JP2006179329A - Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell - Google Patents

Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell Download PDF

Info

Publication number
JP2006179329A
JP2006179329A JP2004371908A JP2004371908A JP2006179329A JP 2006179329 A JP2006179329 A JP 2006179329A JP 2004371908 A JP2004371908 A JP 2004371908A JP 2004371908 A JP2004371908 A JP 2004371908A JP 2006179329 A JP2006179329 A JP 2006179329A
Authority
JP
Japan
Prior art keywords
electrode
side reference
electrochemical cell
working
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004371908A
Other languages
Japanese (ja)
Inventor
Kengo Maeda
健吾 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004371908A priority Critical patent/JP2006179329A/en
Publication of JP2006179329A publication Critical patent/JP2006179329A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical cell, an electrochemical cell evaluation device, an evaluation method of the electrochemical cell, and a control method of the electrochemical cell, capable of more accurately grasping a potential of an action electrode single body and that of a counter electrode single body, as well as a potential gradient generated between the action electrode and the counter electrode. <P>SOLUTION: A lithium secondary cell (an electrochemical cell) 100 is provided with a cathode-side reference electrode 125 arranged in the vicinity of the cathode 120, and an anode-side reference electrode 135 arranged in the vicinity of the anode 130, in addition to a cathode 120 and an anode 130. Further, they are made separated from each other through electrolyte solution, with the cathode 120 and the cathode-side reference electrode 125 intercalated by a first separator 141, with the anode 130 and the anode-side reference electrode 135 intercalated by a second separator 143, and the cathode 120 or the like and the anode or the like intercalated by a third separator 145. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、作用極と対極を有し電気化学的反応によりこれらの電極間で電池変化を起こす電気化学セル、電池化学セルを備える電気化学セル評価装置、電池化学セルの評価方法、及び電気化学セルの制御方法に関する。中でも特に、作用極、対極の他に参照極を有する電気化学セル、このような電池化学セルを備える化学セル評価装置、このような電池化学セルの評価方法、及びこのような電気化学セルの制御方法に関する。   The present invention relates to an electrochemical cell that has a working electrode and a counter electrode and causes a battery change between these electrodes by an electrochemical reaction, an electrochemical cell evaluation apparatus including the battery chemical cell, a battery chemical cell evaluation method, and electrochemical The present invention relates to a cell control method. In particular, an electrochemical cell having a reference electrode in addition to a working electrode and a counter electrode, a chemical cell evaluation apparatus including such a battery chemical cell, a method for evaluating such a battery chemical cell, and a control of such an electrochemical cell Regarding the method.

従来より、作用極としての正極と、対極としての負極と、参照極とを有する、いわゆる3極式のリチウム二次電池が知られている。例えば、特許文献1や特許文献2にこのような3極式のリチウム二次電池が開示されている。
図5に特許文献1で開示された3極式リチウム二次電池900について示す。このリチウム二次電池900は、電池缶910の中に、正極920、負極930、参照極940が収容され、電解液950が充填されている。参照極940は、正極920と負極930と間に配置されている。また、リチウム二次電池900の外部には、充電用電源Sを有する充電回路Aと、負荷Lを有する放電回路Bが設けられている。そして、正極920と負極930の電位差(電池の起電力)V11と、正極920と参照極940との電位差V12と、負極930と参照極940との電位差V13とをそれぞれ測定可能に構成されている。
Conventionally, a so-called tripolar lithium secondary battery having a positive electrode as a working electrode, a negative electrode as a counter electrode, and a reference electrode is known. For example, Patent Document 1 and Patent Document 2 disclose such a three-pole lithium secondary battery.
FIG. 5 shows a three-pole lithium secondary battery 900 disclosed in Patent Document 1. In the lithium secondary battery 900, a positive electrode 920, a negative electrode 930, and a reference electrode 940 are accommodated in a battery can 910 and filled with an electrolytic solution 950. The reference electrode 940 is disposed between the positive electrode 920 and the negative electrode 930. In addition, a charging circuit A having a charging power source S and a discharging circuit B having a load L are provided outside the lithium secondary battery 900. The potential difference (battery electromotive force) V11 between the positive electrode 920 and the negative electrode 930, the potential difference V12 between the positive electrode 920 and the reference electrode 940, and the potential difference V13 between the negative electrode 930 and the reference electrode 940 can be measured. .

このリチウム二次電池900では、充電を開始すると、即ち充電回路Aの充電用電源Sにより正極920と負極930との間に適当な電圧を掛けて電流を流すと、正極−負極間の電位差V11は、基本的に時間と共に上昇していく。またほぼ同様に、正極−参照極間の電位差V12も、時間と共に上昇していく。一方、負極−参照極間の電位差V13は、負極930へのリチウムイオンの挿入により、漸次低下していく。   In the lithium secondary battery 900, when charging is started, that is, when a current is applied by applying an appropriate voltage between the positive electrode 920 and the negative electrode 930 by the charging power source S of the charging circuit A, the potential difference V11 between the positive electrode and the negative electrode. Basically rises over time. In a similar manner, the potential difference V12 between the positive electrode and the reference electrode also increases with time. On the other hand, the potential difference V <b> 13 between the negative electrode and the reference electrode gradually decreases due to the insertion of lithium ions into the negative electrode 930.

ところで、負極930に金属リチウムが析出する程に過充電を行うと、電池が使用不可能になることがある。負極930に金属リチウムが析出した状態では、仮に参照極940がリチウムで形成されているとすると、負極−参照極間の電位差V13がほぼ0Vとなる。従って、負極−参照極間の電位差V13について充電管理レベル(例えば0.05V)を設定し、電位差V13がこの充電管理レベルと下回ったときには直ちに充電を終了することで、金属リチウムの析出を防止できる。このようにすることで、過充電を回避しつつ充電を行うことができ、リチウム二次電池900を長期間にわたり有効に使用できるようになる。   By the way, if overcharging is performed to the extent that metallic lithium is deposited on the negative electrode 930, the battery may become unusable. In a state where metallic lithium is deposited on the negative electrode 930, if the reference electrode 940 is made of lithium, the potential difference V13 between the negative electrode and the reference electrode is almost 0V. Therefore, by setting a charge management level (for example, 0.05 V) for the potential difference V13 between the negative electrode and the reference electrode, and immediately stopping the charge when the potential difference V13 falls below this charge management level, the deposition of metallic lithium can be prevented. . In this way, charging can be performed while avoiding overcharging, and the lithium secondary battery 900 can be used effectively over a long period of time.

特許文献2で開示された3極式リチウム二次電池の一方は、当該文献の図1及びその説明箇所に記載されているように、極板群と電池ケースとの間に参照極を挿入している。そして、参照極を利用して正極の電位または負極の電位を測定し、この電位を基準として充電の制御を行っている。また、特許文献2で開示された他方の3極式リチウム二次電池は、当該文献の図2及びその説明箇所に記載されているように、上記特許文献1のリチウム二次電池とほぼ同様に、正極と負極の間に参照電極(本例では2個)を配置している。そして、参照電極を利用して正極の電位を測定し、この電位を基準として充電の制御を行っている。   One of the three-pole lithium secondary batteries disclosed in Patent Document 2 has a reference electrode inserted between the electrode plate group and the battery case, as described in FIG. ing. Then, the positive electrode potential or the negative electrode potential is measured using the reference electrode, and charging is controlled based on this potential. The other three-pole lithium secondary battery disclosed in Patent Document 2 is substantially the same as the lithium secondary battery of Patent Document 1, as described in FIG. The reference electrodes (two in this example) are arranged between the positive electrode and the negative electrode. Then, the potential of the positive electrode is measured using the reference electrode, and charging is controlled based on this potential.

このように、電池自身の電圧(正極−負極間の電位差)ではなく、参照電極により測定した正極や負極の電位を基準にすることで、正極や負極が過充電状態となることを抑制し、正極や負極の容量減少に合わせた充電が可能となる。このため、劣化した正極や負極に更に過剰な負荷を与えることを防止し、サイクルの寿命特性を向上させることができる。   In this way, it is possible to suppress the positive electrode and the negative electrode from being overcharged by using the potential of the positive electrode and the negative electrode measured by the reference electrode instead of the voltage of the battery itself (the potential difference between the positive electrode and the negative electrode), Charging according to the capacity reduction of the positive electrode and the negative electrode becomes possible. For this reason, it is possible to prevent an excessive load from being applied to the deteriorated positive electrode and negative electrode, and to improve the cycle life characteristics.

特開平11−67280号公報Japanese Patent Laid-Open No. 11-67280 特開2002−50407号公報Japanese Patent Laid-Open No. 2002-50407

特許文献1の3極式リチウム二次電池900は、上記のように、負極−参照極間の電位差V13を測定して、充電管理レベルとの比較を行い、負極930に金属リチウムが析出することを防止している。しかし、この電位差V13は電池内部の電位勾配により正極920の影響を受けると考えられる。このため、この電位差V13からは負極930単身の電位を正確に把握できず、電位差V13が充電管理レベル以上であっても、負極930に金属リチウムが析出するおそれがある。
また、特許文献2の2つの3極式リチウム二次電池は、上記のように、参照極を利用して正極や負極の電位を測定し、この電位を基準として充電の制御を行っている。しかし、この電位は電池内部の電位勾配によりもう一方の電極の影響を受けると考えられる。このため、正極や負極の電位が正確に把握できず、厳密な充電制御を行うことができない。
As described above, the tripolar lithium secondary battery 900 of Patent Document 1 measures the potential difference V13 between the negative electrode and the reference electrode, compares it with the charge management level, and deposits metallic lithium on the negative electrode 930. Is preventing. However, it is considered that this potential difference V13 is affected by the positive electrode 920 due to the potential gradient inside the battery. For this reason, the potential of the single negative electrode 930 cannot be accurately grasped from the potential difference V13, and even if the potential difference V13 is equal to or higher than the charge management level, lithium metal may be deposited on the negative electrode 930.
In addition, as described above, the two tripolar lithium secondary batteries of Patent Document 2 measure the potential of the positive electrode or the negative electrode using the reference electrode, and control charging based on this potential. However, this potential is considered to be affected by the other electrode due to the potential gradient inside the battery. For this reason, the electric potential of a positive electrode or a negative electrode cannot be grasped correctly, and strict charge control cannot be performed.

このように、従来の3極式リチウム二次電池では、正極単身の電位を見るべく正極−参照極間の電位差を測定しても、それは電池内部の電位勾配により負極の影響を受けると考えられるので、正極単身の電位を正確に把握することはできない。同様に、負極単身の電位を見るべく負極−参照極間の電位差を測定しても、それは電池内部の電位勾配により正極の影響を受けると考えられるので、負極単身の電位を正確に把握することはできない。加えて、3極式リチウム二次電池では、作用極−対極間に生じる電位勾配の状態や電解液の抵抗を正確に把握することができない。   Thus, in the conventional tripolar lithium secondary battery, even if the potential difference between the positive electrode and the reference electrode is measured to see the potential of the single positive electrode, it is considered that it is influenced by the negative electrode due to the potential gradient inside the battery. Therefore, it is impossible to accurately grasp the potential of the single positive electrode. Similarly, even if the potential difference between the negative electrode and the reference electrode is measured to see the potential of the single negative electrode, it is considered that it is affected by the positive electrode due to the potential gradient inside the battery. I can't. In addition, in the tripolar lithium secondary battery, the state of the potential gradient generated between the working electrode and the counter electrode and the resistance of the electrolytic solution cannot be accurately grasped.

本発明は、かかる現状に鑑みてなされたものであって、作用極単身の電位、対極単身の電位をより正確に把握できると共に作用極−対極間に生じる電位勾配を把握できる電気化学セル、このような電気化学セルを有する電気化学セル評価装置、電気化学セルの評価方法、電気化学セルの制御方法を提供することを目的とする。   The present invention has been made in view of the current situation, and is an electrochemical cell capable of more accurately grasping the potential of the working electrode alone and the potential of the counter electrode alone, and grasping the potential gradient generated between the working electrode and the counter electrode, It is an object of the present invention to provide an electrochemical cell evaluation apparatus having such an electrochemical cell, an electrochemical cell evaluation method, and an electrochemical cell control method.

その解決手段は、作用極と対極とを有すると共に電解液が充填され、電気化学的反応により前記作用極と前記対極との間で電位変化を起こす電気化学セルであって、前記作用極の近傍に配置された作用極側参照極と、前記対極の近傍に配置された対極側参照極と、を備え、前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極が、前記電解液を通じて互いに離間されてなる電気化学セルである。   The solution is an electrochemical cell that has a working electrode and a counter electrode, is filled with an electrolyte, and causes a potential change between the working electrode and the counter electrode by an electrochemical reaction, and is in the vicinity of the working electrode. A working electrode side reference electrode disposed in the vicinity of the counter electrode, and the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode side reference electrode, It is an electrochemical cell that is spaced apart from one another through an electrolyte.

本発明の電気化学セルは、作用極と対極の他に、作用極側参照極と対極側参照極とを備える4極式である。このような4極式の電気化学セルでは、作用極−対極間の電位差V1の他に、作用極−作用極側参照極間の電位差V2、作用極−対極側参照極間の電位差V3、対極−作用極側参照極間の電位差V4、対極−対極側参照極間の電位差V5、作用極側参照極−対極側参照極間の電位差V6も測定できる。   The electrochemical cell of the present invention is a quadrupole type including a working electrode side reference electrode and a counter electrode side reference electrode in addition to the working electrode and the counter electrode. In such a four-electrode electrochemical cell, in addition to the potential difference V1 between the working electrode and the counter electrode, the potential difference V2 between the working electrode and the working electrode side reference electrode, the potential difference V3 between the working electrode and the counter electrode side reference electrode, and the counter electrode The potential difference V4 between the working electrode side reference electrode, the potential difference V5 between the counter electrode and the counter electrode reference electrode, and the potential difference V6 between the working electrode reference electrode and the counter electrode reference electrode can also be measured.

作用極側参照極は、作用極の近傍に配置されているため、対極の影響を受けにくい利点がある。従って、作用極−作用極側参照極間の電位差V2は、従来の3極式電気化学セルよりも、作用極単身についての現在の電位や充電・放電時の電位変化を正確に把握することに役立てることができる。
また、対極側参照極は、対極の近傍に配置されているため、作用極の影響を受けにくい利点がある。従って、対極−対極側参照極間の電位差V5は、従来の3極式電位化学セルよりも、対極単身についての現在の電位や充電・放電時の電位変化を正確に把握することに役立てることができる。
Since the working electrode side reference electrode is disposed in the vicinity of the working electrode, there is an advantage that the working electrode is less susceptible to the influence of the counter electrode. Therefore, the potential difference V2 between the working electrode and the working electrode side reference electrode is more accurate than the conventional three-electrode electrochemical cell to grasp the current potential of the working electrode alone and the potential change during charging / discharging. Can be useful.
Further, since the counter electrode side reference electrode is disposed in the vicinity of the counter electrode, there is an advantage that it is difficult to be affected by the working electrode. Therefore, the potential difference V5 between the counter electrode and the counter electrode on the counter electrode side can be used for more accurately grasping the current potential of the counter electrode alone and the potential change at the time of charging / discharging than the conventional three-electrode potential chemical cell. it can.

更に、作用極側参照極−対極側参照極間の電位差V6は、充電時や放電時に作用極と対極との間に生じる電位勾配を把握することに役立てることができる。この電気勾配は従来の3極式電気化学セルでは測定不可能である。このような電位勾配を把握することにより、作用極や対極の電極最表面の状態や、電解液の状態、電解液と電極との接触状態など、セル内の様々な情報を得ることができる。   Further, the potential difference V6 between the working electrode side reference electrode and the counter electrode side reference electrode can be used for grasping a potential gradient generated between the working electrode and the counter electrode during charging or discharging. This electrical gradient cannot be measured with a conventional tripolar electrochemical cell. By grasping such a potential gradient, various information in the cell such as the state of the electrode outermost surface of the working electrode and the counter electrode, the state of the electrolytic solution, and the contact state between the electrolytic solution and the electrode can be obtained.

例えば、充放電サイクルを繰り返すことによって電極が劣化している場合、その電位勾配は、劣化前の電位勾配と比べて低くなる可能性が高い。これは所定時間に授受できるイオンの量が減少したり、電極表面にイオンの移動を阻害するものが生成するためであると考えれる。従って、電位勾配を見ることで、電極の劣化状況を推測できる。また、電解液が劣化している場合も同様に、その電位勾配は、劣化前の電位勾配と比べて低くなる可能性が高いため、電位勾配を見ることで、電解液の劣化状況を推測できる。また、電位勾配は、充電時及び放電時の時間経過に伴い緩和するものであるが、この緩和時間を見ることで、セル内の劣化状況を推測することもできる。
このように電位勾配を把握することで、セル内が電位的にどういう状態にあるかをはじめ、電気化学セルを構成する各部材の材料がセル性能にどのような影響を与えるかなどを、より詳細に知ることが可能となる。また、各電極間の電位差V1〜V6を総合評価することにより、様々な抵抗成分を詳細に分離できるようにもなる。
For example, when the electrode is deteriorated by repeating the charge / discharge cycle, the potential gradient is likely to be lower than the potential gradient before the degradation. This is considered to be because the amount of ions that can be exchanged in a predetermined time is reduced, or ions that inhibit the movement of ions are generated on the electrode surface. Therefore, the deterioration state of the electrode can be estimated by looking at the potential gradient. Similarly, when the electrolytic solution is deteriorated, the potential gradient is likely to be lower than the potential gradient before the deterioration. Therefore, the deterioration state of the electrolytic solution can be estimated by looking at the potential gradient. . In addition, the potential gradient relaxes with the passage of time during charging and discharging, but the degradation state in the cell can also be estimated by looking at the relaxation time.
By grasping the potential gradient in this way, it is possible to understand more about how the material of each member constituting the electrochemical cell affects the cell performance, including what state the cell is in potential. It becomes possible to know in detail. Further, by comprehensively evaluating the potential differences V1 to V6 between the electrodes, various resistance components can be separated in detail.

更に、上記の電気化学セルであって、前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極は、それぞれ平板形状をなし、前記作用極と前記作用極側参照極とは、第1セパレータを介して同一平面上に隣り合って配置され、前記対極と前記対極側参照極とは、第2セパレータを介して同一平面上に隣り合って配置され、前記作用極及び前記作用極側参照極と、前記対極及び前記対極側参照極とは、第3セパレータを介して積層されてなる電気化学セルとすると良い。   Furthermore, in the electrochemical cell, the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode side reference electrode each have a flat plate shape, and the working electrode and the working electrode side reference electrode are The counter electrode and the counter electrode side reference electrode are arranged adjacent to each other on the same plane via the first separator, and the working electrode and the action are arranged adjacent to each other on the same plane via the second separator. The pole-side reference electrode, the counter electrode, and the counter-electrode side reference electrode may be an electrochemical cell that is stacked via a third separator.

本発明によれば、作用極と作用極側参照極を平板状とし、これらの極を第1セパレータを介して同一平面上に隣り合って配置しているので、これらの極を互いに近づけつつ確実に離間できると共に、これらの集合体を薄型化できる。また、対極と対極側参照極を平板状とし、これらの極を第2セパレータを介して同一平面上に隣り合って配置しているので、これらの極を互いに近づけつつ確実に離間できると共に、これらの集合体を薄型化できる。更に、上記の作用極及び作用極側参照極と対極及び対極側参照極とを、第3セパレータを介して積層しているので、これらを確実に離間できると共に、これらの積層体も薄型化でき、電気化学セルを小型化できる。   According to the present invention, the working electrode and the working electrode side reference electrode are formed in a flat plate shape, and these electrodes are arranged adjacent to each other on the same plane with the first separator interposed therebetween. Can be separated from each other, and these aggregates can be made thinner. Further, since the counter electrode and the counter electrode side reference electrode are formed in a flat plate shape, and these electrodes are arranged adjacent to each other on the same plane via the second separator, these electrodes can be reliably separated while being brought close to each other. Can be made thinner. Furthermore, since the working electrode and the working electrode side reference electrode and the counter electrode and the counter electrode side reference electrode are laminated via the third separator, they can be reliably separated from each other, and the laminated body can also be thinned. The electrochemical cell can be miniaturized.

更に、上記のいずれかに記載の電気化学セルであって、前記電気化学セルは、前記作用極としての正極と前記対極としての負極とを有する二次電池である電気化学セルとすると良い。特に、二次電池はリチウム二次電池であるのが好ましい。   Furthermore, in any one of the above electrochemical cells, the electrochemical cell may be an electrochemical cell that is a secondary battery having a positive electrode as the working electrode and a negative electrode as the counter electrode. In particular, the secondary battery is preferably a lithium secondary battery.

二次電池、中でもリチウム二次電池では、過充電の回避やサイクル特性の向上が特に求められているため、前述した発明を二次電池に適用することは特に好ましい。   Secondary batteries, particularly lithium secondary batteries, are particularly required to avoid overcharge and improve cycle characteristics. Therefore, it is particularly preferable to apply the above-described invention to a secondary battery.

また、他の解決手段は、上記のいずれかに記載の電気化学セルと、前記電気化学セルの前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極から選ばれる電極間の電位差を測定可能な電圧測定手段と、を備える電気化学セル評価装置である。   Another solution is between the electrochemical cell according to any one of the above and an electrode selected from the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode side reference electrode of the electrochemical cell. An electrochemical cell evaluation apparatus comprising: a voltage measurement unit capable of measuring a potential difference.

本発明の電気化学セル評価装置は、前述した4極式の電気化学セルと、その電極間の電位差を測定可能な電圧測定手段とを備える。このため、作用極−対極間の電位差V1の他に、作用極−作用極側参照極間の電位差V2、作用極−対極側参照極間の電位差V3、対極−作用極側参照極間の電位差V4、対極−対極側参照極間の電位差V5、作用極側参照極−対極側参照極間の電位差V6が測定できる。   The electrochemical cell evaluation apparatus of the present invention includes the above-described four-pole electrochemical cell and voltage measuring means capable of measuring a potential difference between the electrodes. Therefore, in addition to the potential difference V1 between the working electrode and the counter electrode, the potential difference V2 between the working electrode and the working electrode side reference electrode, the potential difference V3 between the working electrode and the counter electrode side reference electrode, and the potential difference between the counter electrode and the working electrode side reference electrode. V4, the potential difference V5 between the counter electrode and the counter electrode reference electrode, and the potential difference V6 between the working electrode reference electrode and the counter electrode reference electrode can be measured.

作用極−作用極側参照極間の電位差V2は、作用極単身についての現在の電位や充電・放電時の電位変化を、従来よりも正確に把握することに役立てることができる。また、対極−対極側参照極間の電位差V5は、対極単身についての現在の電位や充電・放電時の電位変化を、従来よりも正確に把握することに役立てることができる。更に、作用極側参照極−対極側参照極間の電位差V6は、充電時や放電時に作用極と対極との間に生じる電位勾配を把握することに役立てることができる。そして、このような電位勾配を把握することで、作用極や対極の電極最表面の状態や、電解液の状態、電解液と電極との接触状態など、セル内の様々な情報を得ることができる。また、各電極間の電位差V1〜V6を総合評価することにより、様々な抵抗成分を詳細に分離できるようになる。   The potential difference V2 between the working electrode and the working electrode side reference electrode can be used for more accurately grasping the current potential of the working electrode alone and the potential change during charging / discharging than before. Further, the potential difference V5 between the counter electrode and the counter electrode reference electrode can be used for more accurately grasping the current potential of the counter electrode alone and the potential change at the time of charging / discharging than before. Further, the potential difference V6 between the working electrode side reference electrode and the counter electrode side reference electrode can be used for grasping a potential gradient generated between the working electrode and the counter electrode during charging or discharging. By grasping such a potential gradient, it is possible to obtain various information in the cell such as the state of the outermost electrode of the working electrode and the counter electrode, the state of the electrolytic solution, and the contact state between the electrolytic solution and the electrode. it can. Further, by comprehensively evaluating the potential differences V1 to V6 between the electrodes, various resistance components can be separated in detail.

また、他の解決手段は、作用極と対極とを有すると共に電解液が充填され、電気化学的反応により前記作用極と前記対極との間で電位変化を起こす電気化学セルの評価方法であって、前記作用極の近傍に作用極側参照極を、前記対極の近傍に対極側参照極を配置すると共に、前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極を、前記電解液を通じて互いに離間させ、前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極から電極を選んで、その電極間の電位差を測定する電圧測定ステップと、測定された電位差に基づいて、前記電気化学セルを評価する評価ステップと、を備える電気化学セルの評価方法である。   Another solution is a method for evaluating an electrochemical cell that has a working electrode and a counter electrode, is filled with an electrolyte, and causes a potential change between the working electrode and the counter electrode by an electrochemical reaction. A working electrode side reference electrode in the vicinity of the working electrode, a counter electrode reference electrode in the vicinity of the counter electrode, and the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode reference electrode, A voltage measurement step of measuring an electric potential difference between the electrodes by selecting electrodes from the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode side reference electrode by separating them from each other through an electrolyte; And an evaluation step for evaluating the electrochemical cell based on the evaluation method.

本発明の電気化学セルの評価方法は、電気化学セルに作用極側参照極と対極側参照極とを配置し、電極間の電位差を測定する(電圧測定ステップ)。即ち、作用極−対極間の電位差V1、作用極−作用極側参照極間の電位差V2、作用極−対極側参照極間の電位差V3、対極−作用極側参照極間の電位差V4、対極−対極側参照極間の電位差V5、作用極側参照極−対極側参照極間の電位差V6を測定する。   In the electrochemical cell evaluation method of the present invention, a working electrode side reference electrode and a counter electrode reference electrode are arranged in an electrochemical cell, and a potential difference between the electrodes is measured (voltage measurement step). That is, potential difference V1 between working electrode and counter electrode, potential difference V2 between working electrode and working electrode side reference electrode, potential difference V3 between working electrode and counter electrode side reference electrode, potential difference V4 between counter electrode and working electrode side reference electrode, counter electrode − The potential difference V5 between the counter electrode reference electrode and the potential difference V6 between the working electrode reference electrode and the counter electrode reference electrode are measured.

そして、評価ステップにおいて、各電位差を見て電気化学セルを評価する。例えば、作用極−作用極側参照極間の電位差V2は、作用極単身についての現在の電位や充電・放電時の電位変化を、従来よりも正確に把握することに役立てることができる。また、対極−対極側参照極間の電位差V5は、対極単身についての現在の電位や充電・放電時の電位変化を、従来よりも正確に把握することに役立てることができる。更に、作用極側参照極−対極側参照極間の電位差V6は、充電時や放電時に作用極と対極との間に生じる電位勾配を把握することに役立てることができる。そして、このような電位勾配が把握することで、作用極や対極の電極最表面の状態や、電解液の状態、電解液と電極との接触状態など、セル内の様々な情報を得ることができる。また、各電極間の電位差V1〜V6を総合評価することにより、様々な抵抗成分を詳細に分離できるようになる。   In the evaluation step, the electrochemical cell is evaluated by looking at each potential difference. For example, the potential difference V2 between the working electrode and the working electrode side reference electrode can be used to more accurately grasp the current potential of the working electrode alone and the potential change during charging / discharging than before. Further, the potential difference V5 between the counter electrode and the counter electrode reference electrode can be used for more accurately grasping the current potential of the counter electrode alone and the potential change at the time of charging / discharging than before. Further, the potential difference V6 between the working electrode side reference electrode and the counter electrode side reference electrode can be used for grasping a potential gradient generated between the working electrode and the counter electrode during charging or discharging. By grasping such a potential gradient, it is possible to obtain various information in the cell such as the state of the outermost electrode of the working electrode and the counter electrode, the state of the electrolytic solution, and the contact state between the electrolytic solution and the electrode. it can. Further, by comprehensively evaluating the potential differences V1 to V6 between the electrodes, various resistance components can be separated in detail.

また、他の解決手段は、電気化学セルがリチウム二次電池である場合の電気化学セルの制御方法であって、前記リチウム二次電池の前記作用極と前記対極との間に所定の大きさの電流を流して、前記作用極側参照極と前記対極側参照極との間の電位差を測定し、電流を流し始めてから5秒間以上継続してこの電位差が0.2V以上となったとき、または、電流を流し始めた以降この電位差が0.5V以上となったときに、前記リチウム二次電池がメンテナンス時期に来たことを知らせる、または、前記リチウム二次電池に対して充電電流及び放電電流の大きさを所定値以下に制限する電気化学セルの制御方法である。   Another solution is a method for controlling an electrochemical cell when the electrochemical cell is a lithium secondary battery, wherein a predetermined size is provided between the working electrode and the counter electrode of the lithium secondary battery. When the electric potential difference between the working electrode side reference electrode and the counter electrode side reference electrode is measured, and the electric potential difference becomes 0.2 V or more continuously for 5 seconds or more after starting to flow the current, Alternatively, when this potential difference becomes 0.5 V or more after starting to flow current, the lithium secondary battery is informed of maintenance timing, or charging current and discharge to the lithium secondary battery This is a method for controlling an electrochemical cell that limits the magnitude of the current to a predetermined value or less.

作用極側参照極−対極側参照極間の電位差V6の電位変化を見れば、リチウム二次電池の劣化状態を把握できる。即ち、劣化の少ないリチウム二次電池では、放電電流(または充電電流)を流した直後に僅かな電位差(例えば0.05V)が生じるが、電位緩和により短時間(例えば2秒間程度)で殆ど0Vになる。また、少し劣化が進んだリチウム二次電池では、放電電流等を流した直後にもう少し大きい電位差(例えば0.1V)が生じるが、これも短時間(例えば2秒間程度)で殆ど0Vになる。一方、激しく劣化したリチウム二次電池では、放電電流等を流した直後に大きな電位差(例えば0.2V以上)が生じ、時間が経過しても大きな電位差が残る。   If the potential change of the potential difference V6 between the working electrode side reference electrode and the counter electrode side reference electrode is observed, the deterioration state of the lithium secondary battery can be grasped. That is, in a lithium secondary battery with little deterioration, a slight potential difference (for example, 0.05 V) is generated immediately after the discharge current (or charging current) is passed, but the potential relaxation is almost 0 V in a short time (for example, about 2 seconds). become. Further, in a lithium secondary battery that has been slightly deteriorated, a slightly larger potential difference (for example, 0.1 V) is generated immediately after a discharge current or the like is passed, but this is also almost 0 V in a short time (for example, about 2 seconds). On the other hand, in a lithium secondary battery that is severely deteriorated, a large potential difference (for example, 0.2 V or more) occurs immediately after a discharge current or the like is passed, and the large potential difference remains even after a lapse of time.

このような知見に基づき、本発明では、電流を流し始めてから5秒間以上継続して作用極側参照極−対極側参照極間の電位差V6が0.2V以上となったとき、または、電流を流し始めた以降この電位差V6が0.5V以上となったときに、リチウム二次電池がメンテナンス時期に来たことを知らせる、または、リチウム二次電池に対して充電電流及び放電電流の大きさを所定値以下に制限する。このようにすることで、リチウム二次電池が寿命であることを容易に知ることができる。また、リチウム二次電池の充電・放電時における破損等を未然に防止できる。   Based on such knowledge, in the present invention, when the potential difference V6 between the working electrode side reference electrode and the counter electrode side reference electrode becomes 0.2 V or more continuously for 5 seconds or more after the current starts to flow, When this potential difference V6 becomes 0.5 V or more after starting to flow, it informs that the lithium secondary battery is in the maintenance period, or sets the charge current and discharge current to the lithium secondary battery. Limited to a predetermined value or less. By doing in this way, it can be easily known that the lithium secondary battery has a lifetime. Further, it is possible to prevent damage or the like during charging / discharging of the lithium secondary battery.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に本実施形態に係るリチウム二次電池(電気化学セル)100及びリチウム二次電池評価装置(電気化学セル評価装置)200の概略を示す。また、図2にリチウム二次電池100の分解斜視図を示す。更に、図3に放電時にリチウム二次電池評価装置200によって測定された各電極間の電位差V1〜V5の変化についてグラフで示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a lithium secondary battery (electrochemical cell) 100 and a lithium secondary battery evaluation apparatus (electrochemical cell evaluation apparatus) 200 according to this embodiment. FIG. 2 shows an exploded perspective view of the lithium secondary battery 100. Further, FIG. 3 is a graph showing changes in potential differences V1 to V5 between the electrodes measured by the lithium secondary battery evaluation device 200 during discharging.

まず最初に、本実施形態のリチウム二次電池(電気化学セル)100について説明する。このリチウム二次電池100は、略直方体形状をなす角型電池である(図2参照)。リチウム二次電池100は、電池容器110、正極(作用極)120、正極側参照極(作用極側参照極)125、負極(対極)130、負極側参照極(対極側参照極)135等から構成され、容器内部には電解液が充填されている。   First, the lithium secondary battery (electrochemical cell) 100 of this embodiment will be described. The lithium secondary battery 100 is a rectangular battery having a substantially rectangular parallelepiped shape (see FIG. 2). The lithium secondary battery 100 includes a battery container 110, a positive electrode (working electrode) 120, a positive electrode side reference electrode (working electrode side reference electrode) 125, a negative electrode (counter electrode) 130, a negative electrode side reference electrode (counter electrode side reference electrode) 135, and the like. The container is filled with an electrolytic solution.

このうち、正極120は、平板状の長方形状をなす。正極120は、厚み約10μmのアルミニウム箔の片面(負極130と向かい合う面、図2中、下方の面)に、厚み約90μmのニッケル酸リチウム層を塗布形成したものである。
正極側参照極125は、平板状の細長い長方形状をなし、その長辺は、正極120の短辺とほぼ同じ長さである。正極側参照極125は、厚み約100μmのリチウム箔からなる。
Among these, the positive electrode 120 has a flat rectangular shape. The positive electrode 120 is formed by coating a lithium nickelate layer having a thickness of about 90 μm on one surface (a surface facing the negative electrode 130, a lower surface in FIG. 2) of an aluminum foil having a thickness of about 10 μm.
The positive electrode-side reference electrode 125 has a flat and elongated rectangular shape, and its long side is substantially the same as the short side of the positive electrode 120. The positive electrode side reference electrode 125 is made of a lithium foil having a thickness of about 100 μm.

正極120と正極側参照極125とは、第1セパレータ141を介して、同一平面上に隣り合って配置されている。具体的には、正極120の短辺と正極側参照極125の長辺とが互いに平行になると共に、正極の120の長辺と正極側参照極125の短辺とが同一直線上に位置するように配置されている。第1セパレータ141は、ポリエチレン製多孔質フィルムからなり、厚み約25μmの平板状で細長い長方形状をなす。この第1セパレータ141は、後述する電池容器110の蓋体113に溶着固定されている。   The positive electrode 120 and the positive electrode side reference electrode 125 are disposed adjacent to each other on the same plane with the first separator 141 interposed therebetween. Specifically, the short side of the positive electrode 120 and the long side of the positive electrode side reference electrode 125 are parallel to each other, and the long side of the positive electrode 120 and the short side of the positive electrode side reference electrode 125 are positioned on the same straight line. Are arranged as follows. The first separator 141 is made of a polyethylene porous film and has a flat plate shape with a thickness of about 25 μm and an elongated rectangular shape. The first separator 141 is welded and fixed to a lid body 113 of a battery container 110 described later.

このように正極側参照極125を正極120の近傍に配置することで、正極側参照極125は負極130の影響を受けにくくなる。このため、正極−正極側参照極間の電位差V2は、従来の3極式リチウム二次電池よりも、正極120単身についての現在の電位や充電・放電時の電位変化を正確に把握することに役立てることができる。また、上記のように正極120と正極側参照極125と第1セパレータ141を介して同一平面上に配置することで、正極120と正極側参照極125とを電解液を通じた状態で互いに近づけつつ確実に離間できると共に、これらの集合体を薄型化できる。   By disposing the positive electrode side reference electrode 125 in the vicinity of the positive electrode 120 in this way, the positive electrode side reference electrode 125 is hardly affected by the negative electrode 130. For this reason, the potential difference V2 between the positive electrode and the positive electrode reference electrode is more accurate than the conventional tripolar lithium secondary battery to accurately grasp the current potential of the single positive electrode 120 and the potential change during charging / discharging. Can be useful. Further, as described above, the positive electrode 120, the positive electrode side reference electrode 125, and the first separator 141 are arranged on the same plane, so that the positive electrode 120 and the positive electrode side reference electrode 125 are brought close to each other through the electrolyte solution. While being able to separate reliably, these aggregates can be made thin.

負極130は、正極120と同様な平板状の長方形状をなす。負極130は、厚み約10μmの銅箔の片面(正極120と向かい合う面、図2中、上方の面)に、厚み約70μmのカーボン層を塗布形成したものである。
負極側参照極135は、正極側参照極125と同様な平板状の細長い長方形状をなし、その長辺は、負極130の短辺とほぼ同じ長さである。負極側参照極135も、厚み約100μmのリチウム箔からなる。
The negative electrode 130 has a flat rectangular shape similar to that of the positive electrode 120. The negative electrode 130 is obtained by coating and forming a carbon layer having a thickness of about 70 μm on one side of a copper foil having a thickness of about 10 μm (the surface facing the positive electrode 120, the upper surface in FIG. 2).
The negative electrode side reference electrode 135 has a flat and thin rectangular shape similar to that of the positive electrode side reference electrode 125, and its long side is substantially the same as the short side of the negative electrode 130. The negative electrode side reference electrode 135 is also made of a lithium foil having a thickness of about 100 μm.

負極130と負極側参照極135とは、第2セパレータ143を介して、同一平面上に隣り合って配置されている。具体的には、負極130の短辺と負極側参照極135の長辺とが互いに平行になると共に、負極の130の長辺と負極側参照極135の短辺とが同一直線上に位置するように配置されている。第2セパレータ143は、第1セパレータ141と同様にポリエチレン製多孔質フィルムからなり、厚み約25μmの平板状で細長い長方形状をなす。この第2セパレータ143は、後述する電池容器110のうち容器本体111の底部111aに溶着固定されている。   The negative electrode 130 and the negative electrode side reference electrode 135 are arranged adjacent to each other on the same plane with the second separator 143 interposed therebetween. Specifically, the short side of the negative electrode 130 and the long side of the negative electrode side reference electrode 135 are parallel to each other, and the long side of the negative electrode 130 and the short side of the negative electrode side reference electrode 135 are located on the same straight line. Are arranged as follows. The second separator 143 is made of a polyethylene porous film, like the first separator 141, and has a flat and slender rectangular shape with a thickness of about 25 μm. The second separator 143 is welded and fixed to the bottom 111a of the container body 111 in the battery container 110 described later.

このように負極側参照極135を負極130の近傍に配置することで、負極側参照極135は正極120の影響を受けにくくなる。従って、負極−負極参照極間の電位差V5は、従来の3極式リチウム二次電池よりも、負極130単身についての現在の電位や充電・放電時の電位変化を正確に把握することに役立てることができる。また、上記のように負極130と負極側参照極135とを第2セパレータ143を介して同一平面上に配置することで、負極130と負極側参照極135とを電解液を通じた状態で互いに近づけつつ確実に離間できると共に、これらの集合体を薄型化できる。   By disposing the negative electrode side reference electrode 135 in the vicinity of the negative electrode 130 in this way, the negative electrode side reference electrode 135 is less affected by the positive electrode 120. Therefore, the potential difference V5 between the negative electrode and the negative electrode reference electrode is more useful for grasping the current potential of the negative electrode 130 alone and the potential change during charging / discharging more accurately than the conventional tripolar lithium secondary battery. Can do. Further, as described above, the negative electrode 130 and the negative electrode side reference electrode 135 are arranged on the same plane with the second separator 143 interposed therebetween, so that the negative electrode 130 and the negative electrode side reference electrode 135 are brought close to each other in a state of passing through the electrolyte. While being able to separate reliably, these aggregates can be made thin.

正極120及び正極側参照極125と、負極130及び負極側参照極135とは、第3セパレータ145を介して積層されている。この第3セパレータ145も、ポリエチレン製多孔質フィルムからなり、厚み約25μmの平板状で長方形状をなす。このような積層構造とすることで、正極120側と負極130側とを電解液を通じた状態で確実に離間できると共に、これらの積層体を薄型化でき、リチウム二次電池100の小型化に寄与できる。   The positive electrode 120 and the positive electrode side reference electrode 125, and the negative electrode 130 and the negative electrode side reference electrode 135 are stacked via a third separator 145. The third separator 145 is also made of a polyethylene porous film and has a flat plate shape with a thickness of about 25 μm and a rectangular shape. With such a laminated structure, the positive electrode 120 side and the negative electrode 130 side can be reliably separated in a state where the electrolyte solution is passed through, and these laminated bodies can be thinned, contributing to downsizing of the lithium secondary battery 100. it can.

電池容器110は、容器本体111と蓋体113とから構成されている。容器本体111、蓋体113は共にプラスチックにより形成されている。
容器本体111は、外形が直方体形状をなし、蓋体113が溶着されることで封口される大きな開口111kを有する。容器本体111は、平板状で長方形状の底部111aと、平板状で長方形状をなし、底部111aの周縁からそれぞれ底部111aに対して垂直に延びる4つの側壁部111b,111c,111d,111eとからなる。
一方、蓋体113は、容器本体111の底部111aとほぼ同形状であり、平板状で長方形状をなす。
The battery container 110 includes a container body 111 and a lid body 113. Both the container body 111 and the lid body 113 are made of plastic.
The container main body 111 has a rectangular parallelepiped outer shape, and has a large opening 111k that is sealed when the lid 113 is welded. The container body 111 includes a flat bottom portion 111a and a flat rectangular shape, and four side wall portions 111b, 111c, 111d, and 111e extending perpendicularly to the bottom portion 111a from the periphery of the bottom portion 111a. Become.
On the other hand, the lid body 113 has substantially the same shape as the bottom portion 111a of the container main body 111, and is flat and rectangular.

蓋体113には、所定の位置(図2中、左方)に、前述の第1セパレータ141が、その長辺と蓋体113の短辺とが平行になるようにして溶着されている。
また、第1セパレータ141の近傍(図2中、第1セパレータ141の右側)には、電池外部との電気的接続に利用される正極用タブ151が取り付けられている。この正極用タブ151は、Ptにからなる細長い長方形状の板を屈曲加工されたものである。正極用タブ151の一部は、電池容器110内に配置され、正極120と接合されることで、正極120と電気的に接続している。また、正極用タブ151の他の部分は、蓋体113を貫通して容器外部に露出し、蓋体113の短辺と平行に延び、電池容器110の側壁部111dよりも外側に延出している。
The first separator 141 is welded to the lid body 113 at a predetermined position (left side in FIG. 2) so that the long side of the first separator 141 is parallel to the short side of the lid body 113.
In addition, a positive electrode tab 151 used for electrical connection with the outside of the battery is attached in the vicinity of the first separator 141 (the right side of the first separator 141 in FIG. 2). The positive electrode tab 151 is formed by bending a long and narrow rectangular plate made of Pt. A portion of the positive electrode tab 151 is disposed in the battery container 110 and is electrically connected to the positive electrode 120 by being joined to the positive electrode 120. The other portion of the positive electrode tab 151 passes through the lid 113 and is exposed to the outside of the container, extends parallel to the short side of the lid 113, and extends outward from the side wall portion 111 d of the battery container 110. Yes.

更に、第1セパレータ141の近傍(図2中、第1セパレータ141の左側)には、電池外部との電気的接続に利用される正極側参照極用タブ153が取り付けられている。この正極側参照極用タブ153も、Ptにからなる細長い長方形状の板を屈曲加工されたものである。正極側参照極用タブ153の一部は、電池容器110内に配置され、正極側参照極125と接合されることで、正極側参照極125と電気的に接続している。また、正極側参照極用タブ153の他の部分は、蓋体113を貫通して容器外部に露出し、蓋体113の短辺と平行に延び、電池容器110の側壁部111dよりも外側に延出している。   Further, in the vicinity of the first separator 141 (left side of the first separator 141 in FIG. 2), a positive electrode side reference electrode tab 153 used for electrical connection with the outside of the battery is attached. This positive electrode side reference electrode tab 153 is also obtained by bending a long and narrow rectangular plate made of Pt. A part of the positive electrode side reference electrode tab 153 is disposed in the battery container 110 and is electrically connected to the positive electrode side reference electrode 125 by being joined to the positive electrode side reference electrode 125. Further, the other part of the positive electrode side reference electrode tab 153 penetrates the lid body 113 and is exposed to the outside of the container, extends parallel to the short side of the lid body 113, and outside the side wall portion 111 d of the battery container 110. It is extended.

一方、容器本体111の底部111aには、所定の位置(図2中、右方)に、前述の第2セパレータ143が、その長辺と底部111aの短辺とが平行になるようにして溶着されている。
また、第2セパレータ143の近傍(図2中、第2セパレータ143の左側)には、電池外部との電気的接続に利用される負極用タブ155が取り付けられている。この負極用タブ155は、Ptにからなる細長い長方形状の板である。負極用タブ155の一部は、電池容器110内に配置され、負極130と接合されることで、負極130と電気的に接続している。また、負極用タブ155の他の部分は、容器本体111の側壁部111dを貫通して容器外部に露出し、底部111aの短辺と平行に延び、側壁部111dよりも外側に延出している。
On the other hand, the second separator 143 is welded to the bottom 111a of the container body 111 at a predetermined position (to the right in FIG. 2) so that the long side and the short side of the bottom 111a are parallel. Has been.
Also, a negative electrode tab 155 used for electrical connection with the outside of the battery is attached in the vicinity of the second separator 143 (left side of the second separator 143 in FIG. 2). The negative electrode tab 155 is an elongated rectangular plate made of Pt. A part of the negative electrode tab 155 is disposed in the battery container 110 and joined to the negative electrode 130 to be electrically connected to the negative electrode 130. The other part of the negative electrode tab 155 passes through the side wall 111d of the container body 111 and is exposed to the outside of the container, extends parallel to the short side of the bottom 111a, and extends outward from the side wall 111d. .

更に、第2セパレータ143の近傍(図2中、第2セパレータ143の右側)には、電池外部との電気的接続に利用される負極側参照極用タブ157が取り付けられている。この負極側参照極用タブ157も、Ptにからなる細長い長方形状の板である。負極側参照極用タブ157の一部は、電池容器110内に配置され、負極側参照極135と接合されることで、負極側参照極135と電気的に接続している。また、負極側参照極用タブ157の他の部分は、容器本体111の側壁部111dを貫通して容器外部に露出し、底部111aの短辺と平行に延び、側壁部111dよりも外側に延出している。   Further, in the vicinity of the second separator 143 (on the right side of the second separator 143 in FIG. 2), a negative electrode-side reference electrode tab 157 used for electrical connection with the outside of the battery is attached. This negative electrode side reference electrode tab 157 is also an elongated rectangular plate made of Pt. A part of the negative electrode side reference electrode tab 157 is disposed in the battery container 110 and joined to the negative electrode side reference electrode 135 so as to be electrically connected to the negative electrode side reference electrode 135. The other part of the negative electrode-side reference electrode tab 157 penetrates the side wall 111d of the container body 111 and is exposed to the outside of the container, extends parallel to the short side of the bottom 111a, and extends outward from the side wall 111d. I'm out.

次いで、本実施形態のリチウム二次電池評価装置(電気化学セル評価装置)200について説明する(図1参照)。このリチウム二次電池評価装置200は、前述したリチウム二次電池100と、その電極間の電位差V1〜V6をそれぞれ測定可能な電圧測定手段210とを備える。電圧測定手段210は、電極間の電圧を測定できる公知の回路によって構成されている。   Next, a lithium secondary battery evaluation apparatus (electrochemical cell evaluation apparatus) 200 according to this embodiment will be described (see FIG. 1). The lithium secondary battery evaluation apparatus 200 includes the above-described lithium secondary battery 100 and voltage measuring means 210 that can measure potential differences V1 to V6 between the electrodes. The voltage measuring means 210 is configured by a known circuit that can measure the voltage between the electrodes.

このようなリチウム二次電池評価装置200では、正極極−負極間の電位差V1の他に、正極−正極極側参照極間の電位差V2、正極−負極側参照極間の電位差V3、負極−正極側参照極間の電位差V4、負極−負極側参照極間の電位差V5、正極極側参照極−負極側参照極間の電位差V6を測定できる。
放電時にこのリチウム二次電池評価装置200によって測定された各電極間の電位差V1〜V5の変化を図3に示した。図3から判るように、正極極−負極間の電位差V1は、放電開始時が約4.3Vで、時間と共に少しずつ低下していく。また、正極−正極極側参照極間の電位差V2は、放電開始時が上記電位差V1よりも若干低い約4.1Vで、これも時間と共に少しずつ低下していく。また、正極−負極側参照極間の電位差V3は、放電開始時が上記電位差V2よりも更に若干低い約4Vで、これも時間と共に少しずつ低下していく。また、負極−正極側参照極間の電位差V4は、放電開始時から時間と共に少しずつ上昇し、約0.4Vに至る。また、負極−負極側参照極間の電位差V5は、放電開始時から時間と共に少しずつ上昇し、約0.3Vに至る。
In such a lithium secondary battery evaluation apparatus 200, in addition to the potential difference V1 between the positive electrode and the negative electrode, the potential difference V2 between the positive electrode and the positive electrode side reference electrode, the potential difference V3 between the positive electrode and the negative electrode reference electrode, the negative electrode and the positive electrode The potential difference V4 between the side reference electrodes, the potential difference V5 between the negative electrode and the negative electrode reference electrode, and the potential difference V6 between the positive electrode reference electrode and the negative electrode reference electrode can be measured.
FIG. 3 shows changes in potential differences V1 to V5 between the electrodes measured by the lithium secondary battery evaluation apparatus 200 during discharging. As can be seen from FIG. 3, the potential difference V1 between the positive electrode and the negative electrode is about 4.3 V at the start of discharge and gradually decreases with time. Further, the potential difference V2 between the positive electrode and the positive electrode side reference electrode is about 4.1 V, which is slightly lower than the potential difference V1 at the start of discharge, and this gradually decreases with time. Further, the potential difference V3 between the positive electrode and the negative electrode reference electrode is about 4V, which is slightly lower than the potential difference V2 at the start of discharge, and this also gradually decreases with time. Further, the potential difference V4 between the negative electrode and the positive electrode reference electrode gradually increases with time from the start of discharge and reaches about 0.4V. Further, the potential difference V5 between the negative electrode and the negative electrode reference electrode gradually increases with time from the start of discharge and reaches about 0.3V.

このようなリチウム二次電池評価装置200では、例えば、正極−正極側参照極間の電位差V2を測定することで、正極120単身についての現在の電位や充電・放電時の電位変化を、従来よりも正確に把握することに役立てることができる。また、負極−負極側参照極間の電位差V5を測定することで、負極130単身についての現在の電位や充電・放電時の電位変化を、従来よりも正確に把握することに役立てることができる。更に、正極側参照極−負極側参照極間の電位差V6を見ることで、充電時や放電時に正極120と負極130との間に生じる電位勾配を把握することに役立てることができる。そして、このような電位勾配が把握することで、正極120や負極130の電極最表面の状態や、電解液の状態、電解液と電極との接触状態など、電池内の様々な情報を得ることができる。また、各電極間の電位差V1〜V6を総合評価することにより、様々な抵抗成分を詳細に分離できるようになる。   In such a lithium secondary battery evaluation apparatus 200, for example, by measuring the potential difference V2 between the positive electrode and the positive electrode side reference electrode, the current potential of the single positive electrode 120 and the potential change at the time of charging / discharging can be compared with the conventional one. Can also be used to accurately grasp. Further, by measuring the potential difference V5 between the negative electrode and the negative electrode reference electrode, it can be used to accurately grasp the current potential of the single negative electrode 130 and the potential change during charging / discharging more than before. Furthermore, by observing the potential difference V6 between the positive electrode side reference electrode and the negative electrode side reference electrode, it is possible to help grasp the potential gradient generated between the positive electrode 120 and the negative electrode 130 during charging or discharging. By grasping such a potential gradient, various information in the battery such as the state of the electrode outermost surface of the positive electrode 120 or the negative electrode 130, the state of the electrolytic solution, the contact state between the electrolytic solution and the electrode can be obtained. Can do. Further, by comprehensively evaluating the potential differences V1 to V6 between the electrodes, various resistance components can be separated in detail.

次いで、本実施形態に係るリチウム二次電池100の評価方法について説明する。
まず、上記リチウム二次電池評価装置200を用いて、正極−負極間の電位差V1、正極−正極側参照極間の電位差V2、正極−負極側参照極間の電位差V3、負極−正極側参照極間の電位差V4、負極−作用極側参照極間の電位差V5、正極側参照極−負極側参照極間の電位差V6をそれぞれ測定する(電圧測定ステップ)。
Next, a method for evaluating the lithium secondary battery 100 according to this embodiment will be described.
First, using the lithium secondary battery evaluation apparatus 200, the potential difference V1 between the positive electrode and the negative electrode, the potential difference V2 between the positive electrode and the positive electrode side reference electrode, the potential difference V3 between the positive electrode and the negative electrode reference electrode, and the negative electrode-positive electrode reference electrode. A potential difference V4 between them, a potential difference V5 between the negative electrode and the working electrode side reference electrode, and a potential difference V6 between the positive electrode reference electrode and the negative electrode reference electrode are measured (voltage measurement step).

その後、測定された電位差V1〜V6に基づいて、リチウム二次電池100の状態を評価する(評価ステップ)。本実施形態では、正極側参照極−負極側参照極間の電位差V6から電池内の電位勾配を把握し、リチウム二次電池100の状態を評価する方法について、図4を参照しつつ説明する。
劣化してない初期のリチウム二次電池100では、グラフ中にrk1で示すように、放電電流を流した直後に、正極側参照極−負極側参照極間の電位差V6がある程度生じる(本実施例では約0.05V)。しかし、電位緩和が生じて、直ぐに(本実施例では約2秒間で)電位差V6が殆ど0Vになる。
Thereafter, the state of the lithium secondary battery 100 is evaluated based on the measured potential differences V1 to V6 (evaluation step). In the present embodiment, a method for evaluating the state of the lithium secondary battery 100 by grasping the potential gradient in the battery from the potential difference V6 between the positive electrode side reference electrode and the negative electrode side reference electrode will be described with reference to FIG.
In the initial lithium secondary battery 100 that has not deteriorated, as indicated by rk1 in the graph, a potential difference V6 between the positive electrode side reference electrode and the negative electrode side reference electrode is generated to some extent immediately after flowing the discharge current (this embodiment) About 0.05V). However, potential relaxation occurs, and the potential difference V6 becomes almost 0V immediately (in this embodiment, in about 2 seconds).

このような電位勾配が生じるのは、次のような理由によるものと考えられる。即ち、電流を流すと、各材料の最表面において、イオン移動や電荷移動が起こる。リチウム二次電池100の電圧は、正極120と負極130の電位差で表されるが、電流を流し始めた直後の挙動は電極毎に異なり、同じ電流を流しても電極毎の電位変化は同様でない。電極を構成する各材料により、電子の通りやすさやイオン受給のしやすさが異なるからである。この結果、正極120と負極130との間で電位勾配が生まれる。しかし、電位勾配が生じても、イオンの拡散移動及び電位移動が徐々に進行することから、電位勾配は徐々に緩和されることになる。従って、rk1で示したグラフのように、最初は電位差を生じるが、電位緩和によって電位差がなくなっていく。   Such a potential gradient is considered to be caused by the following reason. That is, when current is passed, ion movement and charge movement occur on the outermost surface of each material. The voltage of the lithium secondary battery 100 is represented by the potential difference between the positive electrode 120 and the negative electrode 130, but the behavior immediately after starting to flow current differs for each electrode, and even if the same current is flowed, the potential change for each electrode is not the same. . This is because the easiness of passing electrons and the ease of receiving ions differ depending on each material constituting the electrode. As a result, a potential gradient is generated between the positive electrode 120 and the negative electrode 130. However, even if a potential gradient occurs, the diffusion and potential movement of ions gradually proceed, so that the potential gradient is gradually relaxed. Accordingly, as shown in the graph indicated by rk1, a potential difference is initially generated, but the potential difference disappears due to potential relaxation.

次に、劣化が少し進んだリチウム二次電池100では、グラフ中にrk2で示すように、初期の電位勾配が劣化がないリチウム二次電池100よりも大きく生じる(本実施例では約0.1V)。しかし、これも電位緩和が生じて、直ぐに(本実施例では約2秒間で)電位差V6が殆ど0Vになる。   Next, in the lithium secondary battery 100 in which the deterioration is slightly advanced, as indicated by rk2 in the graph, the initial potential gradient is larger than that in the lithium secondary battery 100 in which there is no deterioration (in this embodiment, about 0.1 V). ). However, this also causes potential relaxation, and the potential difference V6 becomes almost 0V immediately (in this embodiment, in about 2 seconds).

これらの劣化の少ないリチウム二次電池100に対して、劣化が相当進んだリチウム二次電池100では、グラフ中にrk3で示すように、初期の電位勾配が相当大きく生じる(本実施例では約0.23V)。そして、電位緩和によって時間と共に少しずつ電位差V6が小さくなるものの、電位差V6が0V付近まで戻ることはなくなる。本実施例では約0.2Vを維持する。
また、更に劣化が進んだリチウム二次電池100では、グラフ中にrk4で示すように、初期の電位勾配が更に大きく生じる(本実施例では約0.38V)。そして、電位緩和によって時間と共に少しずつ電位差V6が小さくなるものの、電位差V6が0V付近まで戻ることはなくなる。本実施例では10秒間経過しても約0.23Vの電位差V6がある。
In contrast to these lithium secondary batteries 100 with little deterioration, in the lithium secondary battery 100 in which the deterioration is considerably advanced, the initial potential gradient is considerably large as indicated by rk3 in the graph (in this embodiment, about 0). .23V). Although the potential difference V6 gradually decreases with time due to potential relaxation, the potential difference V6 does not return to around 0V. In this embodiment, about 0.2V is maintained.
Further, in the lithium secondary battery 100 that has further deteriorated, an initial potential gradient is further increased as shown by rk4 in the graph (about 0.38 V in this embodiment). Although the potential difference V6 gradually decreases with time due to potential relaxation, the potential difference V6 does not return to around 0V. In this embodiment, there is a potential difference V6 of about 0.23V even after 10 seconds.

このような結果から、初期の電位差V6が大きい場合や、時間が経っても電位差V6が大きい場合には、リチウム二次電池100が相当劣化しており、既に十分な性能を発揮できないなかったり、或いは、急速な充電や放電を行うと電池の劣化が更に加速するものと考えられる。具体的には、電流を流し始めてから5秒間以上継続して0.2V以上の電位差V6が生じる場合や、電流を流し始めた以降に電位差V6が0.5V以上生じる場合は、リチウム二次電池100が相当劣化していると評価できる。   From such a result, when the initial potential difference V6 is large, or when the potential difference V6 is large even after a long time, the lithium secondary battery 100 is considerably deteriorated and has not been able to exhibit sufficient performance, Or it is thought that deterioration of a battery accelerates further if rapid charge and discharge are performed. Specifically, when a potential difference V6 of 0.2 V or more occurs continuously for 5 seconds or more after the current starts to flow, or when a potential difference V6 of 0.5 V or more occurs after the current starts to flow, the lithium secondary battery It can be evaluated that 100 is considerably deteriorated.

次いで、本実施形態に係るリチウム二次電池100の制御方法について説明する。
まず、上記の評価方法で説明したように、電圧測定ステップと、評価ステップを行う。
そしてその結果、上記のように、電流を流し始めてから5秒間以上継続して0.2V以上の電位差V6が生じる場合や、電流を流し始めた以降に電位差V6が0.5V以上ある場合には、メンテナンス時期であることを知らせたり、充電電流及び放電電流の大きさを所定値以下に制限して、急速な充電や放電をさせないようにする。なお、メンテナンス時期を知らせたり、充電電流及び放電電流の大きさを所定値以下に制限するためには、リチウム二次電池100に制御回路を別途設ければよい。
このような制御を行うことで、リチウム二次電池100が寿命であることを容易に知ることができるようになる。また、リチウム二次電池100の充電・放電時における破損等を未然に防止できるようになる。
Next, a method for controlling the lithium secondary battery 100 according to the present embodiment will be described.
First, as described in the evaluation method above, a voltage measurement step and an evaluation step are performed.
As a result, as described above, when the potential difference V6 of 0.2 V or more is generated continuously for 5 seconds or more after the current starts flowing, or when the potential difference V6 is 0.5 V or more after the current starts to flow. In order to prevent rapid charging or discharging, the maintenance time is notified or the charging current and discharging current are limited to a predetermined value or less. Note that a control circuit may be separately provided in the lithium secondary battery 100 in order to notify the maintenance time or limit the magnitudes of the charging current and the discharging current to a predetermined value or less.
By performing such control, it is possible to easily know that the lithium secondary battery 100 has a lifetime. Further, it becomes possible to prevent damage or the like during charging / discharging of the lithium secondary battery 100.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. .

実施形態に係るリチウム二次電池及びリチウム二次電池評価装置の概略を示す説明図である。It is explanatory drawing which shows the outline of the lithium secondary battery and lithium secondary battery evaluation apparatus which concern on embodiment. 実施形態に係るリチウム二次電池の分解斜視図である。It is a disassembled perspective view of the lithium secondary battery which concerns on embodiment. 実施形態に係るリチウム二次電池における電極間の電位差V1〜V5を測定したグラフである。It is the graph which measured the potential differences V1-V5 between the electrodes in the lithium secondary battery which concerns on embodiment. 実施形態に係るリチウム二次電池のおける参照極間の電位差V6を測定したグラフである。It is the graph which measured the electric potential difference V6 between the reference electrodes in the lithium secondary battery which concerns on embodiment. 従来技術に係るリチウム二次電池の概略を示す説明図である。It is explanatory drawing which shows the outline of the lithium secondary battery which concerns on a prior art.

符号の説明Explanation of symbols

100 リチウム二次電池(電気化学セル)
110 電池容器
120 正極(作用極)
125 正極側参照極(作用極側参照極)
130 負極(対極)
135 負極側参照極(対極側参照極)
141 第1セパレータ
143 第2セパレータ
145 第3セパレータ
200 リチウム二次電池評価装置
210 電圧測定手段
100 Lithium secondary battery (electrochemical cell)
110 Battery container 120 Positive electrode (working electrode)
125 Positive electrode reference electrode (working electrode reference electrode)
130 Negative electrode (counter electrode)
135 Negative electrode reference electrode (counter electrode reference electrode)
141 First separator 143 Second separator 145 Third separator 200 Lithium secondary battery evaluation device 210 Voltage measuring means

Claims (7)

作用極と対極とを有すると共に電解液が充填され、電気化学的反応により前記作用極と前記対極との間で電位変化を起こす電気化学セルであって、
前記作用極の近傍に配置された作用極側参照極と、
前記対極の近傍に配置された対極側参照極と、
を備え、
前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極が、前記電解液を通じて互いに離間されてなる
電気化学セル。
An electrochemical cell that has a working electrode and a counter electrode, is filled with an electrolyte, and causes a potential change between the working electrode and the counter electrode by an electrochemical reaction,
A working electrode side reference electrode disposed in the vicinity of the working electrode;
A counter-side reference electrode disposed in the vicinity of the counter electrode;
With
An electrochemical cell in which the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode side reference electrode are separated from each other through the electrolytic solution.
請求項1に記載の電気化学セルであって、
前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極は、それぞれ平板形状をなし、
前記作用極と前記作用極側参照極とは、第1セパレータを介して同一平面上に隣り合って配置され、
前記対極と前記対極側参照極とは、第2セパレータを介して同一平面上に隣り合って配置され、
前記作用極及び前記作用極側参照極と、前記対極及び前記対極側参照極とは、第3セパレータを介して積層されてなる
電気化学セル。
The electrochemical cell according to claim 1,
The working electrode, the counter electrode, the working electrode side reference electrode and the counter electrode side reference electrode each have a flat plate shape,
The working electrode and the working electrode side reference electrode are arranged adjacent to each other on the same plane via a first separator,
The counter electrode and the counter electrode side reference electrode are arranged adjacent to each other on the same plane via a second separator,
The working cell, the working electrode side reference electrode, the counter electrode and the counter electrode side reference electrode are stacked with a third separator interposed therebetween.
請求項1または請求項2に記載の電気化学セルであって、
前記電気化学セルは、前記作用極としての正極と前記対極としての負極とを有する二次電池である
電気化学セル。
The electrochemical cell according to claim 1 or 2, wherein
The electrochemical cell is a secondary battery having a positive electrode as the working electrode and a negative electrode as the counter electrode.
請求項3に記載の電気化学セルであって、
前記電気化学セルは、リチウム二次電池である
電気化学セル。
The electrochemical cell according to claim 3, wherein
The electrochemical cell is a lithium secondary battery.
請求項1〜請求項4のいずれか一項に記載の電気化学セルと、
前記電気化学セルの前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極から選ばれる電極間の電位差を測定可能な電圧測定手段と、
を備える電気化学セル評価装置。
The electrochemical cell according to any one of claims 1 to 4,
Voltage measuring means capable of measuring a potential difference between electrodes selected from the working electrode, the counter electrode, the working electrode side reference electrode and the counter electrode side reference electrode of the electrochemical cell;
An electrochemical cell evaluation apparatus comprising:
作用極と対極とを有すると共に電解液が充填され、電気化学的反応により前記作用極と前記対極との間で電位変化を起こす電気化学セルの評価方法であって、
前記作用極の近傍に作用極側参照極を、前記対極の近傍に対極側参照極を配置すると共に、前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極を、前記電解液を通じて互いに離間させ、
前記作用極、前記対極、前記作用極側参照極及び前記対極側参照極から電極を選んで、その電極間の電位差を測定する電圧測定ステップと、
測定された電位差に基づいて、前記電気化学セルを評価する評価ステップと、
を備える電気化学セルの評価方法。
An evaluation method for an electrochemical cell having a working electrode and a counter electrode, filled with an electrolyte, and causing a potential change between the working electrode and the counter electrode by an electrochemical reaction,
A working electrode side reference electrode is disposed in the vicinity of the working electrode, a counter electrode reference electrode is disposed in the vicinity of the counter electrode, and the working electrode, the counter electrode, the working electrode side reference electrode, and the counter electrode side reference electrode Separated from each other through the liquid,
A voltage measuring step of selecting an electrode from the working electrode, the counter electrode, the working electrode side reference electrode and the counter electrode side reference electrode, and measuring a potential difference between the electrodes;
An evaluation step of evaluating the electrochemical cell based on the measured potential difference;
An electrochemical cell evaluation method comprising:
請求項4に記載の電気化学セルの制御方法であって、
前記リチウム二次電池の前記作用極と前記対極との間に所定の大きさの電流を流して、前記作用極側参照極と前記対極側参照極との間の電位差を測定し、
電流を流し始めてから5秒間以上継続してこの電位差が0.2V以上となったとき、または、電流を流し始めた以降この電位差が0.5V以上となったときに、
前記リチウム二次電池がメンテナンス時期に来たことを知らせる、または、前記リチウム二次電池に対して充電電流及び放電電流の大きさを所定値以下に制限する
電気化学セルの制御方法。
The method for controlling an electrochemical cell according to claim 4,
A current of a predetermined magnitude is passed between the working electrode and the counter electrode of the lithium secondary battery, and a potential difference between the working electrode side reference electrode and the counter electrode side reference electrode is measured.
When this potential difference becomes 0.2 V or more continuously for 5 seconds or more after starting to flow current, or when this potential difference becomes 0.5 V or more after starting to flow current,
A method for controlling an electrochemical cell that informs that the lithium secondary battery is in a maintenance period or limits the magnitudes of a charging current and a discharging current to a predetermined value or less with respect to the lithium secondary battery.
JP2004371908A 2004-12-22 2004-12-22 Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell Withdrawn JP2006179329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371908A JP2006179329A (en) 2004-12-22 2004-12-22 Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371908A JP2006179329A (en) 2004-12-22 2004-12-22 Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell

Publications (1)

Publication Number Publication Date
JP2006179329A true JP2006179329A (en) 2006-07-06

Family

ID=36733218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371908A Withdrawn JP2006179329A (en) 2004-12-22 2004-12-22 Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell

Country Status (1)

Country Link
JP (1) JP2006179329A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161001A (en) * 2009-01-09 2010-07-22 Kri Inc Electrochemical cell
JP2013137976A (en) * 2011-12-28 2013-07-11 Gs Yuasa Corp Battery electrode potential estimation device, battery electrode potential estimation method, and power storage system
DE102017215292A1 (en) * 2017-08-31 2019-02-28 Volkswagen Aktiengesellschaft Sensor device for a lithium-ion cell, lithium-ion cell
JP2020126734A (en) * 2019-02-04 2020-08-20 三洋電機株式会社 Secondary battery and manufacturing method thereof
JP2020126736A (en) * 2019-02-04 2020-08-20 三洋電機株式会社 Secondary battery and manufacturing method thereof
CN112526357A (en) * 2020-11-25 2021-03-19 上海空间电源研究所 Lithium ion battery power matching performance evaluation method
CN114982040A (en) * 2020-09-17 2022-08-30 华为数字能源技术有限公司 Three-electrode battery and energy storage system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161001A (en) * 2009-01-09 2010-07-22 Kri Inc Electrochemical cell
JP2013137976A (en) * 2011-12-28 2013-07-11 Gs Yuasa Corp Battery electrode potential estimation device, battery electrode potential estimation method, and power storage system
DE102017215292A1 (en) * 2017-08-31 2019-02-28 Volkswagen Aktiengesellschaft Sensor device for a lithium-ion cell, lithium-ion cell
CN109428113A (en) * 2017-08-31 2019-03-05 大众汽车有限公司 Sensor device, lithium ion element cell for lithium ion element cell
CN109428113B (en) * 2017-08-31 2022-04-05 大众汽车有限公司 Sensor device for lithium ion battery cell, and lithium ion battery cell
JP2020126734A (en) * 2019-02-04 2020-08-20 三洋電機株式会社 Secondary battery and manufacturing method thereof
JP2020126736A (en) * 2019-02-04 2020-08-20 三洋電機株式会社 Secondary battery and manufacturing method thereof
JP7142585B2 (en) 2019-02-04 2022-09-27 三洋電機株式会社 SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP7145092B2 (en) 2019-02-04 2022-09-30 三洋電機株式会社 Method for manufacturing secondary battery
CN114982040A (en) * 2020-09-17 2022-08-30 华为数字能源技术有限公司 Three-electrode battery and energy storage system
CN112526357A (en) * 2020-11-25 2021-03-19 上海空间电源研究所 Lithium ion battery power matching performance evaluation method

Similar Documents

Publication Publication Date Title
Keil et al. Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells
Chen et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
US11355740B2 (en) Pulse plating of lithium matertal in electrochemical devices
KR101611116B1 (en) Control device for secondary battery, charging control method, and soc detection method
KR101608611B1 (en) Control device for secondary battery, and soc detection method
KR102010989B1 (en) Method and apparatus for assessing lifetime of secondary battery
US8704489B2 (en) Battery system, vehicle, and battery mounted device
JP5488343B2 (en) Charge control device and power storage device
CN113711407B (en) Electrode assembly for evaluating electrode performance and method for evaluating electrode performance
CN107750408B (en) Method and apparatus for controlling regeneration process of lithium ion battery pack
JP2000021453A (en) Nonaqueous electrolyte secondary battery
US20130295424A1 (en) Electrolyte-Based Battery Cell, Method and System for Determining the State of Charge of Electrolyte-Based Batteries
KR20190098259A (en) Active battery management system
JP2006179329A (en) Electrochemical cell, evaluation device of electrochemical cell, evaluation method of electrochemical cell, and control method of electrochemical cell
KR102259454B1 (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
US20170279166A1 (en) Lithium-Ion Cell
US10444291B2 (en) Method for determining a potential of an anode and/or a potential of a cathode in a battery cell
CN107408741B (en) Deterioration detector, power storage device, deterioration detection system, and deterioration detection method
JP2013182788A (en) Lithium ion secondary battery and charge control method therefor
JP2016164851A (en) Lithium ion secondary battery charging system
US20230402666A1 (en) Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program
JP2011040198A (en) Battery deterioration determination device, and battery deterioration determination method
KR102626563B1 (en) Method for charging battery and apparatus for charging battery
US20240103092A1 (en) Method for ageing analysis of mixed electrode lithium ion cell
KR101810286B1 (en) Secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304