JP2006184036A - Method and instrument for ultrasonic fluid measurement - Google Patents

Method and instrument for ultrasonic fluid measurement Download PDF

Info

Publication number
JP2006184036A
JP2006184036A JP2004375214A JP2004375214A JP2006184036A JP 2006184036 A JP2006184036 A JP 2006184036A JP 2004375214 A JP2004375214 A JP 2004375214A JP 2004375214 A JP2004375214 A JP 2004375214A JP 2006184036 A JP2006184036 A JP 2006184036A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
time
filter
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004375214A
Other languages
Japanese (ja)
Inventor
Masanobu Sakai
政信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004375214A priority Critical patent/JP2006184036A/en
Publication of JP2006184036A publication Critical patent/JP2006184036A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure the flow and concentration of a fluid under measurement by correcting error time owing to its passage through a noise-removal filter thereby correctly measuring propagation time, as to an ultrasonic fluid measurement instrument. <P>SOLUTION: A pair of ultrasonic transmitter-receivers are disposed a predetermined distance apart from each other in a flowing direction in the fluid under measurement so that they together confront acoustically. An ultrasonic signal transmitted from one transmitter-receiver propagates through the fluid and is received by the other transmitter-receiver. Based on the received signal passed through a filter, the propagation time from transmission to reception is measured respectively in regard to propagation directions that form forward flow and backward flow as to the flowing direction of the fluid under measurement. The propagation time is corrected by subtracting filter passage delay time calculated correspondingly to received frequency from the measured time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被測定流体における超音波の伝播時間を測定することで、前記被測定流体の状態量(流量,濃度)を計測する超音波式流体計測技術に関する。   The present invention relates to an ultrasonic fluid measurement technique for measuring a state quantity (flow rate, concentration) of the fluid to be measured by measuring a propagation time of ultrasonic waves in the fluid to be measured.

従来、一対の超音波送受波器を被測定流体の上流側と下流側とに対向させて配置し、上流側の超音波送受波器から被測定流体の流れに対して順方向に超音波信号を送信し、下流側の超音波送受波器により受信されるまでの第1の伝搬時間を測定するとともに、下流側の超音波送受波器から流れに対して逆方向に超音波信号を送信し、上流側の超音波送受波器により受信されるまでの第2の伝搬時間を測定し、測定された各伝搬時間をもとに、被験流体の流量等を検出する流体計測装置が知られている(特許文献1)。   Conventionally, a pair of ultrasonic transducers are arranged facing the upstream side and the downstream side of the fluid to be measured, and an ultrasonic signal is transmitted in the forward direction from the upstream ultrasonic transducer to the flow of the fluid to be measured. The first propagation time until it is received by the downstream ultrasonic transducer is measured, and the ultrasonic signal is transmitted in the opposite direction to the flow from the downstream ultrasonic transducer. A fluid measuring device that measures the second propagation time until it is received by the upstream ultrasonic transducer and detects the flow rate of the test fluid based on each measured propagation time is known. (Patent Document 1).

この装置では、送信波の先頭から所定の周期(交番)数後に送信レベル0点を通過するゼロクロス時刻と、受信波の先頭から所定の周期(交番)数後に受信レベル0点を通過するゼロクロス時刻とを検出し、送信側ゼロクロス時刻から受信側ゼロクロス時刻までの時間を伝播時間として検出することで立ち上がり時の不安定な周波数変化の影響をキャンセルしている。
特開平09−026341号公報
In this apparatus, the zero cross time that passes through the transmission level 0 point after a predetermined number of cycles (alternating frequency) from the beginning of the transmission wave and the zero cross time that passes through the reception level 0 point after a predetermined number of cycles (alternating frequency) from the beginning of the reception wave. And the time from the transmission-side zero-crossing time to the reception-side zero-crossing time is detected as the propagation time, thereby canceling the influence of an unstable frequency change at the time of rising.
Japanese Patent Application Laid-Open No. 09-026341

ところで、この種の超音波流体計測装置では、音を検出物理量として利用しているため、検出部前後の配管を伝ってくる音響騒音、測定管1のエッジ部Aに流体が衝突・剥離する際に発する気流騒音などが超音波受信信号中に混入して検出される。このため受信された超音波信号から伝播時間を検出する過程で、誤差要因となる騒音周波数成分を取り除いて、送信した超音波周波数のみを抽出するためのフィルタが設けられている。このフィルタは精密な伝播時間を計測するために不可欠なものであるが、一方でフィルタを超音波信号が通過する際に時間遅れが発生する。   By the way, in this type of ultrasonic fluid measuring device, since sound is used as a detection physical quantity, acoustic noise that travels through the pipes before and after the detection unit, and when the fluid collides with the edge A of the measurement tube 1 and peels off. Is detected by mixing in the ultrasonic reception signal. For this reason, in the process of detecting the propagation time from the received ultrasonic signal, a filter is provided for extracting only the transmitted ultrasonic frequency by removing the noise frequency component which is an error factor. This filter is indispensable for measuring a precise propagation time, but on the other hand, a time delay occurs when an ultrasonic signal passes through the filter.

かかるフィルタ通過による遅延時間は、超音波伝播時間の計測誤差となり、引いては流体流量または濃度の計測誤差となる。
本発明は、このような従来の課題に着目してなされたもので、フィルタによって外乱信号を除去しつつ、超音波信号のフィルタ通過による遅れの影響を防止して、より、高精度に流体状態量を計測できるようにすることを目的とする。
The delay time due to the filter passage becomes a measurement error of the ultrasonic propagation time, and then becomes a measurement error of the fluid flow rate or the concentration.
The present invention has been made paying attention to such a conventional problem, and while removing the disturbance signal by the filter, the influence of the delay due to the passage of the ultrasonic signal through the filter is prevented, and the fluid state is more accurately detected. The purpose is to be able to measure the quantity.

このため、本発明は、超音波信号を送信して被測定流体中に流体流動方向に対して相異なる大きさの伝播速度成分を有する方向に所定距離伝播させ、フィルタによって前記伝播後の超音波信号から外乱信号を除去し、該フィルタ通過後の各超音波信号に基づいて、各超音波信号が前記所定距離を伝播するのに要した伝播時間を計測する一方、前記フィルタに入力する超音波信号の周波数を検出し、該検出した周波数に基づいて超音波信号の前記フィルタ通過時における遅延時間補正値を算出し、前記超音波信号の各伝播時間を、前記遅延時間補正値によって補正し、該補正した伝播時間に基づいて前記被測定流体の状態量を計測する構成とした。   For this reason, the present invention transmits an ultrasonic signal to propagate a predetermined distance in the fluid to be measured in a direction having a propagation velocity component having a magnitude different from the fluid flow direction, and the ultrasonic wave after propagation by the filter. A disturbance signal is removed from the signal, and based on each ultrasonic signal after passing through the filter, the propagation time required for each ultrasonic signal to propagate the predetermined distance is measured, while the ultrasonic wave input to the filter Detecting the frequency of the signal, calculating a delay time correction value when the ultrasonic signal passes through the filter based on the detected frequency, correcting each propagation time of the ultrasonic signal by the delay time correction value, The state quantity of the fluid to be measured is measured based on the corrected propagation time.

かかる構成とすれば、被測定流体中を伝播した超音波信号の周波数によって変化するフィルタ通過の遅延時間を遅延時間補正値として算出し、実際に計測された伝播時間を、該遅延時間補正値によって補正することで、計測中に超音波周波数が変動しても、周波数変動によるフィルタ遅延時間の変化をキャンセルでき、実質の伝播時間を高精度に求めることができる。そして、該実質の伝播時間に基づいて前記被測定流体の状態を高精度に計測することができる。   With such a configuration, the delay time of the filter passage that varies depending on the frequency of the ultrasonic signal propagated in the fluid to be measured is calculated as a delay time correction value, and the actually measured propagation time is calculated by the delay time correction value. By correcting, even if the ultrasonic frequency fluctuates during measurement, the change in the filter delay time due to the frequency fluctuation can be canceled, and the actual propagation time can be obtained with high accuracy. The state of the fluid to be measured can be measured with high accuracy based on the substantial propagation time.

以下、図面に基づき、本発明の実施形態について説明する。
図1は、実施形態に係る超音波式流体計測装置の全体構成図である。なお、図中のLmは、超音波送受波器(超音波振動子)2a,2b間の距離、Cgは、被測定流体の音速、Vgは、被測定流体の流速、θは、被測定流体(例えば水素ガス)の流れ方向と超音波信号の伝播方向との成す角度である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of an ultrasonic fluid measuring apparatus according to an embodiment. In the figure, Lm is the distance between the ultrasonic transducers (ultrasound transducers) 2a and 2b, Cg is the sound velocity of the fluid to be measured, Vg is the flow velocity of the fluid to be measured, and θ is the fluid to be measured. It is an angle formed by the flow direction of (for example, hydrogen gas) and the propagation direction of the ultrasonic signal.

被測定流体が流れる測定管(空間)1cを挟んで、一対の超音波送受波器2a,2bを音響的に対向する位置関係に所定の距離を隔てて配設している。具体的には図示の通り、測定管1cに設けられた超音波送受波器2a,2bが互いに向かい合うように斜めに配置されている。この一方の超音波送受波器2aから超音波信号を送信して、被測定流体中で伝播した超音波信号を他方の超音波送受波器2bによって受信する(超音波透過型)。   A pair of ultrasonic transducers 2a and 2b are disposed at a predetermined distance in an acoustically opposed relationship with a measurement tube (space) 1c through which a fluid to be measured flows. Specifically, as shown in the figure, the ultrasonic transducers 2a and 2b provided in the measurement tube 1c are arranged obliquely so as to face each other. An ultrasonic signal is transmitted from the one ultrasonic transducer 2a, and the ultrasonic signal propagated in the fluid to be measured is received by the other ultrasonic transducer 2b (ultrasonic transmission type).

そして、超音波伝播時間測定回路3により、超音波送受波器2a,2b間の超音波伝播時間t1,t2を流れの順方向(2a→2b)と逆方向(2b→2a)とでそれぞれ求める。
なお図示しないが、一対の超音波送受波器2a,2bを被測定流体の流れ方向に所定の間隔を隔てて設け、一方の超音波送受波器2aから送信した超音波を被測定流体中で伝播させ、測定管1cに反射させて他方の超音波送受波器2bにより受信するようにしてもよい(超音波反射型)。
Then, the ultrasonic propagation time measurement circuit 3 determines the ultrasonic propagation times t1 and t2 between the ultrasonic transducers 2a and 2b in the forward direction (2a → 2b) and the reverse direction (2b → 2a), respectively. .
Although not shown, a pair of ultrasonic transducers 2a and 2b is provided at a predetermined interval in the flow direction of the fluid to be measured, and the ultrasonic waves transmitted from one ultrasonic transducer 2a are contained in the fluid to be measured. It may be propagated, reflected by the measurement tube 1c and received by the other ultrasonic transducer 2b (ultrasonic reflection type).

ここで、伝播時間と濃度(密度)や流速、流量演算式の関係について説明する。
超音波伝播時間測定回路3(図1参照)で検出される測定流体の流れ順方向(超音波送受波器2a→2b)の送受信間時間td1と、逆方向(超音波送受波器2b→2a)の送受信間時間td2は次式の関係にある(図2参照)。
td1=t1+tr1+tc1
=Lm/(Cg+Vg×cosθ)+tr1+tc1 ・・・(1)
td2=t2+tr2+tc2
=Lm/(Cg−Vg×cosθ)+tr2 +tc2・・・(2)
なお(1)、(2)式の右辺第1項t1、t2は超音波送受波器2a,2b間の純粋な超音波伝播時間(以降、伝播時間)である。Lmは超音波送受波器2a,2b間の距離、Cgは被測定流体の音速、Vgは被測定流体の流速、θは被測定流体の流れ方向と超音波の伝播方向との成す角度である。
Here, the relationship between the propagation time, concentration (density), flow velocity, and flow rate calculation formula will be described.
The time td1 between transmission and reception in the forward direction of the measurement fluid (ultrasonic transducer 2a → 2b) detected by the ultrasonic propagation time measuring circuit 3 (see FIG. 1) and the reverse direction (ultrasonic transducer 2b → 2a). ) Between transmission / reception times td2 is represented by the following equation (see FIG. 2).
td1 = t1 + tr1 + tc1
= Lm / (Cg + Vg × cos θ) + tr1 + tc1 (1)
td2 = t2 + tr2 + tc2
= Lm / (Cg−Vg × cos θ) + tr 2 + tc 2 (2)
The first terms t1 and t2 on the right side of the equations (1) and (2) are pure ultrasonic propagation times (hereinafter referred to as propagation times) between the ultrasonic transducers 2a and 2b. Lm is the distance between the ultrasonic transducers 2a and 2b, Cg is the sound velocity of the fluid to be measured, Vg is the flow velocity of the fluid to be measured, and θ is the angle formed by the flow direction of the fluid to be measured and the propagation direction of the ultrasonic waves. .

またtr1、tr2は受信先頭波の受波時刻から受信時間検出時刻までの遅れ時間であり、これは音速が既知の校正流体を用いて、つまり伝播時間が既知な状態において予め計測しておく校正値である。
また、tc1、tc2は、受信検出時刻が校正時に対して受信周波数の1周期を超えて変化する場合の周期遷移補正時間であり、計測時に周期遷移を検出する毎に更新する値である。
Tr1 and tr2 are delay times from the reception time of the reception head wave to the reception time detection time. This is a calibration that is measured in advance using a calibration fluid whose sound speed is known, that is, in a state where the propagation time is known. Value.
Further, tc1 and tc2 are period transition correction times when the reception detection time changes exceeding one period of the reception frequency with respect to the calibration time, and are values updated every time a period transition is detected during measurement.

そして、流速算出の式では、送受信間時間td1、td2から受信検出遅れ時間tr1、tr2を差し引いて超音波送受波器2a、2b間の純粋な超音波伝播時間t1(=td1−tr1−tc1)、t2(=td2−tr2−tc2)から流速Vgを求める。
Vg=[Lm/(2×cosθ)]×{1/(td1−tr1−tc1)
−1/(td2−tr2−tc2)}
=[Lm/(2×cosθ)]×(1/t1−1/t2)・・・(3)
また流量Qvは、次式に示すとおり、被測定流体の流れる測定管(空間)の断面積A、配管内の流速分布補正係数K、および(3)式で算出した被測定流体の流速Vgを積算することにより算出する。
In the equation for calculating the flow velocity, the pure ultrasonic propagation time t1 (= td1-tr1-tc1) between the ultrasonic transducers 2a, 2b is obtained by subtracting the reception detection delay times tr1, tr2 from the transmission / reception times td1, td2. , T2 (= td2-tr2-tc2), the flow velocity Vg is obtained.
Vg = [Lm / (2 × cos θ)] × {1 / (td1-tr1-tc1)
-1 / (td2-tr2-tc2)}
= [Lm / (2 × cos θ)] × (1 / t1-1 / t2) (3)
Further, as shown in the following equation, the flow rate Qv is the cross-sectional area A of the measurement pipe (space) through which the fluid to be measured flows, the flow velocity distribution correction coefficient K in the piping, and the flow velocity Vg of the fluid to be measured calculated by the equation (3). Calculate by integrating.

Qv=Vg×A×K ・・・(4)
このように流速Vg、流量Qvの算出においては、(3)式が示すように被測定流体の順方向および逆方向の伝播時間の差分をとっているため、空気など音速が遅い被測定流体の場合や、遅れ時間tr1、tr2に対し、伝播時間td1、td2が十分に大きい場合に限れば、実用上無視可能であるが、水素ガス等、音速が早い場合や、小型の流量計のように超音波伝播距離Lmが短い場合には流速および流量計測精度に及ぼす影響は無視できないことが理解できる。
Qv = Vg × A × K (4)
As described above, in calculating the flow velocity Vg and the flow rate Qv, the difference in the propagation time between the forward direction and the backward direction of the fluid to be measured is calculated as shown in the equation (3). However, if the propagation times td1 and td2 are sufficiently larger than the delay times tr1 and tr2, it is negligible in practice. However, when the speed of sound such as hydrogen gas is high or a small flow meter is used. It can be understood that when the ultrasonic propagation distance Lm is short, the influence on the flow velocity and flow rate measurement accuracy cannot be ignored.

一例として超音波信号の伝播距離Lm=100mm、被測定流体水素(ドライ)の音速をCg=1270m/s、超音波信号と被測定流体流れとの成す角θ=45deg、流速Vg=0(停止)、受信検出遅延時間tr=137.5μs(5.5周期×超音波1周期25μs)の条件における超音波伝播時間を式1、式2に代入して算出すると、
td1=td2≒216.240μs
次にこの条件の時に、td2のみに伝播時間の計測誤差が1μs発生した時の流量計測誤差を算出すると、流速分布補正係数K=1、流路断面積A=50mm2と仮定して、式(3)、(4)に代入すると、
Vg=100mm×{1/(216.240-137.5)−1/(216.240+1.0-137.5)}/(2×cos45)≒11.3 m/s
Qv=11.3×50mm2×1≒0.00565m3/s =339 L/min
この試算結果から明らかなように、僅か1μsの時間計測誤差で300L/minと非常に大きな流量計測誤差が生じる。
As an example, propagation distance of ultrasonic signal Lm = 100mm, sound velocity of measured fluid hydrogen (dry) Cg = 1270m / s, angle θ = 45deg between ultrasonic signal and measured fluid flow, flow velocity Vg = 0 (stop) ), The ultrasonic wave propagation time under the condition of reception detection delay time tr = 137.5 μs (5.5 cycles × 1 cycle of ultrasonic waves 25 μs) is calculated by substituting into Equations 1 and 2,
td1 = td2 ≒ 216.240μs
Next, when the flow rate measurement error is calculated when a propagation time measurement error of 1 μs occurs only at td2 under this condition, the flow rate distribution correction coefficient K = 1 and the channel cross-sectional area A = 50 mm 2 are assumed. Substituting into (3) and (4),
Vg = 100mm × {1 / (216.240-137.5) −1 / (216.240 + 1.0-137.5)} / (2 × cos45) ≒ 11.3 m / s
Qv = 11.3 × 50mm 2 × 1 ≒ 0.00565m 3 / s = 339 L / min
As is apparent from the result of this trial calculation, a very large flow measurement error of 300 L / min occurs with a time measurement error of only 1 μs.

また、流体の濃度(密度ρ)を求める場合には、演算回路4において、まず、次式(5)を用いて音速Cgを求め、続いて式(6)を用いてモル質量Mに変換した後、流体の平均モル質量と、計測対象の分子のモル質量との比を計算して濃度を求める。
Cg=(Lm/2)×{1/(td1−tr1)+1/(td2−tr2)}・・・(5)
M=γ×R×Tg/Cg2 ・・・(6)
ここで、γは比熱比、Rはガス定数、Tgはガス温度(K)である。このようにモル質量Mを求める式(6)では、音速Cgの2乗の値Cg2を代入することから受信検出遅れ時間tr1,tr2の影響は更に大きくなる関係にある。
When calculating the fluid concentration (density ρ), the arithmetic circuit 4 first determines the sound velocity Cg using the following equation (5), and then converts it to the molar mass M using the equation (6). Then, the concentration is obtained by calculating the ratio between the average molar mass of the fluid and the molar mass of the molecule to be measured.
Cg = (Lm / 2) × {1 / (td1-tr1) + 1 / (td2-tr2)} (5)
M = γ × R × Tg / Cg 2 (6)
Here, γ is a specific heat ratio, R is a gas constant, and Tg is a gas temperature (K). In equation (6) for obtaining the thus molar mass M, the influence of the received detection delay time tr1, tr2 from substituting the square of the value Cg 2 sonic Cg is in even greater relationship.

以上のように、特に音速Cgが早い流体が測定対象である場合は、伝播時間の正確な検出が、流速および流量計測精度を確保するために大変重要であることが明らかである。
なお本発明者は、水素ガスなど従来は不向きとされていた音速の早い流体や、密度変化やノイズ重畳に伴う受信信号の振幅変化が大きい環境下であっても、正確かつ確実な受信時刻を検出して伝播時間を精度良く測定する方法として、送信後、所定の経過時間以降に超音波受信波の受信検出を行う方法を提案した。
As described above, it is apparent that accurate detection of the propagation time is very important for ensuring the flow velocity and flow rate measurement accuracy, particularly when a fluid having a high sound velocity Cg is a measurement target.
In addition, the present inventor provides accurate and reliable reception time even in an environment where there is a large change in the amplitude of the received signal due to density change or noise superposition, such as hydrogen gas, which has been conventionally unsuitable. As a method of detecting and measuring the propagation time with high accuracy, a method of detecting reception of an ultrasonic wave after transmission after a predetermined elapsed time has been proposed.

また、上記の方法では、受信検出開始時点からの受信検出時刻の変化が超音波周波数の1周期を超えて変化する場合、受信検出時刻に折り返しが生じ、伝播時間の計測値に連続性が失われるが、この問題は、折り返しの発生検出手段と、折り返し量を補正する周期遷移補正手段を備えることにより伝播時間が超音波周波数の1周期を超して変化する流体にも適用できるようにした。   Further, in the above method, when the change in the reception detection time from the reception detection start time changes beyond one cycle of the ultrasonic frequency, the reception detection time is turned back, and the measured value of the propagation time is lost. However, this problem can be applied to a fluid whose propagation time changes by more than one period of the ultrasonic frequency by providing a folding occurrence detecting means and a period transition correcting means for correcting the amount of folding. .

また、超音波センサの使用環境によって超音波周波数が変動することによる前記受信検出遅延時間tr1、tr2と、前記周期遷移補正手段(周期補正時間tc1、tc2)の時間変化を補正して計測誤差を低減する手段を提案した。
しかし、既述したように、超音波受信信号から伝播時間検出の誤差要因となる騒音周波数成分を取り除くためフィルタを設けた場合には、フィルタを超音波信号が通過する際に時間遅れが発生する。すなわち、図3中のタイムチャートに模式的に表したように、本来は点線描画の超音波受信信号(Wr)の所定のタイミングで検出すべきであるが、実際は実線描画のようにフィルタの遅延時間dtが加わったタイミングで信号検出してしまう。つまりこの遅延時間dtが超音波伝播時間の計測誤差となり、引いては流体流量または濃度の計測誤差となる。
In addition, the reception detection delay times tr1 and tr2 due to fluctuations in the ultrasonic frequency depending on the use environment of the ultrasonic sensor and the time variation of the period transition correction means (period correction times tc1 and tc2) are corrected to reduce measurement errors. A means to reduce was proposed.
However, as described above, when a filter is provided to remove a noise frequency component that causes an error in detecting the propagation time from the ultrasonic reception signal, a time delay occurs when the ultrasonic signal passes through the filter. . That is, as schematically shown in the time chart in FIG. 3, it should be detected at a predetermined timing of the ultrasonic wave reception signal (Wr) drawn with a dotted line, but in reality, the delay of the filter as with the solid line drawing. The signal is detected at the timing when the time dt is added. That is, this delay time dt becomes a measurement error of the ultrasonic wave propagation time, and then becomes a measurement error of the fluid flow rate or concentration.

ここで、上記フィルタ遅延時間がフィルタ特性だけで決まっているのであれば、予め、校正時に計測した受信検出遅れ時間tr1,tr2の中にフィルタ遅延時間分が固定値として含められので、特に補正しなくてもよいのであるが、実際にはフィルタ遅延時間はフィルタ特性だけでは決まらず、特に、受信周波数に大きく依存して変化するため、さらに補正が必要であることが判明した。   Here, if the filter delay time is determined only by the filter characteristics, the filter delay time is included as a fixed value in the reception detection delay times tr1 and tr2 measured at the time of calibration in advance. Although it may not be necessary, the filter delay time is not actually determined only by the filter characteristics, and in particular, since it varies greatly depending on the reception frequency, it has been found that further correction is necessary.

そこで、本発明は、上記各種計測精度の向上に加えて、更に計測精度を向上させるため、前記フィルタ通過による計測誤差の補正を提案するものである。
まず始めに本発明の基本処理方法について図2を用いて説明する。超音波送信信号Wtを送信してから所定の受信時刻(ここではS6のゼロクロス点で、先頭波から5.5周期時点)までの送受信間時間の計測値td1(td2)であり、求める伝播時間t1(t2)は、この検出時間td1(td2)より、予め求めておいた受信検出遅れ補正時間tr1(tr2)と周期遷移補正時間tc1(tc2)を差し引くことで伝播時間を求めることになる。
Therefore, the present invention proposes correction of measurement error due to the passage of the filter in order to further improve the measurement accuracy in addition to the improvement of the various measurement accuracy described above.
First, the basic processing method of the present invention will be described with reference to FIG. This is the measured value td1 (td2) of the time between transmission and reception from the time when the ultrasonic transmission signal Wt is transmitted to the predetermined reception time (here, the zero crossing point of S6 and the time point of the first wave at 5.5 cycles), and the propagation time to be obtained For t1 (t2), the propagation time is obtained by subtracting the reception detection delay correction time tr1 (tr2) and the period transition correction time tc1 (tc2) obtained in advance from the detection time td1 (td2).

ここで、前記(1),(2)式では、前記受信検出遅れ補正時間tri(i=1,2)がフィルタ通過や回路の遅れ時間を含んだ値であるが、フィルタの遅延時間が受信周波数に依存して変化することによって測定誤差を生じる。本発明では、この測定誤差を補正するため、フィルタ部における周波数依存の信号遅延時間の合計値として誤差時間dtを設定し、前記受信検出遅れ補正時間triから、誤差時間dtを分離して設定する。これにより、前記(1),(2)式は次式に置き換えられる。   Here, in the equations (1) and (2), the reception detection delay correction time tri (i = 1, 2) is a value including the filter passage and the circuit delay time, but the filter delay time is received. Measurement error is caused by the change depending on the frequency. In the present invention, in order to correct this measurement error, an error time dt is set as a total value of frequency-dependent signal delay times in the filter unit, and the error time dt is set separately from the reception detection delay correction time tri. . As a result, the equations (1) and (2) are replaced with the following equations.

tdi=ti+tri+tci+dt (i=1,2)・・・(7)
ここで、上記誤差時間dtが分離された前記受信検出遅れ補正時間tri(i=1,2)は、次式で表される。
tri=(Nri/fc)・・・(8)
Nriは、受信検出時刻までの周期数で、上述の図2では、5.5周期で示される値であるが、半周期毎の値を取ることから、次式で表される。
tdi = ti + tri + tci + dt (i = 1, 2) (7)
Here, the reception detection delay correction time tri (i = 1, 2) from which the error time dt is separated is expressed by the following equation.
tri = (Nri / fc) (8)
Nri is the number of periods up to the reception detection time, and is a value indicated by 5.5 periods in FIG. 2 described above. Since Nri takes a value every half period, it is expressed by the following equation.

Nri=0.5×INT(tri×2×fc)・・・(9)
fc:校正時の受信周波数
(9)式において、INT関数は、小数点を含む実数であるtriとfcに対し、 括弧内の計算結果の小数点以下を切り捨てて整数化するものである。
また、Tφは、校正時受信周波数fcでのフィルタ遅延時間φ(fc)と、受信検出時刻までの回路の定常的遅延時間δを含む時間であり、次式で表される。
Nri = 0.5 × INT (tri × 2 × fc) (9)
fc: Reception frequency at the time of calibration In Expression (9), the INT function is an integer obtained by rounding off the decimal part of the calculation result in parentheses to tri and fc which are real numbers including a decimal point.
Tφ is a time including the filter delay time φ (fc) at the calibration reception frequency fc and the steady delay time δ of the circuit until the reception detection time, and is expressed by the following equation.

Tφ=φ(fc)+δ・・・(10)
このTφは、(7)式において校正時のdtに相当するのでdt=Tφとし、伝播時間tiが既知の流体を用いて実測値を(7)式に代入して、各変数の残余として求められる。すなわち、次式で表される。
Tφ=tdi−(ti+tri+tci)・・・(11)
また、tciは、次式で表される。
Tφ = φ (fc) + δ (10)
Since this Tφ corresponds to dt at the time of calibration in the equation (7), dt = Tφ, and using a fluid whose propagation time ti is known, an actual measurement value is substituted into the equation (7) and obtained as the remainder of each variable. It is done. That is, it is expressed by the following formula.
Tφ = tdi− (ti + tri + tci) (11)
Tci is expressed by the following equation.

tci=Nci/fr・・・(12)
ここで、Nciは、目的の受信検出のゼロクロスが校正時に対して、1周期を超えて遷移した回数であり、校正時は、Nci=0、受信周波数fr=校正時周波数fcである。
以上の関係から、(7)式において、計測時におけるフィルタ通過による誤差時間dtは、次式で表される。
tci = Nci / fr (12)
Here, Nci is the number of times that the zero crossing of the target reception detection has shifted over one period with respect to the calibration, and at the time of calibration, Nci = 0 and the reception frequency fr = the calibration frequency fc.
From the above relationship, in the equation (7), the error time dt due to the filter passage at the time of measurement is expressed by the following equation.

dt=Tφ+Δφ・・・(13)
ここで、Δφは、基準周波数f0(=校正時周波数fc)からの位相変化差分を時間換算したものになり、次式で表される。
Δφ={φ(fr)/(fr×360)}−{φ(fc)/(fc×360)}・・(14)
したがって、校正時に受信周波数(校正時周波数)fcを記憶し、かつ、(11)式から校正時の誤差時間Tφを算出し、計測時の受信周波数frと前記校正時周波数fcを用いて(14)式からΔφを算出し、(13)式によってこれらを加算すれば、計測時のフィルタ通過による誤差時間dtを算出することができる。
dt = Tφ + Δφ (13)
Here, Δφ is obtained by time-converting the phase change difference from the reference frequency f0 (= calibration frequency fc), and is expressed by the following equation.
Δφ = {φ (fr) / (fr × 360)} − {φ (fc) / (fc × 360)} (14)
Therefore, the reception frequency (calibration frequency) fc is stored at the time of calibration, the error time Tφ at the time of calibration is calculated from the equation (11), and the reception frequency fr at the time of measurement and the calibration frequency fc are used (14 ) Is calculated from the equation (E), and these are added according to the equation (13), the error time dt due to the filter passage at the time of measurement can be calculated.

このようにして、計測時の受信周波数に依存して変化するフィルタ通過による誤差時間dtを算出し、該誤差時間dtを用いて、受信周波数その他に依存する計測誤差を可能な限り除去した高精度な伝播時間ti(i=1,2)を求めることができる。
このようにして求めた高精度な伝播時間ti(i=1,2)に基づいて、図1の流量/濃度演算回路4が、(3)式と(4)式により流量計測値を算出し、同様に(5)式と(6)式により流体密度(濃度)を算出して出力する。
In this way, the error time dt due to the filter passage that changes depending on the reception frequency at the time of measurement is calculated, and the measurement error depending on the reception frequency and the like is eliminated as much as possible using the error time dt. The propagation time ti (i = 1, 2) can be obtained.
Based on the high-accuracy propagation time ti (i = 1, 2) obtained in this way, the flow rate / concentration calculation circuit 4 in FIG. 1 calculates the flow rate measurement value by the equations (3) and (4). Similarly, the fluid density (concentration) is calculated and output by the equations (5) and (6).

上記実施形態では、校正時の受信周波数を基準周波数とし、該校正時受信周波数fcに対する測定時の受信周波数の差分に対するフィルタ遅延時間の補正を行う構成としたが、予め定めた基準周波数(例えば、公称値40Hz、または超音波センサ製造バラツキの中央値など)との差分に対してフィルタ遅延時間の補正を行う構成とすることもできる。この場合は、校正時も計測時同様に基準周波数(40Hz等)との差分を算出して、補正量を算出する。この方式では、基準周波数に対するフィルタ遅延時間は予め判っているので、校正時の受信周波数を記憶する必要がなくなる。また、図4に示したように、受信周波数frに対して直接フィルタ遅延時間補正量GDを設定するか、または、基準周波数に(40Hz)に対する補正量差分ΔGDを設定したマップを設け、このマップからの検索によって補正量を求めるようにすることもできる。前者のマップを用い、校正時の受信周波数を基準周波数とする第1の実施形態では、(14)式で演算する代わりに、校正時と計測時にマップから参照したフィルタ遅延時間補正量GD(fc)、GD(fr)を用いて、次式によりΔφを算出できる。   In the above embodiment, the reception frequency at the time of calibration is set as the reference frequency, and the filter delay time is corrected for the difference in the reception frequency at the time of measurement with respect to the reception frequency fc at the time of calibration. However, a predetermined reference frequency (for example, The filter delay time may be corrected for a difference from a nominal value of 40 Hz or a median of ultrasonic sensor manufacturing variation. In this case, the correction amount is calculated by calculating the difference from the reference frequency (40 Hz or the like) during calibration as well as during measurement. In this method, since the filter delay time with respect to the reference frequency is known in advance, it is not necessary to store the reception frequency at the time of calibration. Further, as shown in FIG. 4, a map in which the filter delay time correction amount GD is directly set for the reception frequency fr or the correction amount difference ΔGD for (40 Hz) is set as the reference frequency is provided. It is also possible to obtain the correction amount by searching from. In the first embodiment in which the former map is used and the reception frequency at the time of calibration is the reference frequency, the filter delay time correction amount GD (fc) referenced from the map at the time of calibration and measurement is used instead of calculating by the equation (14). ), GD (fr) can be used to calculate Δφ by the following equation.

Δφ=GD(fr)−GD(fc)・・・(15)
また、フィルタ遅延時間は、フィルタ回路の温度にも依存して変化するため、フィルタ回路の温度を検出する温度センサを設けると共に、前記フィルタ遅延時間のマップを、所定温度間隔毎の周波数とフィルタ遅延時間とを対応づけた3次元マップとし、あるいは、図5に示すようにTc1,Tc2,Tc3など所定温度間隔毎の2次元マップを複数枚設ける構成としてもよく、このようにすれば、温度変化の影響も除去して高精度な計測を行うことができる。
Δφ = GD (fr) −GD (fc) (15)
In addition, since the filter delay time changes depending on the temperature of the filter circuit, a temperature sensor for detecting the temperature of the filter circuit is provided, and the map of the filter delay time is displayed with the frequency and the filter delay for each predetermined temperature interval. A three-dimensional map in which time is associated or a plurality of two-dimensional maps at predetermined temperature intervals such as Tc1, Tc2, and Tc3 as shown in FIG. 5 may be provided. The high-precision measurement can be performed by removing the influence of.

また、計測毎または定期的に、あるいは、後述するような受信周波数や温度の所定条件に応じてキャリブレーションを行って上記マップを修正することにより、常に良好な計測性能を維持することができる。かかるキャリブレーションを行う実施形態を以下に説明する。
図6は、回路構成を示す。
Also, good measurement performance can always be maintained by correcting the map by performing calibration according to predetermined conditions such as a reception frequency and temperature as will be described later for each measurement or periodically. An embodiment for performing such calibration will be described below.
FIG. 6 shows a circuit configuration.

キャリブレーション信号発生回路3mの出力は、送信駆動回路3aの外部周波数制御入力端子に入力しており、計測時は単一の基準周波数を生成するための制御電圧信号を出力し、またキャリブレーション時には周波数を可変するための制御電圧信号を出力するようにしてある。なお送信駆動回路3aの周波数可変回路としては電圧制御型発振回路が適用できる。   The output of the calibration signal generation circuit 3m is input to the external frequency control input terminal of the transmission drive circuit 3a, outputs a control voltage signal for generating a single reference frequency during measurement, and also during calibration. A control voltage signal for changing the frequency is output. A voltage-controlled oscillation circuit can be applied as the frequency variable circuit of the transmission drive circuit 3a.

次に、キャリブレーション信号印加回路3nでは、計測時は送受信方向切換スイッチ3bの出力が超音波信号抽出フィルタへ導かれるように切り換え、キャリブレーション時に、受信信号に代えて、送信駆動回路3aの出力を超音波信号抽出フィルタ3kへ導くように切り換える。このキャリブレーション信号印加回路3nには、遅延時間や周波数依存性のない素子が望ましく、例えばメカニカルリレースイッチが好適である。   Next, the calibration signal application circuit 3n switches so that the output of the transmission / reception direction selector switch 3b is guided to the ultrasonic signal extraction filter at the time of measurement, and the output of the transmission drive circuit 3a instead of the reception signal at the time of calibration. Is switched to lead to the ultrasonic signal extraction filter 3k. For the calibration signal applying circuit 3n, an element having no delay time or frequency dependency is desirable. For example, a mechanical relay switch is suitable.

次にフィルタ遅延時間計測回路3oでは、送信駆動回路3aの出力信号と超音波信号抽出フィルタ3kの出力との遅延時間を計測して、遅延時間記憶回路3oへ出力する。このフィルタ遅延時間計測回路3kには送受信間時間計数回路3eと同様にタイムカウンタを適用することができる。
更にキャリブレーション信号発生回路3mには、外部イベント信号の入力端子を設けてあり、該外部イベント信号の入力によりキャリブレーションを実行するように設定されている。
Next, the filter delay time measurement circuit 3o measures the delay time between the output signal of the transmission drive circuit 3a and the output of the ultrasonic signal extraction filter 3k, and outputs it to the delay time storage circuit 3o. A time counter can be applied to the filter delay time measuring circuit 3k in the same manner as the transmission / reception time counting circuit 3e.
Further, the calibration signal generation circuit 3m is provided with an input terminal for an external event signal, and is set so as to execute calibration by the input of the external event signal.

また、フィルタ遅延時間計測回路3oには、計測された遅延時間を制限値と比較する機能を設けており、制限値を越える遅延時間が計測された場合には、回路異常の警報を出力する機能を備える。
次に図10のフォローチャートを用いて、上記実施形態に係る処理シーケンスを説明する。
The filter delay time measurement circuit 3o has a function of comparing the measured delay time with a limit value, and outputs a circuit abnormality alarm when a delay time exceeding the limit value is measured. Is provided.
Next, the processing sequence according to the embodiment will be described with reference to the follow chart of FIG.

このフローは、電源投入によって起動し、まず超音波信号の送受信制御や計測に係わる初期値と共に、仮の受信開始時刻tg、受信遅れ補正時間trが設定される(S101)。
そして送受信方向を切り換えて(S102)、超音波駆動信号を出力すると共に送受信間時間の計数を開始する(S103)。
This flow is started when the power is turned on. First, a temporary reception start time tg and a reception delay correction time tr are set together with initial values related to transmission / reception control and measurement of ultrasonic signals (S101).
Then, the transmission / reception direction is switched (S102), an ultrasonic drive signal is output, and counting of the time between transmission / reception is started (S103).

そして受信開始時刻になるまで待ち(S104)、受信開始時刻に達したならば、受信信号のゼロクロスを検出して送受信間時間計数を停止してその時の計数値(伝播時間検出時間td)を読み取る(S105)。
次に、キャリブレーションか、計測かにより処理を分岐する。(S106)。この時の分岐判定情報としては、燃料電池車へ搭載したことを想定すると、燃料電池パワープラントがアイドル状態を示すアクセルOFFまたはパーキングブレーキON等のいずれかの信号を使用することで、測定対象流体が定常状態にあるときにキャリブレーションを実施することができる。
Then, it waits until the reception start time is reached (S104). When the reception start time is reached, the zero crossing of the reception signal is detected, the transmission / reception time count is stopped, and the count value at that time (propagation time detection time td) is read. (S105).
Next, the process branches depending on whether calibration or measurement is performed. (S106). As branch determination information at this time, assuming that the fuel cell vehicle is mounted on the fuel cell vehicle, the fuel cell power plant uses any signal such as accelerator OFF or parking brake ON indicating an idle state, so that the fluid to be measured Calibration can be performed when is in a steady state.

次に、上記判定結果に基づきキャリブレーション実行となった場合の処理シーケンスを説明すると、まず受信信号に代えて、キャリブレーション信号印加回路3nで送信駆動回路の出力を、超音波信号抽出フィルタへ導くように切り換える(S107)。
次に、キャリブレーション信号発生回路3mの制御電圧信号出力を変更し、送信駆動回路から第1のキャリブレーション周波数を出力する(S108)。
Next, the processing sequence when the calibration is executed based on the determination result will be described. First, instead of the reception signal, the output of the transmission drive circuit is guided to the ultrasonic signal extraction filter by the calibration signal application circuit 3n. (S107).
Next, the control voltage signal output of the calibration signal generation circuit 3m is changed, and the first calibration frequency is output from the transmission drive circuit (S108).

次に、遅延時間記憶回路3oにて第1のキャリブレーション周波数における超音波信号抽出フィルタの遅延時間を計測し、第1のキャリブレーション周波数に対応したアドレスに遅延時間を保存する(S109)。
次のキャリブレーション終了判断では、所定の周波数範囲までキャリブレーションが終了したかを判断する。終了していない場合はS108でキャリブレーション周波数設定へ戻って、次のキャリブレーション周波数による遅延時間の計測と保存を繰り返し実行する(S110)。なお全ての周波数でのキャリブレーションが終了した場合には、キャリブレーション信号印加回路3nを、受信信号が超音波信号抽出フィルタ3kへ導かれるように切り換えて流体計測実行に備える。
Next, the delay time storage circuit 3o measures the delay time of the ultrasonic signal extraction filter at the first calibration frequency, and stores the delay time at an address corresponding to the first calibration frequency (S109).
In the next calibration end determination, it is determined whether the calibration is completed up to a predetermined frequency range. If not completed, the process returns to the calibration frequency setting in S108, and the measurement and storage of the delay time by the next calibration frequency is repeatedly executed (S110). When calibration at all frequencies is completed, the calibration signal applying circuit 3n is switched so that the received signal is guided to the ultrasonic signal extraction filter 3k to prepare for fluid measurement execution.

そして流体計測実行時には、遅延時間記憶回路に保持された遅延時間マップを参照して、受信周波数frに対応した遅延時間を読み出す(S112)。
次に、(1),(2)式により、伝播時間検出時間td1(td2)から実質の伝播時間t1(t2)を算出する(S113)。
ここで算出される伝播時間は、送受信方向切り換えによって選択された方向(流れ順方向2a→2b=t1、流れ逆方向2b→2a=t2)の伝播時間であるため、その方向に対応した伝播時間変数(t1、t2)に記憶する(S114)。
When the fluid measurement is executed, the delay time corresponding to the reception frequency fr is read with reference to the delay time map held in the delay time storage circuit (S112).
Next, the actual propagation time t1 (t2) is calculated from the propagation time detection time td1 (td2) by the equations (1) and (2) (S113).
The propagation time calculated here is the propagation time in the direction (flow forward direction 2a → 2b = t1, flow backward direction 2b → 2a = t2) selected by the transmission / reception direction switching, and therefore the propagation time corresponding to that direction. Store in variables (t1, t2) (S114).

次に処理S102〜S114を2回1組で処理して求めた伝播時間t1とt2を基に、(3),(4)式により流量計測値を算出し出力する。
同様に(5),(6)式により流体密度(濃度)を算出し出力する。(S115)。
図11のフローチャートは、上記キャリブレーション実行シーケンスの別形態のサブルーチンを示す。
Next, based on the propagation times t1 and t2 obtained by processing the processes S102 to S114 twice as a set, the flow rate measurement value is calculated and output by the equations (3) and (4).
Similarly, the fluid density (concentration) is calculated and output according to equations (5) and (6). (S115).
The flowchart of FIG. 11 shows a subroutine of another form of the calibration execution sequence.

前記同様に、キャリブレーション信号印加回路3nで送信駆動回路3aの出力を、超音波信号抽出フィルタへ導くように切り換えた後(S201)、最新の測定で受信された周波数が現在の遅延時間マップで入力可能な周波数範囲から外れているかを判定し、範囲外と判定された場合は、該受信周波数を含むように周波数範囲を拡張し、該拡張した周波数範囲のキャリブレーション信号を発生させるようにする(S202)。また、現状マップの周波数範囲内と判定された場合は、拡張処理を行うことなく、次のステップ(S203)へ進む。   Similarly to the above, after switching the output of the transmission drive circuit 3a to be guided to the ultrasonic signal extraction filter by the calibration signal application circuit 3n (S201), the frequency received in the latest measurement is the current delay time map. It is determined whether the frequency range is out of the input range. If it is determined that the frequency range is out of range, the frequency range is expanded to include the reception frequency, and a calibration signal in the expanded frequency range is generated. (S202). On the other hand, if it is determined that the current map is within the frequency range, the process proceeds to the next step (S203) without performing the expansion process.

次いで、所定周波数間隔毎のキャリブレーション信号を順次発生しつつ(S203)、フィルタ遅延時間を計測、保存した後(S204)、発生したキャリブレーション信号の周波数が、前記現状マップの周波数範囲外であるかを判定し(S205)、範囲外と判定された場合は、当該周波数を入力可能な受信周波数範囲として含むように、フィルタ遅延時間マップの受信周波数軸を拡張更新する(S206)。また、現状マップの周波数範囲内と判定された場合は、該受信周波数軸を拡張更新することなく、次のステップ(S208)へ進む。   Next, while sequentially generating calibration signals at predetermined frequency intervals (S203) and measuring and storing the filter delay time (S204), the frequency of the generated calibration signal is outside the frequency range of the current map. If it is determined that the frequency is out of the range, the reception frequency axis of the filter delay time map is expanded and updated so as to include the frequency as an input frequency range that can be input (S206). If it is determined that the frequency is within the frequency range of the current map, the process proceeds to the next step (S208) without extending and updating the reception frequency axis.

次いで、検出されたフィルタ遅延時間が所定の制限値に達したかを判定し(S208)、達したと判定された場合は、伝播時間計測回路に異常があると判断し、当該異常の警報を発する(S209)。また、制限値に達していない場合は、警報を発することなく、次のステップ(S210)へ進む。
S210以降は、前記実施形態同様に、所定の若しくは前記拡張された周波数範囲までキャリブレーションが終了したかを判断し、終了するまで、上記S203〜S209の処理を繰り返し実行し、終了後、キャリブレーション信号印加回路3nを、受信信号が超音波信号抽出フィルタ3kへ導かれるように切り換えて流体計測実行に備える。
Next, it is determined whether the detected filter delay time has reached a predetermined limit value (S208). If it is determined that the filter delay time has reached, it is determined that there is an abnormality in the propagation time measurement circuit, and an alarm for the abnormality is issued. (S209). If the limit value is not reached, the process proceeds to the next step (S210) without issuing an alarm.
After S210, as in the above-described embodiment, it is determined whether the calibration has been completed up to a predetermined or extended frequency range, and the processes of S203 to S209 are repeatedly executed until the calibration is completed. The signal application circuit 3n is switched so that the received signal is guided to the ultrasonic signal extraction filter 3k to prepare for the fluid measurement execution.

本実施形態では、範囲外の受信周波数に対してフィルタ遅延時間マップの受信周波数軸を拡張更新するものを示したが、上述したようにフィルタ回路温度もパラメータとする3次元マップとし、あるいは、所定温度間隔毎の2次元マップを複数枚設ける構成としたものにおいて、測定時の温度が現状マップの入力可能な温度範囲外であるときに、受信周波数の場合と同様に、マップの温度軸を拡張更新し、あるいは、範囲外の2次元マップを追加する構成としてもよい。さらに、周波数と温度との双方に対してマップの拡張ないし追加を行うようにしてもよいことは勿論である。   In the present embodiment, the reception frequency axis of the filter delay time map is extended and updated with respect to reception frequencies outside the range. However, as described above, a three-dimensional map using the filter circuit temperature as a parameter or a predetermined value is used. When the temperature at the time of measurement is outside the temperature range that can be entered in the current map, the temperature axis of the map is expanded as in the case of the reception frequency. It is good also as a structure which updates or adds the two-dimensional map outside a range. Further, it goes without saying that the map may be expanded or added to both the frequency and the temperature.

本発明の実施形態に係る超音波式流体計測装置の全体構成図1 is an overall configuration diagram of an ultrasonic fluid measuring apparatus according to an embodiment of the present invention. 同上装置のフィルタ通過による誤差を説明するためのタイムチャートTime chart for explaining errors due to filter passage of the same device 同じく、問題点を説明するためのタイムチャートSimilarly, a time chart to explain the problem 超音波信号抽出フィルタの群遅延時間と位相特性の関係を示す図The figure which shows the relationship between group delay time and phase characteristic of an ultrasonic signal extraction filter 同上実施形態の遅延時間補正マップの例Example of delay time correction map of the same embodiment 第2実施形態におけるキャリブレーション実行回路の構成図Configuration diagram of calibration execution circuit in the second embodiment 同上キャリブレーション実行処理例を示すフローチャートThe flowchart which shows an example of a calibration execution process same as the above キャリブレーション実行によるマップ修正の例を示すフローチャートFlow chart showing an example of map correction by executing calibration

符号の説明Explanation of symbols

1c… 測定管、2a,2b … 超音波送受波器、3…超音波伝播時間測定回路、3a…送信駆動回路、3d…受信検出回路、3k…超音波信号抽出フィルタ回路、3m…キャリブレーション信号発生回路、3n…キャリブレーション信号印加回路(スイッチ)、3k…フィルタ遅延時間計測回路、4…流量/濃度演算回路     DESCRIPTION OF SYMBOLS 1c ... Measuring tube, 2a, 2b ... Ultrasonic transducer, 3 ... Ultrasonic propagation time measuring circuit, 3a ... Transmission drive circuit, 3d ... Reception detection circuit, 3k ... Ultrasonic signal extraction filter circuit, 3m ... Calibration signal Generation circuit, 3n: Calibration signal application circuit (switch), 3k: Filter delay time measurement circuit, 4 ... Flow rate / concentration calculation circuit

Claims (10)

超音波信号を、被測定流体中の流動方向に対し、相異なる大きさの伝播速度成分を有する方向に伝播させ、それぞれ所定距離を伝播するのに要した複数の伝播時間に基づいて前記被測定流体の状態量を計測する超音波式流体計測方法であって、
前記所定距離伝播した超音波信号をフィルタに通して外乱信号を除去し、
前記外乱信号を除去した超音波信号に基づいて、該超音波信号が前記相異なる大きさの伝播速度成分を有する方向に所定距離伝播するのに要した各伝播時間をそれぞれ計測し、
前記フィルタに入力する超音波信号の周波数を検出し、
前記検出した周波数に基づいて超音波信号の前記フィルタ通過時における遅延時間補正値を算出し、
前記計測した超音波信号の各伝播時間を、前記遅延時間補正値によって補正し、
前記補正した伝播時間に基づいて前記被測定流体の状態量を計測すること
を特徴とする超音波式流体計測方法。
The ultrasonic signal is propagated in directions having propagation velocity components of different magnitudes with respect to the flow direction in the measured fluid, and the measured signal is based on a plurality of propagation times required to propagate a predetermined distance respectively. An ultrasonic fluid measurement method for measuring a fluid state quantity,
The disturbance signal is removed by passing the ultrasonic signal propagated through the predetermined distance through a filter,
Based on the ultrasonic signal from which the disturbance signal has been removed, each propagation time required for the ultrasonic signal to propagate a predetermined distance in the direction having the propagation velocity component of the different magnitude is measured,
Detecting the frequency of the ultrasonic signal input to the filter;
Calculate a delay time correction value when the ultrasonic signal passes through the filter based on the detected frequency,
Each propagation time of the measured ultrasonic signal is corrected by the delay time correction value,
An ultrasonic fluid measurement method, comprising: measuring a state quantity of the fluid to be measured based on the corrected propagation time.
前記被測定流体の状態量は、流量または濃度であることを特徴とする請求項1または請求項2に記載の超音波式流体計測方法。   The ultrasonic fluid measurement method according to claim 1, wherein the state quantity of the fluid to be measured is a flow rate or a concentration. 超音波信号を送信して被測定流体中に流体流動方向に対して相異なる大きさの伝播速度成分を有する方向に伝播させ、それぞれ所定距離伝播させた後受信できるように配置した超音波送受波器と、
前記伝播後の超音波信号から外乱信号を除去するフィルタと、
前記フィルタ通過後の超音波信号に基づいて、該超音波信号が、被測定流体中の流体流動方向に対し相異なる大きさの伝播速度成分を有する方向に送信されてから所定距離伝播させた後受信されるまでの各伝播時間を計測する伝播時間計測手段と、
を備えると共に、
前記超音波送受波器で受信した超音波信号の周波数を検出する周波数検出手段と、
前記検出した周波数に基づいて、超音波信号の前記フィルタ通過時における遅延時間補正値を算出する遅延時間補正値算出手段と、
前記伝播時間計測手段によって計測された各伝播時間を、前記遅延時間補正値算出手段によって算出された遅延時間補正値によって補正する伝播時間補正手段と、
前記補正された伝播時間に基づいて前記被測定流体の状態量を計測する流体状態量計測手段と、
を備えたことを特徴とする超音波式流体計測装置。
An ultrasonic wave transmission / reception wave that is arranged so that it can be received after transmitting an ultrasonic signal and propagating it in a direction having a propagation velocity component of a magnitude different from the fluid flow direction in the fluid to be measured, and propagating each of them for a predetermined distance. And
A filter for removing a disturbance signal from the ultrasonic signal after propagation;
Based on the ultrasonic signal after passing through the filter, the ultrasonic signal is transmitted in a direction having a propagation velocity component having a magnitude different from the fluid flow direction in the fluid to be measured, and then propagated for a predetermined distance. Propagation time measuring means for measuring each propagation time until reception;
With
A frequency detection means for detecting the frequency of the ultrasonic signal received by the ultrasonic transducer;
A delay time correction value calculating means for calculating a delay time correction value when the ultrasonic signal passes through the filter based on the detected frequency;
Propagation time correction means for correcting each propagation time measured by the propagation time measurement means with a delay time correction value calculated by the delay time correction value calculation means;
Fluid state quantity measuring means for measuring a state quantity of the fluid to be measured based on the corrected propagation time;
An ultrasonic fluid measuring device comprising:
前記超音波送受波器は、被測定流体中の流動方向に所定距離離間して音響的に対向するように一対配置され、
前記伝播時間計測手段は、前記一対の超音波送受波器の一方から送信した超音波信号が流体中を伝播して他方の超音波送受波器によって受信されるまでの伝播時間を、前記被測定流体の流動方向に対し、順流および逆流となる伝播方向に対してそれぞれ計測することを特徴とする請求項3に記載の超音波式流体計測装置。
A pair of the ultrasonic transducers are arranged so as to be acoustically opposed at a predetermined distance in the flow direction in the fluid to be measured,
The propagation time measuring means measures the propagation time until the ultrasonic signal transmitted from one of the pair of ultrasonic transducers propagates through the fluid and is received by the other ultrasonic transducer. The ultrasonic fluid measuring device according to claim 3, wherein the measurement is performed with respect to a forward flow direction and a reverse propagation direction with respect to a fluid flow direction.
前記遅延時間補正値算出手段は、前記超音波周波数の検出値、または該超音波周波数の検出値と前記フィルタ温度の検出値に対応した前記遅延時間補正値のデータを設定したマップを備え、該マップから遅延時間補正値を検索することを特徴とする請求項3または請求項4に記載の超音波式流体計測装置。   The delay time correction value calculating means includes a map in which the detection value of the ultrasonic frequency or the detection value of the ultrasonic frequency and the data of the delay time correction value corresponding to the detection value of the filter temperature are set, The ultrasonic fluid measurement device according to claim 3 or 4, wherein a delay time correction value is searched from a map. 前記超音波送受波器で使用する所定の周波数範囲のキャリブレーション信号を発生させて前記フィルタを通過させ、該フィルタ通過前後のキャリブレーション信号の時間差に基づいて、前記遅延時間補正値のデータを算出し、該データで前記マップのデータを更新することを特徴とする請求項5に記載の超音波式流体計測装置。   Generate a calibration signal in a predetermined frequency range to be used in the ultrasonic transducer, pass the filter, and calculate the delay time correction value data based on the time difference between the calibration signals before and after passing through the filter The ultrasonic fluid measurement apparatus according to claim 5, wherein the map data is updated with the data. 前記マップの現状の入力データ範囲を超える入力データ値が検出されたときに、前記入力データ範囲を超える状態でのキャリブレーションを実行して前記マップの入力データ範囲を拡張するようにしたことを特徴とする請求項5または請求項6に記載の超音波式流体計測装置。   When an input data value exceeding the current input data range of the map is detected, the input data range of the map is extended by executing calibration in a state exceeding the input data range. The ultrasonic fluid measuring device according to claim 5 or 6. 前記被測定流体が定常状態となる条件を検出したときに、キャリブレーションを実行することを特徴とする請求項6または請求項7に記載の超音波式流体計測装置。   8. The ultrasonic fluid measurement apparatus according to claim 6, wherein calibration is executed when a condition under which the fluid under measurement is in a steady state is detected. キャリブレーション実行の結果、検出されたフィルタの遅延時間が所定の制限値に達した場合に伝播時間の検出に異常が発生したことを警報することを特徴とする請求項6〜請求項8のいずれか1つに記載の超音波式流体計測装置。   9. The alarm according to any one of claims 6 to 8, wherein, when the delay time of the detected filter reaches a predetermined limit value as a result of execution of calibration, an alarm is given that an abnormality has occurred in detection of the propagation time. The ultrasonic fluid measuring device according to claim 1. 前記被測定流体の状態量は、流量または濃度であることを特徴とする請求項3〜請求項9のいずれか1つに記載の超音波式流体計測装置。   The ultrasonic fluid measurement apparatus according to claim 3, wherein the state quantity of the fluid to be measured is a flow rate or a concentration.
JP2004375214A 2004-12-27 2004-12-27 Method and instrument for ultrasonic fluid measurement Withdrawn JP2006184036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375214A JP2006184036A (en) 2004-12-27 2004-12-27 Method and instrument for ultrasonic fluid measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375214A JP2006184036A (en) 2004-12-27 2004-12-27 Method and instrument for ultrasonic fluid measurement

Publications (1)

Publication Number Publication Date
JP2006184036A true JP2006184036A (en) 2006-07-13

Family

ID=36737273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375214A Withdrawn JP2006184036A (en) 2004-12-27 2004-12-27 Method and instrument for ultrasonic fluid measurement

Country Status (1)

Country Link
JP (1) JP2006184036A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128663A (en) * 2006-11-16 2008-06-05 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
US8291752B2 (en) 2006-06-13 2012-10-23 Continental Automotive Gmbh Method and device for monitoring an exhaust-gas turbocharger
JP2014516162A (en) * 2011-06-24 2014-07-07 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Fluid flow detection method by ultrasonic propagation time method
WO2014175472A1 (en) * 2013-04-22 2014-10-30 알에스오토메이션주식회사 Signal processing apparatus and method
CN109341819A (en) * 2018-10-30 2019-02-15 上海云鱼智能科技有限公司 Self-correction ultrasonic measuring device and its measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291752B2 (en) 2006-06-13 2012-10-23 Continental Automotive Gmbh Method and device for monitoring an exhaust-gas turbocharger
JP2008128663A (en) * 2006-11-16 2008-06-05 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2014516162A (en) * 2011-06-24 2014-07-07 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Fluid flow detection method by ultrasonic propagation time method
KR101602031B1 (en) * 2011-06-24 2016-03-17 아베엘 리스트 게엠베하 Method for determining the flow rate of fluids using the ultrasonic transit-time method
US9354093B2 (en) 2011-06-24 2016-05-31 Avl List Gmbh Method for determining the flow rate of fluids using the ultrasonic transit time method
WO2014175472A1 (en) * 2013-04-22 2014-10-30 알에스오토메이션주식회사 Signal processing apparatus and method
CN109341819A (en) * 2018-10-30 2019-02-15 上海云鱼智能科技有限公司 Self-correction ultrasonic measuring device and its measurement method

Similar Documents

Publication Publication Date Title
JP3216769B2 (en) Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter
US5214966A (en) Method and apparatus for measuring mass flow
WO2010079568A1 (en) Flow rate measurement device
US4527433A (en) Method and apparatus for measuring fluid flow
JP2006184036A (en) Method and instrument for ultrasonic fluid measurement
JPS6098313A (en) Ultrasonic flowmeter
JP3711885B2 (en) Pipe internal pressure measuring device and pipe internal pressure measuring method
JP4180396B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP5372831B2 (en) Ultrasonic densitometer
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP3469405B2 (en) Temperature measurement device
JP2007298347A (en) Ultrasonic flowmeter
JPH11351928A (en) Flowmetr and flow rate measuring method
JP5239876B2 (en) Flow measuring device
JP5663288B2 (en) Ultrasonic measuring device
JP3438371B2 (en) Flow measurement device
JP2001183200A (en) Flowmeter and flow-rate measuring method
JPH0791996A (en) Ultrasonic flowmeter
JP2005345256A (en) Ultrasonic fluid measuring apparatus
JPH04328424A (en) Ultrasonic wave gas flowmeter
JPH04328423A (en) Ultrasonic wave gas flowmeter
RU2180432C2 (en) Ultrasonic digital flowmeter
CN113340363A (en) High-precision wide-range ultrasonic flow measurement device and measurement method
JP5229349B2 (en) Fluid flow measuring device
JP5309188B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091214