JP2006177919A - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP2006177919A
JP2006177919A JP2005016053A JP2005016053A JP2006177919A JP 2006177919 A JP2006177919 A JP 2006177919A JP 2005016053 A JP2005016053 A JP 2005016053A JP 2005016053 A JP2005016053 A JP 2005016053A JP 2006177919 A JP2006177919 A JP 2006177919A
Authority
JP
Japan
Prior art keywords
insulating base
pressure sensor
flexible substrate
frame
frame body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005016053A
Other languages
Japanese (ja)
Inventor
Noboru Kitazumi
登 北住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005016053A priority Critical patent/JP2006177919A/en
Publication of JP2006177919A publication Critical patent/JP2006177919A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive pressure sensor with reduced hysteresis, high pressure detection accuracy, and high performance. <P>SOLUTION: In the pressure sensor, a flexible substrate 1 is mounted on the upper face of an insulating base 8 via a frame body 2, and a pair of capacity forming electrodes 3 and 7 facing via a gap between the insulating base 8 and the flexibility substrate 1 are formed on the upper face of the insulating base 8 and the lower face of the flexibility substrate 1 inside the frame body 2. The outer peripheries of the insulating base 8 and the flexibility substrate 1 are extended outward from the outer peripheral surface of the frame body 2, and the extended sections are joined to each other over the whole circumference through an annular joint material 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、対向電極間の静電容量の変化を利用して圧力を検出する圧力センサに関する。 The present invention relates to a pressure sensor that detects a pressure by using a change in capacitance between opposed electrodes.

近年、タイヤの空気圧を自動的に検出して運転席において空気圧の検出結果を監視できる空気圧監視装置が車両走行の安全性を高めるために一般に普及しつつある。この種の装置は、タイヤホイール内の空気送出入バルブに圧力センサが設置され、タイヤ内の圧力変化に応じて生じる静電容量の変化をこの圧力センサ内に搭載された半導体素子で電気信号として検出し、その後、この圧力センサによって検出した圧力データを送信機によって電波等用いて送信し、この電波を監視装置において受信して運転席表示板に状況を表示するものである。   In recent years, an air pressure monitoring device that can automatically detect the air pressure of a tire and monitor the detection result of the air pressure in a driver's seat is becoming popular in order to increase the safety of vehicle travel. In this type of device, a pressure sensor is installed at an air delivery valve in a tire wheel, and a change in capacitance caused by a pressure change in the tire is converted into an electrical signal by a semiconductor element mounted in the pressure sensor. After that, the pressure data detected by the pressure sensor is transmitted using a radio wave or the like by a transmitter, and the radio wave is received by the monitoring device and the status is displayed on the driver's seat display board.

従来より、対向電極間の静電容量の変化を利用して圧力を検出するタイプの圧力センサでは精度向上のため、ヒステリシスを低減する方法が種々提案されている。   Conventionally, various types of methods for reducing hysteresis have been proposed in order to improve accuracy in pressure sensors that detect pressure by using a change in capacitance between opposing electrodes.

このような従来の圧力センサの基本構成を図3に示す。この圧力センサは、セラミックス製の絶縁基体28と、この絶縁基体28に対向配置されたセラミックス製の可撓性基板21とで構成されている。絶縁基体28及び可撓性基板21の互いに対向する面には、それぞれ電極27,23が形成されている。絶縁基体28には、これら電極27,23に電気的に接続されたICチップ29が取り付けられている。   A basic configuration of such a conventional pressure sensor is shown in FIG. The pressure sensor includes a ceramic insulating substrate 28 and a ceramic flexible substrate 21 disposed opposite to the insulating substrate 28. Electrodes 27 and 23 are formed on surfaces of the insulating base 28 and the flexible substrate 21 that face each other. An IC chip 29 electrically connected to these electrodes 27 and 23 is attached to the insulating base 28.

そして、電極27,23の間に一定のクリアランスを設けるため、可撓性基板21の下面には、リング形状のセラミックス製の枠体22が設けられている。枠体22と絶縁基体28との間には、Ag−Cu共晶合金等からなる接合部材25が設けられている。絶縁基体28、可撓性基板21、接合部材25及び枠体22によって囲まれた空間は、密閉空間となる。そして、外界の空気の圧力変化により可撓性基板21が変形すると、対向する電極27,23間の容量が変化し、この容量の変化がICチップ29により検出される。   In order to provide a certain clearance between the electrodes 27 and 23, a ring-shaped ceramic frame 22 is provided on the lower surface of the flexible substrate 21. A joining member 25 made of an Ag—Cu eutectic alloy or the like is provided between the frame body 22 and the insulating base 28. A space surrounded by the insulating base 28, the flexible substrate 21, the bonding member 25, and the frame 22 becomes a sealed space. Then, when the flexible substrate 21 is deformed due to a change in the external air pressure, the capacitance between the opposing electrodes 27 and 23 changes, and the change in the capacitance is detected by the IC chip 29.

しかし、圧力変化により可撓性基板21が変形する際、特にリング形状の枠体22の内側部分に応力集中が生じる。このような応力集中によって接合部材25に塑性変形が生じると、圧力検出にヒステリシスが発生する。そのために、圧力検出精度が低下するという問題があった。   However, when the flexible substrate 21 is deformed by a pressure change, stress concentration occurs particularly in the inner portion of the ring-shaped frame 22. When plastic deformation occurs in the joining member 25 due to such stress concentration, hysteresis occurs in pressure detection. For this reason, there is a problem that the pressure detection accuracy is lowered.

そこで、このようなヒステリシスを低減するために、可撓性基板21と枠体22とを分離し、これらを接合部材で接合する方法がある。この構成では、セラミックス製の枠体22と可撓性基板21と、および枠体22と可撓性基板21とを接合させることで、可撓性基板21の変形の際に接合部材25に加わる応力が緩和され、塑性変形が生じ難くなるので、ヒステリシスを低減させることができる。   Therefore, in order to reduce such hysteresis, there is a method in which the flexible substrate 21 and the frame body 22 are separated and these are joined by a joining member. In this configuration, the ceramic frame body 22 and the flexible substrate 21, and the frame body 22 and the flexible substrate 21 are bonded to each other, so that the flexible substrate 21 is deformed and added to the bonding member 25. Since stress is relaxed and plastic deformation is less likely to occur, hysteresis can be reduced.

また、可撓性基板21と枠体22と絶縁基体28を一体に焼結することによって、接合部材25を使用しないことでヒステリシスを低減することも可能である。
特開2003−207407号公報
Further, by sintering the flexible substrate 21, the frame body 22, and the insulating base 28 together, it is possible to reduce hysteresis by not using the joining member 25.
JP 2003-207407 A

しかしながら、従来の圧力センサにおいては、枠体22を可撓性基板21から分離し、枠体22の下面と絶縁基体28との間や、枠体22の上面と可撓性基板21の下面との間に接合材を介することにより、ある程度ヒステリシスを低減することができるものの、外界の圧力の変化に伴い可撓性基板21が変形する際接合材25に塑性変形が生じ、ヒステリシスが発生する。従来は、圧力センサに要求される検出精度が低かったため、ヒステリシスは問題にならなかった。しかし、近年要求されている自動車の安全向上のためのタイヤの空気圧監視装置等においては、例えば対向電極間の静電容量範囲が3000fF(フェムト ファラッド)から4000fFの場合において、ヒステリシスは±2fF以下であることが要求されてきている。   However, in the conventional pressure sensor, the frame 22 is separated from the flexible substrate 21, and between the lower surface of the frame 22 and the insulating base 28, or between the upper surface of the frame 22 and the lower surface of the flexible substrate 21. Although the hysteresis can be reduced to some extent by interposing the bonding material between them, the bonding material 25 undergoes plastic deformation when the flexible substrate 21 is deformed due to a change in the external pressure, and hysteresis is generated. Conventionally, hysteresis has not been a problem because the detection accuracy required for pressure sensors has been low. However, in tire pressure monitoring devices and the like that are required in recent years for automobile safety improvement, for example, when the capacitance range between the counter electrodes is 3000 fF (femto farad) to 4000 fF, the hysteresis is ± 2 fF or less. There has been a need to be.

また、従来のセラミックス製の圧力センサにおいては、接合材を使用せずに接合する場合には、可撓性基板21、枠体22および絶縁基体28を一体に焼成することによって接合するものであり、セラミックスの焼成温度は一般に1000℃〜1600℃程度と高温であることにより、可撓性基板21に反りやうねりが発生する。その結果、可撓性基板21の反りやうねりにより、第一電極27と第二電極23との密閉空間の静電容量にばらつきが生じることから、高精度の圧力検出ができないという問題点があった。   Further, in the conventional ceramic pressure sensor, when bonding is performed without using a bonding material, the flexible substrate 21, the frame body 22, and the insulating base 28 are bonded together by firing. The firing temperature of the ceramic is generally as high as about 1000 ° C. to 1600 ° C., so that the flexible substrate 21 is warped or swelled. As a result, the capacitance of the sealed space between the first electrode 27 and the second electrode 23 varies due to the warping and undulation of the flexible substrate 21, and there is a problem that pressure detection with high accuracy cannot be performed. It was.

従って、本発明は、上記問題点を鑑みて完成されたものであり、その目的は、ヒステリシスを低減し、精度良く圧力を検出できる高性能で安価な圧力センサを提供することである。   Accordingly, the present invention has been completed in view of the above problems, and an object of the present invention is to provide a high-performance and inexpensive pressure sensor that can reduce the hysteresis and detect the pressure with high accuracy.

本発明の圧力センサは、絶縁基体の上面に枠体を介して可撓性基板を載置させ、前記枠体の内側に位置する前記絶縁基体の上面と前記可撓性基板の下面に、絶縁基体−可撓性基板間の間隙を介して対向する一対の容量形成電極を形成してなる圧力センサであって、前記絶縁基体及び前記可撓性基板の外周部を前記枠体の外周面よりも外方に延出させるとともに、該延出部同士をその全周にわたって環状の接合材で接合したことを特徴とする。   In the pressure sensor of the present invention, a flexible substrate is placed on the upper surface of an insulating base via a frame, and the upper surface of the insulating base located inside the frame and the lower surface of the flexible base are insulated. A pressure sensor formed by forming a pair of capacitance forming electrodes facing each other through a gap between a base and a flexible substrate, wherein an outer peripheral portion of the insulating base and the flexible substrate is formed from an outer peripheral surface of the frame body. And the extending portions are joined to each other by an annular joining material over the entire circumference.

本発明の圧力センサにおいて、好ましくは、前記枠体と前記可撓性基板とを一体で形成し、前記枠体の下面を前記絶縁基体上に直接接触させたことを特徴とする。   In the pressure sensor of the present invention, preferably, the frame body and the flexible substrate are integrally formed, and the lower surface of the frame body is in direct contact with the insulating base.

本発明の圧力センサにおいて、好ましくは、前記枠体の内周面と外周面との間の間隔を前記可撓性基板に向かうに伴って漸次大きくしたことを特徴とする。   In the pressure sensor of the present invention, it is preferable that the distance between the inner peripheral surface and the outer peripheral surface of the frame body is gradually increased toward the flexible substrate.

本発明の圧力センサにおいて、好ましくは、前記絶縁基体の下面に、前記絶縁基体内の配線導体を介して前記一対の容量形成電極に電気的に接続される半導体素子が搭載されていることを特徴とする。   In the pressure sensor of the present invention, it is preferable that a semiconductor element electrically connected to the pair of capacitance forming electrodes is mounted on the lower surface of the insulating base via a wiring conductor in the insulating base. And

本発明の圧力センサにおいて、好ましくは、前記絶縁基体の下面に凹部が形成されており、該凹部内に、前記絶縁基体内の配線導体を介して前記一対の容量形成電極に電気的に接続される半導体素子が収容されていることを特徴とする。   In the pressure sensor of the present invention, preferably, a recess is formed in the lower surface of the insulating base, and the recess is electrically connected to the pair of capacitance forming electrodes via a wiring conductor in the insulating base. The semiconductor element is accommodated.

本発明の圧力センサにおいて、好ましくは、前記半導体素子が封止樹脂で被覆されていることを特徴とする。   In the pressure sensor of the present invention, preferably, the semiconductor element is covered with a sealing resin.

本発明の圧力センサにおいて、好ましくは、前記絶縁基体の下面に、前記凹部の開口部を塞ぐ蓋体が取着されていることを特徴とする。   The pressure sensor according to the present invention is preferably characterized in that a lid that closes the opening of the recess is attached to the lower surface of the insulating base.

本発明の圧力センサにおいて、好ましくは、前記枠体が、前記絶縁基体の上面もしくは前記可撓性基板の下面に対し薄膜手法にて形成された被膜から成ることを特徴とする。   In the pressure sensor of the present invention, it is preferable that the frame body is made of a film formed by a thin film method on the upper surface of the insulating base or the lower surface of the flexible substrate.

本発明の圧力センサは、絶縁基体及び可撓性基板の外周部を枠体の外周面よりも外方に延出させるとともに、延出部同士をその全周にわたって環状の接合材で接合したことから、可撓性基板が圧力を受けて変形した場合に、応力の集中する枠体の部分よりも外側に接合材が位置しているので、従来の枠体の上下面がそれぞれ絶縁基体および枠体に接合されていた場合に比べ、枠体に加わる応力はてこの原理で小さくなるため、接合材が塑性変形し難くなり、その結果ヒステリシスを低減することができる。   In the pressure sensor of the present invention, the outer peripheral portions of the insulating base body and the flexible substrate are extended outward from the outer peripheral surface of the frame body, and the extended portions are bonded with an annular bonding material over the entire periphery. When the flexible substrate is deformed by receiving pressure, the bonding material is located outside the portion of the frame where stress is concentrated. Therefore, the upper and lower surfaces of the conventional frame are respectively the insulating base and the frame. Since the stress applied to the frame body is reduced by the lever principle as compared with the case where it is joined to the body, the joining material is hardly plastically deformed, and as a result, the hysteresis can be reduced.

本発明の圧力センサは、好ましくは、枠体と可撓性基板とを一体で形成し、枠体の下面を絶縁基体上に直接接触させたことから、可撓性基板が圧力を受けて変形したときにもっとも応力を受けやすい可撓性基板と枠体との接触界面を無くして応力を分散することができる。さらに、枠体の下面を絶縁基体上に直接接触させることによって、枠体と絶縁基体との間に他の部材を介す必要がない。つまり、従来のように可撓性基板と絶縁基体とを接合するためにそれらの間に接合材や接合用の電極を設ける必要がなく、接合材や接合用の電極等のヒステリシスが生じる因子を減少させてヒステリシスの低減をより効果的に行なうことができる。   In the pressure sensor of the present invention, preferably, the frame body and the flexible substrate are integrally formed, and the lower surface of the frame body is brought into direct contact with the insulating base. In this case, the stress can be dispersed by eliminating the contact interface between the flexible substrate and the frame that are most susceptible to stress. Furthermore, since the lower surface of the frame body is brought into direct contact with the insulating base, there is no need to interpose another member between the frame and the insulating base. That is, it is not necessary to provide a bonding material or a bonding electrode between the flexible substrate and the insulating base as in the prior art, and a factor that causes hysteresis of the bonding material, the bonding electrode, or the like. It is possible to reduce the hysteresis more effectively.

本発明の圧力センサは、好ましくは、枠体の内周面と外周面との間の間隔を可撓性基板に向かうに伴って漸次大きくしたことから、可撓性基板が圧力を受けて変形したときにもっとも応力を受けやすい可撓性基板と枠体との取着部の応力をより分散することができ、応力によってヒステリシスが生じるのをより低減できる。   In the pressure sensor of the present invention, preferably, the distance between the inner peripheral surface and the outer peripheral surface of the frame is gradually increased toward the flexible substrate, so that the flexible substrate is deformed by receiving pressure. In this case, the stress at the attachment portion between the flexible substrate and the frame that is most susceptible to stress can be further dispersed, and the occurrence of hysteresis due to the stress can be further reduced.

本発明の圧力センサは、好ましくは、絶縁基体の下面に、絶縁基体内の配線導体を介して一対の容量形成電極に電気的に接続される半導体素子が搭載されていることから、一対の容量形成電極で検出した電気信号を、容量形成電極が形成されているのと同じ絶縁基体に半導体素子を搭載することにより、別途半導体素子を搭載した回路基板を用意する必要はなく、圧力センサを搭載した装置の小型化が可能となる。   In the pressure sensor of the present invention, preferably, a semiconductor element electrically connected to the pair of capacitance forming electrodes via the wiring conductor in the insulating base is mounted on the lower surface of the insulating base. By mounting the semiconductor element on the same insulating substrate on which the capacitance forming electrode is formed, the electrical signal detected by the forming electrode does not need to be prepared separately, and a pressure sensor is installed. It is possible to reduce the size of the device.

本発明の圧力センサは、好ましくは、絶縁基体の下面に凹部が形成されており、凹部内に、絶縁基体内の配線導体を介して一対の容量形成電極に電気的に接続される半導体素子が収容されていることから、絶縁基体の下面の凹部の周囲に外部接続用電極を形成することができ、外部電気回路基板に対して圧力センサを搭載するためのスペースを小さくすることができ、圧力センサを搭載した装置の小型化が可能となる。   In the pressure sensor of the present invention, preferably, a recess is formed on the lower surface of the insulating substrate, and a semiconductor element electrically connected to the pair of capacitance forming electrodes via the wiring conductor in the insulating substrate is formed in the recess. Since it is accommodated, an external connection electrode can be formed around the recess on the lower surface of the insulating base, and the space for mounting the pressure sensor on the external electric circuit board can be reduced. It is possible to reduce the size of the device equipped with the sensor.

本発明の圧力センサは、好ましくは、半導体素子が封止樹脂で被覆されていることから、半導体素子の封止性を良好にでき、圧力に対する半導体素子と配線導体との電気的接続を良好に維持できる。   In the pressure sensor of the present invention, since the semiconductor element is preferably coated with a sealing resin, the sealing performance of the semiconductor element can be improved, and the electrical connection between the semiconductor element and the wiring conductor against pressure is improved. Can be maintained.

本発明の圧力センサは、好ましくは、絶縁基体の下面に、凹部の開口部を塞ぐ蓋体が取着されていることから、半導体素子の封止を容易に行なうことができるとともに、凹部内への外部圧力による影響を良好に抑制できる。   In the pressure sensor of the present invention, preferably, the lid for closing the opening of the recess is attached to the lower surface of the insulating base, so that the semiconductor element can be easily sealed and the recess is inserted into the recess. Can effectively suppress the influence of external pressure.

本発明の圧力センサは、好ましくは、枠体が、絶縁基体の上面もしくは可撓性基板の下面に対し薄膜手法にて形成された被膜から成ることから、枠体の形成温度を500度以下の温度で加工できるため可撓性基板が変形しにくく、高精度の圧力センサとすることができる。   In the pressure sensor of the present invention, preferably, the frame body is formed of a film formed by a thin film method on the upper surface of the insulating base or the lower surface of the flexible substrate. Since it can be processed at a temperature, the flexible substrate is hardly deformed, and a highly accurate pressure sensor can be obtained.

図1は、本発明である圧力センサの実施形態の一例の断面図である。図1に示すように1は可撓性基板、2は枠体、3は一対の容量形成電極のうちの一方である第二電極、4は接合用シールリング、5は接合材、6は接合用電極、7は一対の容量形成電極のうちの他方である第一電極、8は絶縁基体、9は半導体素子、10は封止樹脂、11は配線導体である。   FIG. 1 is a cross-sectional view of an example of an embodiment of a pressure sensor according to the present invention. As shown in FIG. 1, 1 is a flexible substrate, 2 is a frame, 3 is a second electrode which is one of a pair of capacitance forming electrodes, 4 is a sealing ring for bonding, 5 is a bonding material, and 6 is bonded. An electrode for use, 7 is a first electrode which is the other of the pair of capacitance forming electrodes, 8 is an insulating substrate, 9 is a semiconductor element, 10 is a sealing resin, and 11 is a wiring conductor.

可撓性基板1は例えばアルミナセラミックス等の絶縁物から成り、アルミナセラミックスの場合は、アルミナ(Al)やシリカ(SiO)、カルシア(CaO)、マグネシア(MgO)等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥状と成し、これを従来周知のドクターブレード法やカレンダーロール法等によりシート状に形成してセラミックグリーンシートを得る。その後、セラミックグリーンシートを必要に応じて複数枚積層し、約1600℃の温度で焼成する。そして、研削加工法にて表面加工を施し、基板厚みと表面粗さを所定寸法に制御した可撓性基板1を得る。 The flexible substrate 1 is made of an insulator such as alumina ceramics. In the case of alumina ceramics, the flexible substrate 1 is made of a raw material powder such as alumina (Al 2 O 3 ), silica (SiO 2 ), calcia (CaO), magnesia (MgO). An appropriate organic solvent and a solvent are added and mixed to form a mud, which is formed into a sheet by a conventionally known doctor blade method, calendar roll method, or the like to obtain a ceramic green sheet. Thereafter, a plurality of ceramic green sheets are laminated as necessary and fired at a temperature of about 1600 ° C. And surface processing is given by the grinding method, and the flexible substrate 1 which controlled the board | substrate thickness and the surface roughness to the predetermined dimension is obtained.

枠体2は、例えばアルミナセラミックス等の絶縁物から成り、アルミナセラミックスの場合は可撓性基板1の一方主面にスクリーン印刷法、真空蒸着法、スパッタリング法等の技術を用いて形成される。材質としては、アルミナ(Al)セラミックスのようなセラミック材質が一般的にヒステリシスが発生し難いので好ましい。 The frame body 2 is made of an insulating material such as alumina ceramics. In the case of alumina ceramics, the frame body 2 is formed on one main surface of the flexible substrate 1 using a technique such as a screen printing method, a vacuum deposition method, or a sputtering method. As the material, a ceramic material such as alumina (Al 2 O 3 ) ceramics is generally preferable because hysteresis hardly occurs.

また、可撓性基板1の一方主面に感光性のフィルムレジストをコートし、第二電極3、接合用シールリング4を形成する部分に高精度ブラスト加工を施して可撓性基板1の一部を除去し、可撓性基板1に一体化した枠体2を形成してもよい。   Further, one main surface of the flexible substrate 1 is coated with a photosensitive film resist, and a portion where the second electrode 3 and the bonding seal ring 4 are formed is subjected to high-precision blasting so that one part of the flexible substrate 1 is formed. The frame 2 integrated with the flexible substrate 1 may be formed by removing the portion.

好ましくは、枠体2の内周面と外周面との間の間隔を可撓性基板1に向かうに伴って漸次大きくするのがよい。これにより、可撓性基板1が圧力を受けて変形したときにもっとも応力を受けやすい可撓性基板1と枠体2との取着部の応力をより分散することができ、応力によってヒステリシスが生じるのをより低減できる。   Preferably, the distance between the inner peripheral surface and the outer peripheral surface of the frame 2 is gradually increased as it goes toward the flexible substrate 1. Thereby, when the flexible substrate 1 receives pressure and deforms, the stress at the attachment portion between the flexible substrate 1 and the frame body 2 that is most susceptible to stress can be further dispersed, and hysteresis is caused by the stress. This can be further reduced.

第二電極3は、可撓性基板1として例えばセラミック基板を用いる場合、セラミック基板との密着がよいチタン(Ti)等の密着金属層、白金(Pt)等の拡散防止層、金(Au)等の主導体層の順番で蒸着して形成する。なお、第二電極3は、拡散防止層や主導体層を形成せず、TiのみもしくはTi−Pt合金のみで形成しても良い。   For example, when a ceramic substrate is used as the flexible substrate 1, the second electrode 3 is an adhesive metal layer such as titanium (Ti) that has good adhesion to the ceramic substrate, a diffusion prevention layer such as platinum (Pt), and gold (Au). The main conductor layers such as are vapor-deposited in the order. The second electrode 3 may be formed of only Ti or Ti—Pt alloy without forming the diffusion prevention layer and the main conductor layer.

ここで、各金属層の総膜厚、つまり第二電極3の厚みは、膜の応力を低減するために、1um以下が望ましい。その加工方法は真空蒸着法、スパッタリング法等の薄膜形成技術を用いて形成するのが、加工温度による可撓性基板1の変形等が発生しないので好ましい。また、第二電極3は、後述する第一電極7とともに静電容量を形成するためのものであり、例えば略円形パターンに形成されている。   Here, the total film thickness of each metal layer, that is, the thickness of the second electrode 3 is preferably 1 μm or less in order to reduce the stress of the film. The processing method is preferably formed using a thin film forming technique such as a vacuum deposition method or a sputtering method because deformation of the flexible substrate 1 due to the processing temperature does not occur. Moreover, the 2nd electrode 3 is for forming an electrostatic capacitance with the 1st electrode 7 mentioned later, for example, is formed in the substantially circular pattern.

この第二電極3は、枠体2と可撓性基板1との間に形成された薄膜配線によって可撓性基板1の外周部に引き出される。そしてこの薄膜配線に、絶縁基体1と可撓性基板1とを接合材5を介して気密に接合するための接合用シールリング4が接合され、このシールリング4が絶縁基体8の上面に形成された配線導体11の一部から成る接合用電極6に、ろう材などの導電性の接合材5を介して接合される。これにより、第二電極3は接合用電極6および配線導体11によって半導体素子9と電気的に接合される。   The second electrode 3 is drawn out to the outer peripheral portion of the flexible substrate 1 by a thin film wiring formed between the frame body 2 and the flexible substrate 1. Then, a bonding seal ring 4 for airtightly bonding the insulating substrate 1 and the flexible substrate 1 through the bonding material 5 is bonded to the thin film wiring, and the seal ring 4 is formed on the upper surface of the insulating substrate 8. It is joined to the joining electrode 6 made of a part of the wiring conductor 11 through a conductive joining material 5 such as a brazing material. As a result, the second electrode 3 is electrically joined to the semiconductor element 9 by the joining electrode 6 and the wiring conductor 11.

なお、シールリング4は絶縁基体8の上面に形成されていてもよく、またはシールリング4を用いなくてもよい。また、第ニ電極3と接続用電極6との電気的な接続は、枠体2の側面に側面導体を形成したり、溝の内面に導体を形成してなるキャスタレーション導体を形成したりすることによって、この側面導体やキャスタレーション導体を介して行なうこともできる。この場合、接合材5は導電性のものでなくてもよい。   The seal ring 4 may be formed on the upper surface of the insulating base 8 or the seal ring 4 may not be used. The second electrode 3 and the connection electrode 6 are electrically connected by forming a side conductor on the side surface of the frame body 2 or forming a castellation conductor formed by forming a conductor on the inner surface of the groove. Therefore, it can also be carried out via the side conductors or castellation conductors. In this case, the bonding material 5 may not be conductive.

絶縁基体8は、下面中央部に半導体素子9を収容するための凹部を有する酸化アルミニウム質焼結体や窒化アルミニウム質焼結体、ムライト質焼結体、ガラス‐セラミック等のセラミックス材料から成る略四角形状の積層体であり、タングステンやモリブデン、銅、銀等の金属粉末から成り、タングステン等の金属粉末に適当な有機バインダ、溶剤、可塑剤、分散材を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して複数のセラミックグリーンシートに印刷塗布し、それを積層するとともに約1600℃で焼成することによって形成される。   The insulating base 8 is substantially made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or a glass-ceramic having a recess for accommodating the semiconductor element 9 at the center of the lower surface. This is a quadrangular laminate made of a metal powder such as tungsten, molybdenum, copper, silver, etc., and a metallized paste obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersing material to a metal powder such as tungsten. It is formed by applying and printing on a plurality of ceramic green sheets using a conventionally well-known screen printing method, laminating them and firing at about 1600 ° C.

絶縁基体8の上面には第一電極7が形成されている。第一電極7は、絶縁基体8として例えばセラミック基体を用いる場合、セラミック基体との密着がよいチタン(Ti)等のを密着金属層、白金(Pt)等の拡散防止層、金(Au)等の主導体層の順番で蒸着して形成する。なお、第一電極7は、拡散防止層や主導体層を形成せず、TiのみもしくはTi−Pt合金のみで形成しても良い。   A first electrode 7 is formed on the upper surface of the insulating substrate 8. When the first electrode 7 uses, for example, a ceramic substrate as the insulating substrate 8, a titanium (Ti) or the like having good adhesion to the ceramic substrate is used as an adhesion metal layer, a diffusion preventing layer such as platinum (Pt), gold (Au) or the like. The main conductor layers are deposited in this order. The first electrode 7 may be formed of only Ti or Ti—Pt alloy without forming the diffusion prevention layer or the main conductor layer.

ここで、各金属層の総膜厚、つまり第一電極7の厚みは、膜の応力を低減するために、1um以下が望ましい。その加工方法は真空蒸着法、スパッタリング法等の薄膜形成技術を用いて形成するのが、加工温度による絶縁基体8の変形等が発生しないので好ましい。   Here, the total film thickness of each metal layer, that is, the thickness of the first electrode 7 is preferably 1 μm or less in order to reduce the stress of the film. The processing method is preferably formed by using a thin film forming technique such as a vacuum deposition method or a sputtering method because deformation of the insulating substrate 8 due to the processing temperature does not occur.

可撓性基板1上に第2電極3および枠体2を形成後、絶縁基体8と半田等の接合材5を用いて接合することで、本発明の圧力センサとなる。接合材5は例えば、AuSn合金のプリホームを用いて絶縁基体8の接合用電極6と可撓性基板1の接合用シールリング4とを所定の温度加熱を行い接合する。接合材5は、第二電極3の薄膜金属に悪影響を与えない500度以下で溶融する材料が好ましい。   After the second electrode 3 and the frame 2 are formed on the flexible substrate 1, the pressure sensor of the present invention is obtained by bonding the insulating substrate 8 and the bonding material 5 such as solder. For example, the bonding material 5 is bonded to the bonding electrode 6 of the insulating substrate 8 and the bonding seal ring 4 of the flexible substrate 1 by heating at a predetermined temperature using an AuSn alloy preform. The bonding material 5 is preferably a material that melts at 500 degrees or less that does not adversely affect the thin film metal of the second electrode 3.

また、枠体2は、アルミナセラミックス等のセラミックスからなり、可撓性基板1に接合するか、または可撓性基板1と一体に形成してもよい。好ましくは、可撓性基板1の一主面に真空蒸着法、スパッタリング法等の薄膜形成技術を用いて枠体2を形成するのがよい。これにより、形成温度を500度以下の温度で加工できるため可撓性基板1が変形しにくく、高精度の圧力センサとすることができる。   The frame body 2 is made of ceramics such as alumina ceramics, and may be joined to the flexible substrate 1 or formed integrally with the flexible substrate 1. Preferably, the frame 2 is formed on one main surface of the flexible substrate 1 by using a thin film forming technique such as a vacuum deposition method or a sputtering method. Thereby, since the forming temperature can be processed at a temperature of 500 degrees or less, the flexible substrate 1 is not easily deformed, and a highly accurate pressure sensor can be obtained.

さらに好ましくは、枠体2の厚みは5〜10μmがよい。厚みが、5μm未満となると導電性異物による電極間短絡が発生する傾向がある。厚みが、10μm以上となると枠体2を形成した残留応力で可撓性基板1が変形しやすい傾向がある。   More preferably, the thickness of the frame 2 is 5 to 10 μm. If the thickness is less than 5 μm, a short circuit between electrodes due to conductive foreign matter tends to occur. When the thickness is 10 μm or more, the flexible substrate 1 tends to be deformed by the residual stress that forms the frame 2.

さらに好ましくは、図2のように接合用電極6のすべてを枠体2の外側に形成するのが良い。これにより、枠体2の下面を絶縁基体8上に直接接触させることができ、接合用電極6の金属膜によるヒステリシスの影響を受けなくなるので、よりヒステリシスの影響の小さい高精度の圧力センサとすることができる。   More preferably, all of the bonding electrodes 6 are formed outside the frame 2 as shown in FIG. As a result, the lower surface of the frame 2 can be brought into direct contact with the insulating base 8 and is not affected by hysteresis due to the metal film of the bonding electrode 6, so that a highly accurate pressure sensor with less influence of hysteresis is obtained. be able to.

さらに好ましくは、枠体2と可撓性基板1とを一体で形成し、枠体2の下面を絶縁基体8上に直接接触させたことから、可撓性基板1が圧力を受けて変形したときにもっとも応力を受けやすい可撓性基板1と枠体2との接触界面を無くして応力を分散することができる。さらに、枠体2の下面を絶縁基体8上に直接接触させることによって、枠体2と絶縁基体8との間に他の部材を介す必要がない。つまり、従来のように可撓性基板1と絶縁基体8とを接合するためにそれらの間に接合材や接合用の電極を設ける必要がなく、接合材や接合用の電極等のヒステリシスが生じる因子を減少させてヒステリシスの低減をより効果的に行なうことができる。   More preferably, since the frame body 2 and the flexible substrate 1 are integrally formed and the lower surface of the frame body 2 is brought into direct contact with the insulating base 8, the flexible substrate 1 is deformed by receiving pressure. Sometimes the stress can be dispersed without the contact interface between the flexible substrate 1 and the frame 2 that are most susceptible to stress. Further, by directly contacting the lower surface of the frame body 2 on the insulating base body 8, there is no need to interpose another member between the frame body 2 and the insulating base body 8. That is, it is not necessary to provide a bonding material or a bonding electrode between them in order to bond the flexible substrate 1 and the insulating base 8 as in the prior art, and hysteresis occurs in the bonding material or the bonding electrode. Hysteresis can be reduced more effectively by reducing the factor.

また、可撓性基板1を接合した絶縁基体8に、その下面中央部に形成された凹部の底面中央に半導体素子9を搭載し電気的に接続した後、凹部を例えばエポキシ樹脂等の封止樹脂10を充填して半導体素子9を封止することで、ヒステリシスを低減した高精度の圧力センサとなる。   Further, after the semiconductor element 9 is mounted and electrically connected to the center of the bottom surface of the recess formed in the central portion of the lower surface of the insulating substrate 8 to which the flexible substrate 1 is bonded, the recess is sealed with, for example, epoxy resin or the like. By filling the resin 10 and sealing the semiconductor element 9, a highly accurate pressure sensor with reduced hysteresis is obtained.

以上のように本発明の圧力センサによれば、可撓性基板1は、セラミックからなる枠体2から外側に突出した外周部で全周にわたって絶縁基体8の上面に接合材5を介して接合していることから、ヒステリシスが低減された圧力センサを提供することができる。   As described above, according to the pressure sensor of the present invention, the flexible substrate 1 is bonded to the upper surface of the insulating base 8 via the bonding material 5 over the entire circumference at the outer peripheral portion protruding outward from the frame 2 made of ceramic. Thus, a pressure sensor with reduced hysteresis can be provided.

また、研磨した可撓性基板1の一方主面に薄膜形成技術を用いて枠体2を形成し、絶縁板の一方主面に薄膜形成技術を用いて第二電極3を形成することにより製造工程中での高温による熱変形や熱衝撃を受けることがなくなることから、静電容量のばらつきが低減するのでヒステリシスのばらつきが低減された圧力センサを提供することができる。   Further, the frame body 2 is formed on one main surface of the polished flexible substrate 1 using a thin film forming technique, and the second electrode 3 is formed on one main surface of the insulating plate using a thin film forming technique. Since it is no longer subjected to thermal deformation or thermal shock due to high temperatures in the process, variation in capacitance is reduced, so that a pressure sensor with reduced variation in hysteresis can be provided.

また、本発明の圧力センサは、枠体2を絶縁基体8の上面に接合または一体化し、枠体2の上面が可撓性基板1の下面と接触するようにしてもよい。   In the pressure sensor of the present invention, the frame 2 may be joined or integrated with the upper surface of the insulating base 8 so that the upper surface of the frame 2 is in contact with the lower surface of the flexible substrate 1.

さらには、枠体2の上下面ともに、それぞれ絶縁基体8および可撓性基板1と接触するようにしてもよい。   Furthermore, the upper and lower surfaces of the frame 2 may be in contact with the insulating base 8 and the flexible substrate 1, respectively.

なお、本発明は上記最良の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変更を行うことは何等差し支えない。例えば、可撓性基板1や枠体2はアルミナセラミックでなくても窒化アルミニウム、ムライト、ガラス‐セラミックス等のセラミック材料でも何等差し支えない。   The present invention is not limited to the above-described best mode, and various modifications can be made without departing from the spirit of the present invention. For example, the flexible substrate 1 and the frame body 2 may be made of ceramic materials such as aluminum nitride, mullite, glass-ceramics, etc. even if they are not alumina ceramics.

本発明の圧力センサの実施形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the pressure sensor of this invention. 本発明の圧力センサの実施形態の他の一例を示す断面図である。It is sectional drawing which shows another example of embodiment of the pressure sensor of this invention. 従来の圧力センサの実施形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the conventional pressure sensor.

符号の説明Explanation of symbols

1:可撓性基板
2:枠体
3:第二電極
5:接合材
7:第一電極
8:絶縁基体
9:半導体素子
11:配線導体
1: Flexible substrate 2: Frame 3: Second electrode 5: Bonding material 7: First electrode 8: Insulating substrate 9: Semiconductor element 11: Wiring conductor

Claims (9)

絶縁基体の上面に枠体を介して可撓性基板を載置させ、前記枠体の内側に位置する前記絶縁基体の上面と前記可撓性基板の下面に、絶縁基体−可撓性基板間の間隙を介して対向する一対の容量形成電極を形成してなる圧力センサであって、前記絶縁基体及び前記可撓性基板の外周部を前記枠体の外周面よりも外方に延出させるとともに、該延出部同士をその全周にわたって環状の接合材で接合したことを特徴とする圧力センサ。 A flexible substrate is placed on the upper surface of the insulating base via a frame, and the upper surface of the insulating base located inside the frame and the lower surface of the flexible substrate are placed between the insulating base and the flexible substrate. A pressure sensor formed by forming a pair of capacitance forming electrodes facing each other through a gap between the insulating base and the outer periphery of the flexible substrate, extending outward from the outer peripheral surface of the frame body. In addition, a pressure sensor characterized in that the extending portions are joined to each other by an annular joining material over the entire circumference. 前記枠体と前記可撓性基板とを一体で形成し、前記枠体の下面を前記絶縁基体上に直接接触させたことを特徴とする請求項1に記載の圧力センサ。 2. The pressure sensor according to claim 1, wherein the frame and the flexible substrate are integrally formed, and a lower surface of the frame is in direct contact with the insulating base. 前記枠体の内周面と外周面との間の間隔を前記可撓性基板に向かうに伴って漸次大きくしたことを特徴とする請求項1または請求項2に記載の圧力センサ。 3. The pressure sensor according to claim 1, wherein an interval between the inner peripheral surface and the outer peripheral surface of the frame body is gradually increased toward the flexible substrate. 前記絶縁基体の下面に、前記絶縁基体内の配線導体を介して前記一対の容量形成電極に電気的に接続される半導体素子が搭載されていることを特徴とする請求項1乃至請求項3のいずれかに記載の圧力センサ。 4. The semiconductor element according to claim 1, wherein a semiconductor element electrically connected to the pair of capacitance forming electrodes via a wiring conductor in the insulating base is mounted on a lower surface of the insulating base. The pressure sensor according to any one of the above. 前記絶縁基体の下面に凹部が形成されており、該凹部内に、前記絶縁基体内の配線導体を介して前記一対の容量形成電極に電気的に接続される半導体素子が収容されていることを特徴とする請求項1乃至請求項3のいずれかに記載の圧力センサ。 A recess is formed in the lower surface of the insulating base, and a semiconductor element that is electrically connected to the pair of capacitance forming electrodes via a wiring conductor in the insulating base is accommodated in the recess. The pressure sensor according to any one of claims 1 to 3, characterized in that: 前記半導体素子が封止樹脂で被覆されていることを特徴とする請求項4または請求項5に記載の圧力センサ。 6. The pressure sensor according to claim 4, wherein the semiconductor element is covered with a sealing resin. 前記絶縁基体の下面に、前記凹部の開口部を塞ぐ蓋体が取着されていることを特徴とする請求項5または請求項6に記載の圧力センサ。 The pressure sensor according to claim 5 or 6, wherein a lid for closing the opening of the recess is attached to the lower surface of the insulating base. 前記枠体が、前記絶縁基体の上面もしくは前記可撓性基板の下面に対し薄膜手法にて形成された被膜から成ることを特徴とする請求項1乃至請求項7に記載の圧力センサ。 8. The pressure sensor according to claim 1, wherein the frame body is made of a film formed by a thin film method on the upper surface of the insulating base or the lower surface of the flexible substrate. 前記接合材がろう材から成ることを特徴とする請求項1乃至請求項8のいずれかに記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 8, wherein the bonding material is made of a brazing material.
JP2005016053A 2004-11-26 2005-01-24 Pressure sensor Pending JP2006177919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016053A JP2006177919A (en) 2004-11-26 2005-01-24 Pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004342933 2004-11-26
JP2005016053A JP2006177919A (en) 2004-11-26 2005-01-24 Pressure sensor

Publications (1)

Publication Number Publication Date
JP2006177919A true JP2006177919A (en) 2006-07-06

Family

ID=36732151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016053A Pending JP2006177919A (en) 2004-11-26 2005-01-24 Pressure sensor

Country Status (1)

Country Link
JP (1) JP2006177919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7958784B2 (en) 2006-12-27 2011-06-14 Fujitsu Limited Pressure detector and electronic apparatus having the same
JP2011519041A (en) * 2008-04-28 2011-06-30 エプコス アクチエンゲゼルシャフト Pressure sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7958784B2 (en) 2006-12-27 2011-06-14 Fujitsu Limited Pressure detector and electronic apparatus having the same
JP2011519041A (en) * 2008-04-28 2011-06-30 エプコス アクチエンゲゼルシャフト Pressure sensor
JP2014160084A (en) * 2008-04-28 2014-09-04 Epcos Ag Pressure sensor

Similar Documents

Publication Publication Date Title
JP2006177919A (en) Pressure sensor
JP2002107254A (en) Package for pressure detector
JP3545385B2 (en) Pressure sensor package and method of manufacturing the same
JP2851732B2 (en) Electronic component storage package
JP3716165B2 (en) Pressure detection device package and pressure detection device
JP4822624B2 (en) Package for pressure detection device
JP2003042873A (en) Package for pressure detecting apparatus
JP2004340575A (en) Package for pressure-sensitive device
JP4974424B2 (en) Package for pressure detection device
JP2004205377A (en) Package for pressure detection device
JP4557405B2 (en) Package for pressure detection device
JP4508666B2 (en) Package for pressure detection device
JP2010010165A (en) Electronic component module
JP3878836B2 (en) Package for pressure detection device
JP3955067B2 (en) Pressure detection device package and pressure detection device
JP4794072B2 (en) Package for pressure detection device
JP2004117172A (en) Package for pressure detector
JP2005156410A (en) Package for pressure-detecting device
JP2003065874A (en) Package for pressure detection device
JP2003065873A (en) Package for pressure detection device
JP2009088113A (en) Package for sensor, the sensor, and production method for package for the sensors
JP2003139639A (en) Package for pressure detecting device
JP2005156433A (en) Package for pressure-detecting device and manufacturing method therefor
JP2003130744A (en) Package for pressure-detecting apparatus
JP2003065868A (en) Package for pressure detection device