JP2006185981A - Method of manufacturing dust core material having high strength - Google Patents

Method of manufacturing dust core material having high strength Download PDF

Info

Publication number
JP2006185981A
JP2006185981A JP2004375225A JP2004375225A JP2006185981A JP 2006185981 A JP2006185981 A JP 2006185981A JP 2004375225 A JP2004375225 A JP 2004375225A JP 2004375225 A JP2004375225 A JP 2004375225A JP 2006185981 A JP2006185981 A JP 2006185981A
Authority
JP
Japan
Prior art keywords
heat treatment
iron powder
core material
powder
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004375225A
Other languages
Japanese (ja)
Inventor
Kazunori Igarashi
和則 五十嵐
Masahisa Miyahara
正久 宮原
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2004375225A priority Critical patent/JP2006185981A/en
Publication of JP2006185981A publication Critical patent/JP2006185981A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dust core material having a high strength. <P>SOLUTION: Phosphate coated iron powder, silicone resin coated iron powder, or silicone resin-phosphate coated iron powder are compressively molded, and are then heat-treated to fabricate the dust core material. The heat treatment includes a primary heat treatment process of heating the molding at 451-600°C, and a secondary heat treatment process of heating the molding at 150-350°C which is conducted after the primary heat treatment process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、高強度を有する圧粉磁心材の製造方法に関するものであり、この方法で製造した圧粉磁心材はモータ、アクチュエータ、磁気センサ、リアクトルなどの各種電気または電子部品の製造に使用されるものである。   The present invention relates to a method for producing a dust core material having high strength, and the dust core material produced by this method is used in the production of various electric or electronic components such as motors, actuators, magnetic sensors, and reactors. Is.

一般に、圧粉磁心は各種電磁機器の部品として使用されており、この圧粉磁心材は、鉄粉末または鉄粉末の表面にリン酸塩を被覆した鉄粉末(以下、リン酸塩皮膜被覆鉄粉末という)を原料粉末として使用されることは知られており、その中でもリン酸皮膜被覆鉄粉末が最も多く使用されている。かかるリン酸塩性皮膜被覆鉄粉末は、その充填密度を高めるために、結合剤と共に可能な限り高圧で圧縮成形する。しかし、高圧圧縮成形して得られた圧粉磁心材は、圧縮成形時にリン酸塩性皮膜被覆鉄粉末の内部の鉄粉末に圧縮歪が生成し、軟磁性磁気特性が低下し、材料の特性を十分に発揮させることができなくなる。そのために、圧縮生成して得られた圧粉磁心材料は熱処理することにより歪みを開放し、軟磁性特性を回復させるための熱処理が施されている。   In general, a dust core is used as a part of various electromagnetic devices. This dust core material is made of iron powder or iron powder having a surface coated with phosphate (hereinafter referred to as phosphate coating-coated iron powder). Is known as a raw material powder, and among them, phosphate-coated iron powder is most frequently used. Such phosphate film-coated iron powder is compression molded with a binder at as high a pressure as possible to increase its packing density. However, the powder magnetic core material obtained by high-pressure compression molding produces compression strain in the iron powder inside the phosphate film-coated iron powder during compression molding, resulting in decreased soft magnetic properties and material properties. Cannot be fully exerted. For this purpose, the powder magnetic core material obtained by compression generation is subjected to a heat treatment to release the strain and recover the soft magnetic properties by heat treatment.

例えば、鉄粉末またはリン酸塩性皮膜被覆鉄粉末に熱可塑性ポリイミド樹脂を被覆した複合粉末を作製し、この複合粉末を加圧成形して圧粉体を作製し、この圧粉体を300〜450℃に加熱することにより熱処理し、この熱処理した圧粉磁心材を150〜320℃に加熱して安定化熱処理することにより圧粉磁心材を製造する方法が記載されている(特許文献1参照)。
特開2002‐246219号公報
For example, a composite powder in which a thermoplastic polyimide resin is coated on iron powder or phosphate film-coated iron powder is prepared, and the composite powder is pressure-molded to produce a green compact. A method is described in which a heat treatment is performed by heating to 450 ° C., and the heat treated dust core material is heated to 150 to 320 ° C. and subjected to stabilization heat treatment to produce a dust core material (see Patent Document 1). ).
JP 2002-246219 A

しかし、この従来法により得られた圧粉磁芯材は強度が十分でなく、なお一層の高強度を有する圧粉磁心材の開発が求められていた。   However, the dust core material obtained by this conventional method has insufficient strength, and there has been a demand for the development of a dust core material having even higher strength.

そこで、本発明者等は、一層の高強度を有する圧粉磁心材を製造すべく研究を行った結果、
前記リン酸塩皮膜被覆鉄粉末、鉄粉末にシリコーンレジンをコーティングした鉄粉末(以下、シリコーンレジン皮膜被覆鉄粉末という)またはリン酸塩皮膜被覆鉄粉末にシリコーンレジンをコーティングした鉄粉末(以下、シリコーンレジン−リン酸塩皮膜被覆鉄粉末という)を圧縮成形して得られた圧粉体に、温度:451〜600℃で加熱する一次熱処理を施した後、温度:150〜350℃で加熱する二次熱処理を施すことにより得られた圧粉磁心材は、従来の方法で得られた圧粉磁心材に比べて機械的強度が大幅に向上する、という研究結果が得られたのである。
Therefore, the present inventors conducted research to produce a dust core material having higher strength,
Iron phosphate powder coated iron powder (hereinafter referred to as “silicone resin coated iron powder”) or phosphate powder coated iron powder coated with silicone resin (hereinafter “silicone”) The green compact obtained by compression molding (resin-phosphate film-coated iron powder) is subjected to a primary heat treatment at a temperature of 451 to 600 ° C., and then heated at a temperature of 150 to 350 ° C. The research result that the mechanical strength of the dust core material obtained by performing the next heat treatment is significantly improved as compared with the dust core material obtained by the conventional method was obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)リン酸塩皮膜被覆鉄粉末を圧縮成形し、熱処理を施して圧粉磁心材を製造する方法において、前記熱処理は、温度:451〜600℃で加熱する一次熱処理工程およびその後温度:150〜350℃で加熱する二次熱処理工程を含む高強度を有する圧粉磁心材の製造方法、
(2)シリコーンレジン皮膜被覆鉄粉末を圧縮成形し、熱処理を施して圧粉磁心材料を製造する方法において、前記熱処理は、温度:451〜600℃で加熱する一次熱処理工程およびその後温度:150〜350℃で加熱する二次熱処理工程を含む高強度を有する圧粉磁心材の製造方法、
(3)シリコーンレジン−リン酸塩皮膜被覆鉄粉末を圧縮成形し、熱処理を施して圧粉磁心材料を製造する方法において、前記熱処理は、温度:451〜600℃で加熱する一次熱処理工程およびその後温度:150〜350℃で加熱する二次熱処理工程を含む高強度を有する圧粉磁心材の製造方法、に特徴を有するものである。
The present invention was made based on the results of such research,
(1) In a method for producing a powder magnetic core material by compression-molding phosphate film-coated iron powder and performing a heat treatment, the heat treatment includes a primary heat treatment step of heating at a temperature of 451 to 600 ° C. and a subsequent temperature of 150. A method for producing a powder magnetic core material having high strength including a secondary heat treatment step of heating at ~ 350 ° C,
(2) In a method for producing a powder magnetic core material by compression-molding a silicone resin film-coated iron powder and performing a heat treatment, the heat treatment is performed at a primary heat treatment step of heating at a temperature of 451 to 600 ° C., and thereafter at a temperature of 150 to A method for producing a powder magnetic core material having a high strength including a secondary heat treatment step of heating at 350 ° C.,
(3) In a method of compressing and molding a silicone resin-phosphate coating-coated iron powder and performing a heat treatment to produce a powder magnetic core material, the heat treatment includes a primary heat treatment step of heating at a temperature of 451 to 600 ° C. and thereafter Temperature: It has the characteristics in the manufacturing method of the powder magnetic core material which has the high intensity | strength including the secondary heat processing process heated at 150-350 degreeC.

前記リン酸塩皮膜被覆鉄粉末、シリコーンレジン皮膜被覆鉄粉末またはシリコーンレジン−リン酸塩皮膜被覆鉄粉末を圧縮成形して圧粉体を作製するには、前記リン酸塩皮膜被覆鉄粉末、シリコーンレジン皮膜被覆鉄粉末またはシリコーンレジン−リン酸塩皮膜被覆鉄粉末を通常の金型に充填し、この充填されたリン酸塩皮膜被覆鉄粉末、シリコーンレジン皮膜被覆鉄粉末またはシリコーンレジン−リン酸塩皮膜被覆鉄粉末を600〜1500MPaで圧縮成形する。圧縮成形圧力が600MPa未満では十分な密度が得られないからであり、一方、1500MPaを越えると比抵抗が低下したり、金型強度の低下により寸法精度が大幅に低下するので好ましくないからである。
このようにして作製した圧粉体を前述の温度:451〜600℃に加熱する一次熱処理および温度:150〜350℃加熱する二次熱処理を行うが、この時の一次熱処理工程における加熱時間は10〜180分が好ましく、前記二次熱処理工程における加熱時間は1〜100時間が好ましい。
前記一次熱処理の前にバインダ焙焼、潤滑剤焙焼などの目的で451℃未満の熱処理を施しても良い。また前記一次熱処理工程と前記二次熱処理工程の間にまたは前記二次熱処理工程後に150℃未満の熱処理を施しても良いが、これによる材料特性の向上は見られず、不経済である。さらに前記一次熱処理工程と前記二次熱処理工程は別個に行っても良いし、連続で行っても良い。
シリコーンレジンはそれ自体樹脂であるが、300℃から分解が始まり、分解後は無機絶縁物であるSiOとなるので、一次熱処理後の圧粉磁心材の粉末粒間にSiOを形成するための前駆体として作用する。
In order to produce a green compact by compression-molding the phosphate film-coated iron powder, the silicone resin film-coated iron powder or the silicone resin-phosphate film-coated iron powder, the phosphate film-coated iron powder, silicone Resin film-coated iron powder or silicone resin-phosphate film-coated iron powder is filled in a normal mold, and the filled phosphate film-coated iron powder, silicone resin film-coated iron powder or silicone resin-phosphate is filled The film-coated iron powder is compression molded at 600-1500 MPa. This is because if the compression molding pressure is less than 600 MPa, a sufficient density cannot be obtained. On the other hand, if it exceeds 1500 MPa, the specific resistance is lowered or the dimensional accuracy is greatly lowered due to a decrease in mold strength, which is not preferable. .
The green compact thus produced is subjected to the primary heat treatment for heating to the aforementioned temperature: 451 to 600 ° C. and the secondary heat treatment for heating to the temperature: 150 to 350 ° C. The heating time in this primary heat treatment step is 10 The heating time in the secondary heat treatment step is preferably 1 to 100 hours.
Prior to the primary heat treatment, a heat treatment of less than 451 ° C. may be performed for the purpose of binder roasting, lubricant roasting, and the like. Further, heat treatment at a temperature of less than 150 ° C. may be performed between the primary heat treatment step and the secondary heat treatment step or after the secondary heat treatment step, but this does not improve the material properties and is uneconomical. Furthermore, the primary heat treatment step and the secondary heat treatment step may be performed separately or continuously.
Silicone resin itself is a resin, but it begins to decompose at 300 ° C. and becomes SiO 2 , which is an inorganic insulator after decomposition, so that SiO 2 is formed between the powder particles of the powder magnetic core material after the primary heat treatment. Acts as a precursor of

この発明の一次熱処理工程における加熱温度を451〜600℃にしたのは、451℃未満では二次熱処理を経ても得られる強度が不十分であり、一方、600℃を越えて加熱すると比抵抗が低下するようになるので好ましくないからである。またこの発明の二次熱処理工程における加熱温度を150〜350℃にしたのは、150℃未満で加熱しても二次熱処理による強度向上効果が不十分であるからであり、一方、350℃を越えて加熱すると、時間と共に比抵抗が低下するようになるので好ましくないからである。   The reason why the heating temperature in the primary heat treatment step of the present invention is set to 451 to 600 ° C. is that if it is less than 451 ° C., the strength obtained even after the secondary heat treatment is insufficient. This is because it is not preferable because it decreases. The reason why the heating temperature in the secondary heat treatment step of the present invention is set to 150 to 350 ° C. is that the effect of improving the strength by the secondary heat treatment is insufficient even when heated at less than 150 ° C. This is because heating beyond this is not preferable because the specific resistance decreases with time.

この発明により製造した圧粉磁心材は強度を一層向上させることができることから、この発明により製造した圧粉磁心材を使用したモータ、アクチュエータ、磁気センサ、リアクトルなどの各種電気または電子部品を一層薄肉化して軽量化することができ、さらに小型化することができる。   Since the powder magnetic core material manufactured according to the present invention can further improve the strength, various electric or electronic parts such as motors, actuators, magnetic sensors, reactors and the like using the powder magnetic core material manufactured according to the present invention are made thinner. Can be reduced in weight and further reduced in size.

実施例
平均粒径:100μmの純鉄粉末を用意し、この純鉄粉末にリン酸処理を施すことにより純鉄粉末の表面に平均厚さ:30nmのリン酸皮膜を形成したリン酸皮膜形成鉄粉末(以下、原料粉末Aという)および純鉄粉末の表面に平均厚さ:80nmのリン酸皮膜を形成したリン酸皮膜形成鉄粉末(以下、原料粉末Bという)を作製した。
また、前記純鉄粉末に0.3質量%の液状シリコーン樹脂を添加し、混合することにより純鉄粉末の表面に平均厚さ:100nmのシリコーンレジン樹脂皮膜を有するシリコーンレジン皮膜被覆鉄粉末(以下、原料粉末Cという)を作製した。
さらに前記原料粉末Aに0.3質量%の液状シリコーン樹脂を添加し、混合することにより純鉄粉末の表面に平均厚さ:30nmのリン酸皮膜および平均厚さ:100nmのシリコーンレジン樹脂皮膜を有するシリコーンレジン−リン酸皮膜被覆鉄粉末(以下、原料粉末Dいう)を作製した。
Example Pure iron powder having an average particle diameter of 100 μm was prepared, and phosphoric acid film-forming iron in which a phosphoric acid film having an average thickness of 30 nm was formed on the surface of the pure iron powder by subjecting the pure iron powder to phosphoric acid treatment. A phosphoric acid film-forming iron powder (hereinafter referred to as raw material powder B) in which a phosphoric acid film having an average thickness of 80 nm was formed on the surface of powder (hereinafter referred to as raw material powder A) and pure iron powder was produced.
Further, by adding 0.3% by mass of a liquid silicone resin to the pure iron powder and mixing it, a silicone resin film-coated iron powder having a silicone resin resin film having an average thickness of 100 nm on the surface of the pure iron powder (hereinafter referred to as “the pure iron powder”) A raw material powder C).
Furthermore, 0.3 mass% liquid silicone resin was added to the raw material powder A and mixed to form a phosphoric acid film with an average thickness of 30 nm and a silicone resin resin film with an average thickness of 100 nm on the surface of the pure iron powder. A silicone resin-phosphate film-coated iron powder (hereinafter referred to as raw material powder D) was prepared.

これら原料粉末A〜Dを壁面に純滑剤を塗布した金型に充填し、980MPaの成形圧力で成形することにより外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング状成形体および長さ:60mm、幅:10mm、厚さ:5mmの寸法を有するバー状成形体を作製した。これらリング状成形体およびバー状成形体を表1〜2に示される条件で一次熱処理したのち二次熱処理する熱処理を施すことにより本発明法1〜16および比較法1〜4を実施し、それによって圧粉磁芯材からなるリング状試験片およびバー状試験片を作製した。
これらリング状試験片の水中密度を測定した後、巻線を施し、B−Hループトレーサにより磁界10kA/mにおける磁束密度B10kA/mを、B−Hアナライザにより励磁磁束密度1.5T、周波数50Hzにおける鉄損W1.5/50をそれぞれ測定し、その測定結果を表1〜2に示した。
また、バー状試験片において四端子法により比抵抗を、スパン45mmの三点曲げにより抗折強度をそれぞれ測定し、その測定結果を表1〜2に示した。
These raw material powders A to D are filled in a mold having a wall surface coated with a pure lubricant, and molded at a molding pressure of 980 MPa, thereby forming a ring-shaped molded body having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm. And the bar-shaped molded object which has a dimension of length: 60mm, width: 10mm, thickness: 5mm was produced. The ring-shaped molded body and bar-shaped molded body were subjected to primary heat treatment under the conditions shown in Tables 1-2, and then subjected to secondary heat treatment to perform the present invention methods 1-16 and comparative methods 1-4, Thus, a ring-shaped test piece and a bar-shaped test piece made of a dust core material were produced.
After measuring the underwater density of these ring-shaped test pieces, winding was performed, the magnetic flux density B 10 kA / m at a magnetic field of 10 kA / m was measured by a BH loop tracer, the excitation magnetic flux density 1.5 T, frequency by a BH analyzer. The iron loss W 1.5 / 50 at 50 Hz was measured, and the measurement results are shown in Tables 1 and 2.
Further, specific resistance of the bar-shaped test piece was measured by a four-terminal method, and bending strength was measured by three-point bending with a span of 45 mm, and the measurement results are shown in Tables 1 and 2.

従来例
実施例で用意した原料粉末Aにポリフェニレンサルファイド樹脂粉末を0.6質量%添加し混合しすることにより混合粉末を作製し、この混合粉末を常温で金型に充填し、圧力:980MPaで圧縮成形して外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング状成形体および長さ:60mm、幅:10mm、厚さ:5mmの寸法を有するバー状成形体を作製した。これらリング状成形体およびバー状成形体を表2に示される条件で一次熱処理したのち二次熱処理する熱処理を施すことにより従来法1を実施し、それにより圧粉磁芯材からなるリング状試験片およびバー状試験片を作製した。これらリング状試験片の水中密度を測定した後、巻線を施し、B−Hループトレーサにより磁界10kA/mにおける磁束密度B10kA/mをB−Hアナライザにより励磁磁束密度1.5T、周波数50Hzにおける鉄損W1.5/50をそれぞれ測定し、その測定結果を表2に示した。
また、バー状試験片において四端子法により比抵抗を、スパン45mmの三点曲げにより抗折強度をそれぞれ測定し、その測定結果を表2に示した。
A mixed powder is prepared by adding and mixing 0.6% by mass of polyphenylene sulfide resin powder to the raw material powder A prepared in the conventional example, and filling the mixed powder into a mold at room temperature, at a pressure of 980 MPa. A ring-shaped molded body having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm and bar-shaped molded body having dimensions of length: 60 mm, width: 10 mm, thickness: 5 mm were produced by compression molding. . The conventional method 1 is carried out by subjecting these ring-shaped compacts and bar-shaped compacts to a primary heat treatment under the conditions shown in Table 2 followed by a secondary heat treatment, whereby a ring-shaped test comprising a dust core material. Pieces and bar-like test pieces were prepared. After measuring the underwater density of these ring-shaped test pieces, winding was performed, and the magnetic flux density B 10 kA / m at a magnetic field of 10 kA / m was applied by a B-H loop tracer, and the excitation magnetic flux density 1.5 T, frequency 50 Hz by a B-H analyzer. The iron loss W 1.5 / 50 was measured, and the measurement results are shown in Table 2.
In addition, specific resistance was measured on the bar-shaped test piece by the four probe method, and bending strength was measured by three-point bending with a span of 45 mm, and the measurement results are shown in Table 2.

Figure 2006185981
Figure 2006185981

Figure 2006185981
Figure 2006185981

表1〜2に示される結果から、本発明法1〜17で作製した試験片は、従来法1で作製した試験片に比べて比抵抗はほぼ同じであるが、特に抗折強度が優れていることが分かる。また、この発明の条件から外れた比較法1〜4で作製した試験片は一部好ましくない特性が現れることがわかる。   From the results shown in Tables 1 and 2, the test pieces produced by the present invention methods 1 to 17 have substantially the same specific resistance as the test pieces produced by the conventional method 1, but the bending strength is particularly excellent. I understand that In addition, it can be seen that some of the specimens produced by Comparative Methods 1 to 4 deviating from the conditions of the present invention exhibit undesirable characteristics.

Claims (4)

リン酸塩を被覆した鉄粉末(以下、リン酸塩皮膜被覆鉄粉末という)を圧縮成形し、熱処理を施して圧粉磁心材を製造する方法において、前記熱処理は、温度:451〜600℃で加熱する一次熱処理工程およびその後温度:150〜350℃で加熱する二次熱処理工程を含むことを特徴とする高強度を有する圧粉磁心材の製造方法。 In a method for producing a powder magnetic core material by compression-molding iron powder coated with phosphate (hereinafter referred to as phosphate coating-coated iron powder) and performing heat treatment, the heat treatment is performed at a temperature of 451 to 600 ° C. A method for producing a dust core material having high strength, comprising a primary heat treatment step for heating and a secondary heat treatment step for heating at a temperature of 150 to 350 ° C. 鉄粉末にシリコーンレジンをコーティングした鉄粉末(以下、シリコーンレジン皮膜被覆鉄粉末という)を圧縮成形し、熱処理を施して圧粉磁心材料を製造する方法において、前記熱処理は、温度:451〜600℃で加熱する一次熱処理工程およびその後温度:150〜350℃で加熱する二次熱処理工程を含むことを特徴とする高強度を有する圧粉磁心材の製造方法。 In a method for producing a powder magnetic core material by compression-molding iron powder obtained by coating an iron powder with a silicone resin (hereinafter referred to as “silicone resin-coated iron powder”), the heat treatment is performed at a temperature of 451 to 600 ° C. A method for producing a high-strength powder magnetic core material, comprising a primary heat treatment step of heating at 150 ° C. and a secondary heat treatment step of heating at a temperature of 150 to 350 ° C. リン酸塩皮膜被覆鉄粉末にシリコーンレジンをコーティングした鉄粉末(以下、シリコーンレジン−リン酸塩皮膜被覆鉄粉末という)を圧縮成形し、熱処理を施して圧粉磁心材料を製造する方法において、前記熱処理は、温度:451〜600℃で加熱する一次熱処理工程およびその後温度:150〜350℃で加熱する二次熱処理工程を含むことを特徴とする高強度を有する圧粉磁心材の製造方法。 In the method for producing a powder magnetic core material by compressing and molding an iron powder obtained by coating a phosphate resin-coated iron powder with a silicone resin (hereinafter referred to as “silicone resin-phosphate film-coated iron powder”), The heat treatment includes a primary heat treatment step of heating at a temperature of 451 to 600 ° C. and a secondary heat treatment step of heating at a temperature of 150 to 350 ° C., and a method for producing a dust core material having high strength. 請求項1、2または3記載の方法で製造した磁気特性に優れ、高強度を有する圧粉磁心材。 A dust core material having excellent magnetic properties and high strength produced by the method according to claim 1, 2 or 3.
JP2004375225A 2004-12-27 2004-12-27 Method of manufacturing dust core material having high strength Withdrawn JP2006185981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375225A JP2006185981A (en) 2004-12-27 2004-12-27 Method of manufacturing dust core material having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375225A JP2006185981A (en) 2004-12-27 2004-12-27 Method of manufacturing dust core material having high strength

Publications (1)

Publication Number Publication Date
JP2006185981A true JP2006185981A (en) 2006-07-13

Family

ID=36738891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375225A Withdrawn JP2006185981A (en) 2004-12-27 2004-12-27 Method of manufacturing dust core material having high strength

Country Status (1)

Country Link
JP (1) JP2006185981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060895A1 (en) * 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2010225673A (en) * 2009-03-19 2010-10-07 Kobe Steel Ltd Mixed powder for dust core, and method of manufacturing dust core using mixed the powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060895A1 (en) * 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2010225673A (en) * 2009-03-19 2010-10-07 Kobe Steel Ltd Mixed powder for dust core, and method of manufacturing dust core using mixed the powder

Similar Documents

Publication Publication Date Title
EP2458601B1 (en) Soft magnetic powdered core and method for producing same
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
TWI546827B (en) Soft magnetic powder, method for producing soft magnetic component and component produced
US20070264521A1 (en) Soft Magnetic Material, Powder Magnetic Core, Method for Manufacturing Soft Magnetic Material, and Method for Manufacturing Powder Magnetic Core
JP2009070884A (en) Reactor core, manufacturing method therefor, and reactor
KR20150062140A (en) Dust core using soft magnetic powder and method of manufacturing the dust core
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
KR101639960B1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
JP2012238866A (en) Core for reactor, method of manufacturing the same, and reactor
JP6477124B2 (en) Soft magnetic metal dust core, and reactor or inductor
KR101436720B1 (en) Powder mixture for dust cores
JP6609255B2 (en) Soft magnetic powder mixture
JP2006185981A (en) Method of manufacturing dust core material having high strength
JP5924675B2 (en) Method for producing nanocrystalline magnetic material
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2010251437A (en) Dust core
WO2019044467A1 (en) Method for manufacturing dust core and raw material powder for dust core
JP2018142642A (en) Powder magnetic core
JP5568983B2 (en) Manufacturing method of powder core
JP5431490B2 (en) Manufacturing method of dust core
JP2008088459A (en) Method of manufacturing complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance
JP7254449B2 (en) Soft magnetic materials, dust cores, and inductors
JP2009038256A (en) Iron-based soft magnetic powder for dust core, and dust core
WO2016043026A1 (en) Method for producing composite material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304