JP2006185711A - Fuel composition - Google Patents

Fuel composition Download PDF

Info

Publication number
JP2006185711A
JP2006185711A JP2004376986A JP2004376986A JP2006185711A JP 2006185711 A JP2006185711 A JP 2006185711A JP 2004376986 A JP2004376986 A JP 2004376986A JP 2004376986 A JP2004376986 A JP 2004376986A JP 2006185711 A JP2006185711 A JP 2006185711A
Authority
JP
Japan
Prior art keywords
fuel composition
fuel
anode
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376986A
Other languages
Japanese (ja)
Inventor
Atsushi Okamura
淳志 岡村
Takaaki Hashimoto
高明 橋本
Kuninori Miyazaki
邦典 宮碕
Noboru Sugishima
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2004376986A priority Critical patent/JP2006185711A/en
Publication of JP2006185711A publication Critical patent/JP2006185711A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel composition supplied to an anode of a low temperature fuel cell suppressing by-production of CO caused by electrochemical reaction in the anode of the low temperature fuel cell and effectively preventing catalyst poisoning by CO. <P>SOLUTION: Oxygen concentration dissolved in the fuel composition supplied to the anode of the low temperature fuel cell is prescribed to 0.01-0.25 cm<SP>3</SP>/cm<SP>3</SP>(fuel composition). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料組成物、詳しくは低温型燃料電池のアノードに供給する燃料組成物に関する。   The present invention relates to a fuel composition, and more particularly to a fuel composition supplied to an anode of a low-temperature fuel cell.

メタノールなどの含酸素炭化水素化合物を燃料とした、直接メタノール型燃料電池(DMFC)などの低温型燃料電池は、簡易電力供給源として広く研究されている。この低温型燃料電池のアノードでは、燃料である含酸素炭化水素の電気化学的反応により一酸化炭素(CO)が副生し、アノードとして用いる触媒を被毒することは一般によく知られているところであり、この問題を解決するために種々の方法が提案されている(例えば、特許文献1)。   Low-temperature fuel cells such as direct methanol fuel cells (DMFC) using oxygen-containing hydrocarbon compounds such as methanol as fuel have been widely studied as a simple power supply source. In the anode of this low-temperature fuel cell, it is generally well known that carbon monoxide (CO) is by-produced by the electrochemical reaction of oxygen-containing hydrocarbons as fuel and poisons the catalyst used as the anode. In order to solve this problem, various methods have been proposed (for example, Patent Document 1).

特開2002−343403号公報JP 2002-343403 A

本発明の目的は、上記COによる触媒被毒を効果的に防止して、アノード触媒による酸化反応が効率よく進行するようにし、結果として、高い出力電圧が得られるようにした、低温型燃料電池のアノードに供給する燃料組成物を提供することにある。   It is an object of the present invention to effectively prevent the above-described catalyst poisoning by CO so that an oxidation reaction by an anode catalyst can proceed efficiently, and as a result, a high output voltage can be obtained. It is providing the fuel composition supplied to the anode of this.

本発明者らの研究によれば、低温型燃料電池のアノードに供給する液体燃料中に溶存する酸素濃度を高めることにより、副生するCOを効率よく酸化して、COによる触媒被毒を効果的に防止し得ることがわかった。すなわち、本発明は、液体燃料、水、および0.01〜0.25cm/cm(燃料組成物)の量の溶存酸素とからなる燃料組成物である。 According to the researches of the present inventors, by increasing the concentration of oxygen dissolved in the liquid fuel supplied to the anode of the low-temperature fuel cell, the by-product CO is efficiently oxidized, and the catalyst poisoning by CO is effective. It was found that this can be prevented. That is, the present invention is a liquid fuel, water, and 0.01~0.25cm 3 / cm 3 quantity of the fuel composition comprising a dissolved oxygen (fuel compositions).

本発明の燃料組成物を用いることにより、COによる触媒被毒を効果的に防止でき、安定して高い出力電圧を得ることができる。例えば、DMFCの場合には、燃料として用いるメタノールの酸化反応の際に副生するCOによる触媒被毒を効果的に防止することができる。また、特許文献1に記載のような過酸化水素などの化学品を使用しないので、安全性、コスト、調製操作の簡便性などの点において有利なものである。   By using the fuel composition of the present invention, catalyst poisoning by CO can be effectively prevented, and a high output voltage can be stably obtained. For example, in the case of DMFC, catalyst poisoning by CO produced as a by-product during the oxidation reaction of methanol used as fuel can be effectively prevented. In addition, since no chemical such as hydrogen peroxide as described in Patent Document 1 is used, it is advantageous in terms of safety, cost, simplicity of preparation operation, and the like.

本発明の「低温型燃料電池」とは、例えば、DMFCなどの、低温型燃料電池として一般によく知られている燃料電池を意味する。「液体燃料」としては、水溶性を有する有機化合物であればいずれでもよいが、なかでも水に任意の割合で溶解する、水素、炭素および酸素からなる有機化合物が好ましい。具体的には、水溶性を有するアルコール類、有機酸類、アルデヒド類、ケトン類などを挙げることができるが、 メタノール、エタノール、2−プロパノール、ジメチルエーテルなどの炭素数1〜6の含酸素炭化水素化合物が好適に用いられる。これらは単独でも、2種以上混合して使用してもよい。   The “low temperature fuel cell” of the present invention means a fuel cell generally well known as a low temperature fuel cell such as DMFC. As the “liquid fuel”, any organic compound having water solubility may be used, but an organic compound composed of hydrogen, carbon, and oxygen that is dissolved in water at an arbitrary ratio is preferable. Specific examples include water-soluble alcohols, organic acids, aldehydes, ketones, etc., and oxygen-containing hydrocarbon compounds having 1 to 6 carbon atoms such as methanol, ethanol, 2-propanol, and dimethyl ether. Are preferably used. These may be used alone or in combination of two or more.

本発明の「燃料組成物」は、上記液体燃料の水溶液からなり、その中に0.01〜0.25cm/cm(燃料組成物)、好ましくは0.05〜0.25cm/cm(燃料組成物)の酸素が溶存しているというものである。水溶液中の液体燃料の濃度は特に限定されるものではないが、通常、1〜30質量%、好ましくは2〜16質量%である。使用する「水」については特に制限はなく、燃料電池の燃料成分として一般に用いられているものであればいずれでもよく、ろ過膜やイオン交換樹脂などを用いて不純物を除去した純水あるいは超純水が好適に用いられる。溶存酸素の量が0.01cm/cm(燃料組成物)より少ないと、COによる触媒被毒の防止効果が低く、一方溶存酸素濃度を0.25cm/cm(燃料組成物)より多くしてもCOによる触媒被毒の防止効果の更なる向上は認められず、かえって電気化学的短絡をきたして出力が低下し、また高い溶存酸素濃度を維持するためには高い圧力下での運転が必要となるため実用上システムが複雑になるなどの問題が生じる。 "Fuel composition" of the present invention comprises an aqueous solution of the liquid fuel, 0.01~0.25cm 3 / cm 3 (fuel composition) therein, preferably 0.05~0.25cm 3 / cm 3 (Fuel composition) oxygen is dissolved. Although the density | concentration of the liquid fuel in aqueous solution is not specifically limited, Usually, it is 1-30 mass%, Preferably it is 2-16 mass%. The “water” to be used is not particularly limited and may be any one that is generally used as a fuel component of a fuel cell. Pure water or ultrapure from which impurities have been removed using a filtration membrane, an ion exchange resin, or the like. Water is preferably used. If the amount of dissolved oxygen is less than 0.01 cm 3 / cm 3 (fuel composition), the effect of preventing catalyst poisoning by CO is low, while the dissolved oxygen concentration is less than 0.25 cm 3 / cm 3 (fuel composition). At most, no further improvement in the effect of preventing catalyst poisoning by CO was observed. On the contrary, an output was lowered due to an electrochemical short circuit, and in order to maintain a high dissolved oxygen concentration, Since operation is required, problems such as practically complicated systems arise.

溶存酸素濃度が0.01〜0.25cm/cm(燃料組成物)である燃料組成物は、例えば、水中に酸素や空気などをバブリングして飽和させ、これを液体燃料と混合することにより容易に得られる。また、ナノメートルサイズの微細な酸素バブルを導入して水中の溶存酸素量を大幅に高めることも可能である。本発明における燃料組成物中の溶存酸素濃度は、25℃、1気圧の条件下にウィンクラー法(JIS K0101)により測定したものである。 A fuel composition having a dissolved oxygen concentration of 0.01 to 0.25 cm 3 / cm 3 (fuel composition) is saturated with, for example, bubbling oxygen or air in water and mixed with liquid fuel. Can be easily obtained. It is also possible to significantly increase the amount of dissolved oxygen in water by introducing nanometer-sized fine oxygen bubbles. The dissolved oxygen concentration in the fuel composition in the present invention is measured by the Winkler method (JIS K0101) under the conditions of 25 ° C. and 1 atm.

なお、本発明の燃料組成物は、予め調製、貯蔵し、適宜使用しても、あるいは使用時に調製してもよい。また、本発明の燃料組成物の使用は、連続的であっても、間欠的であってもよく、通常の燃料組成物を用いた発電において性能低下をきたした場合などに、一時的に本発明の燃料組成物を供給して性能の賦活を図ることも可能である。   The fuel composition of the present invention may be prepared and stored in advance and used as appropriate or prepared at the time of use. Further, the fuel composition of the present invention may be used continuously or intermittently, and is temporarily used in the case where performance is deteriorated in power generation using a normal fuel composition. It is also possible to activate the performance by supplying the fuel composition of the invention.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

30℃にて純水に酸素バブリングを行って酸素を溶解させて、水中の溶存酸素濃度を0.025cm/cm(水)とした後、メタノール濃度が5質量%となる割合でメタノールと混合して、溶存酸素濃度が0.0245cm/cm(燃料組成物)であるメタノール水溶液を得た。次に、電極面積:25cm、電解質膜:ナフィオン112、アノード:白金−ルテニウム(20−10質量%)担持カーボンブラック(VulcanXC27)/東レカーボンペーパー、アノード貴金属含量:白金1.0mg/cm、ルテニウム0.5mg/cm、カソード:白金(10質量%)担持カーボンブラック(VulcanXC72)/東レカーボンクロス、カソード貴金属含有量:白金1.0mg/cmのElectrochem社製の膜−電極触媒複合体を燃料電池試験用単セルに組み込み、このアノードに上記メタノール水溶液を6ml/min、またカソードに酸素を0.3L/minで供給し、単セル温度を30℃に保持して電流−電位曲線を求めた。電流密度が75mA/cmのときのセル電圧は120mVであった。 30 Pure water subjected to oxygen bubbling dissolved oxygen at ° C., after the dissolved oxygen concentration in the water and 0.025cm 3 / cm 3 (water), and methanol at a ratio in which the methanol concentration becomes 5 wt% mixed and dissolved oxygen concentration to obtain a methanol solution is 0.0245cm 3 / cm 3 (fuel compositions). Next, electrode area: 25 cm 2 , electrolyte membrane: Nafion 112, anode: platinum-ruthenium (20-10 mass%)-supported carbon black (Vulcan XC27) / Toray carbon paper, anode noble metal content: platinum 1.0 mg / cm 2 , Ruthenium 0.5 mg / cm 2 Cathode: Platinum (10 mass%) supported carbon black (Vulcan XC72) / Toray Carbon Cloth, Cathode noble metal content: Platinum 1.0 mg / cm 2 made by Electrochem, membrane-electrode catalyst composite Was incorporated into a single cell for fuel cell testing, the methanol aqueous solution was supplied to the anode at 6 ml / min, and oxygen was supplied to the cathode at 0.3 L / min, and the single cell temperature was maintained at 30 ° C. to obtain a current-potential curve. Asked. The cell voltage when the current density was 75 mA / cm 2 was 120 mV.

比較例1Comparative Example 1

実施例1において、純水を酸素バブリングすることなくそのまま使用した以外は、実施例1と同様にして電流−電位曲線を求めた。電流密度が75mA/cmのときのセル電圧は90mVであった。なお、水中の溶存酸素濃度は0.0053cm/cm(水)であり、燃料組成物中の溶存酸素濃度は0.005cm/cm(燃料組成物)であった。実施例1と比較例1との比較により、溶存酸素濃度を高めた燃料組成物をアノードに供給することにより発電時の出力電圧が向上することがわかる。

In Example 1, a current-potential curve was obtained in the same manner as in Example 1 except that pure water was used as it was without bubbling oxygen. The cell voltage when the current density was 75 mA / cm 2 was 90 mV. The dissolved oxygen concentration in water was 0.0053 cm 3 / cm 3 (water), and the dissolved oxygen concentration in the fuel composition was 0.005 cm 3 / cm 3 (fuel composition). Comparison between Example 1 and Comparative Example 1 shows that the output voltage at the time of power generation is improved by supplying the anode with a fuel composition having a higher dissolved oxygen concentration.

Claims (2)

液体燃料、水、および0.01〜0.25cm/cm(燃料組成物)の量の溶存酸素とからなる、低温型燃料電池のアノードに供給する燃料組成物。 A fuel composition supplied to the anode of a low-temperature fuel cell comprising liquid fuel, water, and dissolved oxygen in an amount of 0.01 to 0.25 cm 3 / cm 3 (fuel composition). 液体燃料がメタノール、エタノール、2−プロパノールおよびジメチルエーテルから選ばれる少なくとも1つである請求項1記載の燃料組成物。

2. The fuel composition according to claim 1, wherein the liquid fuel is at least one selected from methanol, ethanol, 2-propanol and dimethyl ether.

JP2004376986A 2004-12-27 2004-12-27 Fuel composition Pending JP2006185711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376986A JP2006185711A (en) 2004-12-27 2004-12-27 Fuel composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376986A JP2006185711A (en) 2004-12-27 2004-12-27 Fuel composition

Publications (1)

Publication Number Publication Date
JP2006185711A true JP2006185711A (en) 2006-07-13

Family

ID=36738675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376986A Pending JP2006185711A (en) 2004-12-27 2004-12-27 Fuel composition

Country Status (1)

Country Link
JP (1) JP2006185711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837395B1 (en) 2005-12-28 2008-06-12 삼성에스디아이 주식회사 Fuel composition for fuel cell and fuel cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837395B1 (en) 2005-12-28 2008-06-12 삼성에스디아이 주식회사 Fuel composition for fuel cell and fuel cell using the same

Similar Documents

Publication Publication Date Title
JP3883509B2 (en) Liquid fuel composition for electrochemical fuel cells
US6485851B1 (en) Power generation in fuel cells using liquid methanol and hydrogen peroxide
US6758871B2 (en) Liquid fuel compositions for electrochemical fuel cells
US9083037B2 (en) Fuel cell including cathode electrode using iron redox couple
JP2012094315A (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer fuel cell including the same
KR20140085148A (en) Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly for fuel cell and fuel cell system including same
JP4958059B2 (en) Hydrogen production equipment
EP1837942A1 (en) Stand-alone hydrogen production system
US8679687B2 (en) Hydrogen generating method and hydrogen generating system based on the method
JP2002343403A (en) Operation method of fuel cell
US20130236809A1 (en) Direct Formate Fuel Cell Employing Formate Salt Fuel, An Anion Exchange Membrane, And Metal Catalysts
EP1843424A1 (en) Fuel cell power generating device
EP1733965A1 (en) Submersible vessel
JP4806623B2 (en) Fuel composition for fuel cell and fuel cell using the same
JP2008027647A (en) Fuel electrode for fuel cell, and fuel cell equipped with it
JP2006176871A (en) Hydrogen supply system
Sapountzi et al. Electrocatalysis and electrochemical promotion of CO oxidation in PEM fuel cells: the role of oxygen crossover
US7910252B2 (en) Hydrogen supply system
JP2006185711A (en) Fuel composition
JP4685752B2 (en) Fuel composition for fuel cell, method for producing the same, and fuel cell
JP2008091264A (en) Cathode for fuel cell and solid polymer electrolyte fuel cell equipped with this
KR100673748B1 (en) Fuel Composition for Fuel Cells and Fuel Cell Using the Same
KR100696700B1 (en) Direct oxidation fuel cell system
JP2019121521A (en) Catalyst layer for fuel cell, electrolyte membrane-electrode assembly and fuel cell
JP2006120407A (en) Catalyst for fuel cells, and fuel cell and membrane electrode junction using the same