JP2006182616A - Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it - Google Patents

Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it Download PDF

Info

Publication number
JP2006182616A
JP2006182616A JP2004379379A JP2004379379A JP2006182616A JP 2006182616 A JP2006182616 A JP 2006182616A JP 2004379379 A JP2004379379 A JP 2004379379A JP 2004379379 A JP2004379379 A JP 2004379379A JP 2006182616 A JP2006182616 A JP 2006182616A
Authority
JP
Japan
Prior art keywords
water
mmol
add
beaker
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004379379A
Other languages
Japanese (ja)
Inventor
Masato Kakihana
眞人 垣花
Tsuneyuki Tomita
恒之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004379379A priority Critical patent/JP2006182616A/en
Publication of JP2006182616A publication Critical patent/JP2006182616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a water-soluble titanium compound having an excellent long time storage property. <P>SOLUTION: A titanium powder of 10 mmol is accurately weighed and put into a beaker. Hydrogen peroxide water of 40 g is added and ammonia water of 10 g is added. After the beaker is water-cooled for 2 hours in a draft chamber, glycolic acid of 25-28 mmol is added and heated at 80°C for 1 day for evaporating to dryness to form a yellow-colored dry gel. Distilled water of 50 g is added and the dry gel is dissolved. The solution is left at a room temperature for about 2 weeks to evaporate water slowly and deposit crystals of the water-soluble titanium compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チタン化合物およびチタン粉末の製造方法に関する。   The present invention relates to a titanium compound and a method for producing titanium powder.

従来用いられてきた液体のチタン原料は、その溶媒に強酸性溶液もしくは有機溶媒を使用するのが一般的であった。四塩化チタンは塩酸が、硫酸チタンは溶媒に硫酸が、チタンアルコキシドではアルコールなどの有機溶媒が用いられる。   Conventionally used liquid titanium raw materials generally use a strongly acidic solution or an organic solvent as the solvent. Titanium tetrachloride uses hydrochloric acid, titanium sulfate uses sulfuric acid as a solvent, and titanium alkoxide uses an organic solvent such as alcohol.

塩酸や硫酸などの強酸性溶媒を用いる場合、その高い腐食性から容器の種類が限られ、また人体に付着した際の害も大きい。塩酸の場合には揮発性が強く、目や鼻などの粘膜を侵す。硫酸の場合には焼成後も生成物中に硫酸イオンが残留し、機能低下を招く。薄膜を作製する場合、酸に弱い金属基板などへコーティングすると基板が腐食されてしまう。   When a strongly acidic solvent such as hydrochloric acid or sulfuric acid is used, the type of container is limited due to its high corrosiveness, and the damage caused when adhering to the human body is great. Hydrochloric acid is highly volatile and affects the mucous membranes of the eyes and nose. In the case of sulfuric acid, sulfate ions remain in the product even after calcination, leading to functional deterioration. When a thin film is produced, the substrate is corroded if it is coated on a metal substrate which is weak against acid.

チタンアルコキシドと有機溶媒を用いる場合、最も大きな問題となるのがその発火性である。引火点は常温以下であり、火災や爆発の危険性を常にはらむ。また水に弱いため、空気中の水分を吸収してチタンが加水分解されて沈殿を形成してしまう。このため、スプレーによって基板への吹きつけを行う場合など、ノズルの目詰まりなどが頻繁に起こってしまい、取り扱いが難しい。形成した沈殿は不溶性で、再度溶解することは極めて難しい。   When titanium alkoxide and an organic solvent are used, the most serious problem is its ignitability. The flash point is below room temperature and there is always a risk of fire and explosion. Moreover, since it is weak to water, it absorbs moisture in the air and hydrolyzes titanium to form a precipitate. For this reason, when the spraying is performed on the substrate by spraying, nozzle clogging frequently occurs and handling is difficult. The formed precipitate is insoluble and very difficult to dissolve again.

本発明は、ペルオキソグリコール酸チタン錯体を利用することであり、中性の水を溶媒に用いることが可能となる。そのため人体に触れたりしても安全であり、また揮発性も低いため吸引してしまう心配もない。腐食性もないため、様々な基板に対してコーティングが可能である。水を溶媒とするため発火性は全くない。安定な錯体であるため水溶液中で加水分解されることはなく、大気中の水分を気にする必要は全くない。溶媒の水が全て蒸発した場合、ペルオキソグリコール酸チタン錯体の結晶が固体として生じるが、容易に水に溶解させることができるためスプレーノズルのつまりなどの心配もなく、また長期間にわたる保存性も極めて良い、水溶性チタン化合物の製造方法およびそれを用いた酸化チタン粉末の製造方法を提供することを目的とする。   The present invention uses a titanium peroxoglycolate complex, and neutral water can be used as a solvent. For this reason, it is safe to touch the human body, and since it is low in volatility, there is no worry of suction. Since it is not corrosive, it can be applied to various substrates. Since water is used as a solvent, there is no ignition. Since it is a stable complex, it is not hydrolyzed in an aqueous solution, and there is no need to worry about atmospheric moisture. When all of the solvent water evaporates, crystals of the titanium peroxoglycolate complex form as a solid, but since it can be easily dissolved in water, there is no worry about clogging of the spray nozzle, etc. It is an object of the present invention to provide a good method for producing a water-soluble titanium compound and a method for producing a titanium oxide powder using the same.

本発明によれば、チタン粉末10mmolを精秤し、ビーカーへ入れ、過酸化水素水40gを加え、さらにアンモニア水10gを加え、このビーカーをドラフト中で2時間水冷、放置後、グリコール酸を25〜28mmol 加え、温度80℃で1日加温し、蒸発乾固して黄色の乾燥ゲルとし、ここへ蒸留水50gを加え、乾燥ゲルを溶解し、これを室温で約2週間放置し、徐々に水を揮発させ、結晶を晶出することを特徴とする水溶性チタン化合物の製造方法が得られる。   According to the present invention, 10 mmol of titanium powder is precisely weighed and put into a beaker, 40 g of hydrogen peroxide water is added, 10 g of ammonia water is further added, and the beaker is cooled in water for 2 hours in a fume hood. Add ~ 28mmol, warm at 80 ° C for 1 day, evaporate to dryness to give a yellow dry gel, add 50g of distilled water here, dissolve the dry gel, leave it at room temperature for about 2 weeks, gradually A method for producing a water-soluble titanium compound is obtained, wherein water is volatilized to crystallize crystals.

また本発明によれば、チタン粉末10mmolをビーカーへ入れ、過酸化水素水40gを加え、さらにアンモニア水10gを加え、このビーカーをドラフト中で2時間水冷、放置し、ここへ錯形成剤としてクエン酸10mmolもしくはりんご酸10mmolもしくはグリコール酸15mmolもしくは乳酸30mmolを加え、室温で12時間放置した後、80℃で加温して蒸発乾固させ、ここへ少量の蒸留水を加えて溶解し、再度80℃で蒸発乾固し、ここへ少量の蒸留水を加え、溶液の半分を取り出し、蒸留水を加えて全量を20mlとし、この溶液を水熱反応用オートクレーブ容器へ入れ、電気炉中で200℃24時間加熱することで水熱処理し、冷却後に、形成した沈殿をろ過することを特徴とする酸化チタン粉末の製造方法が得られる。   Further, according to the present invention, 10 mmol of titanium powder is put into a beaker, 40 g of hydrogen peroxide solution is added, 10 g of ammonia water is further added, and the beaker is cooled in water for 2 hours in a fume hood, where it is quenched as a complexing agent. Add 10 mmol of acid or 10 mmol of malic acid or 15 mmol of glycolic acid or 30 mmol of lactic acid, leave it at room temperature for 12 hours, evaporate to dryness by heating at 80 ° C, add a small amount of distilled water to dissolve it, and then add 80 Evaporate to dryness at ℃, add a small amount of distilled water here, take out half of the solution, add distilled water to make a total volume of 20 ml, put this solution in a hydrothermal reaction autoclave container, and in an electric furnace at 200 ℃ A method for producing a titanium oxide powder is obtained, which is hydrothermally treated by heating for 24 hours, and after cooling, the formed precipitate is filtered.

本発明によれば、安全であり、吸引してしまう心配もなく、腐食性もないため、様々な基板に対してコーティングが可能であり、容易に水に溶解させることができるためスプレーノズルのつまりなどの心配もなく、また長期間にわたる保存性も極めて良い水溶性チタン化合物の製造方法およびそれを用いた酸化チタン粉末の製造方法がえられる。   According to the present invention, since it is safe, there is no worry of being sucked, and it is not corrosive, it can be coated on various substrates and can be easily dissolved in water, so that the spray nozzle is clogged. In addition, there can be obtained a method for producing a water-soluble titanium compound having excellent storage stability for a long period of time and a method for producing titanium oxide powder using the same.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態によるペルオキソグリコール酸チタンアンモニウム単結晶作製フローチャートを示す図である。チタン粉末10mmolを精秤し、ビーカーへ入れた。ここへ過酸化水素水40gを加え、さらにアンモニア水10gを加えた。このビーカーをドラフト中で2時間水冷、放置した。この時溶液は激しく発泡し、発熱も見られた。2時間後、黄色透明の溶液となった。同様の手順で同じ試料を10個作製し、それぞれへグリコール酸を10、15、20、25、26、27、28、30、40、50mmol加えた。それぞれのビーカーをプレート温度80℃に設定したホットプレートで1日加温し、蒸発乾固して黄色の乾燥ゲルとした。ここへ蒸留水50gを加え、乾燥ゲルを溶解した。これを室温で約2週間放置し、徐々に水を揮発させたところ、グリコール酸量が25〜28mmolの試料において結晶の形成が見られた。グリコール酸量が27mmolの試料において単離できる程度の大きさの単結晶が得られた。色は黄色透明であった。これを取り出し、構造解析用の単結晶とした。得られたペルオキソグリコール酸チタンアンモニウム単結晶の顕微鏡写真を図2に示す。   FIG. 1 is a view showing a flow chart for producing a titanium ammonium peroxoglycolate single crystal according to an embodiment of the present invention. 10 mmol of titanium powder was precisely weighed and placed in a beaker. To this was added 40 g of aqueous hydrogen peroxide, and 10 g of aqueous ammonia was further added. This beaker was left to cool in a draft for 2 hours. At this time, the solution foamed violently and exotherm was observed. After 2 hours, a yellow transparent solution was obtained. Ten same samples were prepared in the same procedure, and 10, 15, 20, 25, 26, 27, 28, 30, 40, and 50 mmol of glycolic acid were added to each sample. Each beaker was heated on a hot plate set at a plate temperature of 80 ° C. for 1 day and evaporated to dryness to obtain a yellow dry gel. To this was added 50 g of distilled water to dissolve the dried gel. When this was allowed to stand at room temperature for about 2 weeks and water was gradually volatilized, crystal formation was observed in a sample having a glycolic acid amount of 25 to 28 mmol. A single crystal large enough to be isolated in a sample having a glycolic acid amount of 27 mmol was obtained. The color was yellow and transparent. This was taken out and used as a single crystal for structural analysis. A micrograph of the obtained ammonium ammonium peroxoglycolate single crystal is shown in FIG.

図3は本発明の実施の形態による水溶性チタン錯体を利用したTiO2の水熱合成フローチャートを示す図である。チタン粉末10mmolをビーカーへ入れた。ここへ過酸化水素水40gを加え、さらにアンモニア水10gを加えた。このビーカーをドラフト中で2時間水冷、放置した。この時溶液は激しく発泡し、発熱も見られた。2時間後、黄色透明の溶液となった。ここへ錯形成剤としてクエン酸10mmolもしくはりんご酸10mmolもしくはグリコール酸15mmolもしくは乳酸30mmolを加えた。室温で12時間放置した後、80℃で加温して蒸発乾固させた。ここへ少量の蒸留水を加えて溶解し、再度80℃で蒸発乾固させた。ここへ少量の蒸留水を加え、溶液の半分を取り出し、蒸留水を加えて全量を20mlとした。したがってこの時のTiの濃度は0.25mol/lとなる。この溶液を水熱反応用オートクレーブ容器へ入れた。この反応器はステンレス製の外容器とテフロン(登録商標)製の内容器で成り立っており、反応溶液を入れる部分の容積は50mlである。これを電気炉中で200℃24時間加熱することで水熱処理した。また乳酸を錯形成剤として用いた試料のみこれに加えて200℃36時間と160℃2時間+8時間の水熱処理も行った。冷却後に、形成した沈殿をろ過して取り出し、Raman散乱測定、XRD測定、TEM観察を行った。水溶性チタン錯体を利用して水熱法で合成したTiO2のTEM画像を図4に示した。 FIG. 3 is a diagram showing a hydrothermal synthesis flow chart of TiO 2 using a water-soluble titanium complex according to an embodiment of the present invention. 10 mmol of titanium powder was placed in a beaker. To this was added 40 g of aqueous hydrogen peroxide, and 10 g of aqueous ammonia was further added. This beaker was left to cool in a draft for 2 hours. At this time, the solution foamed violently and exotherm was observed. After 2 hours, a yellow transparent solution was obtained. To this, 10 mmol of citric acid, 10 mmol of malic acid, 15 mmol of glycolic acid or 30 mmol of lactic acid was added as a complexing agent. After standing at room temperature for 12 hours, the mixture was heated at 80 ° C. and evaporated to dryness. A small amount of distilled water was added and dissolved therein, and the mixture was again evaporated to dryness at 80 ° C. A small amount of distilled water was added thereto, half of the solution was taken out, and distilled water was added to make a total volume of 20 ml. Therefore, the Ti concentration at this time is 0.25 mol / l. This solution was put into an autoclave container for hydrothermal reaction. This reactor is composed of a stainless steel outer container and a Teflon (registered trademark) inner container, and the volume of the portion for containing the reaction solution is 50 ml. This was hydrothermally treated by heating in an electric furnace at 200 ° C. for 24 hours. In addition, only samples using lactic acid as a complexing agent were subjected to hydrothermal treatment at 200 ° C. for 36 hours and 160 ° C. for 2 hours + 8 hours. After cooling, the formed precipitate was filtered out and subjected to Raman scattering measurement, XRD measurement, and TEM observation. A TEM image of TiO 2 synthesized by a hydrothermal method using a water-soluble titanium complex is shown in FIG.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

本発明の実施の形態によるペルオキソグリコール酸チタンアンモニウム単結晶作製フローチャートFlow chart for manufacturing single crystal ammonium ammonium peroxoglycolate according to an embodiment of the present invention ペルオキソグリコール酸チタンアンモニウム単結晶の顕微鏡写真Micrograph of titanium ammonium peroxoglycolate single crystal 水溶性チタン錯体を利用したTiO2の水熱合成フローチャートHydrothermal synthesis flow chart of TiO 2 using water-soluble titanium complex 水溶性チタン錯体を利用して水熱法で合成したTiO2のTEM画像TEM image of TiO 2 synthesized by hydrothermal method using water-soluble titanium complex

Claims (2)

チタン粉末10mmolを精秤し、ビーカーへ入れ、過酸化水素水40gを加え、さらにアンモニア水10gを加え、このビーカーをドラフト中で2時間水冷、放置後、グリコール酸を25〜28mmol 加え、温度80℃で1日加温し、蒸発乾固して黄色の乾燥ゲルとし、ここへ蒸留水50gを加え、乾燥ゲルを溶解し、これを室温で約2週間放置し、徐々に水を揮発させ、結晶を晶出することを特徴とする水溶性チタン化合物の製造方法。   Titanium powder 10mmol is precisely weighed and put into a beaker, hydrogen peroxide water 40g is added, ammonia water 10g is further added, this beaker is cooled in water for 2 hours in a fume hood, and then glycolic acid is added in an amount of 25-28 mmol, and the temperature is 80 Heat at ℃ for 1 day, evaporate to dryness to give a yellow dry gel, add 50 g of distilled water here, dissolve the dry gel, leave it at room temperature for about 2 weeks, gradually volatilize the water, A method for producing a water-soluble titanium compound characterized by crystallizing crystals. チタン粉末10mmolをビーカーへ入れ、過酸化水素水40gを加え、さらにアンモニア水10gを加え、このビーカーをドラフト中で2時間水冷、放置し、ここへ錯形成剤としてクエン酸10mmolもしくはりんご酸10mmolもしくはグリコール酸15mmolもしくは乳酸30mmolを加え、室温で12時間放置した後、80℃で加温して蒸発乾固させ、ここへ少量の蒸留水を加えて溶解し、再度80℃で蒸発乾固し、ここへ少量の蒸留水を加え、溶液の半分を取り出し、蒸留水を加えて全量を20mlとし、この溶液を水熱反応用オートクレーブ容器へ入れ、電気炉中で200℃24時間加熱することで水熱処理し、冷却後に、形成した沈殿をろ過することを特徴とする酸化チタン粉末の製造方法。   Add 10 mmol of titanium powder into a beaker, add 40 g of hydrogen peroxide solution, add 10 g of aqueous ammonia, leave the beaker in water for 2 hours in a fume hood, and leave it to 10 mmol of citric acid or 10 mmol of malic acid as a complexing agent. After adding 15 mmol of glycolic acid or 30 mmol of lactic acid and leaving it at room temperature for 12 hours, warm it at 80 ° C. to evaporate to dryness, add a small amount of distilled water to dissolve it, evaporate to dryness at 80 ° C. again, Add a small amount of distilled water here, take out half of the solution, add distilled water to make a total volume of 20 ml, put this solution into a hydrothermal reaction autoclave container, and heat it in an electric furnace at 200 ° C for 24 hours. A method for producing a titanium oxide powder, characterized by filtering the formed precipitate after heat treatment and cooling.
JP2004379379A 2004-12-28 2004-12-28 Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it Pending JP2006182616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379379A JP2006182616A (en) 2004-12-28 2004-12-28 Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379379A JP2006182616A (en) 2004-12-28 2004-12-28 Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it

Publications (1)

Publication Number Publication Date
JP2006182616A true JP2006182616A (en) 2006-07-13

Family

ID=36736008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379379A Pending JP2006182616A (en) 2004-12-28 2004-12-28 Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it

Country Status (1)

Country Link
JP (1) JP2006182616A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994154A (en) * 2010-11-26 2011-03-30 浙江大学 Preparation method of waist drum shaped single crystal anatase titanium dioxide and gathered microsphere thereof
JP2012188312A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Method for producing precursor solution of solid electrolyte and method for producing the solid electrolyte
CN104098133A (en) * 2014-07-02 2014-10-15 江苏恒智纳米科技有限公司 Preparation method for high-efficient photocatalyst-nanometer titanium dioxide water-based colloid
CN104477987A (en) * 2014-12-12 2015-04-01 中国科学院过程工程研究所 Clean production method of high-purity titanium dioxide
CN104649319A (en) * 2015-03-02 2015-05-27 北华大学 Method for preparing TiO2(B) nano-sponge
JP2016082005A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing organic inorganic hybrid solar battery, and organic inorganic hybrid solar battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994154A (en) * 2010-11-26 2011-03-30 浙江大学 Preparation method of waist drum shaped single crystal anatase titanium dioxide and gathered microsphere thereof
CN101994154B (en) * 2010-11-26 2012-06-06 浙江大学 Preparation method of waist drum shaped single crystal anatase titanium dioxide and gathered microsphere thereof
JP2012188312A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Method for producing precursor solution of solid electrolyte and method for producing the solid electrolyte
CN104098133A (en) * 2014-07-02 2014-10-15 江苏恒智纳米科技有限公司 Preparation method for high-efficient photocatalyst-nanometer titanium dioxide water-based colloid
JP2016082005A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing organic inorganic hybrid solar battery, and organic inorganic hybrid solar battery
CN104477987A (en) * 2014-12-12 2015-04-01 中国科学院过程工程研究所 Clean production method of high-purity titanium dioxide
CN104649319A (en) * 2015-03-02 2015-05-27 北华大学 Method for preparing TiO2(B) nano-sponge

Similar Documents

Publication Publication Date Title
Mary et al. Sugarcane juice mediated synthesis of copper oxide nanoparticles, characterization and their antibacterial activity
CN101381106B (en) Method for preparing nano tungsten trioxide powder
Chen et al. Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis
Davar et al. Synthesis and optical properties of pure monoclinic zirconia nanosheets by a new precursor
CN106629613B (en) A kind of preparation method of ion insertion type two-dimensional material
JP2006182616A (en) Method of manufacturing water-soluble titanium compound and manufacturing method of titanium oxide powder using it
WO2012010427A1 (en) Indium oxoalkoxides for producing coatings containing indium oxide
Das et al. Chemical synthesis of fine powder of lead magnesium niobate using niobium tartarate complex
Mani et al. Selective recognition of hydrogen sulfide using template and catalyst free grown ZnO nanorods
Kuo et al. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol–gel process
RU2017105824A (en) APPLICATIONS OF TUNGSTEN-CONTAINING MATERIAL
ES2211163T5 (en) PROCEDURE FOR DEPOSITING TITANIUM OXIDE LAYERS BY SOLUBLE POWDER.
CN105399339B (en) A kind of ferrous acid bismuth-based thin films and preparation method thereof containing doped chemical
RU2549421C2 (en) Method of obtaining nanoneedles of sodium vanadium oxide bronze
JPS5964527A (en) Amorphous calcium carbonate, its preparation and material for releasing substance adsorbed to it at proper rate
CN104445381A (en) Preparation method for mesoporous multi-element metal oxide
Lu et al. Influence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders
CN103979600B (en) A kind of preparation method of ultrafine copper oxide powder
KR20200022275A (en) A Fabrication Method of Combustion Waves Based Palladium Oxides Composites And A Fabrication Method of pH Sensor
Liu et al. Preparation of CeVO4 with VO2 as precursor performing high selectivity and sensitivity to ammonia
CN107823220B (en) Bimetal organic framework antibacterial nano-particles with photo-thermal effect and preparation method and application thereof
CN105110362A (en) Preparation method of flower cluster-shaped zinc oxide hybrid material based on cellulose nanosphere crystal as template
RU2440298C2 (en) Method of producing lithium zirconate powder
Zhao et al. Preparation of potassium lithium niobate powders with low Li content via the Pechini method
JP2021134091A (en) Aqueous alkaline solution having excellent sterilization and deodorization properties