the second cylindrical cup. The plating apparatus according to claim 2, wherein the plating apparatus is provided so as to be separated into a laminar flow of the inflowing plating solution.
上記陽極電極室に流入するめっき液が、上記被めっき基板室へ到達しないようになっていることを特徴とする請求項1〜3の何れか1項に記載のめっき装置。   The plating apparatus according to claim 1, wherein the plating solution flowing into the anode electrode chamber does not reach the substrate substrate room. さらに、上記陽極電極室へ流入するめっき液を、上記めっき処理槽の外部に流出するめっき液流出口が設けられていることを特徴とする請求項1〜4の何れか1項に記載のめっき装置。   Furthermore, the plating solution outlet which flows the plating solution which flows in into the said anode electrode chamber out of the said plating processing tank is provided, The plating of any one of Claims 1-4 characterized by the above-mentioned. apparatus. 上記めっき処理槽における、上記隔壁を含む上記陽極電極と上記被めっき基板とを隔離する部分の一部または全部が、めっき液中に浸漬した状態で、めっき液中のイオンを透過する透過部材からなることを特徴とする請求項1〜5の何れか1項に記載のめっき装置。   In the plating treatment tank, a part or all of the part that separates the anode electrode including the partition and the substrate to be plated is immersed in the plating solution, and from a transmissive member that transmits ions in the plating solution. The plating apparatus according to any one of claims 1 to 5, wherein: 上記透過部材が、半透膜であることを特徴とする請求項6に記載のめっき装置。   The plating apparatus according to claim 6, wherein the permeable member is a semipermeable membrane. 上記透過部材が、イオン交換膜を含むことを特徴とする請求項6または7に記載のめっき装置。   The plating apparatus according to claim 6, wherein the transmission member includes an ion exchange membrane. 上記隔壁の厚さが、50μm以上200μm以下であることを特徴とする請求項1〜8の何れか1項に記載のめっき装置。   The thickness of the said partition is 50 micrometers or more and 200 micrometers or less, The plating apparatus in any one of Claims 1-8 characterized by the above-mentioned. 上記隔壁が、炭化水素系カチオン交換膜を含むことを特徴とする請求項1〜9の何れか1項に記載のめっき装置。   The plating apparatus according to claim 1, wherein the partition wall includes a hydrocarbon-based cation exchange membrane. さらに、上記めっき処理槽へ供給するめっき液を貯留するめっき液供給源と、
上記めっき液供給源に貯留されためっき液を上記めっき処理槽へ供給するめっき液供給手段と、
上記めっき液供給手段より供給されためっき液をろ過するめっき液ろ過手段とを備え、
上記めっき液供給源に貯留されためっき液は、上記めっき液供給手段と上記めっき液ろ過手段とを介して、上記めっき処理槽へ供給され、
上記めっき処理槽に供給されためっき液は、再び上記めっき液供給源へ供給されることを特徴とする請求項1〜10の何れか1項に記載のめっき装置。
Furthermore, a plating solution supply source for storing a plating solution to be supplied to the plating treatment tank,
A plating solution supply means for supplying the plating solution stored in the plating solution supply source to the plating treatment tank;
A plating solution filtration means for filtering the plating solution supplied from the plating solution supply means,
The plating solution stored in the plating solution supply source is supplied to the plating tank through the plating solution supply means and the plating solution filtration means,
The plating apparatus according to claim 1, wherein the plating solution supplied to the plating treatment tank is supplied again to the plating solution supply source.
上記めっき液は、銅成分を含み、かつ、導電性の液体であることを特徴とする請求項1〜11の何れか1項に記載のめっき装置。   The plating apparatus according to claim 1, wherein the plating solution contains a copper component and is a conductive liquid. 上記めっき液は、めっき液1リットルに対して、14g以上40g以下の銅成分を含むことを特徴とする請求項1〜12の何れか1項に記載のめっき装置。   The plating apparatus according to claim 1, wherein the plating solution contains a copper component of 14 g or more and 40 g or less with respect to 1 liter of the plating solution. 上記陽極電極は、含リン銅からなる溶解性陽極電極であることを特徴とする請求項1〜13の何れか1項に記載のめっき装置。   The plating apparatus according to claim 1, wherein the anode electrode is a soluble anode electrode made of phosphorous copper. 上記被めっき基板が、半導体ウェハであることを特徴とする請求項1〜14の何れか1項に記載のめっき装置。   The plating apparatus according to claim 1, wherein the substrate to be plated is a semiconductor wafer. めっき処理槽内にめっき液を流入し、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら、上記めっき処理槽内に配設した陽極電極と上記被めっき基板との間を通電することでめっきを行うめっき方法であって、
上記被めっき基板の被めっき面へ噴流するめっき液の層流と、上記陽極電極近傍に流入しためっき液の層流とを分離してめっきを行うことを特徴とするめっき方法。
The plating solution flows into the plating treatment tank, and while the jet of the plating solution is brought into contact with the surface of the substrate to be plated from below, the anode electrode disposed in the plating treatment vessel and the substrate to be plated It is a plating method for performing plating by energizing the space,
A plating method characterized in that plating is performed by separating a laminar flow of a plating solution jetted to a surface to be plated of the substrate to be plated and a laminar flow of a plating solution flowing in the vicinity of the anode electrode.
めっき処理槽内にめっき液を流入し、被めっき基板の被めっき面に下方側からめっき液の噴流を当接させながら、上記めっき処理槽内に配設した陽極電極と上記被めっき基板との間を通電することでめっきを行うめっき工程を含む半導体装置の製造方法であって、
上記めっき工程において、めっき処理槽内で陽極電極と被めっき面とを隔壁により隔離して配置してめっきを行うことを特徴とする半導体装置の製造方法。
The plating solution flows into the plating treatment tank, and while the jet of the plating solution is brought into contact with the surface of the substrate to be plated from below, the anode electrode disposed in the plating treatment vessel and the substrate to be plated It is a manufacturing method of a semiconductor device including a plating step of performing plating by energizing between,
A method of manufacturing a semiconductor device, wherein, in the plating step, plating is performed by arranging an anode electrode and a surface to be plated separated from each other by a partition in a plating tank.
上記めっき工程において、めっき液の噴流のうち、上記被めっき基板の被めっき面に対する噴流と、上記陽極電極近傍に流入しためっき液の噴流とを分離してめっきを行うことを特徴とする請求項17に記載の半導体装置の製造方法。   In the plating step, the plating is performed by separating the jet of the plating solution onto the surface to be plated of the plating solution and the jet of the plating solution flowing in the vicinity of the anode electrode. 18. A method for manufacturing a semiconductor device according to 17. 上記めっき工程において、上記陽極電極近傍に流入するめっき液が、上記被めっき基板の被めっき面へ到達しないように、めっき液を流入させることを特徴とする請求項17または18に記載の半導体装置の製造方法。   19. The semiconductor device according to claim 17 or 18, wherein in the plating step, the plating solution is allowed to flow so that the plating solution that flows in the vicinity of the anode electrode does not reach the surface to be plated of the substrate to be plated. Manufacturing method. 上記めっき工程において、上記陽極電極近傍に流入するめっき液を、上記めっき処理槽の外部に流出させることを特徴とする請求項17〜19の何れか1項に記載の半導体装置の製造方法。   20. The method of manufacturing a semiconductor device according to claim 17, wherein in the plating step, a plating solution flowing into the vicinity of the anode electrode is caused to flow out of the plating treatment tank. 上記めっき処理槽における、上記隔壁を含む上記陽極電極と上記被めっき基板とを隔離する部分の一部または全部が、めっき液中に浸漬した状態で、めっき液中のイオンを透過する透過部材からなることを特徴とする請求項17〜20の何れか1項に記載の半導体装置の製造方法。   In the plating tank, a part or all of the part for isolating the anode electrode including the partition and the substrate to be plated is immersed in the plating solution, and from a transmissive member that transmits ions in the plating solution. The method for manufacturing a semiconductor device according to claim 17, wherein the method is a semiconductor device manufacturing method. 上記透過部材が、半透膜であることを特徴とする請求項21に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 21, wherein the permeable member is a semipermeable membrane. 上記透過部材が、イオン交換膜を含むことを特徴とする請求項21または22に記載の半導体装置の製造方法。   23. The method of manufacturing a semiconductor device according to claim 21, wherein the transmission member includes an ion exchange membrane. 上記隔壁の厚さが、50μm以上200μm以下であることを特徴とする請求項17〜23の何れか1項に記載の半導体装置の製造方法。   24. The method of manufacturing a semiconductor device according to claim 17, wherein a thickness of the partition wall is 50 μm or more and 200 μm or less. 上記隔壁が、炭化水素系カチオン交換膜を含むことを特徴とする請求項17〜24の何れか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to any one of claims 17 to 24, wherein the partition wall includes a hydrocarbon-based cation exchange membrane. 上記めっき工程は、さらに、
めっき液供給源に貯留されためっき液を上記めっき処理槽へ供給するめっき液供給段階と、
めっき液供給工程にて供給されためっき液をろ過するめっき液ろ過段階と、
上記めっき処理槽に供給されためっき液を、再び上記めっき液供給源へ供給するめっき液循環段階とを含むことを特徴とする請求項17〜25の何れか1項に記載の半導体装置の製造方法。
The plating step further includes
A plating solution supply stage for supplying the plating solution stored in the plating solution supply source to the plating treatment tank;
A plating solution filtration stage for filtering the plating solution supplied in the plating solution supply step;
The manufacturing method of a semiconductor device according to any one of claims 17 to 25, further comprising a plating solution circulation stage in which the plating solution supplied to the plating tank is supplied again to the plating solution supply source. Method.
上記めっき液は、銅成分を含み、かつ、導電性の液体であることを特徴とする請求項17〜26の何れか1項に記載の半導体装置の製造方法。   27. The method of manufacturing a semiconductor device according to claim 17, wherein the plating solution contains a copper component and is a conductive liquid. 上記めっき液は、めっき液1リットルに対して、14g以上40g以下の銅成分を含むことを特徴とする請求項17〜27の何れか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to any one of claims 17 to 27, wherein the plating solution contains a copper component of 14 g or more and 40 g or less with respect to 1 liter of the plating solution. 上記陽極電極は、含リン銅からなる溶解性陽極電極であることを特徴とする請求項17〜28の何れか1項に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to any one of claims 17 to 28, wherein the anode electrode is a soluble anode electrode made of phosphorous copper. 上記被めっき基板が、半導体ウェハであることを特徴とする請求項17〜29の何れか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to any one of claims 17 to 29, wherein the substrate to be plated is a semiconductor wafer. さらに、上記めっき工程前に、
上記被めっき基板の被めっき面にシード層を形成するシード層形成工程と、
上記シード層形成工程にて形成されたシード層表面に、フォトレジストを塗布するフォトレジスト塗布工程と、
上記フォトレジストを露光し、現像することでパターン形状を形成するフォトレジストパターン形成工程とを含むことを特徴とする請求項17〜30の何れか1項に記載の半導体装置の製造方法。
Furthermore, before the plating step,
A seed layer forming step of forming a seed layer on a surface to be plated of the substrate to be plated;
A photoresist coating step of coating a photoresist on the surface of the seed layer formed in the seed layer forming step;
31. The method of manufacturing a semiconductor device according to claim 17, further comprising: a photoresist pattern forming step of forming a pattern shape by exposing and developing the photoresist.
請求項17〜31の何れか1項に記載の半導体装置の製造方法により製造されたことを特徴とする半導体装置。
32. A semiconductor device manufactured by the method for manufacturing a semiconductor device according to any one of claims 17 to 31.
JP2005047938A 2004-12-16 2005-02-23 Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device Pending JP2006193822A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005047938A JP2006193822A (en) 2004-12-16 2005-02-23 Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device
US11/792,812 US20080105555A1 (en) 2004-12-16 2005-12-08 Plating Device, Plating Method, Semiconductor Device, And Method For Manufacturing Semiconductor Device
PCT/JP2005/022539 WO2006064711A1 (en) 2004-12-16 2005-12-08 Plating device, plating method, semiconductor device, and semiconductor device manufacturing method
TW094144464A TW200636095A (en) 2004-12-16 2005-12-15 Plating device, plating method, semiconductor device, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365096 2004-12-16
JP2005047938A JP2006193822A (en) 2004-12-16 2005-02-23 Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device

Publications (1)

Publication Number Publication Date
JP2006193822A true JP2006193822A (en) 2006-07-27

Family

ID=36587768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047938A Pending JP2006193822A (en) 2004-12-16 2005-02-23 Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device

Country Status (4)

Country Link
US (1) US20080105555A1 (en)
JP (1) JP2006193822A (en)
TW (1) TW200636095A (en)
WO (1) WO2006064711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291419A (en) * 2006-04-21 2007-11-08 Nec Electronics Corp Plating treatment device

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152896A1 (en) * 2008-06-19 2009-12-23 Rena Gmbh Apparatus and process for the one-sided wet-chemical and/or electrolytic treatment of material
DE102008045260B8 (en) * 2008-09-01 2010-02-11 Rena Gmbh Apparatus and method for electroplating substrates in process chambers
DE102008045256A1 (en) * 2008-09-01 2010-03-04 Rena Gmbh Apparatus and method for the wet treatment of different substrates
CN102534695B (en) * 2010-12-29 2015-06-17 京东方科技集团股份有限公司 Metal substrate for flexible display and preparation method for metal substrate
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9005409B2 (en) 2011-04-14 2015-04-14 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
US9017528B2 (en) 2011-04-14 2015-04-28 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
JP2014051696A (en) * 2012-09-05 2014-03-20 Mitomo Semicon Engineering Kk Cup type plating apparatus, cup type plating apparatus kit and plating method using the same
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
KR102056438B1 (en) * 2012-10-12 2019-12-16 삼성전자주식회사 Method and apparatus for transceiving data packet for transmitting and receiving multimedia data
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
JP2014237865A (en) * 2013-06-06 2014-12-18 株式会社荏原製作所 Electrolytic copper plating apparatus
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI766433B (en) 2018-02-28 2022-06-01 美商應用材料股份有限公司 Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
CN112853441B (en) * 2021-01-08 2022-04-08 上海戴丰科技有限公司 Wafer horizontal electroplating device and cathode electroplating solution jet flow method
CN116479507B (en) * 2023-04-25 2023-12-01 惠州顺科电镀有限公司 Copper electroplating process and processing device for semiconductor thin film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268694A (en) * 1994-03-29 1995-10-17 Suzuki Motor Corp Plating device
US6365017B1 (en) * 1998-09-08 2002-04-02 Ebara Corporation Substrate plating device
JP3639151B2 (en) * 1999-03-11 2005-04-20 株式会社荏原製作所 Plating equipment
KR100637890B1 (en) * 1999-07-08 2006-10-23 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus, plating method, plating process equipment
JP2001234395A (en) * 2000-02-28 2001-08-31 Tokyo Electron Ltd Wafer plating device
JP2002332595A (en) * 2001-05-08 2002-11-22 Tokyo Electron Ltd Solution treatment apparatus and solution treatment method
JP3746221B2 (en) * 2001-10-11 2006-02-15 日本エレクトロプレイテイング・エンジニヤース株式会社 Cup type plating equipment
JP3831345B2 (en) * 2002-02-14 2006-10-11 日本エレクトロプレイテイング・エンジニヤース株式会社 Wafer plating equipment
US6875333B2 (en) * 2002-02-14 2005-04-05 Electroplating Engineers Of Japan Limited Plating apparatus for wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291419A (en) * 2006-04-21 2007-11-08 Nec Electronics Corp Plating treatment device

Also Published As

Publication number Publication date
TW200636095A (en) 2006-10-16
WO2006064711A1 (en) 2006-06-22
US20080105555A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP2006193822A (en) Plating apparatus, plating method, semiconductor device, and method for manufacturing the semiconductor device
KR100756160B1 (en) Plating apparatus, plating method, and method for manufacturing semiconductor device
JP6832067B2 (en) Pretreatment of nickel and cobalt liners for copper electrodeposition into silicon penetrating vias
US6632335B2 (en) Plating apparatus
US8540857B1 (en) Plating method and apparatus with multiple internally irrigated chambers
US6527920B1 (en) Copper electroplating apparatus
US8133380B2 (en) Method for regenerating ion exchanger
WO2000014308A1 (en) Substrate plating device
TWI589735B (en) Method and apparatus for electroplating semiconductor wafer when controlling cations in electrolyte
JP2006525429A5 (en)
JP2004531640A (en) Degassing method of aqueous plating solution
WO2019023141A1 (en) Electro-oxidative metal removal in through mask interconnect fabrication
KR20220025886A (en) Removal of byproducts from electroplating solutions
WO2005033376A2 (en) Plating method and apparatus
JP2004270014A (en) Plating device
JP2011176085A (en) Substrate treating method, and substrate treating apparatus
JP2001049498A (en) Plating device
US20090293277A1 (en) Process for manufacturing laminated structure and process for manufacturing inkjet recording head
CN114921834A (en) Electrochemical plating apparatus and method thereof
JP4553632B2 (en) Substrate plating method and substrate plating apparatus
JP2002235188A (en) Apparatus and method for treatment with liquid
JP2001024308A (en) Plating equipment
JP2004172437A (en) Method and apparatus for chemical treatment, and manufacturing method of semiconductor device using the same
US20040154915A1 (en) Contact plating apparatus
CN115135815B (en) Plating treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003