JP2006177713A - Inspection/calibration artifact of shape measuring machine - Google Patents

Inspection/calibration artifact of shape measuring machine Download PDF

Info

Publication number
JP2006177713A
JP2006177713A JP2004369454A JP2004369454A JP2006177713A JP 2006177713 A JP2006177713 A JP 2006177713A JP 2004369454 A JP2004369454 A JP 2004369454A JP 2004369454 A JP2004369454 A JP 2004369454A JP 2006177713 A JP2006177713 A JP 2006177713A
Authority
JP
Japan
Prior art keywords
artifact
groove
measuring machine
shape
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004369454A
Other languages
Japanese (ja)
Inventor
Masaharu Komori
雅晴 小森
Aizo Kubo
愛三 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2004369454A priority Critical patent/JP2006177713A/en
Publication of JP2006177713A publication Critical patent/JP2006177713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artifact used for the inspection/calibration of a profile measuring machine in which the profile measuring machine can inspect/calibrate correctly how much the profile measuring machine can measure the geometry frequency component of the surface to be measured of an article to be measured, things of a plurality of same geometries can be produced with high precision and which has the profile suitable for grasping or measuring the installation state in the case of market-making and inspection/calibration. <P>SOLUTION: A factor artifact 10 includes a pair of end faces 12 and 14 of parallel mutually, and an outer peripheral surface 16 which extends among the pair of the end faces 12 and 14. The outer peripheral surface 16 includes a reference part contained in the cylinder face of a flat surface which extends right-angled to the pair of the end faces. At least one end face 12 has one, two or more grooves 22, 24 and 26 which extend to a circular state or a rectilinear state, and a flat surface part. The grooves 22, 24 and 26 each have a groove width which is 20 or more times as large as a groove depth. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、形状測定機の検査・校正アーティファクトに関し、詳しくは、歯車歯面形状測定機や三次元座標測定機などの形状測定機の輪郭曲線計測精度に対する検査・校正に用いるアーティファクトに関する。   The present invention relates to an inspection / calibration artifact of a shape measuring machine, and more particularly to an artifact used for inspection / calibration of the contour curve measurement accuracy of a shape measuring machine such as a gear tooth surface shape measuring machine or a three-dimensional coordinate measuring machine.

機械部品の性能は、作動面の表面形状のミクロンからサブミクロンオーダーのわずかな形状の違いに影響される場合があり、形状測定機を用いて機械部品の作動面形状を測定して、品質管理が行われている。世界各地の工場で同一製品が製造される場合には、世界中で同一品質を保証するための形状測定が重要となる。近年、国際規格(ISO)による品質保証体制の浸透により、国際的な取引において、形状測定による品質保証が求められるようになってきている。   The performance of machine parts may be affected by slight differences in the surface shape of the working surface from micron to sub-micron order. Using a shape measuring machine, the working surface shape of the machine part is measured to control quality. Has been done. When the same products are manufactured in factories around the world, shape measurement is important to guarantee the same quality all over the world. In recent years, due to the penetration of quality assurance systems by international standards (ISO), quality assurance by shape measurement has been required in international transactions.

従来、形状測定機は、形状測定機ごとに適宜な方法で検査・校正が行われている。例えば、測定子を用いる三次元座標測定機の校正には、基準球や球面形状を有する部材が用いられている(例えば、特許文献1、非特許文献1参照)。
特開平10−221053号公報 JIS B−7440−2:2003(財団法人日本規格協会)
Conventionally, a shape measuring machine is inspected and calibrated by an appropriate method for each shape measuring machine. For example, a reference sphere or a member having a spherical shape is used for calibration of a three-dimensional coordinate measuring machine using a probe (see, for example, Patent Document 1 and Non-Patent Document 1).
Japanese Patent Laid-Open No. 10-221053 JIS B-7440-2: 2003 (Japanese Standards Association)

三次元座標測定機や歯車歯面形状測定機などの形状測定機で機械部品の作動面を測定した結果は、一般に、その形状偏差を示す凹凸の曲線として出力される。その凹凸曲線の形状の状態、すなわち、形状曲線の周波数特性が正しいか否かを検査する方法は今までなかった。   The result of measuring the working surface of a machine part with a shape measuring machine such as a three-dimensional coordinate measuring machine or a gear tooth surface shape measuring machine is generally output as an uneven curve indicating the shape deviation. Until now, there has been no method for inspecting the shape of the uneven curve, that is, whether the frequency characteristics of the shape curve are correct.

機械部品の形状評価には、三次元座標測定機に代表される形状測定機が広く用いられている。たとえば図10(a)に示すように、接触式の形状測定機を用いて測定を行う場合、矢印58で示したように、先端部53が球形をした測定子52が被測定物の表面54に沿って移動し、測定した形状が出力される。形状通りの測定結果が得られるのが理想的であるが、例えば図10(b)に示すように、実際の形状とかなり異なる測定結果56が得られる場合がある。これは、測定子52の先端部53の形状や、測定子52から検出部に変位を伝達する機構部分の弾性変形などのハードウエアに起因するフィルタ効果や、形状測定機の内部で測定データを演算処理するソフトウエアに起因するフィルタ効果などによる。フィルタ効果は形状測定機の機種やメーカーによって異なり、フィルタ効果による測定誤差を完全に取り除くことはできない。すなわち、形状測定機ごとに異なる測定特性となる。   For shape evaluation of machine parts, shape measuring machines represented by a three-dimensional coordinate measuring machine are widely used. For example, as shown in FIG. 10A, when measurement is performed using a contact-type shape measuring machine, a probe 52 having a spherical tip 53 as shown by an arrow 58 is a surface 54 of the object to be measured. The measured shape is output. Ideally, a measurement result that conforms to the shape is obtained, but as shown in FIG. 10B, for example, a measurement result 56 that is considerably different from the actual shape may be obtained. This is because the filter effect caused by hardware such as the shape of the tip 53 of the probe 52, the elastic deformation of the mechanism part that transmits the displacement from the probe 52 to the detector, and the measurement data inside the shape measuring machine. This is due to the filter effect caused by the software to be processed. The filter effect differs depending on the model and manufacturer of the shape measuring machine, and measurement errors due to the filter effect cannot be completely removed. That is, the measurement characteristics are different for each shape measuring machine.

このような測定特性の差異を検査する方法は今までなかったが、形状周波数特性が既知のアーティファクトを測定することによって、形状測定機が被測定物の被測定面の形状周波数成分をどの程度正しく測定することができるかを検査・校正することができると考えられる。   There has never been a method for inspecting such a difference in measurement characteristics, but by measuring artifacts with known shape frequency characteristics, the shape measuring machine can determine how accurately the shape frequency component of the surface to be measured is measured. It is considered that it can be inspected and calibrated whether it can be measured.

その場合、アーティファクトは、値付けや形状測定機の検査・校正を行う際に負担ができるだけ小さくなるように、設置状態の把握や測定が容易な形状であることが必要である。また、形状測定機の機種やメーカーを問わず、世界各地で検査・校正に用いることができるように、複数個の同一形状のものを高精度に作製できる必要がある。   In that case, the artifact needs to have a shape that allows easy grasping and measurement of the installation state so that a burden is minimized as much as possible when performing pricing or inspection / calibration of the shape measuring machine. Moreover, it is necessary to be able to manufacture a plurality of the same shape with high accuracy so that it can be used for inspection and calibration in various parts of the world regardless of the shape measuring machine model or manufacturer.

本発明は、かかる実情に鑑み、形状測定機が被測定物の被測定面の形状周波数成分をどの程度正しく測定することができるかを検査・校正することができ、複数個の同じ形状のものを高精度に作製することができ、値付けや検査・校正の際の設置状態の把握や測定に好適な形状を有する、形状測定機の検査・校正に用いるアーティファクトを提供しようとするものである。   In view of such a situation, the present invention can inspect and calibrate to what extent the shape measuring machine can measure the shape frequency component of the surface to be measured of the object to be measured. It is intended to provide an artifact used for inspection and calibration of profilometers that has a shape suitable for grasping and measuring installation conditions during pricing, inspection and calibration. .

本発明は、上記課題を解決するために、以下のように構成した、形状測定機の検査・校正に用いる要素アーティファクト、並びに歯車歯面形状測定機の検査・校正に用いる歯車用アーティファクトを提供する。要素アーティファクトは、それ自体単独で、アーティファクトとして形状測定機の検査・校正に用いることができる。あるいは、アーティファクトの一部として、アーティファクトに組み込まれた状態で、形状測定機の検査・校正に用いることができる。   In order to solve the above-described problems, the present invention provides element artifacts used for inspection / calibration of a shape measuring machine and gear artifacts used for inspection / calibration of a gear tooth surface shape measuring machine configured as follows. . The element artifact itself can be used alone as an artifact for inspection / calibration of a shape measuring machine. Alternatively, as a part of the artifact, it can be used for inspection / calibration of the shape measuring machine in a state of being incorporated in the artifact.

形状測定機の検査・校正に用いる要素アーティファクトは、互いに平行な一対の端面と、前記一対の端面の間に延在する外周面とを有する。前記外周面は基準部を含む。該基準部は、前記一対の端面に対して直角に延在する円筒面又は平面に含まれる。少なくとも一方の前記端面は、円弧状又は直線状に延在する1又は2以上の溝と、平面部分とを有する。前記溝は、溝幅が溝深さの20倍以上である。   An element artifact used for inspection / calibration of a shape measuring machine has a pair of end faces parallel to each other and an outer peripheral surface extending between the pair of end faces. The outer peripheral surface includes a reference portion. The reference portion is included in a cylindrical surface or a plane that extends at right angles to the pair of end surfaces. At least one of the end faces has one or more grooves extending in an arc shape or a straight line shape, and a plane portion. The groove has a groove width that is 20 times or more the groove depth.

上記構成において、溝は、外周面の基準部に対して高い位置精度で形成することができる。溝が形成された端面を測定すると、端面の溝以外の平面部分では直線状の測定データが得られ、溝の部分では溝の形状に対応して測定データが変化するはずであるので、測定データの形状を評価して、測定機の検査や校正を行うことができる。すなわち、溝の形状・寸法、ピッチなどを適宜に選択した要素アーティファクトを測定することにより、形状測定機が被測定物の被測定面の形状周波数成分をどの程度正しく測定することができるかを、検査・校正することができる。   In the above configuration, the groove can be formed with high positional accuracy with respect to the reference portion of the outer peripheral surface. When measuring the end face where the groove is formed, linear measurement data should be obtained in the flat part other than the groove on the end face, and the measurement data should change corresponding to the shape of the groove in the groove part. The shape of the measuring device can be evaluated to inspect and calibrate the measuring machine. That is, by measuring the element artifact appropriately selected the groove shape, size, pitch, etc., how accurately the shape measuring machine can measure the shape frequency component of the measurement surface of the object to be measured, Can be inspected and calibrated.

上記構成の要素アーティファクトは、形状が単純であるため、複数個の同じ形状のものを高精度に作製することができる。   Since the element artifact having the above configuration is simple in shape, a plurality of elements having the same shape can be manufactured with high accuracy.

また、上記構成の要素アーティファクトを任意位置に任意の姿勢で設置しても、溝の形成された端面の平面部分と、溝を形成する基準となった外周面の基準部とを測定することにより、要素アーティファクトの設置状態が求まり、溝の位置を容易に知ることができ、形状測定機の検査・校正を容易に行うことができる。   In addition, even if the element artifact having the above configuration is installed at an arbitrary position and in an arbitrary posture, by measuring the planar portion of the end surface where the groove is formed and the reference portion of the outer peripheral surface which is the reference for forming the groove The installation state of the element artifact is obtained, the position of the groove can be easily known, and the shape measuring machine can be easily inspected and calibrated.

一般に、形状測定機による測定結果、すなわち被測定面を走査した輪郭曲線は、測定子移動方向と形状偏差定義方向とで異なる倍率で二次元表示され、形状偏差定義方向の倍率は測定子移動方向の倍率の25倍以上である。上記構成のように、端面に形成される溝の溝幅が溝深さの20倍以上で、溝以外に平面部分があると、測定結果全体から、溝を測定した部分を判別することが容易である。   In general, the measurement result of the shape measuring machine, that is, the contour curve scanned over the surface to be measured, is displayed two-dimensionally with different magnifications in the direction of movement of the probe and the direction of definition of the shape deviation. The magnification is 25 times or more. As in the above configuration, when the groove width of the groove formed on the end face is 20 times or more of the groove depth and there is a flat portion other than the groove, it is easy to determine the portion where the groove is measured from the entire measurement result It is.

具体的な一態様としては、前記基準部は、前記一対の端面に対して直角に延在する円筒面に含まれる。少なくとも一方の前記端面は、前記基準部を含む前記円筒面の中心軸と同心にそれぞれ溝断面形状と深さが一定の1又は2以上の、溝幅が溝深さの20倍以上である前記溝と、前記平面部分とを有する。   As a specific aspect, the reference portion is included in a cylindrical surface extending at a right angle to the pair of end surfaces. At least one of the end faces has one or more groove cross-sectional shapes and a constant depth concentrically with the central axis of the cylindrical surface including the reference portion, and the groove width is 20 times or more the groove depth. A groove and the planar portion;

上記構成において、要素アーティファクトは、一対の端面に直角な円筒面に含まれる基準部内のどの位置の点も、円筒面の中心軸からの距離が等しい。要素アーティファクトの形状は、高精度に加工することができ、端面に同心円状の溝も精度よく形成することができる。また、複数個の同じ形状のものを高精度に作製することも比較的容易である。   In the above configuration, the element artifact has the same distance from the central axis of the cylindrical surface at any point in the reference portion included in the cylindrical surface perpendicular to the pair of end surfaces. The shape of the element artifact can be processed with high accuracy, and concentric grooves can also be formed on the end surface with high accuracy. It is also relatively easy to produce a plurality of the same shape with high accuracy.

上記構成の要素アーティファクトは、端面同士が平行であり、端面と、基準部を含む円筒面とが直角であるので、値付けや検査・校正の際には、例えば形状測定機のテーブル面等の任意位置に任意の姿勢で設置した場合でも、円筒面に含まれる基準部上の数点の位置測定結果から中心軸、すなわち溝の中心位置を求め、さらに、端面の平面部分の数点の位置を測定することにより、設置状態を正確に把握することができる。   In the element artifact having the above configuration, the end surfaces are parallel to each other, and the end surface and the cylindrical surface including the reference portion are perpendicular to each other. Therefore, in pricing, inspection, or calibration, for example, a table surface of a shape measuring machine Even if it is installed at an arbitrary position and in an arbitrary posture, the central axis, that is, the center position of the groove is obtained from the position measurement results of several points on the reference part included in the cylindrical surface, and further, the position of several points on the planar portion of the end surface By measuring, the installation state can be accurately grasped.

好ましくは、前記溝が形成された前記端面の前記中心軸が通る位置に、前記端面の前記平面部分から後退又は突出する窪み又は突起が形成される。   Preferably, a recess or protrusion that retreats or protrudes from the planar portion of the end surface is formed at a position through which the central axis of the end surface in which the groove is formed passes.

上記構成によれば、形状測定機により、端面の窪み又は突起を通るように直線状に測定すれば、測定子移動方向は中心軸を通る半径方向になり、溝に対して直角になるので、検査・校正結果に紛れ込む不確かさを最小にすることができる。   According to the above configuration, if the shape measuring machine is linearly measured so as to pass through the depression or protrusion on the end face, the moving direction of the probe becomes a radial direction passing through the central axis, and is perpendicular to the groove. Uncertainty that is mixed into the inspection and calibration results can be minimized.

好ましくは、前記端面に、断面形状の異なる前記溝が形成される。   Preferably, the groove having a different cross-sectional shape is formed on the end face.

上記構成によれば、形状周波数が異なる溝を測定することができるので、1つの要素アーティファクトで異なる形状周波数について検査・校正を行うことができる。   According to the above configuration, since grooves having different shape frequencies can be measured, different shape frequencies can be inspected and calibrated with one element artifact.

好ましくは、溝深さが異なる前記溝が形成され、前記溝深さの最大値は、前記溝深さの最小値の10倍以上である。   Preferably, the grooves having different groove depths are formed, and the maximum value of the groove depth is 10 times or more the minimum value of the groove depth.

上記構成によれば、溝を測定したときに、測定値が1桁以上異なるはずであるので、測定感度とその直線性を評価することができる。   According to the above configuration, when the groove is measured, the measured value should be different by one digit or more, so that the measurement sensitivity and its linearity can be evaluated.

好ましくは、前記溝の断面形状が略V字状である。   Preferably, the cross-sectional shape of the groove is substantially V-shaped.

上記構成によれば、形状測定機で溝を測定したときに、直線が折れ曲がったことに対応して変化した測定データが得られ、その出力と理論曲線との差から、その形状測定機の形状周波数測定能力を知ることができる。また、直感的に分かりやすいため、検査・校正が一層、容易になる。   According to the above configuration, when the groove is measured with the shape measuring machine, measurement data that changes corresponding to the bending of the straight line is obtained, and from the difference between the output and the theoretical curve, the shape of the shape measuring machine is obtained. You can know the frequency measurement capability. In addition, since it is intuitively easy to understand, inspection and calibration become easier.

上述した要素アーティファクトは、それ自体単独でアーティファクトとして形状測定機の検査・校正に用いることができるが、以下のように、歯車歯面形状測定機の検定・校正に用いる歯車用アーティファクトの一部に組み込んで用いることもできる。   The above-mentioned element artifacts can be used alone for inspection / calibration of shape measuring machines as artifacts, but are included in some of the gear artifacts used for verification / calibration of gear tooth profile measuring machines as follows. It can also be incorporated and used.

歯車歯面形状測定機の検査・校正に用いる歯車用アーティファクトは、回転自在に支持可能な治具に、上述したいずれかの構成の要素アーティファクトが取り付けられてなり、前記要素アーティファクトの前記端面が前記治具の回転軸から離れて該回転軸と略平行に延在する。   The gear artifact used for the inspection / calibration of the gear tooth surface shape measuring machine is configured such that the element artifact having any one of the above-described configurations is attached to a jig that can be rotatably supported, and the end face of the element artifact is the above-described end surface. It extends away from the rotation axis of the jig and substantially parallel to the rotation axis.

上記構成によれば、歯車の代わりに、歯車用アーティファクトについて、歯車の歯面と同様に歯車歯面形状測定機を用いて、溝が形成された要素アーティファクトの端面を測定することにより、歯車歯面形状測定機の検査・校正を行うことができる。   According to the above configuration, instead of the gear, the gear tooth is measured by measuring the end surface of the element artifact in which the groove is formed, using the gear tooth surface shape measuring machine in the same manner as the gear tooth surface. Inspection and calibration of surface shape measuring machine can be performed.

本発明のアーティファクトは、形状測定機が被測定物の被測定面の形状周波数成分をどの程度正しく測定することができるかを検査・校正することができ、複数個の同じ形状のものを高精度に作製することができ、値付けや検査・校正の際の設置状態の把握や測定に好適な形状を有する。   The artifact of the present invention can inspect and calibrate how accurately the shape measuring machine can measure the shape frequency component of the surface to be measured of the object to be measured. It has a shape suitable for grasping and measuring the installation state during pricing, inspection and calibration.

以下、本発明の実施の形態として実施例を、図1〜図8を参照しながら説明する。   Hereinafter, examples of the present invention will be described with reference to FIGS.

(実施例1)
まず、形状測定機の検査・校正に用いる要素アーティファクトの概要を、図1及び図2を参照しながら説明する。
Example 1
First, an outline of element artifacts used for inspection / calibration of a shape measuring machine will be described with reference to FIGS.

図1の断面図に示すように、要素アーティファクト4は直円柱の形状を有し、一方の端面5に、中心軸Sと同心に溝断面形状と深さが一定のV溝6が、V溝6の溝幅より大きい平面部分を残して、形成されている。   As shown in the cross-sectional view of FIG. 1, the element artifact 4 has a right circular column shape, and a V-groove 6 having a constant groove cross-sectional shape and a depth concentric with the central axis S is formed on one end face 5. It is formed leaving a plane portion larger than the groove width of 6.

要素アーティファクト4は、例えば図示した状態、すなわち、V溝6が形成された端面5を上にした状態で、形状測定機のテーブルに置き、V溝6が形成された端面5に、形状測定機の測定子2の先端部3を接触させながら測定子2を端面5に沿って移動させ、測定する。V溝6が形成された端面5について、図2に示すように、形状測定機で測定した結果8と、測定した形状測定機よりも高精度な測定機による値付け測定の結果7(例えば、国家計量標準機関(NMI)が出したサーティフィケートを用いた理論結果)とを比較することにより、形状測定機の検査・校正を行うことができる。   The element artifact 4 is placed on the table of the shape measuring machine in the state shown in the drawing, that is, with the end surface 5 on which the V-groove 6 is formed facing up, and the shape measuring machine is placed on the end surface 5 on which the V-groove 6 is formed. The probe 2 is moved along the end face 5 while making contact with the tip 3 of the probe 2, and measurement is performed. As shown in FIG. 2, the end face 5 on which the V-groove 6 is formed has a result 8 measured by a shape measuring machine, and a result 7 of a price measurement by a measuring machine with higher accuracy than the measured shape measuring machine (for example, The shape measuring machine can be inspected and calibrated by comparing it with a theoretical result using a certificate issued by the National Metrology Institute (NMI).

(実施例2)
次に、要素アーティファクトの具体例について、図3〜図6を参照しながら説明する。
(Example 2)
Next, specific examples of element artifacts will be described with reference to FIGS.

図3に示すように、要素アーティファクト10は、直円柱の形状であり、どの位置でも中心軸からの距離が等しい円筒面16と、中心軸Sに対してそれぞれ垂直な一対の端面12,14とを有する。   As shown in FIG. 3, the element artifact 10 has a right circular cylinder shape, the cylindrical surface 16 having the same distance from the central axis at any position, and a pair of end surfaces 12 and 14 perpendicular to the central axis S, respectively. Have

図3及び図4の要部拡大図に模式的に示すように、要素アーティファクト10の一方の端面12には、円筒面16の中心軸Sと同心にそれぞれ溝断面形状と深さが一定のV溝22,24,26が形成されている。図4は、横方向の倍率を相対的に小さく、縦方向の倍率を相対的に大きく図示しており、実際のV溝22,24,26の斜面の傾きは、図示したよりも緩やかであり、より水平に近い。V溝22,24,26は、断面形状が相似形で深さがそれぞれ異なり、形状周波数が異なる。これによって、1つの要素アーティファクト10で異なる形状周波数について検査・校正を行うことができる。なお、V溝22,24,26の数は1以上であればよく、図示したよりも多くても、少なくてもよい。   As schematically shown in the enlarged views of the main part of FIGS. 3 and 4, one end face 12 of the element artifact 10 has a groove cross-sectional shape and a depth that are concentric with the central axis S of the cylindrical face 16. Grooves 22, 24, and 26 are formed. FIG. 4 shows a relatively small magnification in the horizontal direction and a relatively large magnification in the vertical direction, and the inclination of the slopes of the actual V-grooves 22, 24, and 26 is gentler than shown. , More horizontal. The V grooves 22, 24, and 26 have similar cross-sectional shapes, different depths, and different shape frequencies. As a result, it is possible to inspect and calibrate different shape frequencies with one element artifact 10. The number of the V grooves 22, 24, 26 may be one or more, and may be more or less than illustrated.

端面12の中心には、円錐形状の窪み20が形成され、窪み20の円錐形状の中心軸と、円筒面16の中心軸Sとが一致するようになっている。なお、窪み20は、円錐形状以外の形状であってもよい。また、端面12から後退した窪み20の代わりに、端面12から突出した突起を形成してもよい。さらには、窪みも突起もない構成とすることも可能である。   A conical recess 20 is formed at the center of the end surface 12 so that the conical center axis of the recess 20 coincides with the center axis S of the cylindrical surface 16. The recess 20 may have a shape other than the conical shape. Further, a protrusion protruding from the end surface 12 may be formed in place of the recess 20 that is retracted from the end surface 12. Furthermore, it is also possible to adopt a configuration with no depressions or protrusions.

V溝22,24,26は、深さの最大値が深さの最小値の10倍以上大きくなるようにする。これにより、測定値が1桁以上異なるはずであるので、測定感度とその直線性を評価することができる。   The V-grooves 22, 24, and 26 are set so that the maximum depth is 10 times or more larger than the minimum depth. Thereby, since a measured value should differ 1 digit or more, a measurement sensitivity and its linearity can be evaluated.

図5の要部拡大図に模式的に示すように、V溝22,24,26や窪み20の斜面28の勾配は、形状測定機では測定子移動方向の倍率と形状偏差定義方向の倍率とが異なることを考慮して十分に緩やかにする。図5は、横方向の倍率を相対的に小さく、縦方向の倍率を相対的に大きく図示しており、実際の溝の斜面28の傾きは、図示したよりもさらに緩やかであり、より水平に近い。一般に、形状測定機による測定結果、すなわち被測定面を測定した輪郭曲線は、測定子移動方向と形状偏差定義方向とで異なる倍率で二次元表示され、測定子移動方向に対して直角方向の倍率は測定子移動方向の倍率の25倍以上である。したがって、溝幅(2L)が溝深さ(D)の20倍以上、好ましくは100倍程度の勾配とする。   As schematically shown in the enlarged view of the main part of FIG. 5, the gradient of the slopes 28 of the V grooves 22, 24, 26 and the recess 20 is determined by the magnification in the direction of movement of the probe and the magnification in the direction of defining the shape deviation. To be sufficiently relaxed considering the differences. FIG. 5 illustrates a relatively small horizontal magnification and a relatively large vertical magnification, and the actual inclination of the slope 28 of the groove is more gradual than illustrated and more horizontally. close. In general, the measurement result of a shape measuring instrument, that is, the contour curve obtained by measuring the surface to be measured, is displayed two-dimensionally at different magnifications in the direction of movement of the probe and the direction of definition of the shape deviation, and the magnification in the direction perpendicular to the direction of movement of the probe Is at least 25 times the magnification in the direction of movement of the probe. Accordingly, the gradient of the groove width (2L) is 20 times or more, preferably about 100 times the groove depth (D).

なお、V溝22,24,26は、図示した断面V字状に限るものではなく、非対称な断面形状であってもよく、さらには、U字状、W字状、円弧状や半円状、半周期またはその整数倍の正弦波状、矩形、多角形その他の断面形状にすることもできる。   The V grooves 22, 24, and 26 are not limited to the illustrated V-shaped cross section, and may be asymmetrical cross-sectional shapes, and may be U-shaped, W-shaped, arc-shaped, or semicircular. , A sine wave shape of a half cycle or an integral multiple thereof, a rectangular shape, a polygonal shape, or other cross-sectional shapes.

端面12には、平面部分を残して、V溝22,24,26を形成する。測定結果全体から、V溝22,24,26を測定した部分と他の部分とを容易に判別することができるように、V溝22,24,26の径方向両側に溝幅(2L)以上の径方向長さの平面部分が残るようにする。   V-grooves 22, 24, and 26 are formed on the end surface 12, leaving a plane portion. From the entire measurement result, the groove width (2L) or more on both radial sides of the V-grooves 22, 24, 26 so that the portion where the V-grooves 22, 24, 26 are measured can be easily distinguished from the other portions. A plane portion having a length in the radial direction is left.

要素アーティファクト10は、高精度に加工する。例えば、円筒面16の円筒度、端面12,14の平面部分の平面度、円筒面16と端面12,14の平面部分の直角度、V溝22,24,26の真円度、同軸度などについて、100nm以下の小さい公差内に収める。また、V溝22,24,26の深さや傾斜面の傾き角のばらつきも、それぞれ小さくする。要素アーティファクト10は、例えば、回転を利用した適宜な加工方法により素材から直接加工して、あるいは型を用いて加工して、複数個の同じ形状のものを、例えば100nm以下の公差で高精度に作製することができる。   The element artifact 10 is processed with high accuracy. For example, the cylindricity of the cylindrical surface 16, the flatness of the planar portion of the end surfaces 12, 14, the perpendicularity of the planar portion of the cylindrical surface 16 and the end surfaces 12, 14, the roundness of the V grooves 22, 24, 26, the coaxiality, etc. Is within a small tolerance of 100 nm or less. Further, variations in the depths of the V grooves 22, 24 and 26 and the inclination angles of the inclined surfaces are also reduced. The element artifact 10 is processed directly from a material by an appropriate processing method using rotation, for example, or processed using a mold, so that a plurality of the same shape can be accurately processed with a tolerance of, for example, 100 nm or less. Can be produced.

要素アーティファクトの具体的な一例を挙げると、母材のスタバックス鋼の表面に加工しやすい無電解ニッケルを形成した材料を、直径約40mm、高さ約50mmの円筒形状に加工し、一方の端面に、5つのV溝と中心の窪みを形成する。V溝の深さの最大値は200μm、最小値は20μmである。5つのV溝及び窪みの斜面の勾配は、図5に示したD:Lが1:50程度である。   One specific example of the element artifact is that one of the end faces is formed by processing a material formed of electroless nickel, which is easy to work on the surface of the base material, Stabux steel, into a cylindrical shape with a diameter of about 40 mm and a height of about 50 mm. In addition, five V-grooves and a central depression are formed. The maximum value of the depth of the V groove is 200 μm, and the minimum value is 20 μm. The slope of the slopes of the five V-grooves and the recesses is such that D: L shown in FIG. 5 is about 1:50.

次に、要素アーティファクト10の値付け測定について、説明する。   Next, pricing measurement of the element artifact 10 will be described.

値付け測定は、トレーサブルな測定機を用いて行う。要素アーティファクト10の端面12,14の平面部分は、平面度測定機を用いて測定する。要素アーティファクト10の円筒面16は、真円度測定機を用いて測定する。要素アーティファクト10の端面12,14の平面部分と円筒面16との直角度は、三次元座標測定機を用いて測定する。端面12の窪み20及びV溝22,24,26は、端面12の平面部分とともに、接触式あるいは非接触式のトレーサブルな測定機で、それぞれの形状を測定する。   The price measurement is performed using a traceable measuring machine. The planar portions of the end faces 12, 14 of the element artifact 10 are measured using a flatness measuring machine. The cylindrical surface 16 of the element artifact 10 is measured using a roundness measuring machine. The perpendicularity between the planar portions of the end faces 12, 14 of the element artifact 10 and the cylindrical surface 16 is measured using a three-dimensional coordinate measuring machine. The recesses 20 of the end surface 12 and the V grooves 22, 24, and 26 are measured with a contact-type or non-contact-type traceable measuring machine together with the planar portion of the end surface 12.

例えば、三次元座標測定機を用いて測定する場合、要素アーティファクト10は、V溝22,24,26が形成された端面12を上に向け、他方の端面14を下にして、三次元座標測定機のテーブル上に置く。他方の端面14は、要素アーティファクト10を設置するための面となる。   For example, when the measurement is performed using a three-dimensional coordinate measuring machine, the element artifact 10 is measured with the end face 12 in which the V-grooves 22, 24, and 26 are formed facing up and the other end face 14 is facing down. Place on the machine table. The other end surface 14 is a surface for installing the element artifact 10.

次に、値付け測定を行った要素アーティファクト10を、検査・校正のために測定する方法について説明する。   Next, a method for measuring the element artifact 10 that has been subjected to the price measurement for inspection and calibration will be described.

要素アーティファクト10を三次元座標測定機の検査・校正のために用いる場合、例えば図6に示したように、三次元座標測定機のX−Yテーブル1に、要素アーティファクト10をX,Y軸に対して斜め方向に設置する。   When the element artifact 10 is used for inspection and calibration of a three-dimensional coordinate measuring machine, for example, as shown in FIG. 6, the element artifact 10 is placed on the X and Y axes in the XY table 1 of the three-dimensional coordinate measuring machine. Install it diagonally.

このように要素アーティファクト10を設置した状態で、要素アーティファクト10の円筒面16と端面12の平面部分とを測定し、その測定結果から要素アーティファクト10の中心軸Sと端面12の位置を演算し、中心軸Sと同心に端面12に形成された窪み20及びV溝22,24,26の位置を求める。   With the element artifact 10 thus installed, the cylindrical surface 16 of the element artifact 10 and the planar portion of the end surface 12 are measured, and the center axis S of the element artifact 10 and the position of the end surface 12 are calculated from the measurement results. The positions of the recess 20 and the V-grooves 22, 24, 26 formed on the end face 12 concentrically with the central axis S are obtained.

次に、端面12について、符号42で示すように、端面中心の窪み20を通り、端面12に沿って任意方向、例えばX−Yテーブル1に対して直角でも平行でもない斜め方向に直線状に測定を行う。端面中心の窪み20を通り直線状に測定を行うことにより、測定子移動方向は、中心を通る半径方向となるため、V溝22,24,26に対して直角になるので、検査・校正に紛れ込む不確かさを最小にすることができる。   Next, as shown by reference numeral 42, the end surface 12 passes through the recess 20 at the center of the end surface, and is linearly formed in an arbitrary direction along the end surface 12, for example, an oblique direction that is neither perpendicular nor parallel to the XY table 1. Measure. By measuring linearly through the recess 20 at the center of the end face, the direction of movement of the probe becomes a radial direction passing through the center, and therefore, is perpendicular to the V-grooves 22, 24, 26. Uncertainty can be minimized.

V溝22,24,26は断面形状がV字状であるので、直線が折れ曲がったことに対応して変化した測定データが得られ、V溝22,24,26の部分が直感的に分かりやすいため、検査・校正が容易になる。   Since the V-grooves 22, 24, and 26 have a V-shaped cross section, measurement data that changes in response to bending of the straight line is obtained, and the portions of the V-grooves 22, 24, and 26 are intuitively easy to understand. Therefore, inspection / calibration becomes easy.

また、要素アーティファクト10は、円筒面16と端面12の平面部分とを測定することにより設置状態が分かるので、要素アーティファクト10を適宜な姿勢で設置すれば、端面12を任意方向に測定することができる。したがって、形状測定機の三次元空間的な任意な領域における任意の三次元方向の測定特性について、検査・校正を行うことができる。   Moreover, since the installation state of the element artifact 10 can be determined by measuring the cylindrical surface 16 and the planar portion of the end surface 12, the end surface 12 can be measured in an arbitrary direction if the element artifact 10 is installed in an appropriate posture. it can. Therefore, it is possible to inspect and calibrate measurement characteristics in an arbitrary three-dimensional direction in an arbitrary three-dimensional spatial region of the shape measuring machine.

(実施例3)
次に、歯車歯面形状測定機の検査・校正に用いる歯車用アーティファクト40について、図7及び図8を参照しながら説明する。
(Example 3)
Next, the gear artifact 40 used for the inspection / calibration of the gear tooth surface shape measuring machine will be described with reference to FIGS.

図7に示すように、歯車用アーティファクト40は、実施例2の要素アーティファクト10を治具30に取り付けたものである。治具30は、歯車歯面形状測定機の測定対象の歯車と同程度の寸法である。治具30には、軸32の中間に形成されたフランジ34に、要素アーティファクト10を適宜な方法で固定する。要素アーティファクト10は、治具30に固定されたとき、端面12が、歯車歯面形状測定機で測定する歯車の歯面と略同じ位置に設置される。   As shown in FIG. 7, the gear artifact 40 is obtained by attaching the element artifact 10 of the second embodiment to the jig 30. The jig 30 has the same size as the measurement target gear of the gear tooth surface shape measuring machine. In the jig 30, the element artifact 10 is fixed to a flange 34 formed in the middle of the shaft 32 by an appropriate method. When the element artifact 10 is fixed to the jig 30, the end face 12 is installed at substantially the same position as the gear tooth surface measured by the gear tooth surface shape measuring machine.

歯車用アーティファクト40は、治具30に対する要素アーティファクト10の位置を正確に値付け測定する。具体的には、治具30の軸32の両端部分32a,32bと、要素アーティファクト10の円筒面16及び端面12を、値付け測定する。治具30の軸32の両端部分32a,32bの測定結果から、中心軸Tの位置を求める。同様に、要素アーティファクト10の円筒面16の測定結果から、要素アーティファクト10の中心軸Sの位置を求める。中心軸Sの位置と、要素アーティファクト10の端面12の測定結果とから、治具30の軸Tに対する端面12の中心位置と傾き方向を求める。   The gear artifact 40 accurately measures and measures the position of the element artifact 10 with respect to the jig 30. Specifically, both end portions 32a and 32b of the shaft 32 of the jig 30 and the cylindrical surface 16 and the end surface 12 of the element artifact 10 are measured by pricing. From the measurement results of both end portions 32a and 32b of the shaft 32 of the jig 30, the position of the central axis T is obtained. Similarly, the position of the central axis S of the element artifact 10 is obtained from the measurement result of the cylindrical surface 16 of the element artifact 10. From the position of the center axis S and the measurement result of the end face 12 of the element artifact 10, the center position and the inclination direction of the end face 12 with respect to the axis T of the jig 30 are obtained.

歯車用アーティファクト40は、歯車の歯面を測定するのと同様に、歯車歯面形状測定機によって、軸32を回転自在に支持し、歯車の歯面の代わりに要素アーティファクト10の端面12を測定する。例えば、回転軸Tと平行な歯すじ方向、それに直交する歯形方向に測定する。   The gear artifact 40 measures the end face 12 of the element artifact 10 instead of the gear tooth surface by rotatably supporting the shaft 32 by a gear tooth surface shape measuring machine in the same manner as measuring the tooth surface of the gear. To do. For example, the measurement is performed in a tooth trace direction parallel to the rotation axis T and a tooth profile direction orthogonal thereto.

歯形方向に測定する場合、一つの溝を横断するように測定すると、図8に示すように、本来の歯面(インボリュート)であれば鎖線38で示した直線状の測定結果が得られるのに対して、測定面が平面であるため実線36のように、大略、曲線状の測定結果になる。中央のV字状の部分37は、測定時に横断した溝に対応する。どのような測定結果が得られるかは、測定位置や溝の寸法・形状などに基づいて理論的に算出することができる。したがって、実測値と理論値とを比較することにより、歯車歯面形状測定機の検査・校正を行うことができる。   When measuring in the tooth profile direction, if the measurement is performed so as to cross one groove, the linear measurement result indicated by the chain line 38 can be obtained for the original tooth surface (involute) as shown in FIG. On the other hand, since the measurement surface is a flat surface, the measurement result is generally curved as indicated by the solid line 36. The central V-shaped portion 37 corresponds to the groove traversed during the measurement. What measurement result can be obtained can be theoretically calculated based on the measurement position, the size / shape of the groove, and the like. Therefore, the gear tooth surface shape measuring machine can be inspected and calibrated by comparing the actual measurement value with the theoretical value.

(実施例4)
次に、直方体形状の要素アーティファクト60について、図9を参照しながら説明する。
Example 4
Next, the rectangular parallelepiped element artifact 60 will be described with reference to FIG.

要素アーティファクト60は、平行な上面66及び下面61の間に、4つの側面62,63,64,65を有する。上面66及び下面61と側面62,63,64,65や、隣接する側面62,63,64,65同士は、それぞれ直角である。要素アーティファクト60は、その形状の一部分を除去しても、付加的な部分を設けてもよい。   The element artifact 60 has four side surfaces 62, 63, 64, 65 between the parallel upper surface 66 and lower surface 61. The upper surface 66 and the lower surface 61 and the side surfaces 62, 63, 64, 65 and the adjacent side surfaces 62, 63, 64, 65 are at right angles. The element artifact 60 may remove a part of its shape or provide an additional part.

上面66には、側面62,64と平行に直線状に延在する溝断面形状と深さが一定のV溝67,68が、V溝67,68の溝幅方向に隣接するV溝67,68の溝幅よりも大きい平面部分を残して形成されている。V溝67,68は、相似形で深さが異なる。図9では模式的に図示しているが、V溝67,68は、実施例2と同様に、溝幅が溝深さの20倍以上、好ましくは100倍程度の勾配とする。   On the upper surface 66, V-grooves 67 and 68 having a uniform groove cross-sectional shape and depth extending linearly in parallel with the side surfaces 62 and 64 are adjacent to the V-grooves 67 and 68 in the groove width direction. It is formed leaving a plane portion larger than the groove width of 68. The V grooves 67 and 68 have similar shapes and different depths. Although schematically shown in FIG. 9, the V-grooves 67 and 68 have a groove width that is 20 times or more, preferably about 100 times the groove depth, as in the second embodiment.

以上に説明した各実施例の要素アーティファクトや歯車用アーティファクトを用いれば、形状測定機が被測定物の被測定面の形状周波数成分をどの程度正しく測定することができるかを検査・校正することができる。要素アーティファクトは、複数個の同じ形状のものを高精度に作製することができ、値付けや検査・校正の際の設置状態の把握や測定に好適な形状を有する。   It is possible to inspect and calibrate to what extent the shape measuring machine can measure the shape frequency component of the surface to be measured of the object to be measured by using the element artifacts and the gear artifacts of the respective embodiments described above. it can. Element artifacts can be produced with high accuracy with a plurality of same shapes, and have a shape suitable for grasping and measuring the installation state during pricing, inspection and calibration.

なお、本発明の要素アーティファクトや歯車用アーティファクトは、上記各実施例に限定されるものではなく、種々変更を加えて実施可能である。   The element artifacts and gear artifacts of the present invention are not limited to the above-described embodiments, and can be implemented with various modifications.

例えば、要素アーティファクトの両方の端面に、V溝や窪みを形成してもよい。また、円筒面、側面、端面の測定しない部分については、部分的に切り欠くなどして、平面や曲面、穴などを形成し、取り扱いが容易になるようにしてもよい。この場合、円筒面又は側面のうち、切り欠くなどされずに残った部分を基準部として用いる。   For example, V-grooves or depressions may be formed on both end faces of the element artifact. In addition, the cylindrical surface, the side surface, and the end surface that are not measured may be partially cut away to form a flat surface, a curved surface, a hole, or the like so that the handling can be facilitated. In this case, a portion remaining without being cut out of the cylindrical surface or the side surface is used as the reference portion.

また、本発明の要素アーティファクトや歯車用アーティファクトを用いて、実施例以外の方法で、値付け測定や形状測定機の検査・校正を行うことも可能である。接触式の形状測定機に限らず、非接触式の形状測定機についても、本発明の要素アーティファクトや歯車用アーティファクトを用いて検査・校正を行うことができる。   Moreover, it is also possible to perform pricing measurement and inspection / calibration of the shape measuring machine by a method other than the embodiment using the element artifact and the gear artifact of the present invention. Not only a contact type shape measuring machine but also a non-contact type shape measuring machine can be inspected and calibrated using the element artifact and the gear artifact of the present invention.

また、本発明の要素アーティファクトは、歯車歯面形状測定機以外の形状測定機の検査・校正のために、アーティファクトの一部に組み込まれた状態で用いることができる。   In addition, the element artifact of the present invention can be used in a state of being incorporated in a part of the artifact for inspection / calibration of a shape measuring machine other than the gear tooth surface shape measuring machine.

アーティファクトの概要を示す断面図である。(実施例1)It is sectional drawing which shows the outline | summary of an artifact. Example 1 アーティファクトの概要を示す説明図である。(実施例1)It is explanatory drawing which shows the outline | summary of an artifact. Example 1 アーティファクトの(a)平面図、(b)正面図である。(実施例2)It is (a) top view and (b) front view of an artifact. (Example 2) アーティファクトの要部拡大断面図である。(実施例2)It is a principal part expanded sectional view of an artifact. (Example 2) アーティファクトの要部拡大断面図である。(実施例2)It is a principal part expanded sectional view of an artifact. (Example 2) アーティファクトの使用状態の説明図である。(実施例2)It is explanatory drawing of the use condition of an artifact. (Example 2) アーティファクトの使用状態の説明図である。(実施例3)It is explanatory drawing of the use condition of an artifact. Example 3 測定結果の説明図である。(実施例3)It is explanatory drawing of a measurement result. Example 3 アーティファクトの概要を示す説明図である。(実施例4)It is explanatory drawing which shows the outline | summary of an artifact. Example 4 形状測定の説明図である。It is explanatory drawing of a shape measurement.

符号の説明Explanation of symbols

4 要素アーティファクト
5 端面
6 V溝(溝)
10 要素アーティファクト
12,14 端面
16 円筒面(外周面、基準部)
20 窪み
22,24,26 V溝(溝)
30 治具
40 歯車用アーティファクト
60 要素アーティファクト
61 下面(端面)
62,63,64,65 側面(外周面)
66 上面(端面)
67,68 V溝(溝)
S 中心軸
4 Element artifact 5 End face 6 V groove (groove)
10 Element artifact 12, 14 End face 16 Cylindrical surface (outer peripheral surface, reference part)
20 depression 22, 24, 26 V groove (groove)
30 Jig 40 Gear Artifact 60 Element Artifact 61 Bottom (End)
62, 63, 64, 65 Side surface (outer peripheral surface)
66 Top (end face)
67, 68 V groove (groove)
S Center axis

Claims (7)

互いに平行な一対の端面と、
前記一対の端面の間に延在する外周面とを有し、
前記外周面は基準部を含み、該基準部は前記一対の端面に対して直角に延在する円筒面又は平面に含まれ、
少なくとも一方の前記端面は、円弧状又は直線状に延在する1又は2以上の溝と、平面部分とを有し、
前記溝は、溝幅が溝深さの20倍以上であることを特徴とする、形状測定機の検査・校正に用いる要素アーティファクト。
A pair of end faces parallel to each other;
An outer peripheral surface extending between the pair of end surfaces;
The outer peripheral surface includes a reference portion, and the reference portion is included in a cylindrical surface or a plane that extends at right angles to the pair of end surfaces,
At least one of the end faces has one or more grooves extending in an arc shape or a linear shape, and a plane portion,
An element artifact used for inspection / calibration of a shape measuring machine, wherein the groove has a groove width of 20 times or more of a groove depth.
前記基準部は、前記一対の端面に対して直角に延在する円筒面に含まれ、
少なくとも一方の前記端面は、前記基準部を含む前記円筒面の中心軸と同心にそれぞれ溝断面形状と深さが一定の1又は2以上の、溝幅が溝深さの20倍以上である前記溝と、前記平面部分とを有することを特徴とする、請求項1に記載の要素アーティファクト。
The reference portion is included in a cylindrical surface extending at a right angle to the pair of end surfaces,
At least one of the end faces has one or more groove cross-sectional shapes and a constant depth concentrically with the central axis of the cylindrical surface including the reference portion, and the groove width is 20 times or more the groove depth. The element artifact of claim 1, comprising a groove and the planar portion.
前記溝が形成された前記端面の前記中心軸が通る位置に、前記端面の前記平面部分から後退又は突出する窪み又は突起が形成されたことを特徴とする、請求項2に記載の要素アーティファクト。   3. The element artifact according to claim 2, wherein a recess or a protrusion that retreats or protrudes from the planar portion of the end surface is formed at a position through which the central axis of the end surface where the groove is formed. 前記端面に、断面形状の異なる前記溝が形成されたことを特徴とする、請求項1、2又は3に記載の要素アーティファクト。   The element artifact according to claim 1, 2 or 3, wherein the groove having a different cross-sectional shape is formed on the end face. 溝深さが異なる前記溝が形成され、前記溝深さの最大値は、前記溝深さの最小値の10倍以上であることを特徴とする、請求項1乃至4のいずれか一つに記載の要素アーティファクト。   The groove having different groove depths is formed, and the maximum value of the groove depth is 10 times or more the minimum value of the groove depth. The listed element artifact. 前記溝の断面形状が略V字状であることを特徴とする、請求項1乃至5のいずれか一つに記載の要素アーティファクト。   The element artifact according to any one of claims 1 to 5, wherein a cross-sectional shape of the groove is substantially V-shaped. 回転自在に支持可能な治具に、請求項1乃至6のいずれか一つに記載の要素アーティファクトが取り付けられてなり、前記要素アーティファクトの前記端面が前記治具の回転軸から離れて該回転軸と略平行に延在することを特徴とする、歯車歯面形状測定機の検査・校正に用いる歯車用アーティファクト。   The element artifact according to any one of claims 1 to 6 is attached to a jig that can be rotatably supported, and the end surface of the element artifact is separated from the rotation axis of the jig and the rotation axis. A gear artifact used for inspection and calibration of a gear tooth surface shape measuring machine, characterized by extending substantially in parallel with the gear tooth surface shape measuring machine.
JP2004369454A 2004-12-21 2004-12-21 Inspection/calibration artifact of shape measuring machine Pending JP2006177713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369454A JP2006177713A (en) 2004-12-21 2004-12-21 Inspection/calibration artifact of shape measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369454A JP2006177713A (en) 2004-12-21 2004-12-21 Inspection/calibration artifact of shape measuring machine

Publications (1)

Publication Number Publication Date
JP2006177713A true JP2006177713A (en) 2006-07-06

Family

ID=36731967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369454A Pending JP2006177713A (en) 2004-12-21 2004-12-21 Inspection/calibration artifact of shape measuring machine

Country Status (1)

Country Link
JP (1) JP2006177713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070181A (en) * 2006-09-13 2008-03-27 Mitsutoyo Corp Roundness measuring device calibration tool, and calibration method for the roundness measuring device
US20110041593A1 (en) * 2009-08-19 2011-02-24 Olympus Corporation Material measures for use in evaluating performance of measuring instrument for measuring surface texture
KR20190127684A (en) * 2018-05-04 2019-11-13 쑤저우 보손 스마트 테크놀로지 엘티디 Reference member of 3D white light scanner and its calibration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301501A (en) * 1991-03-29 1992-10-26 Sharp Corp Reference scale plate and its manufacture
JPH06147885A (en) * 1992-11-04 1994-05-27 Hitachi Constr Mach Co Ltd Method and equipment for measuring tip profile of needle-like object
JPH07287023A (en) * 1994-04-11 1995-10-31 Internatl Business Mach Corp <Ibm> Calibration standard, manufacturing method and measuring method for profile meter
JP2006064459A (en) * 2004-08-25 2006-03-09 Mitsutoyo Corp Calibration sample of surface property measurement device and surface property measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301501A (en) * 1991-03-29 1992-10-26 Sharp Corp Reference scale plate and its manufacture
JPH06147885A (en) * 1992-11-04 1994-05-27 Hitachi Constr Mach Co Ltd Method and equipment for measuring tip profile of needle-like object
JPH07287023A (en) * 1994-04-11 1995-10-31 Internatl Business Mach Corp <Ibm> Calibration standard, manufacturing method and measuring method for profile meter
JP2006064459A (en) * 2004-08-25 2006-03-09 Mitsutoyo Corp Calibration sample of surface property measurement device and surface property measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070181A (en) * 2006-09-13 2008-03-27 Mitsutoyo Corp Roundness measuring device calibration tool, and calibration method for the roundness measuring device
JP4690276B2 (en) * 2006-09-13 2011-06-01 株式会社ミツトヨ Calibration method for roundness measuring apparatus
US20110041593A1 (en) * 2009-08-19 2011-02-24 Olympus Corporation Material measures for use in evaluating performance of measuring instrument for measuring surface texture
JP2011043340A (en) * 2009-08-19 2011-03-03 Olympus Corp Standard piece for use in evaluating performance of measuring instrument for measuring surface texture
US8539814B2 (en) * 2009-08-19 2013-09-24 Olympus Corporation Material measures for use in evaluating performance of measuring instrument for measuring surface texture
KR20190127684A (en) * 2018-05-04 2019-11-13 쑤저우 보손 스마트 테크놀로지 엘티디 Reference member of 3D white light scanner and its calibration method
KR102190471B1 (en) * 2018-05-04 2020-12-14 쑤저우 보손 스마트 테크놀로지 엘티디 3D white light scanner calibration method

Similar Documents

Publication Publication Date Title
KR100616483B1 (en) Gauge for three-dimensional coordinate measurer
JP4459264B2 (en) Three-dimensional shape measurement method
KR20110060892A (en) Composite calibration/verification gauge and method of its manufacture
US11754387B2 (en) Noncontact sensor calibration using single axis movement
JP2012159499A (en) Measuring apparatus and measuring method for ball screw
WO2020004222A1 (en) Inspection master
JP5860553B2 (en) Overball diameter measuring device
JP2006266972A (en) Reference member for inspection master in optical three-dimensional measuring machine
JP2021001865A (en) Contact type probe and coordinate measurement device
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
Leach et al. Dimensional metrology
JP2006177713A (en) Inspection/calibration artifact of shape measuring machine
US11774227B2 (en) Inspection gauge for coordinate measuring apparatus and abnormality determination method
JP6170385B2 (en) Measuring device, measuring method, and article manufacturing method
CN113310439B (en) Method and system for detecting surface roughness of spherical shell part based on white light confocal sensor
JP5193101B2 (en) Reference member for inspection master of optical 3D measuring machine
JP2004286457A (en) Jig, method, and program for calibrating surface property measuring instrument and recording medium recording calibration program
JP6428149B2 (en) measuring device
JP4484111B2 (en) Evaluation Method for Gear Tooth Surface Profile Measuring Machine
JP2008286700A (en) Angle measuring method, and angle measuring instrument
JP7201208B2 (en) Calibration gauge and calibration method
RU2205364C1 (en) Method of measuring parameters of shaft keyway
Ehrig et al. Artefacts with rough surfaces for verification of optical microsensors
JP6052953B2 (en) Method to acquire position information and posture information of CMM and lever probe
JP2006098201A (en) Measuring tool and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071205

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Effective date: 20101109

Free format text: JAPANESE INTERMEDIATE CODE: A02