JP2006178193A - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP2006178193A
JP2006178193A JP2004371337A JP2004371337A JP2006178193A JP 2006178193 A JP2006178193 A JP 2006178193A JP 2004371337 A JP2004371337 A JP 2004371337A JP 2004371337 A JP2004371337 A JP 2004371337A JP 2006178193 A JP2006178193 A JP 2006178193A
Authority
JP
Japan
Prior art keywords
lens
refractive power
zoom
lens group
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371337A
Other languages
Japanese (ja)
Other versions
JP4944375B2 (en
JP2006178193A5 (en
Inventor
Akinaga Horiuchi
昭永 堀内
Nobuyuki Miyazawa
伸幸 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004371337A priority Critical patent/JP4944375B2/en
Publication of JP2006178193A publication Critical patent/JP2006178193A/en
Publication of JP2006178193A5 publication Critical patent/JP2006178193A5/ja
Application granted granted Critical
Publication of JP4944375B2 publication Critical patent/JP4944375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a zoom lens having high optical performance capable of completely coping with a solid-state image sensor having simple constitution, having a high variable power ratio and comprising many pixels in the case of using it, and an imaging apparatus having the same. <P>SOLUTION: The zoom lens has 1st to 4th lens groups having positive, negative, positive and positive power in order from an object side to an image side, and the 2nd and the 4th lens groups are moved in the case of zooming. The 2nd lens group has a 21st lens having negative refractive power, a 22nd lens having negative refractive power and a 23rd lens having positive refractive power, and a distance between the 22nd lens and the 23rd lens is an air distance. The 3rd lens group has a 31st lens having positive refractive power and a 32nd lens having negative refractive power. The focal distance f2 of the 2nd lens group, the focal distances fw and ft of an entire system at zoom positions at a wide angle end and a telephoto end, the Abbe number and the refractive index ν23 and N23 of the material of the 23rd lens, and space L31-32 between the 31st lens and the 32nd lens are appropriately set. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はズームレンズに関し、例えば、ビデオカメラ、銀塩写真用カメラそしてデジタルスチルカメラ等の撮影レンズに好適なズームレンズに関する。   The present invention relates to a zoom lens, for example, a zoom lens suitable for a photographing lens such as a video camera, a silver salt photographic camera, and a digital still camera.

近年、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ、銀塩写真用カメラ等の撮像装置の高機能化にともない、それに用いる撮影光学系としてコンパクトで高解像なズームレンズが要求されている。特に、デジタルカメラやビデオカメラ等に用いるズームレンズとして撮像装置の小型化と撮像素子の高画素化に伴って、高い光学性能を有しかつレンズ系全体が小型のものが要望されている。又、ビデオカメラにおいても、高画質な静止画像を記録することが望まれてきており、高い光学性能でありながら小型なレンズ系が要求されている。   In recent years, as imaging devices such as video cameras, digital still cameras, and silver halide photographic cameras that use solid-state imaging devices have become more sophisticated, compact and high-resolution zoom lenses are required as imaging optical systems used therefor. . In particular, as a zoom lens used in a digital camera, a video camera, or the like, with the downsizing of an image pickup apparatus and the increase in the number of pixels of an image pickup element, a lens having high optical performance and a small lens system is required. Also in video cameras, it has been desired to record high-quality still images, and a small lens system is required while having high optical performance.

これらの要求に答えるズームレンズとして、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、そして正の屈折力の第4レンズ群の4つのレンズ群より成り、第2レンズ群を移動させて変倍を行い、第4レンズ群にて変倍に伴う像面変動を補正すると共に、フォーカシングを行う所謂リアフォーカス式の4群ズームレンズが知られている(特許文献1〜3)。   As a zoom lens that meets these requirements, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens This is composed of four lens units of the fourth lens unit having a refractive power, and performs zooming by moving the second lens unit, so that the fourth lens unit corrects image plane variation accompanying zooming and performs so-called focusing. A rear focus type four-group zoom lens is known (Patent Documents 1 to 3).

一般的にリアフォーカス式のズームレンズは、第1レンズ群を移動させてフォーカスを行うズームレンズに比べて、第1レンズ群の有効径が小さくなり、レンズ系全体の小型化が容易になる。   In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens that focuses by moving the first lens group, and the entire lens system can be easily downsized.

又近接撮影が可能となり、更に比較的小型軽量のレンズ群を移動させているので、レンズ群の駆動力が小さくてすみ迅速な焦点合わせが出来るという特徴がある。この様な光学系においてズーム比を高倍化しながら小型化を維持しようとすると、ズーミング時の倍率色収差の変動の補正が困難になる。   Further, close-up photography is possible, and the relatively small and light lens group is moved, so that the driving force of the lens group is small and quick focusing is possible. In such an optical system, if it is attempted to keep the size down while increasing the zoom ratio, it becomes difficult to correct the variation in lateral chromatic aberration during zooming.

これに対して4群ズームレンズにおいて、第2レンズ群の最も像側に負の屈折力のレンズを配置して全体で3枚の負の屈折力のレンズと1枚の正レンズの構成とすることでズーミング時の倍率色収差の補正を良好に行ったズームレンズが知られている(特許文献4,5)。   On the other hand, in a four-group zoom lens, a lens having a negative refractive power is arranged closest to the image side of the second lens group, so that a total of three lenses having a negative refractive power and one positive lens are formed. Therefore, there is known a zoom lens in which the chromatic aberration of magnification during zooming is corrected well (Patent Documents 4 and 5).

また4群ズームレンズにおいて、第2レンズ群の正の屈折力のレンズの材料にアッベ数νdが21程度の高分散の硝材を使用して光学系全体の小型化を図ったズームレンズが知られている(特許文献6,7)。   In addition, in the four-group zoom lens, there is known a zoom lens in which the entire optical system is miniaturized by using a high-dispersion glass material having an Abbe number νd of about 21 as the material of the positive refractive power lens of the second lens group. (Patent Documents 6 and 7).

又、リアフォーカス式の4群ズームレンズとして、レンズ系全体の小型化を図りつつ、全変倍範囲及び全物体範囲にわたり高性能化を図ったズームレンズが知られている(特許文献8,9)。
特開平4−43311号公報 特開平5−72472号公報 特開平6−34882号公報 特開平8−82743号公報 特開2000−89116号公報 特開平8−160299号公報 特開2000−121941号公報 特開平8−304700号公報 特開2003−295053号公報
As a rear focus type four-group zoom lens, there is known a zoom lens that achieves high performance over the entire zoom range and the entire object range while reducing the size of the entire lens system (Patent Documents 8 and 9). ).
JP-A-4-43311 JP-A-5-72472 JP-A-6-34882 JP-A-8-82743 JP 2000-89116 A JP-A-8-160299 JP 2000-121941 A JP-A-8-304700 JP 2003-295053 A

一般にズームレンズにおいて、所定のズーム比を確保しつつ小型化を図るには、各レンズ群の屈折力を強めればズーミングにおける各レンズ群の移動量が少なくなり、レンズ全長の短縮化を図ることができる。   In general, in order to reduce the size of a zoom lens while ensuring a predetermined zoom ratio, increasing the refractive power of each lens group reduces the amount of movement of each lens group during zooming, thereby shortening the overall lens length. Can do.

しかしながら、レンズ系全体のレンズ枚数を少なくしつつ、各レンズ群の屈折力を強めるとズーミングに伴う収差変動が大きくなり、全ズーム範囲にわたって良好な光学性能を得るのが難しくなってくる。   However, when the number of lenses in the entire lens system is reduced and the refractive power of each lens group is increased, aberration fluctuations associated with zooming increase, making it difficult to obtain good optical performance over the entire zoom range.

例えば特許文献6では、変倍用の第2レンズ群を、物体側から像側へ順に、負の屈折力のレンズ、負の屈折力のレンズ、そして正の屈折力のレンズの3つの独立したレンズより構成したズーム比6〜8のズームレンズを開示しているが、レンズ系全体としてのレンズ枚数は、12枚と多い為、レンズ系全体が大型化する傾向がある。   For example, in Patent Document 6, the second lens group for zooming is divided into three independent lenses in order from the object side to the image side: a negative refractive power lens, a negative refractive power lens, and a positive refractive power lens. Although a zoom lens having a zoom ratio of 6 to 8 composed of lenses is disclosed, since the number of lenses as the entire lens system is as large as 12, there is a tendency for the entire lens system to become large.

本発明は、高ズーム比でありながら、多くの画素よりなる固体撮像素子を用いたときにも、十分対応できる高い光学性能を有するズームレンズ及びそれを有する撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens having a high optical performance that can sufficiently cope with a high-zoom ratio, even when a solid-state image sensor composed of many pixels is used, and an image pickup apparatus having the zoom lens.

本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して該第2、第4レンズ群が移動するズームレンズであって、該第2レンズ群は、物体側から像側に順に、屈折力の絶対値が物体側の面に比べ像側の面で大きい負の屈折力の第21レンズ、物体側の面が凹形状の負の屈折力の第22レンズ、物体側の面が凸形状の正の屈折力の第23レンズを有し、該第22レンズと第23レンズとは間隔を空けて配置され、該第3レンズ群は、物体側から像側に順に、屈折力の絶対値が像側の面に比べ物体側の面で大きい正の屈折力の第31レンズと、物体側の面が凸面でメニスカス形状の負の屈折力の第32レンズとを有しており、該第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw,ft、該第23レンズの材料のアッベ数と、屈折率を各々ν23、N23、該第31レンズと第32レンズとの間隔をL31−32とするとき、
ν23<20.0
1.9<N23
−0.2<f2/ft<−0.1
0.02<L31−32/fw<0.2
なる条件のうち少なくとも1つを満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power. The zoom lens includes a fourth lens group, and the second and fourth lens groups move during zooming. The second lens group has an absolute value of refractive power in order from the object side to the image side. A 21st lens having a negative refractive power, which is larger on the image side surface than the first surface, a 22nd lens having a negative refractive power having a concave surface on the object side, and a positive refractive power having a convex surface on the object side. The third lens group is arranged in order from the object side to the image side and has an absolute value of refractive power compared to the image side surface. A thirty-first lens having a large positive refractive power on the body side surface and a meniscus negative thirty-second lens having a convex surface on the object side and a meniscus shape F2 is the focal length of the second lens group, fw and ft are the focal lengths of the entire system at the wide-angle end and the telephoto end, respectively, and the Abbe number and refractive index of the material of the 23rd lens are ν23, respectively. , N23, when the distance between the 31st lens and the 32nd lens is L31-32.
ν23 <20.0
1.9 <N23
−0.2 <f2 / ft <−0.1
0.02 <L31-32 / fw <0.2
It is characterized by satisfying at least one of the following conditions.

本発明によれば、高ズーム比でありながら、高い光学性能を有するズームレンズが得られる。   According to the present invention, a zoom lens having high optical performance while having a high zoom ratio can be obtained.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1は本発明の実施例1のズームレンズの広角端におけるレンズ断面図、図2、図3、図4はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 1 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 1 of the present invention. FIGS. 2, 3, and 4 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is.

図5、図6、図7はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   5, 6, and 7 are aberration diagrams of the zoom lens of Example 2 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively.

図8、図9、図10はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIGS. 8, 9, and 10 are aberration diagrams of the zoom lens of Example 3 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively.

尚、本発明の実施例2,3のズームレンズのレンズ構成は図1の実施例1と略同じであるため、図示はしていない。   In addition, since the lens configuration of the zoom lenses of Embodiments 2 and 3 of the present invention is substantially the same as that of Embodiment 1 of FIG.

図11は本発明のズームレンズを備えるビデオカメラ(撮像装置)の要部概略図である。   FIG. 11 is a schematic diagram of a main part of a video camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、左方が被写体側(前方)で、右方が像側(後方)である。レンズ断面図において、L1は正の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。SPは開口絞りであり、第3レンズ群L3の物体側に位置している。   The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus. In the lens cross-sectional view, the left side is the subject side (front) and the right side is the image side (rear). In the lens cross-sectional view, L1 is a first lens group having a positive refractive power (optical power = reciprocal of focal length), L2 is a second lens group having a negative refractive power, and L3 is a third lens group having a positive refractive power. , L4 is a fourth lens unit having a positive refractive power. SP is an aperture stop, which is located on the object side of the third lens unit L3.

Gは光学フィルター、フェースプレート等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に、銀塩フィルム用カメラの撮影光学系として使用する際にはフィルム面に相当する。   G is an optical block corresponding to an optical filter, a face plate, or the like. IP is an image plane, and when used as a photographing optical system for a video camera or a digital still camera, a silver salt film camera shoots on the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. When used as an optical system, it corresponds to the film surface.

収差図において、d,gは各々d線及びg線、ΔM,ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線によって表している。   In the aberration diagrams, d and g are d-line and g-line, ΔM and ΔS are meridional image surface, sagittal image surface, and lateral chromatic aberration are represented by g-line.

尚、以下の各実施例において広角端と望遠端は変倍用レンズ群(第2レンズ群L2)が機構上光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。   In the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit (second lens unit L2) is positioned at both ends of the range in which the mechanism can move on the optical axis.

各実施例では、広角端から望遠端へのズーミングに際して矢印のように、第2レンズ群L2を像側へ移動させて変倍を行うと共に、変倍に伴う像面変動を第4レンズ群L4を物体側に凸状の軌跡を有するよう移動させて補正している。   In each embodiment, as shown by an arrow during zooming from the wide-angle end to the telephoto end, zooming is performed by moving the second lens unit L2 toward the image side, and image plane fluctuations associated with zooming are corrected by the fourth lens unit L4. Is corrected so as to have a convex locus on the object side.

また、第4レンズ群L4を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。第4レンズ群L4に関する実線の曲線4aと点線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの変倍に伴う像面変動を補正するための移動軌跡である。このように第4レンズ群L4を物体側へ凸状の軌跡とすることで第3レンズ群L3と第4レンズ群L4との間の空間の有効利用を図り、レンズ全長の短縮化を効果的に達成している。   In addition, a rear focus type that performs focusing by moving the fourth lens unit L4 on the optical axis is employed. A solid curve 4a and a dotted curve 4b relating to the fourth lens unit L4 are movement trajectories for correcting image plane fluctuations caused by zooming when focusing on an object at infinity and an object at close distance, respectively. Thus, by making the fourth lens unit L4 a locus convex toward the object side, the space between the third lens unit L3 and the fourth lens unit L4 can be effectively used, and the entire lens length can be shortened effectively. Has been achieved.

又、望遠端において無限遠物体から近距離物体へフォーカスを行う場合には、矢印4cに示すように第4レンズ群L4を前方に繰り出すことで行っている。尚、第1レンズ群L1と第3レンズ群L3、そして開口絞りSPは、ズーム及びフォーカスの為には光軸方向に移動しない。但し、収差補正上必要に応じて移動させてもよい。   Further, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth lens unit L4 is moved forward as indicated by an arrow 4c. The first lens unit L1, the third lens unit L3, and the aperture stop SP do not move in the optical axis direction for zooming and focusing. However, it may be moved as necessary for aberration correction.

各実施例のズームレンズは、物体側より像側へ順に、第1レンズ群L1は、物体側の面が凸面でメニスカス形状の負の屈折力の第11レンズと、正の屈折力の第12レンズとを接合した接合レンズ、物体側の面が凸面でメニスカス形状の正の屈折力の第13レンズより成っている。   In the zoom lens of each embodiment, in order from the object side to the image side, the first lens unit L1 includes a meniscus negative eleventh lens having a convex surface on the object side and a twelfth positive refractive power. The cemented lens is formed by cementing a lens, and the object-side surface is a convex surface, and is formed of a meniscus thirteenth lens having a positive refractive power.

第2レンズ群L2は、物体側から像側に順に、屈折力の絶対値が物体側の面に比べ像側の面で大きい負の屈折力の第21レンズG21、物体側の面が凹形状の負の屈折力の第22レンズG22、物体側の面が凸形状の正の屈折力の第23レンズG23より成っている。又、第22レンズG22と第23レンズG23との間は空気であり、光軸上間隔を空けて配置されている。   The second lens unit L2 includes, in order from the object side to the image side, a twenty-first lens G21 having a negative refractive power whose absolute value is larger on the image side than on the object side. The object side surface is concave. The 22nd lens G22 having negative refractive power and the 23rd lens G23 having positive refractive power whose object side surface is convex. In addition, the space between the 22nd lens G22 and the 23rd lens G23 is air, and is arranged with a gap on the optical axis.

第2レンズ群L2をこのように構成することによってズーミングの際に変動する像面湾曲と歪曲等の諸収差を良好に補正している。   By configuring the second lens unit L2 in this way, various aberrations such as field curvature and distortion that fluctuate during zooming are satisfactorily corrected.

第3レンズ群L3は、物体側と像側の面が凸形状の正の屈折力の第31レンズG31と、物体側の面が凸面でメニスカス形状の負の屈折力の第32レンズG32を有している。   The third lens unit L3 has a positive refractive power 31st lens G31 having convex surfaces on the object side and the image side, and a 32nd lens G32 having negative meniscus shape with a convex surface on the object side. is doing.

尚、第3レンズ群L3の構成としては、例えば、物体側から像側へ順に、正レンズ、負レンズ、正レンズを有する3枚構成、あるいはそれ以上の枚数のレンズより構成しても良い。   The configuration of the third lens unit L3 may include, for example, a three-lens configuration including a positive lens, a negative lens, and a positive lens in order from the object side to the image side, or a larger number of lenses.

第4レンズ群L4は、物体側と像側の面が凸形状の正の屈折力の第41レンズと、像側の面が凸面でメニスカス形状の負の屈折力の第42レンズとを接合した接合レンズより成っている。   The fourth lens unit L4 includes a positive refractive power forty-first lens having a convex surface on the object side and an image side and a forty-second lens having a negative meniscus shape and a convex surface on the image side. It consists of a cemented lens.

これによって第4レンズ群L4でフォーカスするときの収差変動が少なくなるようにしている。   As a result, aberration fluctuations when focusing with the fourth lens unit L4 are reduced.

各実施例では以上のように各レンズ群を構成することによって、レンズ系全体を小型化し、簡易なレンズ構成にもかかわらず、全ズーム範囲、又、物体距離全般にわたり高い光学性能を得ている。   In each embodiment, by configuring each lens group as described above, the entire lens system is miniaturized, and high optical performance is obtained over the entire zoom range and the entire object distance in spite of a simple lens configuration. .

次に各実施例の前述した特徴以外の特徴について説明する。以下で説明する各実施例の特徴は、本発明のズームレンズにおいて好ましい要件である。   Next, features of each embodiment other than those described above will be described. The characteristics of each embodiment described below are preferable requirements for the zoom lens of the present invention.

◎第23レンズG23の材料のアッベ数と、屈折率を各々ν23、N23とするとき、
ν23<20.0 ‥‥‥(1)
1.9<N23 ‥‥‥(2)
なる条件を満足している。
When the Abbe number and refractive index of the material of the 23rd lens G23 are ν23 and N23, respectively,
ν23 <20.0 (1)
1.9 <N23 (2)
Is satisfied.

各実施例で示したズームタイプの4群ズームレンズは、ビデオカメラやデジタルカメラ等の撮像装置に多用されている。この撮像装置に用いられる光学系には小型化及び高ズーム比化が常に求められている。   The zoom type four-group zoom lens shown in each embodiment is frequently used in an imaging apparatus such as a video camera or a digital camera. The optical system used in this imaging apparatus is always required to be downsized and have a high zoom ratio.

このズームタイプのズームレンズでは、第2レンズ群L2は3枚の負の屈折力のレンズと1枚の正の屈折力のレンズの4枚構成またはそれ以上のレンズ枚数で構成されるのが一般的である。   In this zoom type zoom lens, the second lens unit L2 is generally composed of four or more lenses having three negative refractive power lenses and one positive refractive power lens. Is.

これに対して各実施例では、第2レンズ群L2の第23レンズG23の材料に分散の大きな硝材を使用することで第2レンズ群L2を全体で3枚のレンズ構成としつつ色収差等の諸収差を低減している。   On the other hand, in each embodiment, a glass material having a large dispersion is used as the material of the 23rd lens G23 of the second lens group L2, so that the second lens group L2 has a three-lens configuration as a whole, and various chromatic aberrations and the like. Aberration is reduced.

条件式(1)は正の屈折力の第23レンズG23で色収差の補正を効果的に行うためのもので、この条件式の上限を越えてアッベ数が大きくなると第2レンズ群L2の色消し効果が弱くなって、高ズーム比化と高性能化を少ないレンズ枚数で両立させるのが困難になる。   Conditional expression (1) is for effectively correcting chromatic aberration with the 23rd lens G23 having a positive refractive power. When the Abbe number increases beyond the upper limit of this conditional expression, the achromaticity of the second lens unit L2 is eliminated. The effect becomes weak, and it becomes difficult to achieve both high zoom ratio and high performance with a small number of lenses.

条件式(2)は正の屈折力の第23レンズG23でズーミング時の収差補正を良好に行うためのものであり、これを越えて第23レンズG23の材料の屈折率が小さくなるとズーミング時におけるコマ収差の変動を良好に補正することが困難になる。   Conditional expression (2) is for satisfactorily correcting aberrations during zooming with the 23rd lens G23 having a positive refractive power, and when the refractive index of the material of the 23rd lens G23 is reduced beyond this, It becomes difficult to correct the fluctuation of coma aberration well.

◎第2レンズ群L2の焦点距離をf2、望遠端における全系の焦点距離をftとするとき、
−0.2<f2/ft<−0.1 ‥‥‥(3)
なる条件を満足している。
When the focal length of the second lens unit L2 is f2, and the focal length of the entire system at the telephoto end is ft,
−0.2 <f2 / ft <−0.1 (3)
Is satisfied.

条件式(3)は第2レンズ群L2の屈折力を適切に設定し、光学性能を良好に維持しつつ光学全長の短縮を達成する為のものである。   Conditional expression (3) is for appropriately setting the refractive power of the second lens unit L2 and achieving a reduction in the total optical length while maintaining good optical performance.

条件式(3)の上限を越えて第2レンズ群L2の屈折力が強くなりすぎると、ズーミング時の第2レンズ群L2の移動量は小さくなるが、ペッツバール和が全体に負の方向に大きくなり像面湾曲の補正が困難になるので良くない。逆に条件式(3)の下限を越えると、第2レンズ群L2のズーミング時の移動量が大きくなって光学系全体が大型化してくる。   If the upper limit of conditional expression (3) is exceeded and the refractive power of the second lens unit L2 becomes too strong, the amount of movement of the second lens unit L2 during zooming decreases, but the Petzval sum increases in the negative direction as a whole. This is not good because correction of curvature of field becomes difficult. On the contrary, if the lower limit of conditional expression (3) is exceeded, the amount of movement of the second lens unit L2 during zooming becomes large, and the entire optical system becomes large.

◎広角端における全系の焦点距離をfw、第31レンズG31と第32レンズG32との間隔をL31−32とするとき、
0.02<L31−32/fw<0.2 ‥‥‥(4)
なる条件式を満足している。
When the focal length of the entire system at the wide-angle end is fw and the distance between the 31st lens G31 and the 32nd lens G32 is L31-32,
0.02 <L31-32 / fw <0.2 (4)
The following conditional expression is satisfied.

条件式(4)の下限を越えると第31レンズG31と第32レンズG32とが物理的に干渉してくるので良くない。逆に上限を越えると無駄な空気間隔が存在するようになり、レンズ全長が長くなり好ましくない。   If the lower limit of conditional expression (4) is exceeded, the 31st lens G31 and the 32nd lens G32 physically interfere with each other. On the other hand, if the upper limit is exceeded, useless air gaps exist, which is not preferable because the entire lens length becomes longer.

◎第4レンズ群L4の望遠端における倍率をβ4Tとするとき、
0.4<|β4T|<0.59 ‥‥‥(5)
なる条件を満足している。
When the magnification at the telephoto end of the fourth lens unit L4 is β4T,
0.4 <| β4T | <0.59 (5)
Is satisfied.

条件式(5)は第4レンズ群L4の望遠端における結像倍率に関し、条件式(5)の範囲に設定することにより結像系に相当する第3レンズ群L3から第4レンズ群L4および像面IPまでの長さを短縮している。上限値を越えるとバックフォーカスが短くなりすぎて、像面に配置したCCD等の光学部材と干渉してくるので良くない。逆に下限値を超えるとバックフォーカスが長くなりすぎてレンズ全長の大型化を招く。   Conditional expression (5) relates to the imaging magnification at the telephoto end of the fourth lens group L4, and is set within the range of conditional expression (5), so that the third lens group L3 to the fourth lens group L4 corresponding to the imaging system and The length to the image plane IP is shortened. If the upper limit is exceeded, the back focus becomes too short, which interferes with an optical member such as a CCD disposed on the image plane, which is not good. Conversely, when the lower limit is exceeded, the back focus becomes too long, leading to an increase in the overall length of the lens.

◎第3レンズ群L3の焦点距離をf3、第4レンズ群L4の焦点距離をf4とするとき、
0.9<f3/f4<1.4 ‥‥‥(6)
なる条件を満足している。
When the focal length of the third lens unit L3 is f3 and the focal length of the fourth lens unit L4 is f4,
0.9 <f3 / f4 <1.4 (6)
Is satisfied.

条件式(6)は全系の小型化を図るための第3レンズ群L3と第4レンズ群L4の屈折力の適切な比率を表している。特にバックフォーカスを確保するためのものである。   Conditional expression (6) represents an appropriate ratio of the refractive powers of the third lens unit L3 and the fourth lens unit L4 for reducing the size of the entire system. This is particularly for securing the back focus.

条件式(6)の下限値を越えて第4レンズ群L4の屈折力が弱くなると、フォーカスのための移動量が大きくなり、第3レンズ群L3と干渉してくる。またバックフォーカスも大きくなってくる。逆に上限値を越えると第3レンズ群L3から射出する光束が大きくなり、第4レンズ群L4が大型化してくる。   When the lower limit of conditional expression (6) is exceeded and the refractive power of the fourth lens unit L4 becomes weak, the amount of movement for focusing increases and interferes with the third lens unit L3. The back focus also increases. On the other hand, when the upper limit is exceeded, the light beam emitted from the third lens unit L3 increases, and the fourth lens unit L4 increases in size.

◎第2レンズ群L2の焦点距離をf2、第4レンズ群L4の焦点距離をf4とするとき、
0.36<|f2/f4|<0.53 ‥‥‥(7)
なる条件を満足している。
When the focal length of the second lens unit L2 is f2, and the focal length of the fourth lens unit L4 is f4,
0.36 <| f2 / f4 | <0.53 (7)
Is satisfied.

条件式(7)はズーミングに際して移動する第2,第4レンズ群L2,L4の屈折力の比率を規定するものである。この範囲を逸脱するとレンズ系が大型化して好ましくない。   Conditional expression (7) defines the ratio of the refractive powers of the second and fourth lens units L2 and L4 that move during zooming. Deviating from this range is not preferable because the lens system becomes large.

◎第4レンズ群L4の焦点距離をf4、無限遠物体に合焦しているときの広角端における第3レンズ群L3と第4レンズ群L4の間隔をD34wとするとき、
0.2<D34w/f4<0.444 ‥‥‥(8)
なる条件を満足している。
When the focal length of the fourth lens unit L4 is f4 and the distance between the third lens unit L3 and the fourth lens unit L4 at the wide angle end when focusing on an object at infinity is D34w,
0.2 <D34w / f4 <0.444 (8)
Is satisfied.

条件式(8)は第3レンズ群L3と第4レンズ群L4の間隔を最適し、第3レンズ群L3と第4レンズ群L4の結像系を小型化するための条件である。特に間隔を短くすると共にバックフォーカスも短縮し、小型化を図る為の条件である。条件式(8)の上限値を越えて第3レンズ群L3と第4レンズ群L4の間隔が大きくなると、レンズ全体が大型化してくる。逆に下限値を越えて第4レンズ群L4の焦点距離が長くなると第4レンズ群L4が移動する際の収差変動が大きくなり、レンズ間隔を短くすると第4レンズ群L4のフォーカシングにおける移動量を確保できず近距離撮影が困難になる。   Conditional expression (8) is a condition for optimizing the distance between the third lens unit L3 and the fourth lens unit L4 and reducing the image forming system of the third lens unit L3 and the fourth lens unit L4. In particular, this is a condition for shortening the distance and shortening the back focus, thereby reducing the size. When the upper limit of conditional expression (8) is exceeded and the distance between the third lens unit L3 and the fourth lens unit L4 increases, the entire lens becomes larger. On the contrary, if the focal length of the fourth lens unit L4 increases beyond the lower limit value, the aberration variation when the fourth lens unit L4 moves increases, and if the lens interval is shortened, the amount of movement in focusing of the fourth lens unit L4 increases. It is difficult to secure close-up shooting.

◎第32レンズG32の物体側と像側のレンズ面の曲率半径を各々R32a,R32bとするとき、
1.95<R32a/R32b<2.4 ‥‥‥(9)
なる条件を満足している。
When the curvature radii of the object-side and image-side lens surfaces of the thirty-second lens G32 are R32a and R32b, respectively.
1.95 <R32a / R32b <2.4 (9)
Is satisfied.

条件式(9)は第3レンズ群L3の第32レンズG32のレンズ形状を限定したものである。第3レンズ群L3は望遠タイプとして主点位置を物体側に移動することで第3レンズ群L3と第4レンズ群L4の実間隔を短くして小型化を図っている。条件式(9)の上限値を越えて第3レンズ群L3の主点位置が物体側に寄りすぎると第3レンズ群L3と第4レンズ群L4の間隔が短くなりすぎ、フォーカスのために移動する第4レンズ群の移動量を確保することが困難となってくる。逆に下限値を越えると第32レンズG32の屈折力が弱くなり、第3レンズ群L3を望遠タイプにして小型化をするのが難しくなってくる。   Conditional expression (9) limits the lens shape of the thirty-second lens G32 of the third lens unit L3. The third lens unit L3 is a telephoto type, and the main point position is moved to the object side, so that the actual distance between the third lens unit L3 and the fourth lens unit L4 is shortened and the size is reduced. If the upper limit of conditional expression (9) is exceeded and the principal point position of the third lens unit L3 is too close to the object side, the distance between the third lens unit L3 and the fourth lens unit L4 becomes too short and moves for focusing. It is difficult to ensure the amount of movement of the fourth lens group. Conversely, when the lower limit is exceeded, the refractive power of the thirty-second lens G32 becomes weak, and it becomes difficult to downsize the third lens unit L3 by using the telephoto type.

◎第22レンズG22と第23レンズG23の光軸上の間隔をL22−23とするとき、
0.08<L22−23/fw<0.54‥‥‥(10)
なる条件を満足している。
◎ When the distance between the 22nd lens G22 and the 23rd lens G23 on the optical axis is L22-23,
0.08 <L22-23 / fw <0.54 (10)
Is satisfied.

条件式(10)は第2レンズ群L2中の第22レンズG22と第23レンズG23の間隔を最適にして、小型化を図る条件である。条件式(10)の上限値を越えてレンズの間隔が大きくなると、第2レンズ群L2の全長が長くなり、所定のズーム比を得るために移動するスペースが少なくなり、高ズーム比化が困難となってくる。逆に下限値を越えてレンズの間隔が短くなると、第22レンズG22と第23レンズG23で構成される空気レンズの作用が弱くなり、収差補正に有効に利用できなくなってくるので好ましくない。   Conditional expression (10) is a condition for reducing the size by optimizing the distance between the 22nd lens G22 and the 23rd lens G23 in the second lens unit L2. If the distance between the lenses exceeds the upper limit value of conditional expression (10), the total length of the second lens unit L2 becomes longer, and the space to move to obtain a predetermined zoom ratio is reduced, making it difficult to achieve a high zoom ratio. It becomes. On the contrary, if the distance between the lenses becomes shorter than the lower limit value, the action of the air lens composed of the 22nd lens G22 and the 23rd lens G23 becomes weak and cannot be used effectively for aberration correction.

◎第32レンズG32の物体側と像側のレンズ面の曲率半径を各々R32a,R32bとするとき、
0.32<(R32a−R32b)/(R32a+R32b)<0.45‥‥(11)
なる条件を満足している。
When the curvature radii of the object-side and image-side lens surfaces of the thirty-second lens G32 are R32a and R32b, respectively.
0.32 <(R32a-R32b) / (R32a + R32b) <0.45 (11)
Is satisfied.

条件式(11)は第32レンズG32のレンズ形状を限定して第3レンズ群L3と第4レンズ群L4の小型化を図るためのものである。上限値を越えると第3レンズ群L3の主点位置が物体側に寄りすぎて第3レンズ群L3と第4レンズ群L4の間隔が短くなりすぎる。逆に下限値を越えると第32レンズG32の屈折力が弱くなり第3レンズ群L3の小型化が困難となってくる。   Conditional expression (11) is for limiting the lens shape of the thirty-second lens G32 and reducing the size of the third lens unit L3 and the fourth lens unit L4. When the upper limit is exceeded, the principal point position of the third lens unit L3 is too close to the object side, and the distance between the third lens unit L3 and the fourth lens unit L4 becomes too short. On the contrary, when the lower limit is exceeded, the refractive power of the thirty-second lens G32 becomes weak, and it becomes difficult to reduce the size of the third lens unit L3.

更に好ましくは、条件式(1)〜(11)の数値条件を次の如く設定するのが良い。   More preferably, the numerical conditions of the conditional expressions (1) to (11) are set as follows.

ν23<19 ‥‥‥(1a)
1.91<N23 ‥‥‥(2a)
−0.18<f2/ft<−0.105 ‥‥‥(3a)
0.03<L31−32/fw<0.18 ‥‥‥(4a)
0.42<|β4T|<0.57 ‥‥‥(5a)
1.1<f3/f4<1.35 ‥‥‥(6a)
0.365<|f2/f4|<0.50 ‥‥‥(7a)
0.3<D34w/f4<0.44 ‥‥‥(8a)
1.97<R32a/R32b<2.3 ‥‥‥(9a)
0.1<L22−23/fw<0.4 ‥‥‥(10a)
0.325<(R32a−R32b)/(R32a+R32b)<0.40
‥‥‥(11a)
以下に、実施例1〜3に各々対応する数値実施例1〜3を示す。各数値実施例において、iは物体側からの面の順番を示し、Riは第i番目の面(第i面)の曲率半径、Diは第i面と第i+1面との間の間隔、Ni、νiはそれぞれd線を基準とした屈折率、アッベ数を示す。また、数値実施例1〜3では最も像側の4つの面は光学ブロックGに相当する平面である。非球面形状は光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてXとするとき、
ν23 <19 (1a)
1.91 <N23 (2a)
−0.18 <f2 / ft <−0.105 (3a)
0.03 <L31-32 / fw <0.18 (4a)
0.42 <| β4T | <0.57 (5a)
1.1 <f3 / f4 <1.35 (6a)
0.365 <| f2 / f4 | <0.50 (7a)
0.3 <D34w / f4 <0.44 (8a)
1.97 <R32a / R32b <2.3 (9a)
0.1 <L22-23 / fw <0.4 (10a)
0.325 <(R32a-R32b) / (R32a + R32b) <0.40
(11a)
The numerical examples 1 to 3 corresponding to the examples 1 to 3 are shown below. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the i-th surface (i-th surface), Di is the distance between the i-th surface and the i + 1-th surface, Ni , Νi indicate the refractive index and Abbe number with respect to the d-line, respectively. In Numerical Examples 1 to 3, the four surfaces closest to the image are planes corresponding to the optical block G. When the aspherical shape is X with the displacement in the optical axis direction at the position of the height h from the optical axis as the reference to the surface vertex,

で表される。 It is represented by

但しRは近軸曲率半径、kは円錐定数、A′,B,B′,C,C′,D,D′は非球面係数である。   Where R is a paraxial radius of curvature, k is a conic constant, and A ′, B, B ′, C, C ′, D, and D ′ are aspherical coefficients.

又、[e−X]は「×10−X」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角を示す。又前述の各条件式と数値実施例における諸数値との関係を表1に示す。 [E-X] means “× 10 −X ”. f indicates a focal length, Fno indicates an F number, and ω indicates a half angle of view. Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.


数値実施例 1
f=1〜 13.71 Fno= 1.85 〜 3.21 2ω=50.7° 〜 4.0°

R 1 = 12.656 D 1 = 0.26 N 1 = 1.846660 ν 1 = 23.9
R 2 = 5.727 D 2 = 0.79 N 2 = 1.696797 ν 2 = 55.5
R 3 = -91.792 D 3 = 0.05
R 4 = 4.897 D 4 = 0.50 N 3 = 1.712995 ν 3 = 53.9
R 5 = 10.995 D 5 = 可変
R 6 = 12.076 D 6 = 0.20 N 4 = 1.834807 ν 4 = 42.7
R 7 = 1.265 D 7 = 0.49
R 8 = -4.355 D 8 = 0.18 N 5 = 1.804000 ν 5 = 46.6
R 9 = 4.355 D 9 = 0.18
R10 = 2.964 D10 = 0.34 N 6 = 1.922860 ν 6 = 18.9
R11 = 18.597 D11 = 可変
R12 = 絞り D12 = 0.21
R13 = 2.073 D13 = 0.86 N 7 = 1.583126 ν 7 = 59.4
R14 = -5.233 D14 = 0.13
R15 = 4.615 D15 = 0.18 N 8 = 1.846660 ν 8 = 23.9
R16 = 2.125 D16 = 可変
R17 = 3.490 D17 = 0.74 N 9 = 1.517417 ν 9 = 52.4
R18 = -1.507 D18 = 0.16 N10 = 1.805181 ν10 = 25.4
R19 = -2.694 D19 = 可変
R20 = ∞ D20 = 0.19 N11 = 1.544000 ν11 = 70.0
R21 = ∞ D21 = 0.32 N12 = 1.514000 ν12 = 60.0
R22 = ∞ D22 = 0.18 N13 = 1.500000 ν13 = 60.0
R23 = ∞

\焦点距離 1.00 6.91 13.71
可変間隔\
D 5 0.17 4.29 5.08
D11 5.49 1.36 0.58
D16 1.74 0.89 2.02
D19 1.27 2.12 0.99

非球面係数
R13 k=-7.53095e-01 A'=3.16310e-04 B'=-1.36836e-03

R14 k=-1.96084e+01 A'=6.80345e-05 B'=-3.36851e-04


数値実施例 2
f=1〜 13.49 Fno= 1.85 〜 3.17 2ω=50.8° 〜 4.0°

R 1 = 11.172 D 1 = 0.26 N 1 = 1.846660 ν 1 = 23.9
R 2 = 4.597 D 2 = 0.88 N 2 = 1.772499 ν 2 = 49.6
R 3 = 123.745 D 3 = 0.05
R 4 = 4.667 D 4 = 0.50 N 3 = 1.772499 ν 3 = 49.6
R 5 = 10.269 D 5 = 可変
R 6 = 4.741 D 6 = 0.20 N 4 = 1.806100 ν 4 = 40.7
R 7 = 1.150 D 7 = 0.58
R 8 = -3.233 D 8 = 0.18 N 5 = 1.696797 ν 5 = 55.5
R 9 = 3.233 D 9 = 0.15
R10 = 2.536 D10 = 0.33 N 6 = 1.922860 ν 6 = 18.9
R11 = 8.859 D11 = 可変
R12 = 絞り D12 = 0.21
R13 = 2.028 D13 = 0.92 N 7 = 1.583126 ν 7 = 59.4
R14 = -5.806 D14 = 0.04
R15 = 4.175 D15 = 0.18 N 8 = 1.846660 ν 8 = 23.9
R16 = 2.087 D16 = 可変
R17 = 3.400 D17 = 0.59 N 9 = 1.583126 ν 9 = 59.4
R18 = -1.784 D18 = 0.16 N10 = 1.846660 ν10 = 23.9
R19 = -3.027 D19 = 可変
R20 = ∞ D20 = 0.19 N11 = 1.544000 ν11 = 70.0
R21 = ∞ D21 = 0.32 N12 = 1.514000 ν12 = 60.0
R22 = ∞ D22 = 0.18 N13 = 1.500000 ν13 = 60.0
R23 = ∞

\焦点距離 1.00 6.62 13.49
可変間隔\
D 5 0.17 3.68 4.35
D11 4.64 1.13 0.46
D16 1.34 0.91 2.17
D19 1.27 1.69 0.43

非球面係数
R7 k=1.14069e-01 B=-6.83904e-03 C=-5.70802e-03 D=-2.16806e-03

R13 k=-7.49183e-01 B'=-3.91630e-03

R14 k=-2.64381e+01 B'=-2.62914e-03

R17 k=7.98687e-01 B=-7.83348e-03 C=-5.51005e-03 D=2.31858e-03


数値実施例 3
f=1〜 13.64 Fno= 1.85 〜 2.98 2ω=50.7° 〜 4.0°

R 1 = 12.352 D 1 = 0.26 N 1 = 1.846660 ν 1 = 23.9
R 2 = 6.103 D 2 = 0.79 N 2 = 1.696797 ν 2 = 55.5
R 3 = -142.959 D 3 = 0.05
R 4 = 5.123 D 4 = 0.49 N 3 = 1.696797 ν 3 = 55.5
R 5 = 10.811 D 5 = 可変
R 6 = 9.129 D 6 = 0.20 N 4 = 2.003300 ν 4 = 28.3
R 7 = 1.505 D 7 = 0.45
R 8 = -3.760 D 8 = 0.18 N 5 = 1.719995 ν 5 = 50.2
R 9 = 3.760 D 9 = 0.24
R10 = 3.629 D10 = 0.36 N 6 = 1.922860 ν 6 = 18.9
R11 = -20.279 D11 = 可変
R12 = 絞り D12 = 0.21
R13 = 2.166 D13 = 0.93 N 7 = 1.583126 ν 7 = 59.4
R14 = -5.421 D14 = 0.17
R15 = 4.457 D15 = 0.18 N 8 = 1.805181 ν 8 = 25.4
R16 = 2.079 D16 = 可変
R17 = 3.751 D17 = 0.65 N 9 = 1.666718 ν 9 = 48.3
R18 = -1.568 D18 = 0.16 N10 = 1.846660 ν10 = 23.9
R19 = -3.943 D19 = 可変
R20 = ∞ D20 = 0.19 N11 = 1.544000 ν11 = 70.0
R21 = ∞ D21 = 0.32 N12 = 1.514000 ν12 = 60.0
R22 = ∞ D22 = 0.18 N13 = 1.500000 ν13 = 60.0
R23 = ∞


\焦点距離 1.00 6.60 13.64
可変間隔\
D 5 0.17 4.64 5.50
D11 5.79 1.32 0.47
D16 1.54 1.06 2.25
D19 1.11 1.58 0.40

非球面係数
R13 k=-1.10007e+00 B'=-1.57956e-03 C'=-2.33305e-03 D'=-2.94466e-04

R14 k=-1.27606e+01 B'=-4.23042e-03 C'=-2.38351e-03 D'=6.63361e-05

Numerical example 1
f = 1 to 13.71 Fno = 1.85 to 3.21 2ω = 50.7 ° to 4.0 °

R 1 = 12.656 D 1 = 0.26 N 1 = 1.846660 ν 1 = 23.9
R 2 = 5.727 D 2 = 0.79 N 2 = 1.696797 ν 2 = 55.5
R 3 = -91.792 D 3 = 0.05
R 4 = 4.897 D 4 = 0.50 N 3 = 1.712995 ν 3 = 53.9
R 5 = 10.995 D 5 = Variable
R 6 = 12.076 D 6 = 0.20 N 4 = 1.834807 ν 4 = 42.7
R 7 = 1.265 D 7 = 0.49
R 8 = -4.355 D 8 = 0.18 N 5 = 1.804000 ν 5 = 46.6
R 9 = 4.355 D 9 = 0.18
R10 = 2.964 D10 = 0.34 N 6 = 1.922860 ν 6 = 18.9
R11 = 18.597 D11 = variable
R12 = Aperture D12 = 0.21
R13 = 2.073 D13 = 0.86 N 7 = 1.583126 ν 7 = 59.4
R14 = -5.233 D14 = 0.13
R15 = 4.615 D15 = 0.18 N 8 = 1.846660 ν 8 = 23.9
R16 = 2.125 D16 = variable
R17 = 3.490 D17 = 0.74 N 9 = 1.517417 ν 9 = 52.4
R18 = -1.507 D18 = 0.16 N10 = 1.805181 ν10 = 25.4
R19 = -2.694 D19 = variable
R20 = ∞ D20 = 0.19 N11 = 1.544000 ν11 = 70.0
R21 = ∞ D21 = 0.32 N12 = 1.514000 ν12 = 60.0
R22 = ∞ D22 = 0.18 N13 = 1.500000 ν13 = 60.0
R23 = ∞

\ Focal length 1.00 6.91 13.71
Variable interval \
D 5 0.17 4.29 5.08
D11 5.49 1.36 0.58
D16 1.74 0.89 2.02
D19 1.27 2.12 0.99

Aspheric coefficient
R13 k = -7.53095e-01 A '= 3.16310e-04 B' =-1.36836e-03

R14 k = -1.96084e + 01 A '= 6.80345e-05 B' =-3.36851e-04


Numerical example 2
f = 1 to 13.49 Fno = 1.85 to 3.17 2ω = 50.8 ° to 4.0 °

R 1 = 11.172 D 1 = 0.26 N 1 = 1.846660 ν 1 = 23.9
R 2 = 4.597 D 2 = 0.88 N 2 = 1.772499 ν 2 = 49.6
R 3 = 123.745 D 3 = 0.05
R 4 = 4.667 D 4 = 0.50 N 3 = 1.772499 ν 3 = 49.6
R 5 = 10.269 D 5 = Variable
R 6 = 4.741 D 6 = 0.20 N 4 = 1.806100 ν 4 = 40.7
R 7 = 1.150 D 7 = 0.58
R 8 = -3.233 D 8 = 0.18 N 5 = 1.696797 ν 5 = 55.5
R 9 = 3.233 D 9 = 0.15
R10 = 2.536 D10 = 0.33 N 6 = 1.922860 ν 6 = 18.9
R11 = 8.859 D11 = variable
R12 = Aperture D12 = 0.21
R13 = 2.028 D13 = 0.92 N 7 = 1.583126 ν 7 = 59.4
R14 = -5.806 D14 = 0.04
R15 = 4.175 D15 = 0.18 N 8 = 1.846660 ν 8 = 23.9
R16 = 2.087 D16 = variable
R17 = 3.400 D17 = 0.59 N 9 = 1.583126 ν 9 = 59.4
R18 = -1.784 D18 = 0.16 N10 = 1.846660 ν10 = 23.9
R19 = -3.027 D19 = variable
R20 = ∞ D20 = 0.19 N11 = 1.544000 ν11 = 70.0
R21 = ∞ D21 = 0.32 N12 = 1.514000 ν12 = 60.0
R22 = ∞ D22 = 0.18 N13 = 1.500000 ν13 = 60.0
R23 = ∞

\ Focal length 1.00 6.62 13.49
Variable interval \
D 5 0.17 3.68 4.35
D11 4.64 1.13 0.46
D16 1.34 0.91 2.17
D19 1.27 1.69 0.43

Aspheric coefficient
R7 k = 1.14069e-01 B = -6.83904e-03 C = -5.70802e-03 D = -2.16806e-03

R13 k = -7.49183e-01 B '=-3.91630e-03

R14 k = -2.64381e + 01 B '=-2.62914e-03

R17 k = 7.98687e-01 B = -7.83348e-03 C = -5.51005e-03 D = 2.31858e-03


Numerical example 3
f = 1 to 13.64 Fno = 1.85 to 2.98 2ω = 50.7 ° to 4.0 °

R 1 = 12.352 D 1 = 0.26 N 1 = 1.846660 ν 1 = 23.9
R 2 = 6.103 D 2 = 0.79 N 2 = 1.696797 ν 2 = 55.5
R 3 = -142.959 D 3 = 0.05
R 4 = 5.123 D 4 = 0.49 N 3 = 1.696797 ν 3 = 55.5
R 5 = 10.811 D 5 = variable
R 6 = 9.129 D 6 = 0.20 N 4 = 2.003300 ν 4 = 28.3
R 7 = 1.505 D 7 = 0.45
R 8 = -3.760 D 8 = 0.18 N 5 = 1.719995 ν 5 = 50.2
R 9 = 3.760 D 9 = 0.24
R10 = 3.629 D10 = 0.36 N 6 = 1.922860 ν 6 = 18.9
R11 = -20.279 D11 = variable
R12 = Aperture D12 = 0.21
R13 = 2.166 D13 = 0.93 N 7 = 1.583126 ν 7 = 59.4
R14 = -5.421 D14 = 0.17
R15 = 4.457 D15 = 0.18 N 8 = 1.805181 ν 8 = 25.4
R16 = 2.079 D16 = variable
R17 = 3.751 D17 = 0.65 N 9 = 1.666718 ν 9 = 48.3
R18 = -1.568 D18 = 0.16 N10 = 1.846660 ν10 = 23.9
R19 = -3.943 D19 = variable
R20 = ∞ D20 = 0.19 N11 = 1.544000 ν11 = 70.0
R21 = ∞ D21 = 0.32 N12 = 1.514000 ν12 = 60.0
R22 = ∞ D22 = 0.18 N13 = 1.500000 ν13 = 60.0
R23 = ∞


\ Focal length 1.00 6.60 13.64
Variable interval \
D 5 0.17 4.64 5.50
D11 5.79 1.32 0.47
D16 1.54 1.06 2.25
D19 1.11 1.58 0.40

Aspheric coefficient
R13 k = -1.10007e + 00 B '=-1.57956e-03 C' =-2.33305e-03 D '=-2.94466e-04

R14 k = -1.27606e + 01 B '=-4.23042e-03 C' =-2.38351e-03 D '= 6.63361e-05

次に本発明のズームレンズを撮影光学系として用いたビデオカメラの実施例を図11を用いて説明する。   Next, an embodiment of a video camera using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図11において、10はビデオカメラ本体、11は本発明のズームレンズによって構成された撮影光学系、12は撮影光学系11によって被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、13は撮像素子12によって光電変換された被写体像に対応する情報を記憶するメモリ、14は不図示の表示素子に表示された被写体像を観察するためのファインダーである。上記表示素子は液晶パネル等によって構成され、撮像素子12上に形成された被写体像が表示される。   In FIG. 11, 10 is a video camera body, 11 is a photographing optical system constituted by the zoom lens of the present invention, 12 is a solid-state imaging device (photoelectric conversion) such as a CCD sensor or a CMOS sensor that receives a subject image by the photographing optical system 11. (Element), 13 is a memory for storing information corresponding to the subject image photoelectrically converted by the image sensor 12, and 14 is a finder for observing the subject image displayed on a display element (not shown). The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 12 is displayed.

本発明のズームレンズは、デジタルスチルカメラにも同様に適用することができる。   The zoom lens of the present invention can be similarly applied to a digital still camera.

このように本発明のズームレンズをビデオカメラやデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置が実現できる。   Thus, by applying the zoom lens of the present invention to an imaging apparatus such as a video camera or a digital still camera, an imaging apparatus having a small size and high optical performance can be realized.

実施例1のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの広角端における諸収差図Various aberration diagrams at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの中間のズーム位置における諸収差図Various aberration diagrams at the intermediate zoom position of the zoom lens of Example 1 実施例1のズームレンズの望遠端における諸収差図Various aberration diagrams at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズの広角端における諸収差図Various aberration diagrams at the wide-angle end of the zoom lens of Example 2 実施例2のズームレンズの中間のズーム位置における諸収差図Various aberration diagrams at the intermediate zoom position of the zoom lens of Example 2 実施例2のズームレンズの望遠端における諸収差図Various aberration diagrams at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズの広角端における諸収差図Various aberration diagrams at the wide-angle end of the zoom lens of Example 3 実施例3のズームレンズの中間のズーム位置における諸収差図Various aberration diagrams at the intermediate zoom position of the zoom lens of Example 3 実施例3のズームレンズの望遠端における諸収差図Various aberration diagrams at the telephoto end of the zoom lens of Example 3 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
SP 開口絞り
G ガラスブロック
IP 像面
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group SP Aperture stop G Glass block IP Image surface dd line g g line ΔM Meridional image surface ΔS Sagittal image surface

Claims (8)

物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して該第2、第4レンズ群が移動するズームレンズであって、該第2レンズ群は、物体側から像側に順に、屈折力の絶対値が物体側の面に比べ像側の面で大きい負の屈折力の第21レンズ、物体側の面が凹形状の負の屈折力の第22レンズ、物体側の面が凸形状の正の屈折力の第23レンズを有し、該第22レンズと第23レンズとは光軸上で間隔を空けて配置され、
該第3レンズ群は、物体側から像側に順に、屈折力の絶対値が像側の面に比べ物体側の面で大きい正の屈折力の第31レンズと、物体側の面が凸面でメニスカス形状の負の屈折力の第32レンズとを有しており、該第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw,ft、該第23レンズの材料のアッベ数と、屈折率を各々ν23、N23、該第31レンズと第32レンズとの間隔をL31−32とするとき、
ν23<20.0
1.9<N23
−0.2<f2/ft<−0.1
0.02<L31−32/fw<0.2
なる条件のうち少なくとも1つを満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power are provided. The zoom lens in which the second and fourth lens groups move during zooming, and the second lens group has an absolute value of refractive power that is closer to the image side than the object side surface in order from the object side to the image side. A 21st lens having a large negative refractive power on the surface, a 22nd lens having a negative refractive power having a concave surface on the object side, and a 23rd lens having a positive refractive power having a convex surface on the object side, The 22nd lens and the 23rd lens are arranged on the optical axis at an interval,
The third lens group includes, in order from the object side to the image side, a 31st lens having a positive refractive power whose absolute value of refractive power is larger on the object side surface than on the image side surface, and a meniscus having a convex surface on the object side. The second lens unit has a focal length of f2, the focal length of the entire system at the wide-angle end and the telephoto end is fw, ft, and the 23rd lens of the 23rd lens. When the Abbe number and the refractive index of the material are ν23 and N23, respectively, and the distance between the 31st lens and the 32nd lens is L31-32.
ν23 <20.0
1.9 <N23
−0.2 <f2 / ft <−0.1
0.02 <L31-32 / fw <0.2
A zoom lens characterized by satisfying at least one of the following conditions.
前記第4レンズ群の望遠端における倍率をβ4T、前記第3レンズ群の焦点距離をf3、前記第4レンズ群の焦点距離をf4とするとき、
0.4<|β4T|<0.59
0.9<f3/f4<1.4
0.36<|f2/f4|<0.53
なる条件のうち少なくとも1つを満足することを特徴とする請求項1に記載のズームレンズ。
When the magnification at the telephoto end of the fourth lens group is β4T, the focal length of the third lens group is f3, and the focal length of the fourth lens group is f4,
0.4 <| β4T | <0.59
0.9 <f3 / f4 <1.4
0.36 <| f2 / f4 | <0.53
The zoom lens according to claim 1, wherein at least one of the following conditions is satisfied.
前記第4レンズ群の焦点距離をf4、広角端における前記第3レンズ群と前記第4レンズ群の間隔をD34w、前記第32レンズの物体側と像側のレンズ面の曲率半径を各々R32a,R32b、前記第22レンズと第23レンズの間隔をL22−23とするとき、
0.2<D34w/f4<0.444
1.95<R32a/R32b<2.4
0.08<L22−23/fw<0.54
なる条件のうち少なくとも1つを満足することを特徴とする請求項1または2に記載のズームレンズ。
The focal length of the fourth lens group is f4, the distance between the third lens group and the fourth lens group at the wide-angle end is D34w, and the curvature radii of the object-side and image-side lens surfaces of the 32nd lens are R32a, R32b, when the distance between the 22nd lens and the 23rd lens is L22-23,
0.2 <D34w / f4 <0.444
1.95 <R32a / R32b <2.4
0.08 <L22-23 / fw <0.54
The zoom lens according to claim 1, wherein at least one of the following conditions is satisfied.
0.32<(R32a−R32b)/(R32a+R32b)<0.45
なる条件を満足することを特徴とする請求項3に記載のズームレンズ。
0.32 <(R32a-R32b) / (R32a + R32b) <0.45
The zoom lens according to claim 3, wherein the following condition is satisfied.
前記第4レンズ群は、正の屈折力のレンズと負の屈折力のレンズより成ることを特徴とする請求項1から4のいずれか1項に記載のズームレンズ。   5. The zoom lens according to claim 1, wherein the fourth lens group includes a lens having a positive refractive power and a lens having a negative refractive power. 前記第1レンズ群と第3レンズ群は、ズーミングのために移動しないことを特徴とする請求項1から5のいずれか1項に記載のズームレンズ。   The zoom lens according to any one of claims 1 to 5, wherein the first lens group and the third lens group do not move for zooming. 固体撮像素子上に像を形成することを特徴とする請求項1から6のいずれか1項に記載のズームレンズ。   The zoom lens according to claim 1, wherein an image is formed on a solid-state image sensor. 請求項1から7のいずれか1項のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子を有していることを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2004371337A 2004-12-22 2004-12-22 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4944375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371337A JP4944375B2 (en) 2004-12-22 2004-12-22 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371337A JP4944375B2 (en) 2004-12-22 2004-12-22 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2006178193A true JP2006178193A (en) 2006-07-06
JP2006178193A5 JP2006178193A5 (en) 2009-10-08
JP4944375B2 JP4944375B2 (en) 2012-05-30

Family

ID=36732366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371337A Expired - Fee Related JP4944375B2 (en) 2004-12-22 2004-12-22 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4944375B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967883A1 (en) * 2007-03-09 2008-09-10 Nikon Corporation Zoom lens of the telephoto type and having four lens groups
US7911706B2 (en) 2007-03-09 2011-03-22 Nikon Corporation Zoom lens, optical apparatus, and method for forming an image of an object
US8411361B2 (en) 2007-08-13 2013-04-02 Nikon Corporation Zoom lens, and optical apparatus and method for forming an image of an object using the zoom lens
US9885857B2 (en) 2013-01-03 2018-02-06 Hanwha Techwin Co., Ltd. Zoom lens system

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194572A (en) * 1992-12-24 1994-07-15 Minolta Camera Co Ltd Variable power lens
JPH08160300A (en) * 1994-12-12 1996-06-21 Olympus Optical Co Ltd Zoom lens
JPH09230236A (en) * 1996-02-27 1997-09-05 Minolta Co Ltd Optical system provided with camera shake correcting function and zoom lens
JPH11242160A (en) * 1998-02-26 1999-09-07 Minolta Co Ltd Zoom lens
JPH11258502A (en) * 1998-03-10 1999-09-24 Canon Inc Zoom lens and optical unit using the same
JPH11271616A (en) * 1998-03-24 1999-10-08 Olympus Optical Co Ltd Zoom lens
JPH11295594A (en) * 1998-04-09 1999-10-29 Canon Inc Variable power optical system provided with vibration proof function
JPH11305124A (en) * 1998-04-23 1999-11-05 Canon Inc Zoom lens and optical instrument using the zoom lens
JP2000206407A (en) * 1999-01-19 2000-07-28 Canon Inc Rear focus type zoom lens and optical equipment using the same
JP2000321494A (en) * 1999-05-10 2000-11-24 Canon Inc Variable power optical system provided with vibration- proof function
JP2001042213A (en) * 1999-07-28 2001-02-16 Canon Inc Variable power optical system having vibration-proof function
JP2001066500A (en) * 1999-08-27 2001-03-16 Canon Inc Variable magnification optical system having vibration- proof function
JP2001116997A (en) * 1999-10-20 2001-04-27 Canon Inc Zoom lens and optical equipment using same
JP2002107622A (en) * 2000-09-26 2002-04-10 Canon Inc Variable power lens system and optical equipment using the same
JP2002169087A (en) * 2000-11-30 2002-06-14 Canon Inc Zoom lens and optical equipment using the same
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2002287027A (en) * 2001-03-23 2002-10-03 Canon Inc Zoom lens and optical equipment using it
JP2003098434A (en) * 2001-09-25 2003-04-03 Canon Inc Zoom lens and optical equipment having the same
JP2003215452A (en) * 2002-01-25 2003-07-30 Canon Inc Zoom lens and optical equipment having the same
WO2003071332A1 (en) * 2002-02-25 2003-08-28 Matsushita Electric Industrial Co., Ltd. Zoom lens, and video camera and digital still camera using the zoom lens
JP2003295059A (en) * 2002-04-04 2003-10-15 Canon Inc Zoom lens and optical equipment having the same
JP2003295057A (en) * 2002-04-04 2003-10-15 Canon Inc Zoom lens and optical equipment having the same
JP2004212512A (en) * 2002-12-27 2004-07-29 Canon Inc Zoom lens and imaging apparatus having the same

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194572A (en) * 1992-12-24 1994-07-15 Minolta Camera Co Ltd Variable power lens
JPH08160300A (en) * 1994-12-12 1996-06-21 Olympus Optical Co Ltd Zoom lens
JPH09230236A (en) * 1996-02-27 1997-09-05 Minolta Co Ltd Optical system provided with camera shake correcting function and zoom lens
JPH11242160A (en) * 1998-02-26 1999-09-07 Minolta Co Ltd Zoom lens
JPH11258502A (en) * 1998-03-10 1999-09-24 Canon Inc Zoom lens and optical unit using the same
JPH11271616A (en) * 1998-03-24 1999-10-08 Olympus Optical Co Ltd Zoom lens
JPH11295594A (en) * 1998-04-09 1999-10-29 Canon Inc Variable power optical system provided with vibration proof function
JPH11305124A (en) * 1998-04-23 1999-11-05 Canon Inc Zoom lens and optical instrument using the zoom lens
JP2000206407A (en) * 1999-01-19 2000-07-28 Canon Inc Rear focus type zoom lens and optical equipment using the same
JP2000321494A (en) * 1999-05-10 2000-11-24 Canon Inc Variable power optical system provided with vibration- proof function
JP2001042213A (en) * 1999-07-28 2001-02-16 Canon Inc Variable power optical system having vibration-proof function
JP2001066500A (en) * 1999-08-27 2001-03-16 Canon Inc Variable magnification optical system having vibration- proof function
JP2001116997A (en) * 1999-10-20 2001-04-27 Canon Inc Zoom lens and optical equipment using same
JP2002107622A (en) * 2000-09-26 2002-04-10 Canon Inc Variable power lens system and optical equipment using the same
JP2002169087A (en) * 2000-11-30 2002-06-14 Canon Inc Zoom lens and optical equipment using the same
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2002287027A (en) * 2001-03-23 2002-10-03 Canon Inc Zoom lens and optical equipment using it
JP2003098434A (en) * 2001-09-25 2003-04-03 Canon Inc Zoom lens and optical equipment having the same
JP2003215452A (en) * 2002-01-25 2003-07-30 Canon Inc Zoom lens and optical equipment having the same
WO2003071332A1 (en) * 2002-02-25 2003-08-28 Matsushita Electric Industrial Co., Ltd. Zoom lens, and video camera and digital still camera using the zoom lens
JP2003295059A (en) * 2002-04-04 2003-10-15 Canon Inc Zoom lens and optical equipment having the same
JP2003295057A (en) * 2002-04-04 2003-10-15 Canon Inc Zoom lens and optical equipment having the same
JP2004212512A (en) * 2002-12-27 2004-07-29 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967883A1 (en) * 2007-03-09 2008-09-10 Nikon Corporation Zoom lens of the telephoto type and having four lens groups
US7911706B2 (en) 2007-03-09 2011-03-22 Nikon Corporation Zoom lens, optical apparatus, and method for forming an image of an object
US7982966B2 (en) 2007-03-09 2011-07-19 Nikon Corporation Zoom lens, optical apparatus, and method for forming an image of an object
US8437088B2 (en) 2007-03-09 2013-05-07 Nikon Corporation Zoom lens, optical apparatus, and method for forming an image of an object
US8411361B2 (en) 2007-08-13 2013-04-02 Nikon Corporation Zoom lens, and optical apparatus and method for forming an image of an object using the zoom lens
US9885857B2 (en) 2013-01-03 2018-02-06 Hanwha Techwin Co., Ltd. Zoom lens system

Also Published As

Publication number Publication date
JP4944375B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4794912B2 (en) Zoom lens and imaging apparatus having the same
JP5111059B2 (en) Zoom lens and imaging apparatus having the same
JP4817699B2 (en) Zoom lens and imaging apparatus having the same
JP5053750B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP5072447B2 (en) Zoom lens and imaging apparatus having the same
JP4776936B2 (en) Zoom lens and imaging apparatus having the same
JP4551669B2 (en) Zoom lens and imaging apparatus having the same
JP2008129076A (en) Zoom lens and imaging apparatus having same
JP4750458B2 (en) Zoom lens and imaging apparatus having the same
JP2010060612A (en) Zoom lens and image pickup device including the same
JP2009223008A (en) Zoom lens and image pickup apparatus with the same
JP2010139705A (en) Zoom lens and imaging apparatus with the same
JP4971632B2 (en) Zoom lens and imaging apparatus having the same
JP4914097B2 (en) Zoom lens and imaging apparatus having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP4944594B2 (en) Zoom lens and imaging apparatus having the same
JP5858761B2 (en) Zoom lens and imaging apparatus having the same
JP2014202806A5 (en)
JP5730134B2 (en) Zoom lens and imaging apparatus having the same
JP4865218B2 (en) Zoom lens and imaging apparatus having the same
JP5528157B2 (en) Zoom lens and imaging apparatus having the same
JP5197262B2 (en) Zoom lens and imaging apparatus having the same
JP4944375B2 (en) Zoom lens and imaging apparatus having the same
JP5546332B2 (en) Zoom lens and optical apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R151 Written notification of patent or utility model registration

Ref document number: 4944375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees