JP2006181525A - Micro device and method for treating inside surface thereof - Google Patents

Micro device and method for treating inside surface thereof Download PDF

Info

Publication number
JP2006181525A
JP2006181525A JP2004379768A JP2004379768A JP2006181525A JP 2006181525 A JP2006181525 A JP 2006181525A JP 2004379768 A JP2004379768 A JP 2004379768A JP 2004379768 A JP2004379768 A JP 2004379768A JP 2006181525 A JP2006181525 A JP 2006181525A
Authority
JP
Japan
Prior art keywords
microchannel
plating
microdevice
electroless
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004379768A
Other languages
Japanese (ja)
Inventor
Takeshi Tobisawa
猛 飛澤
Hitoshi Sekine
均 関根
Fumihiko Ishiyama
文彦 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
DIC Technology Corp
Original Assignee
DIC Technology Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Technology Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Technology Corp
Priority to JP2004379768A priority Critical patent/JP2006181525A/en
Publication of JP2006181525A publication Critical patent/JP2006181525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a smooth plated layer on the surface of a micro flow passage. <P>SOLUTION: A plurality of micro flow passages 2 each having 1-1,000 μm width and height are arranged on a micro device 1. A nickel layer is formed by pressurizing/supplying an electroless nickel-plating liquid to a supply port 2a of each of micro flow passages 2. A fluorocarbon resin-containing nickel layer is formed on the nickel layer by pressuring/supplying an electroless fluorocarbon resin-containing nickel-plating liquid to the supply port 2a. Each of the nickel-plating liquids thus pressurized surmounts the surface tension of each of the nickel-plating liquids to be generated at the supply port of each of micro flow passages and intrudes into each of micro flow passages so that the surface of each of micro flow passages is brought into contact with each of the nickel-plating liquids and plated. As a result, the smooth plated layer being the fluorocarbon resin-containing nickel layer can be formed on the surface of each of micro flow passages and consequently a fluid can be made to flow smoothly without adhering to the surface of each of micro flow passages or blocking each of micro flow passages. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極微細な寸法を有するマイクロ流路内に各種流体を流して化学反応や分析、晶析等を行うようにしたマイクロデバイス及びその内面処理方法に関する。   The present invention relates to a microdevice in which various fluids are allowed to flow in microchannels having extremely fine dimensions to perform chemical reaction, analysis, crystallization, and the like, and an inner surface treatment method thereof.

近年、幅と高さや内径が1μmから数百μmの断面形状を有する微細なマイクロ流路を複数有するマイクロデバイスを用いて、各種流体をマイクロ流路内に導入することによって化学反応や分析等を行う技術が提案されている。このような技術の1つとして例えば特許文献1に記載されたマイクロデバイスがある。
このマイクロデバイスは、導入流路から導入された2種の流体を微細なマイクロ流路に供給して混合し、更に分離して別々の流路から排出する構成を備えている。これらの流体中にはその目的に応じて種々の物質を含ませておき、マイクロ流路内で接触、混合させて化学反応させるようにしている。
このようなマイクロデバイスに設けられたマイクロ流路は、断面形状の幅や高さまたは内径が1μm〜1000μm未満程度に設定されている。そして、粘着性物質や粉体の粒子等を溶解させた流体をマイクロ流路に流して取り扱うようにしている。
特開2004−305938号公報
In recent years, chemical reactions and analyzes have been conducted by introducing various fluids into a microchannel using a microdevice having a plurality of microchannels having a cross-sectional shape with a width, height and inner diameter of 1 μm to several hundred μm. Techniques to do are proposed. As one of such techniques, there is a microdevice described in Patent Document 1, for example.
This micro device has a configuration in which two types of fluids introduced from an introduction channel are supplied to a fine micro channel, mixed, further separated, and discharged from separate channels. These fluids contain various substances according to their purposes, and are brought into contact with and mixed in the microchannel for chemical reaction.
The microchannel provided in such a microdevice has a cross-sectional width, height, or inner diameter set to about 1 μm to less than 1000 μm. Then, a fluid in which an adhesive substance, powder particles or the like are dissolved is caused to flow through the micro flow path for handling.
JP 2004-305938 A

ところで、マイクロデバイスには加工が容易なステンレス等の金属が用いられており、微細なマイクロ流路の表面は通常の酸洗いをした金属表面であるために非常に表面が粗く、そのために流体中に含まれる粘着性物質や粉体の粒子等が付着し易く流路の閉塞や圧力上昇を引き起こし易いという不具合があった。
ところが、上述したようなマイクロ流路の表面に流体中の粘着性物質や粒子等が付着しにくくしようとした場合、一般的な電気めっきや無電解めっき等のめっき処理方法によって表面にめっき層を形成することが考えられる。しかしながら、この場合、めっき液を満たしためっき浴槽中にマイクロデバイスを漬けてめっき処理するものであるから、微細なマイクロ流路の開口にめっき液の表面張力が生じて内部にめっき液が十分浸入しなかった。そのため、マイクロ流路の表面をめっき層で被覆形成することはできなかった。
By the way, metals such as stainless steel, which are easy to process, are used for the microdevice, and the surface of the fine microchannel is a rough surface because it is a metal surface that has been subjected to normal pickling. There is a problem that the adhesive substance and powder particles contained in the film are likely to adhere, and the flow path is likely to be blocked or the pressure is increased.
However, when it is difficult for the adhesive substance or particles in the fluid to adhere to the surface of the microchannel as described above, a plating layer is formed on the surface by a general plating method such as electroplating or electroless plating. It is conceivable to form. However, in this case, since the micro device is immersed in the plating bath filled with the plating solution and plating is performed, the surface tension of the plating solution is generated in the opening of the minute micro flow path, and the plating solution is sufficiently infiltrated inside. I didn't. Therefore, the surface of the microchannel cannot be formed with a plating layer.

本発明は、このような実情に鑑みて、マイクロ流路の表面に滑らかなめっき層を形成するようにしたマイクロデバイス及びその内面処理方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a microdevice in which a smooth plating layer is formed on the surface of a microchannel and a method for treating the inner surface thereof.

本発明によるマイクロデバイスは、幅と高さまたは内径が1〜1000μmの断面を有するマイクロ流路を設けたマイクロデバイスにおいて、マイクロ流路の供給口と排出口に圧力差を持たせて無電解用めっき液を供給して表面にめっき層を形成したことを特徴とする。
本発明では、マイクロ流路内に供給口と排出口に圧力差を持たせて無電解用めっき液を供給することで、マイクロ流路内の供給口に生じる無電解用めっき液の表面張力に打ち勝って内部に浸入させて表面全体に接触させることができ、これによってめっき処理で滑らかなめっき層を形成することができる。そのため、流体をマイクロ流路に流しても粒子等が付着したり閉塞したりすることを防止して連続的に流体の処理を行える。
なお、めっき液をマイクロ流路内に供給する際、圧力差を生じさせるために供給口に供給するめっき液を加圧してもよいし排出口のめっき液を減圧してもよい。
The microdevice according to the present invention is a microdevice provided with a microchannel having a cross section having a width and height or an inner diameter of 1 to 1000 μm, and has a pressure difference between the supply port and the discharge port of the microchannel and is used for electroless A plating solution is supplied to form a plating layer on the surface.
In the present invention, the surface tension of the electroless plating solution generated at the supply port in the microchannel is reduced by supplying the electroless plating solution with a pressure difference between the supply port and the discharge port in the microchannel. It can be overcome and infiltrated into the interior to be brought into contact with the entire surface, whereby a smooth plating layer can be formed by plating. Therefore, even if the fluid flows through the microchannel, the fluid can be continuously processed by preventing particles and the like from adhering or blocking.
When supplying the plating solution into the micro flow path, the plating solution supplied to the supply port may be pressurized or the discharge port may be depressurized in order to generate a pressure difference.

本発明によるマイクロデバイスの内面処理方法によれば、幅と高さまたは内径が1〜1000μmの断面を有するマイクロ流路を設けたマイクロデバイスにおいて、マイクロ流路の供給口と排出口に圧力差を持たせて無電解用ニッケルめっき液または無電解用フッ素樹脂含有ニッケルめっき液を供給して無電解めっきすることで表面にニッケル層またはフッ素樹脂含有ニッケル層を形成するようにしたことを特徴とする。
本発明では、圧力差によって無電解用ニッケルめっき液または無電解用フッ素樹脂含有ニッケルめっき液をマイクロ流路内に浸入させて無電解めっきすることで表面にニッケル層またはフッ素樹脂含有ニッケル層からなる均一厚みで滑めらかなめっき層を形成できる。この場合、マイクロ流路の表面にニッケル層を形成すれば、酸洗いしただけの無垢のマイクロ流路よりも表面が滑らかであり、またフッ素樹脂含有ニッケル層を形成すれば、フッ素樹脂の層によって平滑性と撥水性と発油性が良くなり、マイクロ流路の表面が一層滑らかであり、流体の付着等を抑えて流れを良好にする。
According to the method for treating the inner surface of a microdevice according to the present invention, in a microdevice having a microchannel having a cross section with a width and height or an inner diameter of 1 to 1000 μm, a pressure difference is generated between the supply port and the discharge port of the microchannel. A nickel layer or a fluororesin-containing nickel layer is formed on the surface by supplying an electroless nickel plating solution or an electroless fluororesin-containing nickel plating solution and performing electroless plating. .
In the present invention, an electroless nickel plating solution or an electroless fluororesin-containing nickel plating solution is infiltrated into the microchannel by a pressure difference, and the surface is made of a nickel layer or a fluororesin-containing nickel layer. A smooth plating layer having a uniform thickness can be formed. In this case, if a nickel layer is formed on the surface of the microchannel, the surface is smoother than a pure microchannel that is simply pickled, and if a fluororesin-containing nickel layer is formed, Smoothness, water repellency, and oil repellency are improved, the surface of the microchannel is smoother, and adhesion of fluid is suppressed to improve flow.

本発明によるマイクロデバイスによれば、マイクロ流路の表面に滑らかなめっき層を形成することができて流体を流した場合に粘着性物質や流体中の粒子等が表面に付着したり流路を閉塞したりすることがなくスムーズに流れて連続的に処理でき、しかも洗浄時間の短縮を図ることができると共に流体の付着残留に起因する汚染や品質劣化を防止できる。
また、本発明によるマイクロデバイスの内面処理方法によれば、圧力差によって表面張力に打ち勝って無電解用ニッケルめっき液または無電解用フッ素樹脂含有ニッケルめっき液を微細なマイクロ流路内に浸入させて無電解めっきすることで表面にニッケル層またはフッ素樹脂含有ニッケル層からなる均一厚みで滑らかなめっき層を形成できる。
According to the microdevice of the present invention, a smooth plating layer can be formed on the surface of the microchannel, and when a fluid is flowed, adhesive substances or particles in the fluid adhere to the surface or the channel It can flow smoothly and can be continuously processed without being clogged, and the cleaning time can be shortened, and contamination and quality deterioration due to residual adhesion of fluid can be prevented.
Further, according to the method for treating the inner surface of the microdevice according to the present invention, the electroless nickel plating solution or the electroless fluororesin-containing nickel plating solution is allowed to enter the fine micro flow path by overcoming the surface tension due to the pressure difference. By performing electroless plating, a smooth plating layer having a uniform thickness composed of a nickel layer or a fluorine resin-containing nickel layer can be formed on the surface.

本発明によるマイクロデバイスでは、めっき層はニッケルまたはフッ素樹脂含有ニッケル層で形成されていることが好ましい。
ニッケル層またはフッ素樹脂含有ニッケル層によって滑らかで均一な厚みのめっき層を形成でき、そのために流体をマイクロ流路に流した際に表面に付着することを抑制でき、そのためにマイクロ流路が詰まったり圧力が上昇することを防止できて連続して流体を流して化学反応や分析、晶析等の処理を行える。
In the microdevice according to the present invention, the plating layer is preferably formed of nickel or a fluorine resin-containing nickel layer.
A smooth and uniform plating layer can be formed with a nickel layer or a fluororesin-containing nickel layer, which prevents the fluid from adhering to the surface when flowing into the microchannel, which can clog the microchannel It is possible to prevent the pressure from rising, and to conduct a chemical reaction, analysis, crystallization, etc. by continuously flowing a fluid.

本発明によるマイクロデバイスの内面処理方法では、無電解用ニッケルめっき液または無電解用フッ素樹脂含有ニッケルめっき溶液は、マイクロ流路の供給口と排出口での圧力差が0.2MPaまたはそれ以下となるようにしてもよい。
これによってマイクロ流路の供給口に表面張力を生じさせることなく内部に無電解用ニッケルめっき液または無電解用フッ素樹脂含有ニッケルめっき液を浸入させて表面全体に接触させることができ、無電解めっきによって表面に均一厚みで滑らかなニッケル層またはフッ素樹脂含有ニッケル層を形成できる。
なお、マイクロ流路の表面に無電解用フッ素樹脂含有ニッケルめっきを施す前に、無電解めっきによるニッケル層を形成することが好ましい。ニッケル層はフッ素樹脂含有ニッケル層となじみがよく、表面にフッ素樹脂による層を形成できる。
この場合、ニッケル層はマイクロデバイスを製造する前のプレートに形成し、これら複数のプレートを積層して加圧することで拡散接合によって相互に固着してマイクロデバイスを製造することで、マイクロ流路の表面にニッケル層を形成してもよい。或いはマイクロデバイスの各マイクロ流路に供給口と排出口での圧力差を持たせて無電解用ニッケルめっき液を供給することで表面にニッケル層を形成してもよい。
In the microdevice inner surface treatment method according to the present invention, the electroless nickel plating solution or the electroless fluororesin-containing nickel plating solution has a pressure difference of 0.2 MPa or less between the supply port and the discharge port of the microchannel. It may be made to become.
As a result, the electroless nickel plating solution or the electroless fluororesin-containing nickel plating solution can be infiltrated and brought into contact with the entire surface without causing surface tension at the microchannel supply port. Thus, a smooth nickel layer or a fluororesin-containing nickel layer having a uniform thickness can be formed on the surface.
In addition, it is preferable to form a nickel layer by electroless plating before performing electroless fluororesin-containing nickel plating on the surface of the microchannel. The nickel layer is familiar with the fluororesin-containing nickel layer, and a layer of fluororesin can be formed on the surface.
In this case, the nickel layer is formed on the plate before manufacturing the microdevice, and the plurality of plates are stacked and pressed to adhere to each other by diffusion bonding to manufacture the microdevice. A nickel layer may be formed on the surface. Alternatively, a nickel layer may be formed on the surface by supplying an electroless nickel plating solution to each micro flow path of the microdevice with a pressure difference between the supply port and the discharge port.

以下、本発明の第一実施例によるマイクロデバイスの斜視図、図2はマイクロデバイスのプレートを示す分解斜視図、図3はマイクロ流路の断面図、図4はマイクロ流路の無電解めっき装置を示す図、図5はマイクロ流路のめっき方法のフローシートである。
図1及び図2に示す第一実施例によるマイクロデバイス1は、一方の面3aに断面凹溝形状のマイクロ流路2′を所定間隔で複数配列形成してなるプレート3を互いに直交する向きで交互に積層したものである。各プレート3は例えばステンレス製等の金属製からなる例えば一辺が20mmをなす正方形板状であり、積層状態で互いに固着して構成されている。マイクロデバイス1の各マイクロ流路2は両端に開口するトンネル形状であり、縦断面が例えば長方形で幅600μm、高さ300μm、長さ20mmとされ、1枚のプレート3に例えば数本から数十本設けられている。
1 is a perspective view of a micro device according to a first embodiment of the present invention, FIG. 2 is an exploded perspective view showing a plate of the micro device, FIG. 3 is a cross-sectional view of the micro channel, and FIG. 4 is an electroless plating apparatus for the micro channel. FIG. 5 is a flow sheet of a microchannel plating method.
The microdevice 1 according to the first embodiment shown in FIGS. 1 and 2 has a plate 3 formed by arranging a plurality of microchannels 2 'having a concave groove shape on one surface 3a at a predetermined interval in a direction orthogonal to each other. Alternating layers are stacked. Each plate 3 is made of a metal such as stainless steel, for example, and has a square plate shape with a side of 20 mm, and is fixed to each other in a laminated state. Each microchannel 2 of the microdevice 1 has a tunnel shape that opens at both ends, has a vertical cross section of, for example, a rectangle, a width of 600 μm, a height of 300 μm, and a length of 20 mm. The book is provided.

図1に示すマイクロデバイス1は、一方の方向Aのマイクロ流路2…には例えば流体としてカルナバワックス20wt%をMEK(メチルエチルケトン)80wt%に溶解したものを主液として加熱した状態で流す。A方向に直交するB方向のマイクロ流路2…には例えば水等の冷媒の流体を流す。主液と冷媒を高さ方向にずらして互いに直交するマイクロ流路2…に流すことで主液は急冷され、溶解前よりも微細な結晶として析出する。この場合、例えばMEKに溶解する前のカルナバワックスの粒子を平均粒径40〜50μmとして、急冷して晶析することで平均粒径10μm以下、例えば4〜5μm程度に小さくできる。
このようなマイクロデバイス1のマイクロ流路2の表面には2重のコーティング層として、図3に示すように薄いめっき層からなるニッケル層4と、更にその表面のフッ素樹脂含有ニッケル層5とが積層して形成されている。ニッケル層4とフッ素樹脂含有ニッケル層5は後述のように無電解めっきで形成され、マイクロ流路2の表面をコーティングするフッ素樹脂含有ニッケル層5はフッ素樹脂のために特に平滑で撥水性と発油性に優れ、主液や冷媒等の各種流体中に含まれる物質粒子や粘着性物質等が付着したりしない。
In the microdevice 1 shown in FIG. 1, a microfluidic channel 2 in one direction A is flowed in a heated state with, for example, 20 wt% of carnauba wax dissolved in 80 wt% of MEK (methyl ethyl ketone) as a fluid. A coolant fluid such as water is allowed to flow through the microchannels 2 in the B direction orthogonal to the A direction. The main liquid and the refrigerant are shifted in the height direction and are allowed to flow through the micro flow paths 2 orthogonal to each other, whereby the main liquid is rapidly cooled and deposited as fine crystals than before the dissolution. In this case, for example, the carnauba wax particles before being dissolved in MEK can be reduced to an average particle size of 10 μm or less, for example, about 4 to 5 μm by rapidly cooling and crystallization with an average particle size of 40 to 50 μm.
As shown in FIG. 3, a nickel layer 4 made of a thin plating layer as shown in FIG. 3 and a fluororesin-containing nickel layer 5 on the surface are formed on the surface of the microchannel 2 of the microdevice 1 as described above. It is formed by stacking. The nickel layer 4 and the fluororesin-containing nickel layer 5 are formed by electroless plating as described later, and the fluororesin-containing nickel layer 5 that coats the surface of the microchannel 2 is particularly smooth and water-repellent because of the fluororesin. It is excellent in oiliness and does not adhere to substance particles or sticky substances contained in various fluids such as main liquid and refrigerant.

次にマイクロ流路2のコーティング層形成方法即ち内面処理方法について図4及び図5により説明する。
図4に示す無電解めっき装置10は、マイクロデバイス1の一方向の各マイクロ流路2内に供給する循環管路11に、めっき液を貯留する貯留槽12と、貯留槽12から流出するめっき液を例えば90℃程度に加熱する加熱器13と、加熱されためっき液を圧力Paに加圧してマイクロデバイス1の各マイクロ流路2の一方の開口である供給口2aにコネクタ9を介して供給するポンプ14とを備えている。各マイクロ流路2の他方の開口である排出口2bには狭窄部15を設けて各供給口2aに対して開口面積を小さく設定する。
そして、排出口2bにおけるマイクロデバイス1外のめっき液の圧力Pbを供給口2aのめっき液の圧力Paより小さく設定する。圧力差(Pa−Pb)は、例えば、0<(Pa−Pb)≦0.2MPa(メガパスカル)とする。マイクロ流路2の供給口2aから排出口2bまでの空間を脱気して内部を確実にめっき液で満たすために脱気用のバルブ(図示せず)を設置しておく。
Next, a coating layer forming method of the microchannel 2, that is, an inner surface processing method will be described with reference to FIGS.
An electroless plating apparatus 10 shown in FIG. 4 has a storage tank 12 that stores a plating solution and a plating that flows out of the storage tank 12 in a circulation pipe 11 that is supplied into each microchannel 2 in one direction of the microdevice 1. For example, a heater 13 that heats the solution to about 90 ° C., and the heated plating solution is pressurized to a pressure Pa to the supply port 2 a that is one opening of each microchannel 2 of the microdevice 1 via the connector 9. And a pump 14 to be supplied. A narrowing portion 15 is provided in the discharge port 2b, which is the other opening of each microchannel 2, and the opening area is set small with respect to each supply port 2a.
Then, the pressure Pb of the plating solution outside the microdevice 1 at the discharge port 2b is set smaller than the pressure Pa of the plating solution at the supply port 2a. The pressure difference (Pa−Pb) is, for example, 0 <(Pa−Pb) ≦ 0.2 MPa (megapascal). A deaeration valve (not shown) is installed in order to deaerate the space from the supply port 2a to the discharge port 2b of the microchannel 2 and to reliably fill the interior with the plating solution.

次にマイクロデバイス1の各マイクロ流路2の表面にフッ素樹脂含有ニッケル層5を形成する内面処理方法について図5に沿って説明する。
先ず、前処理として、マイクロデバイス1の各マイクロ流路2内をエア抜きした状態でアルカリ溶液で脱脂処理をし(ステップ101)、その後、水洗いをする(ステップ102)。そして、マイクロ流路2の表面を塩酸等の酸によって表面活性化処理を施す(ステップ103)。次いで図4に示す装置10と同様な無電解めっき装置を用いて、無電解用ニッケルめっき液を、各マイクロ流路2の供給口2aで圧力Paに加圧して排出口2bのめっき液圧力Pbとの圧力差(Pa−Pb)を設定した状態で供給して無電解めっきを施し、各マイクロ流路2の表面にニッケル層4を形成する(ステップ104)。
なお、無電解用ニッケルめっき液は、ニッケル陽イオンの原料として硫酸ニッケル、還元剤として次亜リン酸ソーダ、錯化剤として有機のある種のアルキルヒドロオキシカルボン酸、その他反応促進剤、安定剤等を主成分とする。また、エア抜き(脱気)はアルカリ溶液による脱脂処理段階だけでなく、塩酸、ニッケルめっき液等をマイクロ流路2の表面に接触させる各処理段階でも行う。
Next, an inner surface treatment method for forming the fluororesin-containing nickel layer 5 on the surface of each microchannel 2 of the microdevice 1 will be described with reference to FIG.
First, as a pretreatment, degreasing treatment is performed with an alkaline solution in a state where each microchannel 2 of the microdevice 1 is evacuated (step 101), and then washed with water (step 102). Then, the surface of the microchannel 2 is subjected to a surface activation treatment with an acid such as hydrochloric acid (step 103). Next, using an electroless plating apparatus similar to the apparatus 10 shown in FIG. 4, the electroless nickel plating solution is pressurized to the pressure Pa at the supply port 2a of each microchannel 2 and the plating solution pressure Pb at the discharge port 2b. And a pressure difference (Pa-Pb) is set and electroless plating is performed to form a nickel layer 4 on the surface of each microchannel 2 (step 104).
The electroless nickel plating solution is composed of nickel sulfate as a nickel cation raw material, sodium hypophosphite as a reducing agent, certain organic alkylhydroxycarboxylic acids as complexing agents, other reaction accelerators and stabilizers. Etc. as the main component. In addition, air bleeding (deaeration) is performed not only in a degreasing treatment step using an alkaline solution, but also in each treatment step in which hydrochloric acid, a nickel plating solution, or the like is brought into contact with the surface of the microchannel 2.

次に、マイクロデバイス1を上述した無電解めっき装置10にセットしてニッケル層4の上にフッ素樹脂含有ニッケル層5を形成する(ステップ105)。無電解用フッ素樹脂含有ニッケルめっき液は、上述した無電解用ニッケルめっき液中にフッ素樹脂(「テフロン(登録商標)」:株式会社デュポン社製)の微細な粒子を分散させたものである。加熱器13で加熱されためっき液をポンプ14で圧力Paに加圧した状態でマイクロデバイス1の各マイクロ流路2に供給口2aから供給する。排出口2bの圧力Pb(<Pa)とのめっき液の圧力差は(Pa−Pb)に設定される。
ここで、従来の無電解めっき方法ではマイクロデバイス1を単に浴槽内のめっき液に浸漬するだけであるために、各マイクロ流路2の供給口2aと排出口2bで生じる表面張力によって内部にめっき液が浸透しない。これに対し、本実施例では、上述のように圧力差(Pa−Pb)を印加し、しかも各マイクロ流路2内は脱気されているので、各マイクロ流路2の表面全体に無電解用フッ素樹脂含有ニッケルめっき液が接触する。このめっき液を加圧状態で微細な各マイクロ流路2に供給することで表面張力等が生じてもめっき液を各マイクロ流路2内に押し込んで表面全体を無電解めっきできる。そのため、めっき層として平滑で撥水性と発油性に優れたニッケルフッ素樹脂層5を形成できる。
そしてマイクロデバイス1の他方向のマイクロ流路2の内面処理についても同様に行う。
Next, the microdevice 1 is set in the electroless plating apparatus 10 described above, and the fluororesin-containing nickel layer 5 is formed on the nickel layer 4 (step 105). The electroless fluororesin-containing nickel plating solution is obtained by dispersing fine particles of a fluororesin (“Teflon (registered trademark)” manufactured by DuPont) in the above-described electroless nickel plating solution. The plating solution heated by the heater 13 is supplied from the supply port 2 a to each microchannel 2 of the microdevice 1 while being pressurized to the pressure Pa by the pump 14. The pressure difference of the plating solution with respect to the pressure Pb (<Pa) of the discharge port 2b is set to (Pa-Pb).
Here, in the conventional electroless plating method, since the microdevice 1 is simply immersed in the plating solution in the bathtub, the inside is plated by the surface tension generated at the supply port 2a and the discharge port 2b of each microchannel 2. The liquid does not penetrate. In contrast, in the present embodiment, the pressure difference (Pa−Pb) is applied as described above, and the inside of each microchannel 2 is deaerated. Fluorine resin-containing nickel plating solution for contact. By supplying this plating solution to each micro-channel 2 in a pressurized state, even if surface tension or the like occurs, the plating solution can be pushed into each micro-channel 2 to electrolessly plate the entire surface. Therefore, the nickel fluororesin layer 5 which is smooth and excellent in water repellency and oil repellency can be formed as the plating layer.
The inner surface treatment of the microchannel 2 in the other direction of the microdevice 1 is similarly performed.

上述のように本実施例による処理方法によれば、マイクロ流路2内に供給する無電解用フッ素樹脂含有ニッケルめっき液を加圧状態で供給することで、断面が例えば幅600μm×高さ300μm程度の極微細なマイクロ流路2であっても表面全体を全長に亘って確実に無電解めっきできる。
そして、得られたマイクロデバイス1は各マイクロ流路2の表面に無電解フッ素樹脂含有のニッケル層5が形成されているために平滑で撥水性と発油性に優れ、流体の付着や閉塞を防止できる。そのため、流体の付着等による圧力上昇を抑制して連続的に安定して微細結晶等の物質を生産したり反応させることができ、平滑な表面のために圧力低下させて安全運転できる。また、その後のマイクロ流路2内の洗浄時間を短縮でき、流体が付着残留することに起因する汚染や品質劣化を防止できる。そのため、腐食性流体や物質からマイクロデバイス1を保護できる。
As described above, according to the processing method of this embodiment, the electroless fluororesin-containing nickel plating solution supplied into the microchannel 2 is supplied in a pressurized state, so that the cross section is, for example, 600 μm wide × 300 μm high. Even if the microchannel 2 is extremely fine, the entire surface can be reliably electrolessly plated over the entire length.
And since the obtained microdevice 1 has the electroless fluororesin-containing nickel layer 5 formed on the surface of each microchannel 2, it is smooth and excellent in water repellency and oil repellency, and prevents adhesion and blockage of fluid. it can. For this reason, it is possible to suppress the pressure increase due to the adhesion of fluid and the like, and to continuously produce and react a substance such as fine crystals, and to reduce the pressure for a smooth surface, and to operate safely. Further, the subsequent cleaning time in the microchannel 2 can be shortened, and contamination and quality deterioration due to the fluid remaining attached can be prevented. Therefore, the microdevice 1 can be protected from corrosive fluids and substances.

次に本発明の第二実施例について図6及び図7に沿って説明する。
第二実施例によるマイクロデバイス1は、金属製の各プレート3の表面に無電解めっき(または電解めっき)によるニッケル層4が予め施されている(図6参照)。そのため、マイクロデバイス1の製造に際しては、複数のプレート3の表面を磨き上げて図1に示すように互いに直交する方向に交互に積層した状態で治具で把持して所定圧力をかけて固定し、適切な温度で加熱保持する。これによって各プレート3、3同士が拡散接合される(ステップ110)。
このようにして得られたマイクロデバイス1について、第一実施例と同様に前処理としてマイクロ流路2内をアルカリ溶液で脱脂処理をし(ステップ111)、その後、水洗いをする(ステップ112)。
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the microdevice 1 according to the second embodiment, a nickel layer 4 by electroless plating (or electrolytic plating) is applied in advance to the surface of each metal plate 3 (see FIG. 6). Therefore, when manufacturing the microdevice 1, the surfaces of the plurality of plates 3 are polished and gripped with a jig in a state of being alternately stacked in directions orthogonal to each other as shown in FIG. Hold heated at an appropriate temperature. Thus, the plates 3 and 3 are diffusion bonded (step 110).
The micro device 1 thus obtained is degreased with an alkaline solution as a pretreatment in the same manner as in the first embodiment (step 111), and then washed with water (step 112).

次に、マイクロデバイス1を第一実施例と同様に圧力Paに加圧した無電解用フッ素樹脂含有ニッケルめっき液を各マイクロ流路2内に供給してニッケル層4の上にフッ素樹脂含有ニッケル層5を無電解めっきで形成する(ステップ113)。
このようにして第一実施例と同様にマイクロ流路2の表面全体に平滑で撥水性と発油性に優れたフッ素樹脂含有ニッケル層5を形成でき、各種流体を流した時に流体中の粒子等の付着を防止できて圧力上昇を防止できる等、同様の効果を得られる。
なお、本実施例において、プレート3を拡散接合した後、各マイクロ流路2を酸洗いして再び無電解用ニッケルめっきを行ってニッケル層4を形成し、次に無電解用フッ素樹脂含有ニッケルめっきを行ってフッ素樹脂含有ニッケル層5を形成してもよい。
Next, an electroless fluororesin-containing nickel plating solution in which the microdevice 1 is pressurized to the pressure Pa in the same manner as in the first embodiment is supplied into each microchannel 2 and the fluororesin-containing nickel is deposited on the nickel layer 4. Layer 5 is formed by electroless plating (step 113).
In this manner, the fluororesin-containing nickel layer 5 that is smooth and excellent in water repellency and oil repellency can be formed on the entire surface of the microchannel 2 as in the first embodiment. The same effect can be obtained, for example, that the adhesion of water can be prevented and the pressure rise can be prevented.
In this embodiment, after the plate 3 is diffusion bonded, each microchannel 2 is pickled and subjected to electroless nickel plating again to form the nickel layer 4, and then the electroless fluororesin-containing nickel The fluororesin-containing nickel layer 5 may be formed by plating.

また、第三実施例として、無電解用フッ素樹脂含有ニッケル層5をめっき形成をすることなく、無電解用ニッケルめっきによって各マイクロ流路2の表面にニッケル層4を形成して内面処理を終了するようにしてもよい。この内面処理工程は第一実施例におけるステップ101〜104と同様である。
この場合、第一及び第二実施例のようにマイクロ流路2の表面に無電解用フッ素樹脂含有ニッケル層5を形成した場合よりも効果は落ちるが、マイクロデバイス1の各マイクロ流路2を酸洗いしただけの従来のものよりも平滑性がよく、流体の付着や閉塞を防止できる等という第一及び第二実施例と同様の効果を得られる。
As a third embodiment, the inner surface treatment is completed by forming the nickel layer 4 on the surface of each microchannel 2 by electroless nickel plating without plating the electroless fluororesin-containing nickel layer 5. You may make it do. This inner surface treatment process is the same as steps 101 to 104 in the first embodiment.
In this case, although the effect is lower than when the electroless fluororesin-containing nickel layer 5 is formed on the surface of the microchannel 2 as in the first and second embodiments, each microchannel 2 of the microdevice 1 is The same effects as those of the first and second embodiments can be obtained in that the smoothness is better than that of the conventional one just pickled and the adhesion and blockage of fluid can be prevented.

次に本発明のマイクロデバイス1のマイクロ流路2の内面処理方法の具体例について実施例1、2として説明する。
(実施例1)
実施例1は第一実施例に沿った内面処理方法であり、図5のフローシートに沿って説明する。
マイクロデバイス1のマイクロ流路2は断面が幅600μm、高さ300μmの長方形であり、プレート3に沿って長さ40mmに亘って延びて両端に開口している。マイクロデバイス1は積層状態でマイクロ流路2を192本設けているステンレス製(SUS304)である。なお、マイクロ流路2内は各工程毎に脱気するものとする。
このマイクロデバイス1にチューブポンプを接続してマイクロ流路2内に温度60℃のアルカリ溶液を供給して5分間脱脂処理した(ステップ101)。その後、室温下で水洗いを2分間行った(ステップ102)。次に室温下で塩酸をマイクロ流路2内に供給して3分間表面活性化処理を施した(ステップ103)。そして約90℃の無電解用ニッケルめっき液をマイクロ流路2内に供給して約10分間めっき処理した(ステップ104)。このときのマイクロ流路2の供給口2aと排出口2bのめっき液の圧力差が0.2MPaとなるようにコントロールした。
そして約90℃の無電解用フッ素樹脂含有ニッケルめっき液をマイクロ流路2内に約100ml/minの流量で供給して約20分間めっき処理した(ステップ105)。このときのマイクロ流路2の供給口2aと排出口2bのめっき液の圧力差が0.2MPaとなるようにコントロールした。
Next, specific examples of the method for treating the inner surface of the microchannel 2 of the microdevice 1 of the present invention will be described as Examples 1 and 2.
Example 1
Example 1 is an inner surface treatment method according to the first example, and will be described along the flow sheet of FIG.
The microchannel 2 of the microdevice 1 has a rectangular cross section having a width of 600 μm and a height of 300 μm, and extends along the plate 3 over a length of 40 mm and opens at both ends. The microdevice 1 is made of stainless steel (SUS304) provided with 192 microchannels 2 in a stacked state. In addition, the inside of the microchannel 2 shall be deaerated for every process.
A tube pump was connected to the microdevice 1 and an alkaline solution having a temperature of 60 ° C. was supplied into the microchannel 2 to degrease it for 5 minutes (step 101). Thereafter, washing with water was performed at room temperature for 2 minutes (step 102). Next, hydrochloric acid was supplied into the microchannel 2 at room temperature, and surface activation treatment was performed for 3 minutes (step 103). Then, an electroless nickel plating solution at about 90 ° C. was supplied into the microchannel 2 and plated for about 10 minutes (step 104). At this time, the pressure difference between the plating solution at the supply port 2a and the discharge port 2b of the microchannel 2 was controlled to be 0.2 MPa.
Then, an electroless fluororesin-containing nickel plating solution at about 90 ° C. was supplied into the microchannel 2 at a flow rate of about 100 ml / min and plated for about 20 minutes (step 105). At this time, the pressure difference between the plating solution at the supply port 2a and the discharge port 2b of the microchannel 2 was controlled to be 0.2 MPa.

内面処理の終了後、マイクロデバイス1を切断して数カ所のマイクロ流路2の断面を観察したところ、フッ素樹脂含有ニッケル層5が表面に均一厚みに析出してコーティングされていた。
そして、このマイクロデバイス1を用いて80wt%MEKに溶解した20wt%カルナバワックス溶液を主液としてA方向のマイクロ流路2に流し、冷却水からなる冷媒をB方向にマイクロ流路2に供給して急冷させてカルナバワックスを析出する実験を行ったところ、流路2が閉塞されることもなく、無電解用めっき層4,5をコーティングする前の表面無処理状態の従来のマイクロ流路より安定的に長時間の連続運転ができた。
After completion of the inner surface treatment, the microdevice 1 was cut and the cross sections of several microchannels 2 were observed. As a result, the fluororesin-containing nickel layer 5 was deposited on the surface with a uniform thickness and coated.
Then, using this microdevice 1, a 20 wt% carnauba wax solution dissolved in 80 wt% MEK is flowed to the micro flow path 2 in the A direction as a main liquid, and a coolant composed of cooling water is supplied to the micro flow path 2 in the B direction. In an experiment in which carnauba wax was precipitated by rapid cooling, the flow path 2 was not clogged, and compared with the conventional micro flow path in a non-surface-treated state before coating the electroless plating layers 4 and 5. Stable and continuous operation was possible for a long time.

(実施例2)
実施例2による内面処理方法について、図7のフローシートに沿って説明する。
マイクロデバイス1のマイクロ流路2は断面が幅600μm、高さ300μmの長方形であり、長さ40mmで両端に開口している。マイクロデバイス1は積層状態でマイクロ流路2を192本設けているステンレス製(SUS304)である。しかも、本実施例2では各プレート3の段階で予め表面に無電解用ニッケルめっき処理によってニッケル層4が形成され、これらプレート3…を積層して拡散接合によってマイクロデバイス1を製造した(ステップ110)。各工程毎にマイクロ流路2内を脱気する。
このマイクロデバイス1にチューブポンプを接続してマイクロ流路2内に温度60℃のアルカリ溶液を供給して5分間脱脂処理した(ステップ111)。その後、室温下で水洗いを2分間行った(ステップ112)。
そして約90℃の無電解用フッ素樹脂含有ニッケルめっき液をマイクロ流路2内に約100ml/minの流量で供給して約20分間めっき処理した(ステップ103)。このときのマイクロ流路2の供給口2aと排出口2bのめっき液の圧力差が0.2MPaとなるようにコントロールした。
(Example 2)
The inner surface processing method according to the second embodiment will be described along the flow sheet of FIG.
The microchannel 2 of the microdevice 1 is a rectangle having a width of 600 μm and a height of 300 μm, and has a length of 40 mm and is open at both ends. The microdevice 1 is made of stainless steel (SUS304) provided with 192 microchannels 2 in a stacked state. In addition, in Example 2, the nickel layer 4 is formed on the surface in advance by the electroless nickel plating process at the stage of each plate 3, and these plates 3 are stacked to manufacture the microdevice 1 by diffusion bonding (step 110). ). The inside of the microchannel 2 is deaerated for each step.
A tube pump was connected to the microdevice 1 and an alkaline solution having a temperature of 60 ° C. was supplied into the microchannel 2 for degreasing treatment for 5 minutes (step 111). Thereafter, washing with water was performed at room temperature for 2 minutes (step 112).
Then, an electroless fluororesin-containing nickel plating solution at about 90 ° C. was supplied into the microchannel 2 at a flow rate of about 100 ml / min for about 20 minutes (step 103). At this time, the pressure difference between the plating solution at the supply port 2a and the discharge port 2b of the microchannel 2 was controlled to be 0.2 MPa.

内面処理の終了後、マイクロデバイス1を切断して数カ所のマイクロ流路2の断面を観察したところ、フッ素樹脂含有ニッケル層5が内表面に均一厚みに析出してめっき形成されていた。本実施例2では、ニッケルめっき工程が省略されているために実施例1と比較して施行時間が短く、コストが低廉になる。   After completion of the inner surface treatment, the microdevice 1 was cut and the cross sections of several microchannels 2 were observed. As a result, the fluororesin-containing nickel layer 5 was deposited on the inner surface to have a uniform thickness. In the second embodiment, since the nickel plating step is omitted, the enforcement time is shorter and the cost is lower than that in the first embodiment.

なお、無電解用フッ素樹脂含有ニッケルめっき処理や無電解用ニッケルめっき処理等の各処理を行う場合、マイクロ流路2を上下方向に向けてめっき液等を下方から上方に注入すると、マイクロ流路2内のエアが一層抜け易い。また、マイクロ流路2内のめっき処理に際して供給口2aで加圧することで排出口2bとの圧力差を設けることとしたが、これに代えて、またはこれに加えて排出口2b側で吸引することで圧力差を設けてもよい。   In addition, when performing each process such as electroless fluororesin-containing nickel plating process or electroless nickel plating process, when the plating solution or the like is injected upward from below with the microchannel 2 directed upward, the microchannel Air in 2 is easier to escape. In addition, a pressure difference from the discharge port 2b is provided by applying pressure at the supply port 2a during the plating process in the microchannel 2, but instead of this, or in addition to this, suction is performed on the discharge port 2b side. A pressure difference may be provided.

また、マイクロ流路表面のめっき処理に際して排出口2bに狭窄部15を設けることとしたが、狭窄部15は必ずしも設けなくてもよく、マイクロ流路2の排出口2b側より供給口2a側のめっき液の圧力が高く設定されていればよい。圧力差(Pa−Pb)も0<(Pa−Pb)≦0.2MPaであることが好ましいが、この範囲を超えても良く、要するにめっき液が微細なマイクロ流路2の供給口2a近傍で生じる表面張力にうち勝って内部に浸入して全面に接触する程度の圧力差(Pa−Pb)があればよい。
また、上述の各実施例ではマイクロ流路2の流路縦断面を幅、高さがそれぞれ1μm〜1000μmの長方形に形成したが、マイクロ流路2の流路縦断面の形状は任意であり、例えば円形や正方形等でもよい。この場合でも内径や幅等の各寸法は1μm〜1000μmの範囲に設定するのが好ましい。
In addition, the narrowed portion 15 is provided in the discharge port 2b during the plating process on the surface of the microchannel. It is sufficient that the pressure of the plating solution is set high. The pressure difference (Pa−Pb) is also preferably 0 <(Pa−Pb) ≦ 0.2 MPa, but may exceed this range. In short, in the vicinity of the supply port 2a of the microchannel 2 where the plating solution is fine. There should be a pressure difference (Pa-Pb) that overcomes the surface tension that occurs and enters the inside and contacts the entire surface.
In each of the above-described embodiments, the channel longitudinal section of the microchannel 2 is formed into a rectangle having a width and height of 1 μm to 1000 μm, respectively, but the shape of the channel longitudinal section of the microchannel 2 is arbitrary, For example, it may be circular or square. Even in this case, the dimensions such as the inner diameter and the width are preferably set in the range of 1 μm to 1000 μm.

本発明の第一実施例によるマイクロデバイスの斜視図である。1 is a perspective view of a microdevice according to a first embodiment of the present invention. 図1に示すマイクロデバイスの一部のプレートを示す分解斜視図である。It is a disassembled perspective view which shows the one part plate of the microdevice shown in FIG. 図1に示すマイクロデバイスのマイクロ流路の縦断面図である。It is a longitudinal cross-sectional view of the microchannel of the microdevice shown in FIG. 内面処理工程におけるフッ素樹脂含有ニッケル層形成用の無電解めっき装置の概略構成を示す図である。It is a figure which shows schematic structure of the electroless-plating apparatus for fluororesin containing nickel layer formation in an inner surface treatment process. マイクロ流路表面のめっき処理工程を示すフローシート図である。It is a flow sheet figure which shows the plating process process of the microchannel surface. 第二実施例によるマイクロデバイスにおけるマイクロ流路の縦断面図である。It is a longitudinal cross-sectional view of the microchannel in the microdevice by a 2nd Example. マイクロ流路表面のめっき処理工程を示すフローシート図である。It is a flow sheet figure which shows the plating process process of the microchannel surface.

符号の説明Explanation of symbols

1 マイクロデバイス
2 マイクロ流路
2a 供給口
2b 排出口
3 プレート
4 ニッケル層
5 フッ素樹脂含有ニッケル層
14 ポンプ
1 Micro device 2 Micro flow path 2a Supply port 2b Discharge port 3 Plate 4 Nickel layer 5 Fluorine resin-containing nickel layer 14 Pump

Claims (3)

幅と高さまたは内径が1〜1000μmの断面を有するマイクロ流路を設けたマイクロデバイスにおいて、前記マイクロ流路の供給口と排出口に圧力差を持たせて無電解用めっき液を供給して表面にめっき層を形成したことを特徴とするマイクロデバイス。   In a microdevice provided with a microchannel having a cross section with a width and height or an inner diameter of 1 to 1000 μm, an electroless plating solution is supplied with a pressure difference between the supply port and the discharge port of the microchannel. A microdevice having a plating layer formed on a surface thereof. 前記めっき層はニッケル層またはフッ素樹脂含有ニッケル層で形成されている請求項1に記載のマイクロデバイス。   The micro device according to claim 1, wherein the plating layer is formed of a nickel layer or a fluorine resin-containing nickel layer. 幅と高さまたは内径が1〜1000μmの断面を有するマイクロ流路を設けたマイクロデバイスにおいて、前記マイクロ流路の供給口と排出口に圧力差を持たせて無電解用ニッケルめっき液または無電解用フッ素樹脂含有ニッケルめっき液を供給して無電解めっきすることで表面にニッケル層またはフッ素樹脂含有ニッケル層を形成するようにしたことを特徴とするマイクロデバイスの内面処理方法。

In a microdevice provided with a microchannel having a cross section with a width and height or an inner diameter of 1 to 1000 μm, a pressure difference is provided between the supply port and the discharge port of the microchannel and the electroless nickel plating solution or electroless A method for treating the inner surface of a microdevice, characterized in that a nickel layer or a fluororesin-containing nickel layer is formed on the surface by supplying a fluororesin-containing nickel plating solution for electroless plating.

JP2004379768A 2004-12-28 2004-12-28 Micro device and method for treating inside surface thereof Pending JP2006181525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379768A JP2006181525A (en) 2004-12-28 2004-12-28 Micro device and method for treating inside surface thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379768A JP2006181525A (en) 2004-12-28 2004-12-28 Micro device and method for treating inside surface thereof

Publications (1)

Publication Number Publication Date
JP2006181525A true JP2006181525A (en) 2006-07-13

Family

ID=36735012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379768A Pending JP2006181525A (en) 2004-12-28 2004-12-28 Micro device and method for treating inside surface thereof

Country Status (1)

Country Link
JP (1) JP2006181525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527293A (en) * 2007-02-28 2010-08-12 コーニング インコーポレイテッド Method for making a microfluidic device
JP2016084831A (en) * 2014-10-23 2016-05-19 昭和電工株式会社 High-pressure gas container and manufacturing method thereof
KR20200090765A (en) 2017-12-05 2020-07-29 다이요 닛산 가부시키가이샤 Flow type reaction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037918A (en) * 2000-05-19 2002-02-06 Mitsubishi Heavy Ind Ltd Apparatus for recovering waste material derived from polystyrene and recovering method
JP2003062797A (en) * 2001-08-23 2003-03-05 Tosoh Corp Micro flow path structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037918A (en) * 2000-05-19 2002-02-06 Mitsubishi Heavy Ind Ltd Apparatus for recovering waste material derived from polystyrene and recovering method
JP2003062797A (en) * 2001-08-23 2003-03-05 Tosoh Corp Micro flow path structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527293A (en) * 2007-02-28 2010-08-12 コーニング インコーポレイテッド Method for making a microfluidic device
JP2016084831A (en) * 2014-10-23 2016-05-19 昭和電工株式会社 High-pressure gas container and manufacturing method thereof
KR20200090765A (en) 2017-12-05 2020-07-29 다이요 닛산 가부시키가이샤 Flow type reaction device

Similar Documents

Publication Publication Date Title
KR101239509B1 (en) Method and apparatus for cleaning a substrate using non-newtonian fluids
US7579191B2 (en) Reaction method using microreactor
US20190153604A1 (en) Method and device for preparing high strength and durable super-hydrophobic film layer on inner wall of elongated metal tube
JP2607392B2 (en) Method for manufacturing ink jet head by diffusion bonding and brazing
TWI279287B (en) Electrochemical-mechanical polishing system
JP2010518621A (en) Method and apparatus for confined chemical surface treatment
US7329111B2 (en) Method and device for flowing a liquid on a surface
EP0901153A2 (en) Method and apparatus for plating a substrate
US20130248157A1 (en) Method of coating a part of a heat exchanger and heat exchanger
US20020139663A1 (en) Chemical treatment system
JP2006181525A (en) Micro device and method for treating inside surface thereof
JP2006507404A (en) Temperature control procedure for electroless plating bath
EP1489045A2 (en) Microfluidic device and method of manufacturing thereof
JP4738085B2 (en) Coating film forming apparatus and coating film forming method
JP5398175B2 (en) Method for manufacturing ink jet recording head
JP2009291991A (en) Method for production oflaminated structure and method of producing inkjet recording head
TWI227952B (en) Device and method for increasing mass transport at liquid-solid diffusion boundary layer
TWI711726B (en) System for chemical and/or electrolytic surface treatment
Pinchasik et al. Bubbles nucleating on superhydrophobic micropillar arrays under flow
US20150198387A1 (en) Pipe embedded structure and method of manufacturing the same
JP5386616B1 (en) Pipe embedded structure and manufacturing method thereof
JP6229553B2 (en) Metal ion removing device and liquid cooling device
JP5820160B2 (en) Plating film forming method for bag-like micropipe
JP6396620B1 (en) Surface treatment method for stainless steel cooling pipe for beer server and beer server assembly method
JP2002246522A (en) Cooling device for solid-state laser and heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518