JP2006179827A - Board material for flexible board, flexible board employing same, and method of manufacturing them - Google Patents

Board material for flexible board, flexible board employing same, and method of manufacturing them Download PDF

Info

Publication number
JP2006179827A
JP2006179827A JP2004374047A JP2004374047A JP2006179827A JP 2006179827 A JP2006179827 A JP 2006179827A JP 2004374047 A JP2004374047 A JP 2004374047A JP 2004374047 A JP2004374047 A JP 2004374047A JP 2006179827 A JP2006179827 A JP 2006179827A
Authority
JP
Japan
Prior art keywords
layer
polyimide film
thickness
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004374047A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ishihara
和彦 石原
Yoji Tamura
洋二 田村
Kohei Izumi
孝平 泉
Tomoyuki Tsuruta
知之 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2004374047A priority Critical patent/JP2006179827A/en
Publication of JP2006179827A publication Critical patent/JP2006179827A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a board material for a flexible board that provides excellent adhesiveness between a polyimide film and a conductive metallic layer, and to provide the flexible board employing the board material. <P>SOLUTION: The surface of the polyimide film is activated by lightly etching the surface so that a degree of surface roughing is extremely as small as possible, and thereafter an Ni-P alloy layer and a Cu layer are formed on the surface of the polyimide film by using the vacuum film forming method to obtain the board material for the flexible board, and a conductive metallic second Cu layer is formed on the board material for the flexible board by the wet plating method to obtain the flexible board. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリント基板等に用いるフレキシブル基板用基材、およびそれを用いたフレキシブル基板並びにそれらの製造方法に関する。   The present invention relates to a substrate for a flexible substrate used for a printed circuit board and the like, a flexible substrate using the substrate, and a method for producing them.

ノートパソコン、プリンター、デジタルカメラ、液晶ディスプレイなどの小形でかつ軽量であることが求められる電子機器の通電回路に用いるプリント基板として、高密度な実装が可能で、軽量でかつ変形可能で柔軟なTAB(Tape Automated Bonding)テープやフレキシブル基板の需要が高まっている。従来のプリント基板としては、連続使用による温度上昇に耐える耐熱性および可撓性を有するプラスチック基板、例えばポリイミドフィルムにエポキシ樹脂などの熱硬化性樹脂からなる接着剤を用いて導電性金属層である銅箔を貼り合わせたものが用いられていた。しかし、接着剤を用いたプリント基板による通電回路では変形しやすく寸法安定性に乏しく、また熱硬化性接着剤の耐熱性が基板材料の耐熱性よりも劣るため、熱安定性も十分ではなかった。さらに、銅箔を用いたプリント基板では、銅箔の厚さが大きく、高密度実装すなわち回路の軽量化および小型化に十分に対応することができなかった。   TAB is a lightweight, deformable, and flexible TAB that can be mounted at high density as a printed circuit board used in power circuits of electronic devices that are required to be small and lightweight, such as notebook computers, printers, digital cameras, and liquid crystal displays. (Tape Automated Bonding) There is an increasing demand for tapes and flexible substrates. As a conventional printed circuit board, a heat-resistant and flexible plastic substrate that can withstand a temperature rise due to continuous use, for example, a conductive metal layer using an adhesive made of a thermosetting resin such as an epoxy resin on a polyimide film What stuck the copper foil was used. However, the current-carrying circuit using a printed circuit board using an adhesive is easily deformed and has poor dimensional stability, and the heat resistance of the thermosetting adhesive is inferior to that of the substrate material, so that the heat stability is not sufficient. . Furthermore, in a printed board using copper foil, the thickness of the copper foil is large, and it has not been possible to sufficiently cope with high-density mounting, that is, reduction in circuit weight and size.

これらの問題を解決するため、ポリイミドフィルム上に接着剤を用いずに金属層を形成させる技術として、
(1)銅箔上にポリアミック酸をキャスティング法を用いて塗布し、乾燥し硬化させるキャスティング法
(2)銅箔上にポリイミドフィルムを加熱圧着するラミネート法
(3)ポリイミドフィルム表面に無電解めっきで金属薄膜を形成させ、その上に電気めっき法で所定の厚さの金属層を形成させる無電解めっき法
(4)ポリイミドフィルム表面に真空成膜法を用いて金属薄膜を形成させ、その上に電気めっき法で所定の厚さの金属層を形成させる真空成膜法
などの方法が種々試みられている。
In order to solve these problems, as a technology to form a metal layer on the polyimide film without using an adhesive,
(1) Casting method in which polyamic acid is applied on a copper foil using a casting method, dried and cured (2) Laminating method in which a polyimide film is thermocompression-bonded on a copper foil (3) Electroless plating on the polyimide film surface An electroless plating method in which a metal thin film is formed and a metal layer having a predetermined thickness is formed thereon by electroplating. (4) A metal thin film is formed on the surface of the polyimide film using a vacuum film forming method. Various methods such as a vacuum film forming method in which a metal layer having a predetermined thickness is formed by electroplating have been tried.

(1)のキャスティング法や(2)のラミネート法を用いて形成した回路基板は、熱安定性および寸法安定性において従来の接着剤を用いたプリント基板よりも優れており、幅広く用いられている。しかし、10μm以下の厚さの導電層を用いることが求められる次世代の電子機器の高密度実装基板には、圧延や電鋳による厚い銅箔を用いるこれらの方法は、軽量化およびコストの観点から問題がある。   Circuit boards formed by using the casting method (1) and the laminating method (2) are superior to conventional printed boards using adhesives in terms of thermal stability and dimensional stability, and are widely used. . However, these methods using a thick copper foil by rolling or electroforming for a high-density mounting substrate of a next-generation electronic device that is required to use a conductive layer having a thickness of 10 μm or less are light in weight and cost. There is a problem.

(3)の無電解めっき法によると薄い導電層の形成が可能であり、軽量な高密度実装基板に適している。しかし、無電解めっき法ではめっき層の付着を向上させるために実施するポリイミドフィルム表面を薬品を用いて活性化処理するが、薬品の後処理に伴う製造コストの上昇、および後処理作業による環境汚染の観点から問題がある。   According to the electroless plating method (3), it is possible to form a thin conductive layer, which is suitable for a lightweight high-density mounting substrate. However, in the electroless plating method, the surface of the polyimide film, which is implemented to improve the adhesion of the plating layer, is activated with chemicals. However, the manufacturing cost increases due to chemical post-treatment and environmental pollution due to post-treatment operations. There is a problem from the point of view.

(4)の真空成膜法を用いる場合は環境汚染の問題はないが、ポリイミドフィルムとその上に形成する金属薄膜との接着強度が小さく剥離しやすい、という欠点を有している。この欠点を克服するため、以下に示す種々の方法が提案されている。   In the case of using the vacuum film forming method (4), there is no problem of environmental pollution, but it has a drawback that the adhesive strength between the polyimide film and the metal thin film formed thereon is small and it is easy to peel off. In order to overcome this drawback, the following various methods have been proposed.

例えば特許文献1は、プラスチックフィルム基材上に、ニッケル層、銅層、ニッケル層を真空中で順次形成されてなる導電性フィルムを提案している。また、特許文献2は、耐熱性基材フィルムの片面に、NiまたはNi−Crの耐食性金属の蒸着層を介してCuまたはAlの良導電性金属の蒸着層を設け、さらに良導電性金属の蒸着層上にNiまたはNi−Crの耐食性金属の蒸着層を設け、基材フィルムの他面に、金属蒸着膜または有機もしくは無機ポリマーのコーティング層を設けてなるフレキシブルプリント回路用フィルム材料を提案している。また、特許文献3は、ポリイミドなどの高分子フィルム表面に、Cu、Ni、Cr、Ti、V、W、Moの少なくとも1種の第一の金属を真空成膜手段によって付着させ、次いで第一の金属を高分子フィルム中に熱拡散させ、引き続いてCu、Ni、Al等を無電解メッキ法、または電気メッキ法などを用いて形成させる、高分子フィルムに金属層を形成させる方法を提案している。また、特許文献4は、ポリイミド樹脂フィルムの表面を親水化して触媒を付与し、その後無電解メッキによりニッケル、コバルトまたはそれらの合金の一つを施し、その後無電解銅メッキ、または電解銅メッキを行うことによる銅ポリイミド基板の製造方法を提案している。   For example, Patent Document 1 proposes a conductive film formed by sequentially forming a nickel layer, a copper layer, and a nickel layer in a vacuum on a plastic film substrate. Further, in Patent Document 2, a vapor-deposited layer of a highly conductive metal such as Cu or Al is provided on one side of a heat-resistant base film via a vapor-deposited layer of corrosion resistant metal such as Ni or Ni-Cr, and Proposed a film material for flexible printed circuits in which a vapor-deposited layer of Ni or Ni-Cr corrosion-resistant metal is provided on the vapor-deposited layer, and a metal vapor-deposited film or an organic or inorganic polymer coating layer is provided on the other side of the base film. ing. In Patent Document 3, at least one first metal of Cu, Ni, Cr, Ti, V, W, and Mo is attached to the surface of a polymer film such as polyimide by a vacuum film forming means, and then the first Proposed a method of forming a metal layer on a polymer film by thermally diffusing the metal in the polymer film and subsequently forming Cu, Ni, Al, etc. using an electroless plating method or an electroplating method. ing. Moreover, patent document 4 hydrophilizes the surface of a polyimide resin film, provides a catalyst, and then applies nickel, cobalt, or one of their alloys by electroless plating, and then performs electroless copper plating or electrolytic copper plating. Proposes a method for producing a copper polyimide substrate.

さらに、特許文献5は、プラズマ処理された表面を有するポリイミド樹脂などのポリマーフィルムと、そのプラズマ処理された表面に付着した、ニッケルまたはCu、Cr、Fe、V、Ti、Al、Si、Pd、Ta、W、Zn、In、Sn、Mn、Coおよびこれらの2つ以上の混合物からなる群より選択される金属を合金用金属とするニッケル合金を含むニッケルタイトコート層と、そのニッケルタイトコート層に付着した銅シードコート層とを含む無接着剤フレキシブルラミネートを提案している。   Further, Patent Document 5 discloses a polymer film such as a polyimide resin having a plasma-treated surface and nickel or Cu, Cr, Fe, V, Ti, Al, Si, Pd, and the like attached to the plasma-treated surface. A nickel tight coat layer containing a nickel alloy having a metal selected from the group consisting of Ta, W, Zn, In, Sn, Mn, Co and a mixture of two or more thereof as a metal for the alloy, and the nickel tight coat layer An adhesive-free flexible laminate is proposed that includes a copper seed coat layer adhered to the substrate.

しかし、これらの文献が提案している技術では、いずれによってもCu層がポリイミドフィルムから剥離する現象を皆無にすることができない。また、連続使用による温度上昇により、高温で長時間経時させた場合の接着強度の低下を抑制することが求められている。   However, the techniques proposed by these documents cannot eliminate the phenomenon that the Cu layer peels off from the polyimide film. In addition, there is a need to suppress a decrease in adhesive strength when aged for a long time at a high temperature due to a temperature increase due to continuous use.

上記のように、本出願に関する先行技術情報として、以下のものがある。
特開昭62−047908号公報 特開昭62−181488号公報 特開平03−274261号公報 特開平05−090737号公報 特開2000−508265号公報
As described above, the prior art information relating to the present application includes the following.
Japanese Patent Laid-Open No. 62-047908 JP 62-181488 A Japanese Patent Laid-Open No. 03-274261 JP 05-090737 A JP 2000-508265 A

本発明においては、ポリイミドフィルムと導電性金属層との接着性に優れたフレキシブル基板用基材およびそれを用いたフレキシブル基板並びにそれらの製造方法を提供することを目的とする。   In this invention, it aims at providing the base material for flexible substrates excellent in the adhesiveness of a polyimide film and an electroconductive metal layer, the flexible substrate using the same, and those manufacturing methods.

本発明の目的を達成するため、本発明のフレキシブル基板用基材は、表面粗さが1.5〜10nm(Ra)であるポリイミドフィルムの少なくとも片面に、下から順にNi−P合金層とCu層とを形成してなるフレキシブル基板用基材(請求項1)であり、
上記(請求項1)のフレキシブル基板用基材において、Ni−P合金層のP含有量が0.1〜20重量%であること(請求項2)を特徴とし、また
上記(請求項1または2)のフレキシブル基板用基材において 、Ni−P合金層の厚さが20〜100nmであること(請求項3)、を特徴とし、また
上記(請求項1〜3)のいずれかのフレキシブル基板用基材において 、Cu層の厚さが50〜300nmであること(請求項4)を特徴とする。
また、本発明のフレキシブル基板は、上記(請求項1〜4)のいずれかのフレキシブル基板用基材のCu層上に、1〜100μmの厚さの第二のCu層を設けてなるフレキシブル基板である。
In order to achieve the object of the present invention, the substrate for a flexible substrate of the present invention comprises a Ni-P alloy layer and Cu in order from the bottom on at least one surface of a polyimide film having a surface roughness of 1.5 to 10 nm (Ra). A base material for a flexible substrate formed by forming a layer (claim 1),
In the flexible substrate base material of the above (Claim 1), the Ni content of the Ni-P alloy layer is 0.1 to 20% by weight (Claim 2), and the above (Claim 1 or 2) The flexible substrate according to 2), wherein the Ni—P alloy layer has a thickness of 20 to 100 nm (Claim 3). In the base material for use, the thickness of the Cu layer is 50 to 300 nm (Claim 4).
Moreover, the flexible substrate of the present invention is a flexible substrate in which a second Cu layer having a thickness of 1 to 100 μm is provided on the Cu layer of the substrate for flexible substrate according to any one of the above (claims 1 to 4). It is.

そして、上記目的を達成するための本発明のフレキシブル基板用基材の製造方法は、ポリイミドフィルムの表面を表面粗さ1.5〜10nm(Ra)に活性化処理する工程、活性化処理された前記ポリイミドフィルムの表面に真空成膜法により厚さ20〜100nmのNi−P合金層を形成させる工程、さらに該Ni−P合金層の上に導電性の下地層として真空成膜法により厚さ50〜300nmのCu層を形成させる工程からなることを特徴とするものである。前記活性化処理は、真空中におけるプラズマ処理が好ましく、真空成膜法はスパッタ法を用いるのが好ましい。   And the manufacturing method of the base material for flexible substrates of this invention for achieving the said objective was the process of activating the surface of a polyimide film to surface roughness 1.5-10nm (Ra), and the activation process was carried out. A step of forming a Ni-P alloy layer having a thickness of 20 to 100 nm on the surface of the polyimide film by a vacuum film formation method, and further a thickness by a vacuum film formation method as a conductive underlayer on the Ni-P alloy layer It consists of the process of forming a 50-300 nm Cu layer. The activation treatment is preferably plasma treatment in a vacuum, and the vacuum film formation method is preferably a sputtering method.

さらに、上記目的を達成するための本発明のフレキシブル基板用の製造方法は、ポリイミドフィルムの表面を表面粗さ1.5〜10nm(Ra)に活性化処理する工程、活性化処理された前記ポリイミドフィルムの表面に真空成膜法により厚さ20〜100nmのNi−P合金層を形成させる工程、さらに該Ni−P合金層の上に導電性の下地層として真空成膜法により厚さ50〜300nmのCu層を形成させる工程、該Cu層の上に電気めっき法により厚さ1〜100μmの第二のCuを形成させる工程からなることを特徴とする。   Furthermore, the manufacturing method for a flexible substrate of the present invention for achieving the above object includes a step of activating the surface of the polyimide film to a surface roughness of 1.5 to 10 nm (Ra), and the activated polyimide A step of forming a Ni-P alloy layer having a thickness of 20 to 100 nm on the surface of the film by a vacuum film formation method, and further a thickness of 50 to 50 nm by a vacuum film formation method as a conductive underlayer on the Ni-P alloy layer. The method includes a step of forming a 300 nm Cu layer, and a step of forming a second Cu having a thickness of 1 to 100 μm on the Cu layer by electroplating.

本発明のフレキシブル基板用基材は、ポリイミドフィルムの表面を粗面化の程度を極力抑制して軽度にエッチングして活性化した後、真空成膜法を用いてのNi−P合金層およびCu層を形成してなるフレキシブル基板用基材であり、ピンホールが少なく、この上に湿式めっき法により導電性金属層である第二のCu層を形成させて本発明のフレキシブル基板とした場合に、フレキシブル基板用基材と第二のCu層との優れた接着力が得られ、また高温で長時間経時させても良好な接着力を保持することができる。   The substrate for a flexible substrate of the present invention is activated by lightly etching the surface of the polyimide film while suppressing the degree of roughening as much as possible, and then using a vacuum film forming method to form the Ni-P alloy layer and Cu. When a flexible substrate of the present invention is formed by forming a second Cu layer, which is a conductive metal layer, by a wet plating method on a base material for a flexible substrate formed by forming a layer with few pinholes. Excellent adhesive strength between the flexible substrate and the second Cu layer can be obtained, and good adhesive strength can be maintained even after a long period of time at a high temperature.

以下、本発明を詳細に説明する。図1は本発明のフレキシブル基板用基材の概略断面図である。フレキシブル基板用基材10は、ポリイミドフィルム1の片面上にNi−P合金層2が形成され、Ni−P合金層2上にCu層3が形成されて構成される。図はポリイミドフィルム1の片面上にNi−P合金層2とCu層3が形成された場合を示すが、ポリイミドフィルム1の他の片面上に同様にNi−P合金層2とCu層3が形成されていてもよい。   Hereinafter, the present invention will be described in detail. FIG. 1 is a schematic cross-sectional view of the substrate for flexible substrate of the present invention. The substrate 10 for a flexible substrate is configured by forming a Ni—P alloy layer 2 on one side of a polyimide film 1 and forming a Cu layer 3 on the Ni—P alloy layer 2. Although the figure shows the case where the Ni-P alloy layer 2 and the Cu layer 3 are formed on one side of the polyimide film 1, the Ni-P alloy layer 2 and the Cu layer 3 are similarly formed on the other side of the polyimide film 1. It may be formed.

フレキシブル基板用基材10のNi−P合金層2およびCu層3を形成させる基体であるポリイミドフィルム1としては、BPDA(ビフェニルテトラカルボン酸)系のポリイミド樹脂や、PMDA(ピロメリット酸二無水物)系のポリイミド樹脂などのいずれのポリイミド樹脂からなるフィルムも用いることができる。これらのポリイミドフィルム1の表面を活性化してNi−P合金層2およびCu層3を形成させる   Examples of the polyimide film 1 that is a substrate on which the Ni-P alloy layer 2 and the Cu layer 3 of the base material 10 for flexible substrate are formed include BPDA (biphenyltetracarboxylic acid) -based polyimide resin and PMDA (pyromellitic dianhydride). A film made of any polyimide resin such as a) polyimide resin can be used. The surface of these polyimide films 1 is activated to form the Ni—P alloy layer 2 and the Cu layer 3.

活性化処理はポリイミドフィルムの表面ができるだけ粗面化しないよう、軽度にエッチングする。エッチングはアルカリ水溶液による湿式エッチングや真空中のプラズマ照射によるエッチングなどの乾式エッチングがあるが、本発明においては真空中におけるプラズマ処理が好ましい。プラズマ処理に用いるガスとしては、He、Ne、Arなどの不活性ガスを単独で、またはこれらの不活性ガスの2種類以上を混合して用いる。プラズマを発生させるエネルギー供給源としては、直流(DC)、交流(AC)、高周波(RF)、マイクロ波などの一般に用いるエネルギー源を用いる。このようにしてプラズマ処理を行った後の表面粗さは1.5〜10nm(Ra)であることが好ましく、2〜5nm(Ra)であることがより好ましい。通常のポリイミドフィルムの表面粗さは1〜5nm(Ra)であるので、極力表面粗さが増加しないように軽度にエッチングする。表面粗さが1.5nm(Ra)未満の場合は、ポリイミドフィルム上に形成させる金属層との良好な接着力が得られない。一方、10nm(Ra)を超えると、ポリイミドフィルム上にめっき層を形成させた後にめっき層をエッチングしてファインパターンを形成させる際に良好なパターンが得られにくくなる。   In the activation treatment, light etching is performed so that the surface of the polyimide film is not roughened as much as possible. Etching includes dry etching such as wet etching with an alkaline aqueous solution and etching by plasma irradiation in a vacuum. In the present invention, plasma treatment in a vacuum is preferable. As a gas used for the plasma treatment, an inert gas such as He, Ne, or Ar is used alone, or two or more of these inert gases are mixed and used. As an energy supply source for generating plasma, generally used energy sources such as direct current (DC), alternating current (AC), high frequency (RF), and microwave are used. The surface roughness after the plasma treatment is preferably 1.5 to 10 nm (Ra), and more preferably 2 to 5 nm (Ra). Since the surface roughness of a normal polyimide film is 1 to 5 nm (Ra), it is lightly etched so that the surface roughness does not increase as much as possible. When the surface roughness is less than 1.5 nm (Ra), good adhesive force with the metal layer formed on the polyimide film cannot be obtained. On the other hand, when the thickness exceeds 10 nm (Ra), it is difficult to obtain a good pattern when a fine pattern is formed by etching the plating layer after forming the plating layer on the polyimide film.

このようにして表面を活性化した後、ポリイミドフィルム上に形成させる導電層であるCu層とポリイミドフィルムとの接着力を高める金属層を形成させる。金属層としてはNiやNi−Cr、Ni−Cu、Ni−PなどのNi合金が好ましいが、中でもNi−P合金層を形成させることがより好ましい。本発明者らは、ポリイミドフィルムとの接着力を高め、かつ高温で長時間経時させた場合に良好な接着力を保持することが可能な層について鋭意研究した結果、真空成膜法を用いてNi−P合金層を形成させることにより、他のNi層やNi合金層を形成させるよりも、ポリイミドフィルムと最上層のCu層との良好な接着力が得られることを見いだした。真空成膜法としてはスパッタ法や蒸着法などがあるが、スパッタ法を用いることが好ましい。Ni−P合金のP含有量は0.1〜20重量%であることが好ましい。P含有量が0.1重量%未満であると、高温で長時間経時させた場合にポリイミドフィルムとの接着力が低下してしまう。P含有量が20重量%を超えると、このNi−P合金層上に後記するCu層とその上に第二のCu層を形成させた後にエッチングにより金属層を除去して回路を形成する際にNi−P合金層が完全に除去されずに残留するようになり、回路間の絶縁性が不良となるので好ましくない。また、Ni−P合金層の厚さは20〜100nmであることが好ましい。Ni−P合金層の厚さが20nm未満であるとポリイミドフィルムとの良好な接着力が得られない。厚さが100nmを超えても接着力の向上効果は飽和し、コスト的に有利でなくなる。   After activating the surface in this way, a metal layer that increases the adhesive force between the Cu film, which is a conductive layer formed on the polyimide film, and the polyimide film is formed. The metal layer is preferably a Ni alloy such as Ni, Ni—Cr, Ni—Cu, or Ni—P, but more preferably a Ni—P alloy layer is formed. As a result of intensive research on a layer capable of increasing the adhesive strength with a polyimide film and maintaining good adhesive strength when aged for a long time at a high temperature, the inventors used a vacuum film-forming method. It has been found that by forming a Ni-P alloy layer, a better adhesive force between the polyimide film and the uppermost Cu layer can be obtained than when other Ni layers or Ni alloy layers are formed. Examples of the vacuum film forming method include a sputtering method and a vapor deposition method, but it is preferable to use the sputtering method. The P content of the Ni-P alloy is preferably 0.1 to 20% by weight. When the P content is less than 0.1% by weight, the adhesive strength with the polyimide film is reduced when the P content is a long time at a high temperature. When the P content exceeds 20% by weight, a Cu layer described later on this Ni-P alloy layer and a second Cu layer are formed thereon, and then the metal layer is removed by etching to form a circuit. In this case, the Ni—P alloy layer remains unremoved and the insulation between circuits becomes poor. Moreover, it is preferable that the thickness of a Ni-P alloy layer is 20-100 nm. When the thickness of the Ni-P alloy layer is less than 20 nm, good adhesion with the polyimide film cannot be obtained. Even if the thickness exceeds 100 nm, the effect of improving the adhesive strength is saturated, which is not advantageous in terms of cost.

このようにしてポリイミドフィルム上にNi−P合金層を形成させた後、その上にCu層を形成させる。このCu層は第二のCu層を電気めっき法を用いて形成させるための導電性の下地層として形成させる。成膜法としてはスパッタ法や蒸着法などの真空成膜法を用いることが好ましいが、スパッタ法を用いることがより好ましい。Cu層の厚さは50〜300nmであることが好ましい。厚さが50nm未満であると第二のCu層を電気めっき法を用いて形成させる際にNi−P合金層およびCu層が溶解して失われるおそれがあり、好ましくない。一方、300nmを超えると十分な導電性は得られるがコスト的に有利でなくなる。以上のように、ポリイミドフィルム表面を軽度にエッチングした後、真空成膜法を用いてNi−P合金層とさらにその上にCu層を形成させることにより、本発明のフレキシブル基板用基材が得られる。   Thus, after forming a Ni-P alloy layer on a polyimide film, a Cu layer is formed on it. This Cu layer is formed as a conductive underlayer for forming the second Cu layer using an electroplating method. As a film forming method, it is preferable to use a vacuum film forming method such as a sputtering method or a vapor deposition method, but it is more preferable to use a sputtering method. The thickness of the Cu layer is preferably 50 to 300 nm. If the thickness is less than 50 nm, the Ni—P alloy layer and the Cu layer may be dissolved and lost when the second Cu layer is formed by electroplating, which is not preferable. On the other hand, if it exceeds 300 nm, sufficient conductivity can be obtained, but it is not advantageous in terms of cost. As described above, after the polyimide film surface is slightly etched, a Ni-P alloy layer and a Cu layer are further formed on the Ni-P alloy layer using a vacuum film formation method, thereby obtaining the flexible substrate substrate of the present invention. It is done.

次いで以上のようにして得られる図1に示すフレキシブル基板用基材10のCu層3上に、図2に示すように導電層として第二のCu層4を形成させて本発明のフレキシブル基板20とする。第二のCu層はスパッタ法や蒸着法などの乾式成膜法や、無電解めっき法や電気めっき法などの湿式めっき法のいずれを用いて成膜してもよいが、均一な厚さで短時間で成膜することができる電気めっき法を用いることが好ましい。第二のCu層の厚さは1〜100μmであることが好ましい。厚さが1μm未満では通電回路として用いた場合に十分な導電性が得られない。一方、100μmを超えると高密度実装基板に必要とされるファインパターンの回路形成が困難になり、好ましくない。このようにして、本発明のフレキシブル基板が得られる。   Next, the second Cu layer 4 is formed as a conductive layer on the Cu layer 3 of the flexible substrate 10 shown in FIG. 1 obtained as described above, as shown in FIG. And The second Cu layer may be formed using either a dry film formation method such as sputtering or vapor deposition, or a wet plating method such as electroless plating or electroplating, but with a uniform thickness. It is preferable to use an electroplating method capable of forming a film in a short time. The thickness of the second Cu layer is preferably 1 to 100 μm. When the thickness is less than 1 μm, sufficient conductivity cannot be obtained when used as an energization circuit. On the other hand, if it exceeds 100 μm, it becomes difficult to form a fine pattern circuit required for a high-density mounting substrate, which is not preferable. In this way, the flexible substrate of the present invention is obtained.

以下、実施例を示して本発明を詳細に説明する。
[ポリイミドフィルムのエッチング]
50μmの厚さのポリイミドフィルムの片面に、プラズマ処理装置を用いて表1に示す条件でプラズマ処理を施して活性化し、基体番号A〜Fで示すポリイミドフィルム基体とした。これらの基体の一部を切り出して走査型プローブ顕微鏡を用いて表面粗さ(Ra)を測定した。測定結果を表1に示す。
Hereinafter, the present invention will be described in detail with reference to examples.
[Etching polyimide film]
One side of a polyimide film having a thickness of 50 μm was activated by subjecting it to plasma treatment under the conditions shown in Table 1 using a plasma treatment apparatus to obtain polyimide film substrates indicated by substrate numbers A to F. A portion of these substrates was cut out and the surface roughness (Ra) was measured using a scanning probe microscope. The measurement results are shown in Table 1.

Figure 2006179827
Figure 2006179827

[Ni−P合金層の形成]
上記のようにして片面に活性化処理を施したポリイミドフィルム基体の活性化処理面に、DCマグネトロンスパッタリング装置を用いて表2に示すP含有量と厚さを有するNi−P合金層を形成させた。また比較用にNi層、Ni−Cu層、Ni−Cr層をそれぞれ形成させた。
[Formation of Ni-P alloy layer]
A Ni-P alloy layer having the P content and thickness shown in Table 2 is formed on the activation surface of the polyimide film substrate that has been activated on one side as described above, using a DC magnetron sputtering apparatus. It was. For comparison, a Ni layer, a Ni—Cu layer, and a Ni—Cr layer were formed.

[Cu層の形成]
次いで、上記の金属層の上にDCマグネトロンスパッタリング装置を用いて表2に示す厚さを有するCu層を形成させた。
[Cu layer formation]
Next, a Cu layer having the thickness shown in Table 2 was formed on the metal layer using a DC magnetron sputtering apparatus.

[第二のCu層の形成]
引き続いて、上記のCu層上に、下記のめっき浴を用い、下記の条件で電気めっきにより導電層である表2に示す厚さの第二のCu層を形成させた。このようにして試料番号1〜13の特性評価用の供試材を作成した。
<めっき浴>
硫酸銅 200g/L
硫酸 50g/L
光沢剤(商品名:SF−M、奥野製薬工業(株)製) 5mL/L
<浴温> 30℃
<撹拌> エアバブリング
<電流密度> 3A/dm
[Formation of second Cu layer]
Subsequently, a second Cu layer having a thickness shown in Table 2 as a conductive layer was formed on the above Cu layer by electroplating under the following conditions using the following plating bath. In this way, specimens for property evaluation of sample numbers 1 to 13 were prepared.
<Plating bath>
Copper sulfate 200g / L
Sulfuric acid 50g / L
Brightener (trade name: SF-M, manufactured by Okuno Pharmaceutical Co., Ltd.) 5mL / L
<Bath temperature> 30 ℃
<Agitating> Air bubbling
<Current density> 3A / dm 2

[特性評価]
試料番号1〜13の供試材から100mm×100mmの大きさの試片を切り出し、一部はそのまま定温で、他の一部は150℃のオーブン中で1週間経時させた後、ポリイミドフィルムと金属層の接着力として180℃ピール強度を以下のようにして測定した。すなわち、各供試材の金属層を形成させた面に2mmの幅の保護テープを貼付した後、塩化第二鉄水溶液でエッチングして金属層の露出部分を除去した。次いで金属層が残存した2mmの部分を短冊状に切り出した後、ポリイミドフィルムと金属層のNi−P合金層、Ni層、Ni−Cu層、またはNi−Cr層の間で強制剥離し、剥離したポリイミドフィルムとこれらの金属層をテンシロンのチャックで挟んで180℃ピール強度を測定した。なお、180℃ピール強度はkg/cmに換算した。これらの結果を表2に示す。
[Characteristic evaluation]
A specimen having a size of 100 mm × 100 mm was cut out from the specimens of Sample Nos. 1 to 13, and a part thereof was kept at a constant temperature, and the other part was aged for one week in an oven at 150 ° C. As an adhesive force of the metal layer, a 180 ° C. peel strength was measured as follows. That is, after a protective tape having a width of 2 mm was applied to the surface of each test material on which the metal layer was formed, the exposed portion of the metal layer was removed by etching with a ferric chloride aqueous solution. Next, a 2 mm portion where the metal layer remains was cut into a strip shape, and then forcedly peeled between the polyimide film and the Ni—P alloy layer, Ni layer, Ni—Cu layer, or Ni—Cr layer of the metal layer, and then peeled off. The polyimide film and these metal layers were sandwiched between tensilon chucks, and the 180 ° C. peel strength was measured. The 180 ° C. peel strength was converted to kg / cm. These results are shown in Table 2.

Figure 2006179827
Figure 2006179827

表2に示すように、ポリイミドフィルムを軽度にエッチングして活性化した後、真空成膜法を用いてNi−P合金層、次いでCu層を形成してフレキシブル基板用基材とし、引き続き基材上に電気めっき法を用いて第二のCu層を形成してなる本発明のフレキシブル基板は、ポリイミドフィルムと金属層の接着力に優れており、高温で長時間加熱した後も優れた接着力を保持することができる。   As shown in Table 2, after the polyimide film is lightly etched and activated, a Ni-P alloy layer and then a Cu layer are formed by using a vacuum film forming method to form a flexible substrate, and subsequently the substrate The flexible substrate of the present invention having a second Cu layer formed thereon by electroplating has excellent adhesion between the polyimide film and the metal layer, and excellent adhesion even after heating for a long time at high temperature. Can be held.

本発明のフレキシブル基板用基材は、真空成膜法を用いて形成した導電層の下地となるNi−P合金層およびCu層との定温および高温で長時間経時した後の接着力に優れている。そのためこのフレキシブル基板用基材の上に電気めっき法を用いて第二のCu層を形成してなる本発明のフレキシブル基板は、ノートパソコン、プリンター、デジタルカメラ、液晶ディスプレイなどの小形でかつ軽量であることが求められる電子機器の高密度な実装が求められる通電回路に用いるプリント基板として、好適に適用することができる。   The substrate for a flexible substrate of the present invention has excellent adhesion with a Ni-P alloy layer and a Cu layer, which are the foundations of a conductive layer formed using a vacuum film-forming method, at a constant temperature and after a long period of time at high temperatures. Yes. Therefore, the flexible substrate of the present invention in which the second Cu layer is formed on the substrate for the flexible substrate by using an electroplating method is small and lightweight such as a notebook computer, a printer, a digital camera, and a liquid crystal display. The present invention can be suitably applied as a printed circuit board used in an energization circuit that requires high-density mounting of electronic devices that are required to exist.

本発明のフレキシブル基板用基材の断面図。Sectional drawing of the base material for flexible substrates of this invention. 本発明のフレキシブル基板の断面図。Sectional drawing of the flexible substrate of this invention.

符号の説明Explanation of symbols

1 ポリイミドフィルム
2 Ni−P合金層
3 Cu層
4 第二のCu層
10 フレキシブル基板用基材
20 フレキシブル基板
DESCRIPTION OF SYMBOLS 1 Polyimide film 2 Ni-P alloy layer 3 Cu layer 4 Second Cu layer 10 Base material 20 for flexible substrates Flexible substrate

Claims (7)

表面粗さが1.5〜10nm(Ra)であるポリイミドフィルムの少なくとも片面に、下から順にNi−P合金層とCu層とを形成してなるフレキシブル基板用基材。   The base material for flexible substrates formed by forming a Ni-P alloy layer and a Cu layer in order from the bottom on at least one surface of a polyimide film having a surface roughness of 1.5 to 10 nm (Ra). Ni−P合金層のP含有量が0.1〜20重量%である、請求項1に記載のフレキシブル基板用基材。   The base material for flexible substrates of Claim 1 whose P content of a Ni-P alloy layer is 0.1 to 20 weight%. Ni−P合金層の厚さが20〜100nmである、請求項1または2に記載のフレキシブル基板用基材。   The base material for flexible substrates of Claim 1 or 2 whose thickness of a Ni-P alloy layer is 20-100 nm. Cu層の厚さが50〜300nmである、請求項1〜3のいずれかに記載のフレキシブル基板用基材。   The base material for flexible substrates in any one of Claims 1-3 whose thickness of Cu layer is 50-300 nm. 請求項1〜4のいずれかに記載のフレキシブル基板用基材のCu層上に、1〜100μmの厚さの第二のCu層を設けてなるフレキシブル基板。   The flexible substrate which provides the 2nd Cu layer of thickness of 1-100 micrometers on the Cu layer of the base material for flexible substrates in any one of Claims 1-4. ポリイミドフィルムの表面を表面粗さ1.5〜10nm(Ra)に活性化処理する工程、活性化処理された前記ポリイミドフィルムの表面に真空成膜法により厚さ20〜100nmのNi−P合金層を形成させる工程、さらに該Ni−P合金層の上に導電性の下地層として真空成膜法により厚さ50〜300nmのCu層を形成させる工程からなることを特徴とするフレキシブル基板用基材の製造方法。   A step of activating the surface of the polyimide film to a surface roughness of 1.5 to 10 nm (Ra), a Ni-P alloy layer having a thickness of 20 to 100 nm on the surface of the activated polyimide film by a vacuum film formation method And a step of forming a Cu layer having a thickness of 50 to 300 nm as a conductive underlayer on the Ni-P alloy layer by a vacuum film-forming method. Manufacturing method. ポリイミドフィルムの表面を表面粗さ1.5〜10nm(Ra)に活性化処理する工程、活性化処理された前記ポリイミドフィルムの表面に真空成膜法により厚さ20〜100nmのNi−P合金層を形成させる工程、さらに該Ni−P合金層の上に導電性の下地層として真空成膜法により厚さ50〜300nmのCu層を形成させる工程、該Cu層の上に電気めっき法により厚さ1〜100μmの第二のCuを形成させる工程からなることを特徴とするフレキシブル基板の製造方法。   A step of activating the surface of the polyimide film to a surface roughness of 1.5 to 10 nm (Ra), a Ni-P alloy layer having a thickness of 20 to 100 nm on the surface of the activated polyimide film by a vacuum film formation method A step of forming a Cu layer having a thickness of 50 to 300 nm by a vacuum film formation method as a conductive underlayer on the Ni-P alloy layer, and a thickness by electroplating on the Cu layer. A method for producing a flexible substrate, comprising a step of forming a second Cu having a thickness of 1 to 100 μm.
JP2004374047A 2004-12-24 2004-12-24 Board material for flexible board, flexible board employing same, and method of manufacturing them Withdrawn JP2006179827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374047A JP2006179827A (en) 2004-12-24 2004-12-24 Board material for flexible board, flexible board employing same, and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374047A JP2006179827A (en) 2004-12-24 2004-12-24 Board material for flexible board, flexible board employing same, and method of manufacturing them

Publications (1)

Publication Number Publication Date
JP2006179827A true JP2006179827A (en) 2006-07-06

Family

ID=36733611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374047A Withdrawn JP2006179827A (en) 2004-12-24 2004-12-24 Board material for flexible board, flexible board employing same, and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2006179827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081882A1 (en) * 2007-12-25 2009-07-02 The Furukawa Electric Co., Ltd. Multilayer printed board and method for manufacturing the same
WO2010070771A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Multilayer printed board and method for manufacturing the same
JP2013102210A (en) * 2013-01-25 2013-05-23 Furukawa Electric Co Ltd:The Multilayer printed board and manufacturing method thereof
CN105992456A (en) * 2015-02-05 2016-10-05 颀邦科技股份有限公司 Flexible substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081882A1 (en) * 2007-12-25 2009-07-02 The Furukawa Electric Co., Ltd. Multilayer printed board and method for manufacturing the same
JP2009158615A (en) * 2007-12-25 2009-07-16 Furukawa Electric Co Ltd:The Multilayer printed board, and its manufacturing method
US8476534B2 (en) 2007-12-25 2013-07-02 Furukawa Electric Co., Ltd. Multilayer printed board and method for manufacturing the same
WO2010070771A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Multilayer printed board and method for manufacturing the same
KR101489034B1 (en) 2008-12-19 2015-02-04 후루카와 덴키 고교 가부시키가이샤 Multilayer printed board and method for manufacturing the same
JP2013102210A (en) * 2013-01-25 2013-05-23 Furukawa Electric Co Ltd:The Multilayer printed board and manufacturing method thereof
CN105992456A (en) * 2015-02-05 2016-10-05 颀邦科技股份有限公司 Flexible substrate
US9510441B2 (en) 2015-02-05 2016-11-29 Chipbond Technology Corporation Flexible substrate
US9961759B2 (en) 2015-02-05 2018-05-01 Chipbond Technology Corporation Flexible substrate

Similar Documents

Publication Publication Date Title
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
JP4350263B2 (en) Metallized polyimide film and method for producing the same
US7211332B2 (en) Laminate
JP4341023B2 (en) Method for producing metal-coated liquid crystal polymer film
JPWO2015076372A1 (en) Manufacturing method of printed wiring board having embedded circuit and printed wiring board obtained by the manufacturing method
JP2008307737A (en) Laminate, wiring board and its manufacturing method
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
JP6300206B2 (en) Method for producing copper foil with release film
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4160811B2 (en) Flexible copper-clad circuit board
JP2006179827A (en) Board material for flexible board, flexible board employing same, and method of manufacturing them
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP2005041049A (en) Wide copper clad laminated board
JP2009148995A (en) Metal-clad polyethylene naphthalate substrate and method for manufacturing it
JP2006130747A (en) Copper clad laminated sheet for cof and carrier tape for cof
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
JP2005271449A (en) Laminate for flexible printed circuit board
JP2006175634A (en) Metal-polyimide substrate
JP2006103304A (en) Polyimide-metal laminated plate and its manufacturing method
JP2010205754A (en) Method of manufacturing circuit wiring board
JP2009004588A (en) Copper clad polyimide substrate
TW201247041A (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit
JP2006007519A (en) Composite film having circuit pattern and its manufacturing method
JP2010171268A (en) Method for manufacturing circuit wiring board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304