JP2006190886A - Terahertz electromagnetic wave generator and method therefor - Google Patents

Terahertz electromagnetic wave generator and method therefor Download PDF

Info

Publication number
JP2006190886A
JP2006190886A JP2005002670A JP2005002670A JP2006190886A JP 2006190886 A JP2006190886 A JP 2006190886A JP 2005002670 A JP2005002670 A JP 2005002670A JP 2005002670 A JP2005002670 A JP 2005002670A JP 2006190886 A JP2006190886 A JP 2006190886A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
electron beam
frequency
terahertz
pulse train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005002670A
Other languages
Japanese (ja)
Inventor
Tsumoru Niitake
積 新竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2005002670A priority Critical patent/JP2006190886A/en
Publication of JP2006190886A publication Critical patent/JP2006190886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a terahertz electromagnetic wave generator and a method capable of efficiently generating a stabilized wide-range terahertz electromagnetic wave with extremely high accuracy in frequency and amplitude by using a small device. <P>SOLUTION: An electron beam 2 of rectilinear path generated by an electron gun 1 is passed through a high frequency cavity 3, so that it may be made into an electron beam 6 performed by a velocity modulation performed periodically in a high frequency electric field with respect to the speed of advance of the electron beam. Subsequently, while making it run constant distance, electrons are collected in a group periodically by velocity modulation so that an electron beam 7 of a short pulse train is formed in terms of time. Since much high order frequency of microwave frequency is contained in the electron beam 7 in the pulse train, it is passed through an electromagnetic wave radiant section 8 so that an electromagnetic wave beam 9 of terahertz frequency may be taken out from the electron beam 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、周波数領域が100GHzから10THzの電磁波(テラヘルツ波)を発生するテラヘルツ電磁波発生装置及び方法に関する。   The present invention relates to a terahertz electromagnetic wave generating apparatus and method for generating an electromagnetic wave (terahertz wave) having a frequency range of 100 GHz to 10 THz.

周波数領域が100GHzから10THzの電磁波を、以下、「テラヘルツ波」と呼ぶ。テラヘルツ波は、光波と電波の境界に位置しており、光波と電波がそれぞれの領域で発展してきたのとは対象的に、技術面及び応用面の両面で未開拓の分野として取り残されていた。しかし、無線通信におけるこの周波数帯の有効利用や超高速通信への対応、およびこの周波数帯の電磁波の特徴を生かしたイメージングやトモグラフィーによる環境計測、そして生物や医学への応用など、この領域は近年ますます重要となってきている。   An electromagnetic wave having a frequency range of 100 GHz to 10 THz is hereinafter referred to as a “terahertz wave”. Terahertz waves are located at the boundary between light waves and radio waves. In contrast to the fact that light waves and radio waves have developed in their respective areas, they have been left unexplored in both technical and application fields. . However, in recent years, this area has been used for effective use of this frequency band in wireless communication, support for ultra-high-speed communication, environmental measurement by imaging and tomography that make use of the characteristics of electromagnetic waves in this frequency band, and application to organisms and medicine. It is becoming increasingly important.

テラヘルツ波のうち周波数1THzまでの発生装置として、後進波発振管(BWO:Backward Oscillator)が広く知られている(例えば、非特許文献1、2)。
後進波発振管は、電子銃から得られる直線状のビームを用い、周期構造をもった遅波回路によって、自励発振させるものであり、電子管の一種として電子管技術の分野では広く知られたデバイスである。
As a generator for a terahertz wave up to a frequency of 1 THz, a backward wave oscillator tube (BWO: Backward Oscillator) is widely known (for example, Non-Patent Documents 1 and 2).
A backward wave oscillation tube is a device that uses a linear beam obtained from an electron gun and self-oscillates by a slow wave circuit having a periodic structure, and is a device widely known in the field of electron tube technology as a kind of electron tube It is.

また最近になって、ナノ秒のパルス幅をもつレーザー光を非線形素子に照射してパルス状のテラヘルツ電磁波を発生させる技術(以下、「テラヘルツ波パラメトリック発信器」と呼ぶ)が実用化されている(例えば、特許文献1、非特許文献3)。   Recently, a technology for generating a pulsed terahertz electromagnetic wave by irradiating a nonlinear element with laser light having a nanosecond pulse width (hereinafter referred to as a “terahertz wave parametric transmitter”) has been put into practical use. (For example, Patent Document 1, Non-Patent Document 3).

更に、短くバンチした(集群した)高エネルギーの電子ビームを金属板に当てることにより、テラヘルツ電磁波または遠赤外線が発生することが知られている(例えば非特許文献4)。
なお、その他に本発明に関連する技術として、非特許文献5、6がある。
Furthermore, it is known that a terahertz electromagnetic wave or a far-infrared ray is generated by applying a short-bunched (collected) high-energy electron beam to a metal plate (for example, Non-Patent Document 4).
Other technologies related to the present invention include Non-Patent Documents 5 and 6.

特開2003−5238号公報、「テラヘルツ波発生装置とその高速同調方法」Japanese Patent Application Laid-Open No. 2003-5238, “Terahertz Wave Generation Device and High-Speed Tuning Method”

“The Backward-Wave Oscillator”,<http://www.tpub.com/content/neets/14183/css/14183_103.htm>“The Backward-Wave Oscillator”, <http: // www. tpub. com / content / neets / 14183 / css / 14183_103. htm> Ives,L.;Neilson,J.;Read,M.;Caplan,M.;Kory,C.;Witherspoon,R.;Schwartzkopf,S."Terahertz backward wave oscillators",Infrared and Millimeter Waves,2002. Twenty Seventh International Conference on Infrared and Millimeter Waves - Conference Paper(0-7803-7423-1,No ISSN ); IEEE 2002 ( 22-26 Sept.2002);Page 225-226Ives, L.M. Neilson, J .; Read, M .; Caplan, M .; Kory, C .; Witherspoon, R .; Schwartzkopf, S .; “Terahertz backward wave oscillators”, Infrared and Millimeter Waves, 2002. Twenty Seventh International Conference on Infrared and Millimeter Waves-Conference Paper (0-7803-7423-1, No ISSN); IEEE 2002 (22-26 Sept. 2002); Page 2 K.Kawase,M.Sato,T.Taniuchi,and H.Ito,"Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Applied Physics Letters,vol.68,no.18,pp.2483-2485(1996).K. Kawase, M .; Sato, T .; Taniuchi, and H.K. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Applied Physics Letters, vol. 68, no. 18, pp. 2483-2485 (1996). T.Watanabe,et.al.,“Subpicosecond Electron Beam Diagnostics by Coherent Transition Radiation Interferometer”,Proc.International Conf.APAC98T.A. Watanabe, et. al. , "Subpicosecond Electron Beam Diagnostics by Coherent Transition Radiation Interferometer", Proc. International Conf. APAC98

D.Sutterlin,et.al.,“Observation of Coherent Transition Radiation at the SLS Linac”,PSI Annual Report,2003D. Suterlin, et. al. , “Observation of Coherent Transition Radiation at the SLS Linac”, PSI Annual Report, 2003. P.Henri,O.Haeberle´,and P.Rullhusen,“Grating transition radiation: A source of quasi monochromatic radiation”,Physical Review E,Volume 60,Number 5,November 1999P. Henri, O .; Haberle ', and P.M. Rullhusen, “Grating transition radiation: A source of quasi monochromatic radiation”, Physical Review E, Volume 60, Number 5, November 1999.

上述した後進波発振管の発振周波数は電子銃の電圧により可変にできるが、周波数の変化に伴い出力電力も複雑に変動する問題点がある。これは後進波発振管(BWO)が内部帰還による自己発振現象を利用しているためである。
また、周波数1THzを超えるさらに高い周波数になると、後進波発振管の内部での回路損失が大きくなり、発振に必要な条件が満たされない。そのため、後進波発振管が発振できず、1THz以上の周波数では実用化されていない。
Although the oscillation frequency of the backward wave oscillation tube described above can be made variable by the voltage of the electron gun, there is a problem that the output power also fluctuates in a complicated manner as the frequency changes. This is because the backward wave oscillation tube (BWO) uses the self-oscillation phenomenon due to internal feedback.
Further, if the frequency is higher than 1 THz, the circuit loss inside the backward wave oscillating tube increases, and the conditions necessary for oscillation are not satisfied. Therefore, the backward wave oscillation tube cannot oscillate and is not put into practical use at a frequency of 1 THz or higher.

一方、「テラヘルツ波パラメトリック発信器」は、レーザーとその電源を含めた装置全体の寸法が依然として大きいことと、コストが高いという難点がある。   On the other hand, the “terahertz wave parametric transmitter” has the disadvantages that the overall size of the device including the laser and its power source is still large and the cost is high.

更に、「テラヘルツ波パラメトリック発信器」を応用した別の手段として、二つの異なる周波数のレーザー光を非線形素子にて合成し、差周波数のテラヘルツ電磁波を発生する技術が存在するが、同様に、レーザーを含めた全体の装置のサイズが大きいことと、コストが高いという難点がある。   Furthermore, as another means of applying the “terahertz wave parametric transmitter”, there is a technology for synthesizing two different frequency laser beams with a non-linear element to generate a terahertz electromagnetic wave with a difference frequency. There is a problem that the size of the entire apparatus including the device is large and the cost is high.

また、水銀灯の発光に含まれるテラヘルツ電磁波を利用することも行われているが、消費電力に対する出力電磁波の変換効率が著しく低いという難点がある。   Further, although terahertz electromagnetic waves included in light emission of mercury lamps have been used, there is a problem that the conversion efficiency of output electromagnetic waves with respect to power consumption is extremely low.

更に、非特許文献4の手段では、大型の線型加速器を用いる必要があり、装置が大型であり、コストが高いという難点がある。   Furthermore, in the means of Non-Patent Document 4, it is necessary to use a large linear accelerator, and there is a problem that the apparatus is large and the cost is high.

本発明は上述した従来技術が抱えていた問題点を解決するために創案されたものである。すなわち、本発明の目的は、従来と全く異なる原理に基づき、周波数と振幅が極めて安定したテラヘルツ電磁波を、広い周波数帯域に渡って、小型の装置にて、効率良く発生させることができるテラヘルツ電磁波発生装置及び方法を提供することにある。   The present invention has been devised to solve the above-described problems of the prior art. That is, the object of the present invention is to generate a terahertz electromagnetic wave that can efficiently generate a terahertz electromagnetic wave having a very stable frequency and amplitude over a wide frequency band in a small device based on a completely different principle. It is to provide an apparatus and method.

本発明によれば、真空中に直線状の電子ビームを発生する電子銃と、
該電子ビームを高周波電界によって速度変調し、つづいて一定距離をドリフト走行させることにより短パルス列の電子ビームとする高周波空胴と、
前記短パルス列の電子ビームから所定の周波数の電磁波ビームを選択的に放射させる電磁波放射部と、を備えたことを特徴とするテラヘルツ電磁波発生装置が提供される。
According to the present invention, an electron gun that generates a linear electron beam in a vacuum;
A high-frequency cavity in which the electron beam is velocity-modulated by a high-frequency electric field, and then drifted over a certain distance to form a short-pulse train electron beam;
An terahertz electromagnetic wave generator comprising: an electromagnetic wave radiation unit that selectively radiates an electromagnetic wave beam having a predetermined frequency from the electron beam of the short pulse train is provided.

本発明の好ましい実施形態によれば、前記電磁波放射部は単純平板であり、これにより、前記所定の周波数の電磁波としてピコ秒以下のパルス幅をもつテラヘルツ衝撃波を発生させる。   According to a preferred embodiment of the present invention, the electromagnetic wave radiation portion is a simple flat plate, and thereby generates a terahertz shock wave having a pulse width of picosecond or less as the electromagnetic wave having the predetermined frequency.

また前記電磁波放射部は回折格子であり、これにより、前記所定の周波数の電磁波として単一周波数のテラヘルツ電磁波を発生する。   The electromagnetic wave radiation portion is a diffraction grating, and thereby generates a terahertz electromagnetic wave having a single frequency as the electromagnetic wave having the predetermined frequency.

また前記電子銃の電子ビームをON/OFFする電子ビームスイッチを備え、これによりテラヘルツ電磁波を高速でON/OFFする、ことが好ましい。   It is preferable that an electron beam switch for turning on / off the electron beam of the electron gun is provided so that the terahertz electromagnetic wave is turned on / off at high speed.

また、本発明によれば、真空中に直線状の電子ビームを発生する電子ビーム発生ステップと、
該電子ビームを高周波電界によって速度変調し、つづいて一定距離をドリフト走行させることにより短パルス列の電子ビームとする高周波空胴ステップと、
前記短パルス列の電子ビームから所定の周波数の電磁波ビームを選択的に放射させる電磁波放射ステップと、を有することを特徴とするテラヘルツ電磁波発生方法が提供される。
Further, according to the present invention, an electron beam generating step for generating a linear electron beam in a vacuum,
A high-frequency cavity step in which the electron beam is velocity-modulated by a high-frequency electric field, and then drifted over a certain distance to form a short-pulse train electron beam;
There is provided an electromagnetic wave emission step of selectively emitting an electromagnetic wave beam having a predetermined frequency from the electron beam of the short pulse train, and a terahertz electromagnetic wave generation method is provided.

本発明の好ましい実施形態によれば、前記電磁波放射ステップにおいて、単純平板を使用し、ピコ秒以下のパルス幅をもつ、テラヘルツヘルツ衝撃波を発生させる。   According to a preferred embodiment of the present invention, in the electromagnetic wave emission step, a terahertz hertz wave having a pulse width of picosecond or less is generated using a simple flat plate.

また前記電磁波放射ステップにおいて、回折格子を使用し、単一周波数のテラヘルツ電磁波を発生させる。   In the electromagnetic wave radiation step, a terahertz electromagnetic wave having a single frequency is generated using a diffraction grating.

また前記電子ビーム発生ステップにおいて、電子ビームをON/OFFして、テラヘルツ電磁波を高速でON/OFFする、ことが好ましい。   In the electron beam generating step, it is preferable to turn on / off the electron beam and turn on / off the terahertz electromagnetic wave at high speed.

上述した本発明の装置及び方法によれば、電子銃で発生した直線状の電子ビームを、高周波空胴に通し、電子ビームの進行速度を高周波電界にて周期的に速度変調して、つづいて一定距離を走行させる間に、速度変調によって電子が周期的に集群し、時間的に短パルス列の電子ビームを形成することができる。
このパルス列の電子ビームにはマイクロ波周波数の高次周波数が多数含まれているので、これを電磁波放射部に通し、電子ビームからテラヘルツ周波数の成分を取り出すことができる。
この構成によれば、安定したマイクロ波周波数帯の信号を利用し、電子ビームを用いて、高次高調波を発生させ、テラヘルツ周波数の電磁波を発生させることにより、周波数と振幅が極めて安定したテラヘルツ電磁波を、広い周波数帯域に渡って、小型の装置にて、効率良く発生させることができる。
According to the apparatus and method of the present invention described above, a linear electron beam generated by an electron gun is passed through a high-frequency cavity, and the traveling speed of the electron beam is periodically modulated by a high-frequency electric field. While traveling a certain distance, electrons are periodically clustered by velocity modulation, and an electron beam having a short pulse train can be formed temporally.
Since the electron beam of this pulse train contains a number of higher-order microwave frequencies, it can be passed through the electromagnetic wave radiation section to extract a terahertz frequency component from the electron beam.
According to this configuration, by using a signal in a stable microwave frequency band, an electron beam is used to generate high-order harmonics, and an electromagnetic wave having a terahertz frequency is generated. Electromagnetic waves can be generated efficiently with a small device over a wide frequency band.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は本発明のテラヘルツ電磁波発生装置の全体構成図である。この図において、本発明のテラヘルツ電磁波発生装置は、電子銃1、高周波空胴3、基準周波数発生器4、高周波増幅器5、電磁波放射部8及び電子コレクター10を備える。
電子銃1は、真空中に直線状の電子ビーム2を発生する。
基準周波数発生器4は、基準周波数f(Hz)の高周波を発生し、これを高周波増幅器5にて増幅し、高周波空胴3に供給し、高周波電界を発生させる。
高周波空胴3は、電子ビーム2を高周波電界によって速度変調して速度変調を受けた電子ビーム6とし、つづいて一定距離をドリフト走行させることにより短パルス列の電子ビーム7(パルス列電子ビーム)とする機能を有する。
電磁波放射部8は、パルス列電子ビーム7から所定の周波数fの電磁波ビーム9を選択的に放射させる機能を有する。
電子コレクター10は、電磁波放射部8を通過した電子ビーム7の電子を捕捉する。
FIG. 1 is an overall configuration diagram of a terahertz electromagnetic wave generator according to the present invention. In this figure, the terahertz electromagnetic wave generator of the present invention includes an electron gun 1, a high frequency cavity 3, a reference frequency generator 4, a high frequency amplifier 5, an electromagnetic wave emission unit 8, and an electron collector 10.
The electron gun 1 generates a linear electron beam 2 in a vacuum.
The reference frequency generator 4 generates a high frequency of the reference frequency f 0 (Hz), amplifies the high frequency by the high frequency amplifier 5, supplies the high frequency cavity 3, and generates a high frequency electric field.
The high-frequency cavity 3 converts the electron beam 2 into a velocity-modulated electron beam 6 by a high-frequency electric field, and then makes a short pulse train electron beam 7 (pulse train electron beam) by drifting a certain distance. It has a function.
The electromagnetic wave radiation unit 8 has a function of selectively radiating an electromagnetic wave beam 9 having a predetermined frequency f from the pulse train electron beam 7.
The electron collector 10 captures the electrons of the electron beam 7 that has passed through the electromagnetic wave radiation unit 8.

上述した装置を用いて本発明の方法は、電子ビーム発生ステップ、高周波空胴ステップ、及び電磁波放射ステップを有する。
電子ビーム発生ステップにおいて、電子銃1により真空中に直線状の電子ビーム2を発生する。電子銃1より発生した電子ビーム2は、高周波空胴3に通す。
高周波空胴ステップにおいて、高周波空胴3、基準周波数発生器4、及び高周波増幅器5により、直線状の電子ビーム2を高周波電界によって速度変調して速度変調を受けた電子ビーム6とし、つづいて一定距離をドリフト走行させることにより短パルス列の電子ビーム7(パルス列電子ビーム)とする。
電磁波放射ステップにおいて、電磁波放射部8によりパルス列電子ビーム7から所定の周波数の電磁波ビーム9を選択的に放射させる。
Using the apparatus described above, the method of the present invention includes an electron beam generation step, a high frequency cavity step, and an electromagnetic wave emission step.
In the electron beam generating step, the electron gun 1 generates a linear electron beam 2 in a vacuum. An electron beam 2 generated from the electron gun 1 passes through a high-frequency cavity 3.
In the high-frequency cavity step, the linear electron beam 2 is velocity-modulated by a high-frequency electric field by the high-frequency cavity 3, the reference frequency generator 4, and the high-frequency amplifier 5 to obtain an electron beam 6 subjected to velocity modulation, and then constant. A short pulse train electron beam 7 (pulse train electron beam) is obtained by drifting the distance.
In the electromagnetic wave radiation step, an electromagnetic wave beam 9 having a predetermined frequency is selectively emitted from the pulse train electron beam 7 by the electromagnetic wave radiation unit 8.

電子銃1より発生した電子ビーム2は、高周波空胴3を通り、高周波空胴3の高周波電界によって、周期的な速度変調を受けた電子ビーム6となり、さらに一定距離を走行するうちに、電子間の速度差のために、速度変調が密度変調に変換され、パルス列電子ビーム7となる。   The electron beam 2 generated from the electron gun 1 passes through the high-frequency cavity 3 and becomes an electron beam 6 that is periodically velocity-modulated by the high-frequency electric field of the high-frequency cavity 3. Due to the velocity difference between the two, velocity modulation is converted to density modulation, resulting in a pulse train electron beam 7.

図2(a)はパルス列電子ビーム7の波形を示す図である。この図において、横軸は時間、縦軸は電流を示している。この図に示すように、各パルス波の時間間隔は、基準周波数発生器4の基準周波数fの周期1/fに等しい。 FIG. 2A shows the waveform of the pulse train electron beam 7. In this figure, the horizontal axis represents time and the vertical axis represents current. As shown in this figure, the time interval of each pulse wave is equal to the period 1 / f 0 of the reference frequency f 0 of the reference frequency generator 4.

図2(b)は電流の周波数スペクトル強度を示す図である。この図において、横軸は周波数、縦軸は周波数スペクトル強度を示している。
この図に示すように、電流の周波数スペクトルは、多数の線スペクトルからなっており、線スペクトル相互の間隔は、基準周波数発生器4の基準周波数fに等しい。またその強度は、直流からテラヘルツ周波数までの広範囲にわたり平坦であり、カットオフ周波数f以上では、強度が周波数とともに低くなる。カットオフ周波数fは、電流パルス波の幅Tと数1の式(1)の関係にある。
FIG. 2B shows the frequency spectrum intensity of the current. In this figure, the horizontal axis represents frequency and the vertical axis represents frequency spectrum intensity.
As shown in this figure, the frequency spectrum of the current is composed of a number of line spectra, and the interval between the line spectra is equal to the reference frequency f 0 of the reference frequency generator 4. The intensity is flat over a wide range from DC to a terahertz frequencies, the cut-off frequency f c or more, the strength is lowered with frequency. Cut-off frequency f c is a relationship of width T p and the number 1 of the formula of the current pulse wave (1).

Figure 2006190886
Figure 2006190886

式(1)を以下に詳述する。
電子銃から発射された電子ビーム2が、高周波空胴3を通過するとき、高周波空胴の交流電場によって速度変調をうける。その後、速度変調を受けた電子ビーム6が下流へ走行する間に、速度の違いによって電子が集群し、図2(a)のように電流がパルス波形となる。
図2(a)のパルス電流のスペクトルは、この波形をフーリエ変換することで求まり、図2(b)の形状となる。すなわち、多数の線スペクトルの集合となり、最も低い周波数が、高周波空胴の周波数fに等しく、その高調波が2f,3f,4f,とならぶ。すなわち線スペクトルの周波数と波長は、数1の式(1.1)で表される。
この高調波は、マイクロ波からテラヘルツ波の周波数にまで及ぶ。しかし、その強度は、カットオフ周波数fから次第に小さくなる。これはもともとの、電流パルス幅が有限であることに起因し、電流パルスの時間幅をTとすれば、カットオフ周波数fは、上述した式(1)によって与えられる。
これは、数学におけるフーリエ変換であり、一般的に数学定理により、時間幅とスペクトル幅は逆比例する。またカットオフ周波数は、一般的に記号はfで示される。
Equation (1) will be described in detail below.
When the electron beam 2 emitted from the electron gun passes through the high-frequency cavity 3, it is subjected to velocity modulation by the AC electric field of the high-frequency cavity. Thereafter, while the electron beam 6 subjected to velocity modulation travels downstream, electrons gather due to the difference in velocity, and the current becomes a pulse waveform as shown in FIG.
The spectrum of the pulse current in FIG. 2A is obtained by Fourier transforming this waveform, and has the shape of FIG. That is, it becomes a set of a large number of line spectra, the lowest frequency is equal to the frequency f 0 of the high frequency cavity, and the harmonics thereof are 2f 0 , 3f 0 , 4f 0 , and so on. In other words, the frequency and wavelength of the line spectrum are expressed by Equation (1.1) in Equation 1.
This harmonic ranges from microwave to terahertz frequency. However, the intensity gradually decreases from the cut-off frequency f c. This is due to the original, the current pulse width is finite, if the time width of the current pulse and T p, the cut-off frequency f c is given by the above-mentioned equation (1).
This is a Fourier transform in mathematics. Generally, the time width and the spectral width are inversely proportional to each other according to the mathematical theorem. The cut-off frequency is typically symbol represented by f c.

式(1)から、時間幅の短い電流パルスをつくれば、高い周波数にまで及ぶ広いスペクトルの電磁波を作り出すことができることがわかる。例えば、電流パルス波の幅が1psec(ピコ秒、10-9秒)であれば、周波数スペクトルの上限は式(1)より、1x10ヘルツ、すなわち1THz(テラヘルツ)となる。 From formula (1), it can be seen that if a current pulse with a short time width is generated, an electromagnetic wave having a wide spectrum extending to a high frequency can be produced. For example, if the width of the current pulse wave is 1 psec (picoseconds, 10 −9 seconds), the upper limit of the frequency spectrum is 1 × 10 9 hertz, that is, 1 THz (terahertz) from the equation (1).

図1の装置において、高周波空胴3の電圧を適切に選択すると、電磁波放射部8の位置で、パルス幅tを極めて小さくできる。その条件は、数2の式(2)で与えられる。 In the apparatus of FIG. 1, the proper selection of the voltage of the high-frequency cavity 3, at the position of the electromagnetic radiation unit 8, it can be extremely small pulse width t p. The condition is given by Equation (2) in Equation 2.

Figure 2006190886
Figure 2006190886

ここで、γは電子ビーム2の電子銃1での運動エネルギーを電子の静止エネルギーmで格化した値、βは光速で規格化した電子ビーム2の速度、fは基準信号発生器の周波数、Vは高周波空胴3の高周波電圧、Tは高周波空胴3の電子走行係数、Lは高周波空胴3から電磁放射部8までの距離である。
また、その他の物理定数はcが光速、mは電子の質量、eは電子の電荷である。
Where γ is a value obtained by quantifying the kinetic energy of the electron beam 2 in the electron gun 1 by the static energy m 0 c 2 of the electron, β is the velocity of the electron beam 2 normalized by the speed of light, and f 0 is a reference signal generation V c is the high frequency voltage of the high frequency cavity 3, T is the electron travel coefficient of the high frequency cavity 3, and L is the distance from the high frequency cavity 3 to the electromagnetic radiation portion 8.
As for other physical constants, c is the speed of light, m 0 is the electron mass, and e is the electron charge.

具体的な例として、電子銃1の加速電圧を100kV、基準周波数を1GHz、高周波空胴3の電圧を50kV、電子走行係数を0.8とすると、各パラメータは、γ=1.2、β=0.55、L=1.8mとなり、高周波空胴3の中心から下流へ.1.8mの位置に電磁放射部8を置けば、電子ビームのパルス幅がもっとも狭くなり、これによってカットオフ周波数が高くなる。   As a specific example, assuming that the acceleration voltage of the electron gun 1 is 100 kV, the reference frequency is 1 GHz, the voltage of the high-frequency cavity 3 is 50 kV, and the electron travel coefficient is 0.8, the parameters are γ = 1.2, β = 0.55, L = 1.8 m, from the center of the high-frequency cavity 3 to the downstream. If the electromagnetic radiation portion 8 is placed at a position of 1.8 m, the pulse width of the electron beam becomes the narrowest, thereby increasing the cutoff frequency.

電子ビームのパルス時間幅の最小値は、電子の運動エネルギーと電子ビームの空間電荷効果とのバランスによって決まり、数値計算によると、数mA程度のビーム電流に対して、1psec以下が得られることがわかっており、カットオフ周波数1THz以上が得られる。   The minimum value of the pulse time width of the electron beam is determined by the balance between the kinetic energy of the electron and the space charge effect of the electron beam. According to the numerical calculation, 1 psec or less can be obtained for a beam current of about several mA. It is known that a cut-off frequency of 1 THz or higher is obtained.

式(2)を以下に詳述する。
電子銃の加速電圧をVとすると相対論の効果を考慮した電子の運動エネルギー、規格化エネルギー及びと速度(規格化)は、数3の式(2.1)(2.2)(2.3)の関係で与えられる。
Equation (2) will be described in detail below.
Assuming that the acceleration voltage of the electron gun is V 0 , the kinetic energy, normalized energy, and velocity (normalized) of the electron considering the effect of relativity are given by equations (2.1), (2.2), (2) .3).

Figure 2006190886
Figure 2006190886

この電子ビームが加速空胴を通過すると、空胴内部の軸方向電界によって、加速または減速をうけて、ビームのエネルギーはその軸方向位置(位相ともいう)によって、サイン波状のエネルギー変調を受ける。空胴を通過した電子のエネルギーは、数3の式(2.4)となる。
ここで、φは電子が空胴中心を通過したときtのマイクロ波電界の位相であり、数3の式(2.5)で与えられる。またTはTransit Time Factorであり、軸方向に有限の広がりをもつ空胴電界との結合度をあらわし、平行平板近似によって、空胴長gに対して数3の式(2.6)のように与えられる。
これは、電子が空胴を通過する間にθだけ位相が回転することによるロスをあらわし、一般にTは0.5〜1.0の間の数値を取る。
When this electron beam passes through the accelerating cavity, it is accelerated or decelerated by the axial electric field inside the cavity, and the energy of the beam undergoes sine wave energy modulation depending on its axial position (also referred to as phase). The energy of the electrons that have passed through the cavity is expressed by Equation (2.4) in Equation 3.
Here, φ 0 is the phase of the microwave electric field at t 0 when electrons pass through the cavity center, and is given by Equation (2.5) in Equation 3. T is a Transit Time Factor, which represents the degree of coupling with a cavity electric field having a finite extension in the axial direction, and is represented by the following equation (2.6) with respect to the cavity length g by parallel plate approximation. Given to.
This represents a loss due to rotation of the phase by θ while electrons pass through the cavity, and T generally takes a numerical value between 0.5 and 1.0.

つぎに、このようにしてサイン波状のエネルギー変調を受けた電子ビームが、下流へ自由空間を走行する間に、その速度の違いから、高いエネルギーの電子は前に、低いエネルギーの電子は後ろへ位置がずれることによって、周期的に集群し、密度変調が生じる。電子同士の反発力を無視すると図3に示すように、距離Lだけ走行したとき、電子ビームの集群エネルギーが前が低く後ろが高い中央の位相に電子が集中する場所がある。この位置は近似的に次のように与えられる。位相中心の前後に2点、Δφだけ位相がわずかに異なる電子に着目すると、距離Lだけ走行したとき、両者は一点に集中するので、速度の違いによるずれがちょうど空胴直後の2点の距離に等しいはずである。すなわち、空胴での位置のずれは、数4の式(2.7)で表される。   Next, while the electron beam subjected to sine wave-like energy modulation travels in free space downstream in this way, due to the difference in speed, high-energy electrons move forward and low-energy electrons move backward. As the position shifts, the clusters gather periodically and density modulation occurs. If the repulsive force between electrons is ignored, as shown in FIG. 3, when traveling for a distance L, there is a place where electrons are concentrated in the central phase where the front energy of the electron beam is low and the back is high. This position is approximately given as follows. Focusing on electrons that are slightly different in phase by Δφ at two points before and after the phase center, when traveling for a distance L, they are concentrated at one point, so the difference due to the difference in speed is the distance between the two points just after the cavity. Should be equal to That is, the position shift in the cavity is expressed by the equation (2.7) in Equation 4.

Figure 2006190886
Figure 2006190886

一方、走行距離Lの間の電子の位置のずれは、数4の式(2.8)となる。
(2.4)式を微分して、数4の式(2.9)が得られる。
式(2.5)、(2.8)、(2.9)より、式(2.10)すなわち数2の式(2)が得られる。
数2の式(2)は、電子ビームが集群して一点に集まる距離をあらわしている。
On the other hand, the deviation of the position of the electrons during the travel distance L is expressed by Equation (2.8) in Equation 4.
By differentiating the equation (2.4), the equation (2.9) of Equation 4 is obtained.
From the expressions (2.5), (2.8), and (2.9), the expression (2.10), that is, the expression (2) of Formula 2 is obtained.
Equation (2) in Equation 2 represents the distance at which electron beams gather and gather at one point.

電磁波放射部8として、パルス列電子ビーム7の軌道から45度傾けた単純平板8a(例えば単純な金属平板)を置き、電子を金属平板8aの表面に入射すると、遷移放射が90度方向に発生し、パルス電磁波ビーム9を形成する。この電磁波ビームは、電子ビームのパルス波形に等しい電界波形を持つテラヘルツヘルツ周波数のパルス電磁波である。
なお遷移放射については、高エネルギーの加速器を用いた実験がなされており、電子ビームのパルス長(バンチ長ともいう)より長い波長では、コヒーレントな放射となり、非常に大きなパワーが得られることが非特許文献4、5から知られている。
When a simple flat plate 8a (for example, a simple metal flat plate) inclined by 45 degrees from the trajectory of the pulse train electron beam 7 is placed as the electromagnetic wave radiating portion 8, transition electrons are generated in the direction of 90 degrees when electrons are incident on the surface of the metal flat plate 8a. The pulse electromagnetic wave beam 9 is formed. This electromagnetic wave beam is a pulsed electromagnetic wave having a terahertz hertz frequency having an electric field waveform equal to the pulse waveform of the electron beam.
Regarding transition radiation, experiments using high-energy accelerators have been conducted, and it is not possible to obtain coherent radiation at wavelengths longer than the pulse length (also referred to as bunch length) of the electron beam, resulting in very large power. It is known from Patent Documents 4 and 5.

図4は、電磁波放射部8として、回折格子11を置き、パルス列電子ビーム7を入射させると、コヒーレントなテラヘルツ電磁波が発生し、単一周波数のテラヘルツ電磁波を直接取り出すことが可能となる。回折格子11とパルス列電子ビーム7の角度、電磁波ビーム9との角度には一定の関係が数5の式(3)のように成り立つ。   In FIG. 4, when the diffraction grating 11 is placed as the electromagnetic wave emission unit 8 and the pulse train electron beam 7 is incident, a coherent terahertz electromagnetic wave is generated, and it becomes possible to directly extract the terahertz electromagnetic wave having a single frequency. A fixed relationship holds between the angle of the diffraction grating 11 and the pulse train electron beam 7 and the angle of the electromagnetic wave beam 9 as shown in Equation (3).

Figure 2006190886
Figure 2006190886

ここで、qはパルス列電子ビーム7と回折格子11の成す角度、qは回折格子11と電磁波ビーム9との成す角度、Dは回折格子11の周期長、nは回折の次数1,2,3である。
図2(b)の周波数スペクトルに示すように、パルス列電子ビーム7には多数の線スペクトルが含まれており、回折格子を用いて、式(3)を満足する線スペクトルを取り出すことが可能となる。
なお回折格子に加速器からの高エネルギー電子を入射し、準単色の可視光を取り出す実験はすでに行われており、式(3)の関係で波長が選択されることが、実証されている(例えば非特許文献6)。
ただし、本発明では、非特許文献6と相違し、波長が電子ビームのバンチ長より長いテラヘルツ領域の回折格子からのコヒーレント遷移放射を利用する。
Here, q 1 is an angle formed by the pulse train electron beam 7 and the diffraction grating 11, q 2 is an angle formed by the diffraction grating 11 and the electromagnetic wave beam 9, D is a period length of the diffraction grating 11, and n is a diffraction order 1, 2. , 3.
As shown in the frequency spectrum of FIG. 2B, the pulse train electron beam 7 includes a large number of line spectra, and a line spectrum satisfying the expression (3) can be extracted using a diffraction grating. Become.
In addition, an experiment in which high-energy electrons from an accelerator are incident on the diffraction grating and quasi-monochromatic visible light is extracted has already been performed, and it has been demonstrated that the wavelength is selected in accordance with the relationship of Equation (3) (for example, Non-patent document 6).
However, in the present invention, unlike Non-Patent Document 6, coherent transition radiation from a diffraction grating in a terahertz region whose wavelength is longer than the bunch length of an electron beam is used.

式(3)を以下に詳述する。
電子ビームを回折格子に直接入射して、光を取り出すことは、すでに実験がなされ[非特許文献5]、可視光線で準単色な光が得られることが証明されており“Grating Transition Radiation”と呼ばれている。
図4のように、左からバンチした電子ビームが入射し、回折格子にて波長λの成分が取り出されているものとします。回折格子のピッチ(格子定数)をDとし、格子定数だけ離れた2点に入射する電子を考えます。
電子ビームの速度は光速より遅く、この上に乗っている波長λの密度成分の波長も短くβλとなっており、波数は数6の式(3.1)となる。
ここで、kは波長λの電磁波の波数である。回折格子による回折後の2本の波の位相差は2nπに等しく、数6の式(3.2)で表せる。
式(3.1)と(3.2)から式(3.3)すなわち数5の式(3)が得られる。
Equation (3) will be described in detail below.
Experiments have already been conducted to extract light by direct incidence of an electron beam on a diffraction grating [Non-Patent Document 5], and it has been proved that quasi-monochromatic light can be obtained with visible light, and “Grating Transition Radiation”. being called.
Assume that the electron beam bunched from the left is incident as shown in Fig. 4, and the component of wavelength λ is extracted by the diffraction grating. Let D be the pitch of the diffraction grating (lattice constant), and consider electrons incident on two points separated by the lattice constant.
The speed of the electron beam is slower than the speed of light, and the wavelength of the density component of the wavelength λ on the electron beam is short, βλ, and the wave number is expressed by Equation (3.1) of Equation 6.
Here, k 2 is the wave number of the electromagnetic wave of the wavelength λ. The phase difference between the two waves diffracted by the diffraction grating is equal to 2nπ, and can be expressed by Equation (3.2) in Equation 6.
From the equations (3.1) and (3.2), the equation (3.3), that is, the equation (3) of Formula 5 is obtained.

Figure 2006190886
Figure 2006190886

なお、回折格子を回転させると、式(3)の関係から波長が任意に選択され、これが電子ビームの密度変調の高調波に合致するとパワーが非常に大きくなる。すなわち、式(1.1)が成り立つと干渉効果によってパワーが非常に大きくなる。これが、この発明の有用な効果の1つである。   When the diffraction grating is rotated, the wavelength is arbitrarily selected from the relationship of the expression (3), and when this matches the harmonic of the density modulation of the electron beam, the power becomes very large. That is, when the formula (1.1) is established, the power becomes very large due to the interference effect. This is one of the useful effects of the present invention.

具体的な例として、電子銃1の加速電圧を100kV、γ=1.2、β=0.55、q=60度、q=30度、 D=0.1mm、n=1とすると波長0.107mmのテラヘルツ電磁波が選択される。 As a specific example, when the acceleration voltage of the electron gun 1 is 100 kV, γ = 1.2, β = 0.55, q 1 = 60 degrees, q 2 = 30 degrees, D = 0.1 mm, and n = 1. A terahertz electromagnetic wave having a wavelength of 0.107 mm is selected.

選択する線スペクトルの周波数は、電子銃1の加速電圧と回折格子11を回転し角度qを調整することで、式(3)に従って任意に決定できる。 The frequency of the line spectrum to be selected can be arbitrarily determined according to the equation (3) by adjusting the angle q 1 by rotating the acceleration voltage of the electron gun 1 and the diffraction grating 11.

上述したように、本発明は、大型の線型加速器を用いずに、電子銃1と1台の高周波空胴3という単純な構成で、短くバンチしたパルス列電子ビーム7をつくり、これを電磁波放射部8(単純平板8a、回折格子11)に当ててテラヘルツ電磁波9を発生させるものである。特に、回折格子11に、短くバンチしたパルス列電子ビーム7を入射すると、波長がバンチ長より長い成分(テラヘルツ)で非常に強度が高くなり、また回折格子によって1本の線スペクトルを選択的に取り出せる特徴がある。   As described above, the present invention produces a short-bunched pulse train electron beam 7 with a simple configuration of an electron gun 1 and one high-frequency cavity 3 without using a large linear accelerator, and this is used as an electromagnetic wave emission unit. 8 (simple flat plate 8a, diffraction grating 11) and terahertz electromagnetic wave 9 is generated. In particular, when a short bunch of pulse train electron beam 7 is incident on the diffraction grating 11, the intensity is very high with a component whose wavelength is longer than the bunch length (terahertz), and one line spectrum can be selectively extracted by the diffraction grating. There are features.

すなわち上述した本発明の装置及び方法によれば、電子銃1で発生した直線状の電子ビーム2を、高周波空胴3に通し、電子ビームの進行速度を高周波電界にて周期的に速度変調して、つづいて一定距離を走行させる間に、速度変調によって電子が周期的に集群し、時間的に短パルス列のパルス列電子ビーム7を形成することができる。
このパルス列電子ビーム7にはマイクロ波周波数の高次周波数が多数含まれているので、これを電磁波放射部8に通し、パルス列電子ビーム7からテラヘルツ周波数のテラヘルツ電磁波9を取り出すことができる。
従って本発明の構成によれば、安定したマイクロ波周波数帯の信号を利用し、電子ビーム2を用いて、高次高調波を発生させ、テラヘルツ周波数9の電磁波を発生させることにより、周波数と振幅が極めて安定したテラヘルツ電磁波を、広い周波数帯域に渡って、小型の装置にて、効率良く発生させることができる。
That is, according to the apparatus and method of the present invention described above, the linear electron beam 2 generated by the electron gun 1 is passed through the high-frequency cavity 3, and the traveling speed of the electron beam is periodically modulated by a high-frequency electric field. Then, while traveling a certain distance, electrons are periodically gathered by velocity modulation, and a pulse train electron beam 7 having a short pulse train can be formed in terms of time.
Since the pulse train electron beam 7 includes a number of higher-order microwave frequencies, the terahertz electromagnetic wave 9 having the terahertz frequency can be extracted from the pulse train electron beam 7 through the electromagnetic wave radiation unit 8.
Therefore, according to the configuration of the present invention, by using a signal in a stable microwave frequency band, using the electron beam 2, high-order harmonics are generated, and an electromagnetic wave having a terahertz frequency 9 is generated. However, an extremely stable terahertz electromagnetic wave can be generated efficiently with a small device over a wide frequency band.

なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to the Example and embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明のテラヘルツ電磁波発生装置の全体構成図である。1 is an overall configuration diagram of a terahertz electromagnetic wave generator of the present invention. 本発明のパルス列電子ビームの波形図とその周波数スペクトル図である。It is a waveform diagram of the pulse train electron beam of the present invention and its frequency spectrum diagram. 本発明による電子ビームの速度変調の説明図である。It is explanatory drawing of the velocity modulation of the electron beam by this invention. 本発明の実施例2の電磁放射部の構成図である。It is a block diagram of the electromagnetic radiation part of Example 2 of this invention.

符号の説明Explanation of symbols

1 電子銃
2 電子ビーム
3 高周波空胴
4 基準周波数発生器
5 高周波増幅器
6 速度変調を受けた電子ビーム
7 パルス列電子ビーム
8 電磁波放射部、8a 単純平板(単純な金属平板)、
9 電磁波ビーム
10 電子コレクター
11 回折格子
DESCRIPTION OF SYMBOLS 1 Electron gun 2 Electron beam 3 High frequency cavity 4 Reference frequency generator 5 High frequency amplifier 6 Speed-modulated electron beam 7 Pulse train electron beam 8 Electromagnetic wave emission part, 8a Simple flat plate (simple metal flat plate),
9 Electromagnetic beam 10 Electron collector 11 Diffraction grating

Claims (8)

真空中に直線状の電子ビームを発生する電子銃と、
該電子ビームを高周波電界によって速度変調し、つづいて一定距離をドリフト走行させることにより短パルス列の電子ビームとする高周波空胴と、
前記短パルス列の電子ビームから所定の周波数の電磁波ビームを選択的に放射させる電磁波放射部と、を備えたことを特徴とするテラヘルツ電磁波発生装置。
An electron gun that generates a linear electron beam in a vacuum;
A high-frequency cavity in which the electron beam is velocity-modulated by a high-frequency electric field, and then drifted over a certain distance to form a short-pulse train electron beam;
An terahertz electromagnetic wave generator comprising: an electromagnetic wave radiation unit that selectively emits an electromagnetic wave beam having a predetermined frequency from the electron beam of the short pulse train.
前記電磁波放射部は単純平板であり、これにより、前記所定の周波数の電磁波としてピコ秒以下のパルス幅をもつテラヘルツ衝撃波を発生させる、ことを特徴とする請求項1に記載のテラヘルツ電磁波発生装置。   2. The terahertz electromagnetic wave generation device according to claim 1, wherein the electromagnetic wave radiation unit is a simple flat plate, and thereby generates a terahertz shock wave having a pulse width of picosecond or less as the electromagnetic wave having the predetermined frequency. 前記電磁波放射部は回折格子であり、これにより、前記所定の周波数の電磁波として単一周波数のテラヘルツ電磁波を発生する、ことを特徴とする請求項1に記載のテラヘルツ電磁波発生装置。   2. The terahertz electromagnetic wave generation device according to claim 1, wherein the electromagnetic wave radiation unit is a diffraction grating, and thereby generates a single frequency terahertz electromagnetic wave as the electromagnetic wave of the predetermined frequency. 前記電子銃の電子ビームをON/OFFする電子ビームスイッチを備え、これによりテラヘルツ電磁波を高速でON/OFFする、ことを特徴とする請求項1に記載のテラヘルツ電磁波発生装置。   The terahertz electromagnetic wave generator according to claim 1, further comprising an electron beam switch for turning on / off an electron beam of the electron gun, thereby turning on / off the terahertz electromagnetic wave at high speed. 真空中に直線状の電子ビームを発生する電子ビーム発生ステップと、
該電子ビームを高周波電界によって速度変調し、つづいて一定距離をドリフト走行させることにより短パルス列の電子ビームとする高周波空胴ステップと、
前記短パルス列の電子ビームから所定の周波数の電磁波ビームを選択的に放射させる電磁波放射ステップと、を有することを特徴とするテラヘルツ電磁波発生方法。
An electron beam generating step for generating a linear electron beam in a vacuum;
A high-frequency cavity step in which the electron beam is velocity-modulated by a high-frequency electric field, and then drifted over a certain distance to form a short-pulse train electron beam;
An electromagnetic wave emission step of selectively emitting an electromagnetic wave beam of a predetermined frequency from the electron beam of the short pulse train.
前記電磁波放射ステップにおいて、単純平板を使用し、ピコ秒以下のパルス幅をもつ、テラヘルツヘルツ衝撃波を発生させる、ことを特徴とする請求項5に記載のテラヘルツ電磁波発生方法。   6. The terahertz electromagnetic wave generation method according to claim 5, wherein, in the electromagnetic wave radiation step, a terahertz shock wave having a pulse width of picosecond or less is generated using a simple flat plate. 前記電磁波放射ステップにおいて、回折格子を使用し、単一周波数のテラヘルツ電磁波を発生させる、ことを特徴とする請求項5に記載のテラヘルツ電磁波発生方法。   6. The terahertz electromagnetic wave generation method according to claim 5, wherein in the electromagnetic wave emission step, a single frequency terahertz electromagnetic wave is generated using a diffraction grating. 前記電子ビーム発生ステップにおいて、電子ビームをON/OFFして、テラヘルツ電磁波を高速でON/OFFする、ことを特徴とする請求項5に記載のテラヘルツ電磁波発生方法。


6. The terahertz electromagnetic wave generation method according to claim 5, wherein in the electron beam generation step, the electron beam is turned on / off to turn on / off the terahertz electromagnetic wave at high speed.


JP2005002670A 2005-01-07 2005-01-07 Terahertz electromagnetic wave generator and method therefor Pending JP2006190886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002670A JP2006190886A (en) 2005-01-07 2005-01-07 Terahertz electromagnetic wave generator and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002670A JP2006190886A (en) 2005-01-07 2005-01-07 Terahertz electromagnetic wave generator and method therefor

Publications (1)

Publication Number Publication Date
JP2006190886A true JP2006190886A (en) 2006-07-20

Family

ID=36797804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002670A Pending JP2006190886A (en) 2005-01-07 2005-01-07 Terahertz electromagnetic wave generator and method therefor

Country Status (1)

Country Link
JP (1) JP2006190886A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500862A (en) * 1999-05-25 2003-01-07 ドイッチェ テレコム アーゲー Small terahertz radiation source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500862A (en) * 1999-05-25 2003-01-07 ドイッチェ テレコム アーゲー Small terahertz radiation source

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010007494, T. Tomimasu, et al, "Operation of FIR−and UV−FEL facilities and FEL beam sharing to user’s rooms at the FELI", Proceedings of the 1997 Particle Accelerator Conference, 19970512, Vol.1, pp.730−732 *
JPN7010000428, P. Henri, et al, "Grating transition radiation: A source of quasimonochromatic radiation", PHYSICAL REVIEW E, 199911, Vol.60, No.5, pp.6214−6217 *
JPN7010000429, Pamela Kung, et al, "Generation and Measurement of 50−fs (rms) Electron Pulses", Physical Review Letters, 19940815, Vol. 73, No.7, pp.967−970 *

Similar Documents

Publication Publication Date Title
Gallerano et al. Overview of terahertz radiation sources
Antipov et al. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide
Zhang et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam
Neumann et al. Terahertz laser modulation of electron beams
Kawase et al. The high-power operation of a terahertz free-electron laser based on a normal conducting RF linac using beam conditioning
Wang et al. Analysis and simulation of a gigawatt-class Ka-band radial transit time oscillator
Morimoto Attosecond electron-beam technology: a review of recent progress
Schoessow et al. High power radio frequency generation by relativistic beams in dielectric structures
Braunmueller et al. Novel diagnostic for precise measurement of the modulation frequency of Seeded Self-Modulation via Coherent Transition Radiation in AWAKE
Liang et al. Selective excitation and control of coherent terahertz Smith-Purcell radiation by high-intensity period-tunable train of electron micro-bunches
Zhang et al. Generation of frequency-chirped density modulation electron beam for producing ultrashort THz radiation pulse
Glyavin et al. Terahertz gyrotrons with unique parameters
Palitsin et al. 75 GHz relativistic surface-wave oscillator of planar geometry
JP2006190886A (en) Terahertz electromagnetic wave generator and method therefor
Pierce Millimeter waves
Gallerano et al. The physics of and prospects for THz-Compact FELs
Rohrbach et al. THz-driven split ring resonator undulator
Tavousi et al. 3-D analysis of terahertz frequency multiplier excited due to interaction of convection electron beam and surface waves (Smith-Purcell effect)
Nie Wakefields in THz cylindrical dielectric lined waveguides driven by femtosecond electron bunches
Denisov et al. Experimental setup for studying induced backward scattering of microwaves by a subnanosecond high-current electron beam
Kehs et al. Free electron laser pumped by a powerful traveling electromagnetic wave
Srivastava et al. Simplified analytical approach of designing slow-wave-structure for a compact, high power, terahertz source for spectroscopy, imaging and radar
Asadian et al. Two-color terahertz Radiation Emission in Quasi-Periodic Smith–Purcell Structures
Epp et al. Gigahertz streaking and compression of low-energy electron pulses
Wang et al. Study on a novel Smith–Purcell free-electron laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100616