JP2006176940A - Method for producing conductive conjugate fiber - Google Patents

Method for producing conductive conjugate fiber Download PDF

Info

Publication number
JP2006176940A
JP2006176940A JP2004373520A JP2004373520A JP2006176940A JP 2006176940 A JP2006176940 A JP 2006176940A JP 2004373520 A JP2004373520 A JP 2004373520A JP 2004373520 A JP2004373520 A JP 2004373520A JP 2006176940 A JP2006176940 A JP 2006176940A
Authority
JP
Japan
Prior art keywords
conductive
component
fiber
conjugate fiber
conductive component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373520A
Other languages
Japanese (ja)
Inventor
Tokio Takahashi
富喜夫 高橋
Tsutomu Hirai
努 平井
Takahiro Nakamura
孝弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2004373520A priority Critical patent/JP2006176940A/en
Publication of JP2006176940A publication Critical patent/JP2006176940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a conductive conjugate fiber, by which the conductive conjugate fiber containing conductive particles such as conductive carbon black or metal powder and having practically sufficient characteristics can stably be produced by a one step high speed spinning method. <P>SOLUTION: This method for producing the conductive conjugate fiber, comprising polybutylene terephthalate resin containing conductive particles as a thermoplastic resin as a conductive component and a fiber-forming polyester-based resin as a non-conductive component, is characterized by melt-spinning the conductive component as a core component and the non-conductive component as a shear component with a bi-component spinning machine, cooling and solidifying the spun fiber, and taking off the solidified fiber at a rate of 4,000 to 5,000 m/min to obtain the conductive conjugate fiber having an electric resistance of ≤1×10<SP>8</SP>Ω/cm and a boiling water shrinkage factor of ≤10%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリエステル系導電性繊維の製造方法に関するものであり、さらに詳しくは、制電作業服、ユニホームなどの衣料、カーペット、カーテンなどのインテリア用途及び資材用途として用いられる導電性複合繊維を、紡糸、引き取り後、別工程での延伸を行わない一工程法にて安定的に生産することができる導電性複合繊維の製造方法に関するものである。   The present invention relates to a method for producing a polyester-based conductive fiber, and more specifically, a conductive composite fiber used for interior and material applications such as clothes for antistatic work clothes, uniforms, carpets, curtains, etc. The present invention relates to a method for producing a conductive conjugate fiber that can be stably produced by a one-step method in which drawing in another step is not performed after spinning and taking-up.

ポリエステル、ポリアミド、ポリオレフィン等の疎水性ポリマーからなる繊維は機械特性、耐薬品性、耐候性等の多くの長所を有しており、衣料用のみならず、産業資材用途等にも広く用いられている。しかし、これらの繊維は摩擦等による静電気の発生が著しいため、空気中の塵埃を吸引して美観を低下させたり、人体に電撃を与えて不快感を与えたり、さらには、スパークによる電子機器への障害や、引火性物質への引火爆発等の問題を引き起こす場合があり、そのため、導電性を付与するための多くの研究がなされてきた。   Fibers made of hydrophobic polymers such as polyester, polyamide, and polyolefin have many advantages such as mechanical properties, chemical resistance, and weather resistance, and are widely used not only for clothing but also for industrial materials. Yes. However, these fibers generate significant static electricity due to friction, etc., so that the appearance of the air is reduced by sucking dust in the air, or the human body is shocked and uncomfortable. This may cause problems such as flammability and flammable explosions on flammable substances. Therefore, many studies have been made to impart conductivity.

まず、導電性カーボンブラックや金属粉等の導電性粒子を熱可塑性ポリマー全体に分散させた繊維が提案されているが、このような繊維は、導電性を満足する程度に導電性粒子を分散させると、曳糸性や強伸度の低下が著しく、実用性に乏しいものであった。   First, fibers in which conductive particles such as conductive carbon black and metal powder are dispersed throughout the thermoplastic polymer have been proposed. Such fibers disperse the conductive particles to such an extent that the conductivity is satisfied. However, the spinnability and the strength elongation were remarkably lowered, and the practicality was poor.

この問題を解決するものとして、特許文献1や特許文献2では、導電性成分を非導電性ポリマーで完全に包みこんだ芯鞘型複合繊維あるいは導電性成分が繊維表面に露出したタイプの複合繊維が開示されている。これらの導電性複合繊維は、一旦未延伸糸を得た後、別工程で延伸を行う二工程法で得られるものであった。   In order to solve this problem, in Patent Document 1 and Patent Document 2, a core-sheath type composite fiber in which a conductive component is completely encapsulated with a non-conductive polymer or a composite fiber in which the conductive component is exposed on the fiber surface Is disclosed. These conductive conjugate fibers were obtained by a two-step method in which an undrawn yarn was once obtained and then drawn in a separate step.

ポリエステル繊維を製造する方法として、高い生産性、工程省力化、エネルギーコストの削減等の利点を有する方法として、溶融紡糸したポリエステル繊維を5000m/分以上の引取速度で引き取る方法がある。この方法によると、別工程での延伸工程を必要とすることなく、実用上十分な機械的特性を有する繊維が得られる。   As a method for producing the polyester fiber, there is a method for taking up the polyester fiber which has been melt-spun at a take-up speed of 5000 m / min or more as a method having advantages such as high productivity, labor saving and energy cost reduction. According to this method, a fiber having mechanical properties sufficient for practical use can be obtained without requiring a drawing step in a separate step.

このような一工程での高速紡糸法を採用すると、糸条に加わる張力が大きくなるため、導電性カーボンブラックや金属粉等の導電性粒子を含有する導電性繊維の場合、特に糸の切断が多発するという操業上の問題があり、高速紡糸法を行うには、紡糸張力を適正にコントロールする必要があり、紡糸条件が非常に制約され、安定な操業を行なうことは困難であった。
特開平09−143821号公報 特開平09−279416号公報
By adopting such a high-speed spinning method in one step, the tension applied to the yarn increases, so in the case of conductive fibers containing conductive particles such as conductive carbon black or metal powder, the yarn is particularly cut. There is an operational problem of frequent occurrence, and in order to perform the high speed spinning method, it is necessary to appropriately control the spinning tension, and the spinning conditions are extremely limited, making it difficult to perform stable operation.
JP 09-143821 A JP 09-279416 A

本発明は、上記の問題点を解決し、導電性カーボンブラックや金属粉等の導電性粒子を含有する導電性繊維を、一工程での高速紡糸法を採用して、実用上十分な特性を有する導電性複合繊維を安定して製造することができる製造方法を提供することを技術的な課題とするものである。   The present invention solves the above-mentioned problems, adopts a high-speed spinning method in one step for conductive fibers containing conductive particles such as conductive carbon black and metal powder, and has practically sufficient characteristics. It is an object of the present invention to provide a production method capable of stably producing a conductive conjugate fiber.

本発明者等は、上記課題を解決するために検討した結果、導電性粒子の配列が良好となるような適切なポリマーを選択し、導電性粒子が含有されるポリマーを芯成分とする芯鞘形状を採用し、かつ引取速度を適切な範囲とすることにより上記課題を解決することができることを見出し、本発明に到達した。   As a result of investigations to solve the above problems, the present inventors have selected a suitable polymer that has a favorable arrangement of conductive particles, and a core sheath containing a polymer containing conductive particles as a core component. The inventors have found that the above problems can be solved by adopting the shape and setting the take-up speed within an appropriate range, and have reached the present invention.

すなわち、本発明は、導電性粒子を含有する熱可塑性樹脂としてポリブチレンテレフタレート樹脂を導電性成分とし、繊維形成性を有するポリエステル系樹脂を非導電性成分とする両成分からなる導電性複合繊維を製造する方法であって、複合紡糸装置を用いて導電性成分が芯成分、非導電性成分が鞘成分となるように溶融紡糸し、糸条を冷却固化した後、4000〜5000m/分の速度で引き取ることにより、電気抵抗値が1×108Ω/cm以下、沸水収縮率が10%以下である導電性複合繊維を得ることを特徴とする導電性複合繊維の製造方法を要旨とするものである。 That is, the present invention relates to a conductive composite fiber comprising both components of a polybutylene terephthalate resin as a conductive component as a thermoplastic resin containing conductive particles and a non-conductive component as a polyester resin having fiber formability. A method of manufacturing, using a composite spinning device, melt spinning so that the conductive component becomes the core component and the non-conductive component becomes the sheath component, and after cooling and solidifying the yarn, the speed is 4000 to 5000 m / min. A method for producing a conductive conjugate fiber, characterized in that a conductive conjugate fiber having an electrical resistance value of 1 × 10 8 Ω / cm or less and a boiling water shrinkage of 10% or less is obtained It is.

本発明の製造方法によれば、導電性粒子を含有する導電性繊維を一工程での高速紡糸法を採用して、実用上十分な特性を有する導電性複合繊維を安定して製造することが可能となる。そして、得られた導電性複合繊維は、電気抵抗値が低く導電性能に優れ、また沸水収縮率も低いため、織編物にした際にも品位の高い製品を得ることが可能となり、制電作業服、ユニホームなどの衣料、カーペット、カーテンなどのインテリア用途及び資材用途として好適に使用することができる。   According to the production method of the present invention, it is possible to stably produce conductive composite fibers having practically sufficient characteristics by adopting a high-speed spinning method in one step for conductive fibers containing conductive particles. It becomes possible. And since the obtained conductive conjugate fiber has a low electrical resistance value and excellent electrical conductivity, and has a low boiling water shrinkage rate, it becomes possible to obtain a high-quality product even when it is made into a woven or knitted fabric, It can be suitably used for clothes such as clothes, uniforms, interiors such as carpets, curtains, and materials.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の製造方法で得られる導電性複合繊維は、導電性成分と非導電性成分ともにポリエステル系樹脂を用いる。中でも、本発明においては導電性成分にポリブチレンテレフタレート(以下、PBTという)樹脂を用いることが重要である。導電性成分のベースポリマーであるPBT樹脂は、非常に結晶性の高い樹脂であることから、導電性粒子の配列状態を良好にすることができ、導電性粒子の性能を効率よく得ることができるものである。   The conductive conjugate fiber obtained by the production method of the present invention uses a polyester resin for both the conductive component and the non-conductive component. Among them, in the present invention, it is important to use a polybutylene terephthalate (hereinafter referred to as PBT) resin as the conductive component. Since the PBT resin, which is the base polymer of the conductive component, is a resin having very high crystallinity, it is possible to improve the arrangement state of the conductive particles and to efficiently obtain the performance of the conductive particles. Is.

そして、導電性成分には、イソフタル酸とアジピン酸のどちらか一方、もしくは両者を共重合成分として共重合させることが好ましい。これにより、導電性成分と導電性粒子との相溶性(表面濡れ性)を向上させ、導電性粒子の混入量を増加させることができ、優れた導電性能を有するもの(具体的には電気抵抗値の低いもの)とすることができる。さらには、ポリマーの柔軟性が向上し、製造工程において導電性粒子の配列状態を向上させることができ、長さ方向に均一な導電性能を有するものとすることができる。   The conductive component is preferably copolymerized with one or both of isophthalic acid and adipic acid as a copolymerization component. This improves the compatibility (surface wettability) between the conductive component and the conductive particles, increases the amount of conductive particles mixed in, and has excellent conductive performance (specifically, electrical resistance Low value). Furthermore, the flexibility of the polymer is improved, the arrangement state of the conductive particles can be improved in the production process, and the conductive performance can be uniform in the length direction.

導電性成分を共重合PBTとする場合、イソフタル酸とアジピン酸を併用する場合は、全体の共重合量を5〜55モル%とすることが好ましく、中でも10〜50モル%とすることが好ましい。両者の共重合量が5モル%未満では、導電性粒子との相溶性(表面濡れ性)の向上効果が得られず、導電性粒子の混入量の増加やポリマーの柔軟性が向上することによる導電性粒子の配列の向上効果を奏することができない。一方、55モル%を超えると、ポリマー自体が完全に非晶性になるため、導電性粒子のポリマー中への分散が困難となりやすい。   When the conductive component is a copolymerized PBT, when isophthalic acid and adipic acid are used in combination, the total copolymerization amount is preferably 5 to 55 mol%, and more preferably 10 to 50 mol%. . If the copolymerization amount of both is less than 5 mol%, the effect of improving the compatibility (surface wettability) with the conductive particles cannot be obtained, and the increase in the amount of mixed conductive particles and the improvement of the flexibility of the polymer The effect of improving the arrangement of the conductive particles cannot be achieved. On the other hand, if it exceeds 55 mol%, the polymer itself becomes completely amorphous, and thus it is difficult to disperse the conductive particles in the polymer.

次に、イソフタル酸のみを共重合成分とする場合は、5〜45モル%とすることが好ましく、さらに好ましくは、10〜40モル%である。イソフタル酸の共重合量がこの範囲以外である場合は、上記と同様に、導電性粒子の配列の向上効果が得られなかったり、導電性粒子のポリマー中への分散が困難となるため好ましくない。   Next, when only isophthalic acid is used as a copolymerization component, the content is preferably 5 to 45 mol%, and more preferably 10 to 40 mol%. When the copolymerization amount of isophthalic acid is outside this range, it is not preferable because the effect of improving the arrangement of the conductive particles cannot be obtained or the dispersion of the conductive particles in the polymer becomes difficult as described above. .

また、アジピン酸のみを共重合成分とする場合は、5〜55モル%とすることが好ましく、さらに好ましくは、10〜50モル%である。アジピン酸の共重合量がこの範囲以外である場合は、上記と同様に、導電性粒子の配列の向上効果が得られなかったり、導電性粒子のポリマー中への分散が困難となるため好ましくない。   Moreover, when using only adipic acid as a copolymerization component, it is preferable to set it as 5-55 mol%, More preferably, it is 10-50 mol%. When the copolymerization amount of adipic acid is outside this range, it is not preferable because the effect of improving the arrangement of the conductive particles cannot be obtained or the dispersion of the conductive particles in the polymer is difficult as described above. .

導電性成分中には、その他の共重合成分を、PBTの結晶性を損なわない範囲で含有することができ、例えば、フタル酸、1.3−プロパンジオール、セバシン酸、ダイマー酸、ドデカン二酸、キシリレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール等が挙げられる。   In the conductive component, other copolymer components can be contained within a range that does not impair the crystallinity of PBT. For example, phthalic acid, 1.3-propanediol, sebacic acid, dimer acid, dodecanedioic acid , Xylylene glycol, polytetramethylene glycol, polyethylene glycol and the like.

導電性成分のPBTの固有粘度(IV)は、0.5〜0.8とすることが好ましい。IVが0.5未満であるとポリマーの流動性は上がり、ポリマー中への導電性粒子の分散性は向上するが、その後の造粒性が悪化し、ペレット化することが困難となりやすい。IVが0.8を超えるとポリマーの流動性・結晶性が悪化して、導電性能が劣るものとなりやすく、具体的には電気抵抗値が高くなり、1×10Ω/cmを超えるものとなりやすい。 The intrinsic viscosity (IV) of the conductive component PBT is preferably 0.5 to 0.8. When the IV is less than 0.5, the fluidity of the polymer is improved and the dispersibility of the conductive particles in the polymer is improved. However, the subsequent granulation property is deteriorated and it is difficult to form a pellet. If IV exceeds 0.8, the fluidity and crystallinity of the polymer will deteriorate, and the electrical conductivity will tend to be inferior. Specifically, the electrical resistance will increase, exceeding 1 × 10 6 Ω / cm. Cheap.

さらに、導電性成分には、本発明の効果を損なわない範囲で、目的に応じて、ワックス類、ポリアルキレンオキシド類、各種界面活性剤、有機電解質等の分散剤や酸化防止剤、紫外線吸収剤等の安定剤、着色剤、顔料、流動性改善剤、その他の添加剤を加えることもできる。   Furthermore, the conductive component includes a dispersant, an antioxidant, an ultraviolet absorber, such as waxes, polyalkylene oxides, various surfactants, organic electrolytes, etc., as long as the effects of the present invention are not impaired. Stabilizers, colorants, pigments, fluidity improvers, and other additives can also be added.

一方、非導電性成分を構成する繊維形成性ポリエステル系樹脂は、溶融紡糸可能なあらゆるポリエステルポリマーが適用可能である。中でも、ポリエチレンテレフタレート(以下、PETという)、ポリエチレンオキシベンゾエート、PBT等が挙げられる。そして、非導電性成分と導電性成分との剥離を防止するという点から、導電性成分との相溶性を考慮することが好ましい。   On the other hand, as the fiber-forming polyester resin constituting the nonconductive component, any polyester polymer that can be melt-spun can be applied. Among these, polyethylene terephthalate (hereinafter referred to as PET), polyethyleneoxybenzoate, PBT, and the like can be given. And it is preferable to consider compatibility with an electroconductive component from the point of preventing peeling with a nonelectroconductive component and an electroconductive component.

また、目的に応じてこれらのポリマーの共重合体や変性体としてもよい。また、これらの繊維形成性ポリマーには、艶消剤、顔料、着色料、安定剤、制電剤等の添加剤を加えることもできる。   Moreover, it is good also as a copolymer and modified body of these polymers according to the objective. Moreover, additives, such as a matting agent, a pigment, a coloring agent, a stabilizer, and an antistatic agent, can also be added to these fiber-forming polymers.

また、導電性成分に用いられる導電性粒子としては、導電性カーボンブラックや金属粉末(銀、ニッケル、銅、鉄、錫あるいはこれらの合金等)、硫化銅、沃化銅、硫化亜鉛、硫化カドミウム等の金属化合物が挙げられる。また、酸化錫に酸化アンチモンを少量添加したり、酸化亜鉛に酸化アルミニウムを少量添加して導電性粒子としたものも挙げられる。さらには、酸化チタンの表面に酸化錫をコーティングし、酸化アンチモンを混合焼成し、導電性粒子としたものも用いることができる。特に好ましくは、導電性繊維の性能向上として汎用的に使用され、他の金属粒子と比較し、ポリマーの流動性を阻害しにくい導電性カーボンブラック(アセチレンブラック、ケッチェンブラック等)である。    The conductive particles used for the conductive component include conductive carbon black, metal powder (silver, nickel, copper, iron, tin, or alloys thereof), copper sulfide, copper iodide, zinc sulfide, cadmium sulfide. And metal compounds such as In addition, a small amount of antimony oxide may be added to tin oxide, or a small amount of aluminum oxide may be added to zinc oxide to form conductive particles. Furthermore, it is also possible to use a conductive particle obtained by coating the surface of titanium oxide with tin oxide and mixing and baking antimony oxide. Particularly preferred are conductive carbon blacks (acetylene black, ketjen black, etc.) that are generally used for improving the performance of conductive fibers and are less likely to inhibit the fluidity of the polymer compared to other metal particles.

上記の導電性粒子は、比抵抗値が10Ω・cm以下のものが好ましく、さらには、10Ω・cm以下のものが好ましい。比抵抗値が10Ω・cmを超えるものを用いると、目標とする導電性能を得るために、多量の導電性粒子をポリマー中に分散させることが必要になり、繊維物性に悪影響を及ぼすばかりか、さらには曳糸性に問題を生じる可能性がある。 The conductive particles preferably have a specific resistance value of 10 4 Ω · cm or less, and more preferably 10 2 Ω · cm or less. If a specific resistance value exceeding 10 4 Ω · cm is used, it will be necessary to disperse a large amount of conductive particles in the polymer in order to obtain the target conductive performance, which will adversely affect the fiber properties. Furthermore, there is a possibility of causing a problem in the spinnability.

また、導電性粒子の粒径は、特に限定されるものではないが、平均粒径が1μm以下のものが好ましく、0.5μm以下のものがより好ましい。平均粒子径が1μmを超えると、導電性粒子のポリマー中への分散性が悪くなりやすく、導電性能や強伸度特性の低下した繊維となりやすい。   The particle size of the conductive particles is not particularly limited, but the average particle size is preferably 1 μm or less, and more preferably 0.5 μm or less. When the average particle diameter exceeds 1 μm, the dispersibility of the conductive particles in the polymer tends to deteriorate, and the fibers tend to have deteriorated conductive performance and strong elongation characteristics.

導電性成分における導電性粒子の含有量については、導電性粒子の種類、導電性能、粒子径、粒子の連鎖形成能及び用いるポリマーの性質等によって適宜選択すればよいが、導電性成分中の5〜50質量%とすることが好ましく、さらに好ましくは、10〜40質量%である。混入量が5質量%未満では、導電性能が不十分になる場合があり、また、50質量%を超えると、導電性粒子のポリマー中への分散が難しくなるので好ましくない。   About content of the electroconductive particle in an electroconductive component, what is necessary is just to select suitably by the kind of electroconductive particle, electroconductive performance, a particle diameter, the chain formation ability of a particle, the property of the polymer to be used, etc., 5 in electroconductive components It is preferable to set it as -50 mass%, More preferably, it is 10-40 mass%. If the mixing amount is less than 5% by mass, the conductive performance may be insufficient, and if it exceeds 50% by mass, it is difficult to disperse the conductive particles in the polymer.

次に本発明の複合繊維の製造方法について図面を用いて説明する。
図1は、本発明の製造方法の一実施態様を示す概略工程図である。1は紡糸口金、2は冷却装置、3はオイリング装置、4は集束ガイド、5、6は引取ローラ、7は捲取機である。
Next, the manufacturing method of the composite fiber of this invention is demonstrated using drawing.
FIG. 1 is a schematic process diagram showing one embodiment of the production method of the present invention. 1 is a spinneret, 2 is a cooling device, 3 is an oiling device, 4 is a focusing guide, 5 and 6 are take-up rollers, and 7 is a take-up machine.

本発明においては、複合紡糸装置を用いて導電性成分が芯成分、非導電性成分が鞘成分となるように溶融紡糸し、糸条を冷却固化した後、4000〜5000m/分の速度で引き取るものである。   In the present invention, the composite spinning device is used to melt-spin the conductive component as the core component and the non-conductive component as the sheath component, and after cooling and solidifying the yarn, the yarn is taken up at a speed of 4000 to 5000 m / min. Is.

まず、複合紡糸装置を用いて導電性成分が芯成分、非導電性成分が鞘成分となるようにして紡糸口金1の吐出孔から紡出する。紡出された糸条を冷却装置2で冷却風を吹付けて冷却し、オイリング装置3で油剤を付与する。続いて集束ガイド4で糸条を集束した後、引取ローラ5、6により4000〜5000m/分の速度で引き取り、捲取機7で巻取る。   First, using a composite spinning apparatus, spinning is performed from the discharge hole of the spinneret 1 such that the conductive component becomes the core component and the non-conductive component becomes the sheath component. The spun yarn is cooled by blowing cooling air with the cooling device 2, and an oil agent is applied with the oiling device 3. Subsequently, after the yarn is converged by the converging guide 4, the yarn is taken up by the take-up rollers 5 and 6 at a speed of 4000 to 5000 m / min and wound by the take-up machine 7.

本発明においては、導電性成分、非導電性成分として適切なポリマーを選択し、芯鞘構造の繊維となるように複合紡糸を行い、糸条を冷却固化した後、4000〜5000m/分の速度で引き取ることによって、巻き取り後、別工程で延伸を行うことなく、実用上十分な特性を有する導電性複合繊維を安定して製造することができる。   In the present invention, an appropriate polymer is selected as a conductive component and a non-conductive component, composite spinning is performed so as to be a core-sheath structure fiber, and the yarn is cooled and solidified, and then a speed of 4000 to 5000 m / min. By taking up with, it is possible to stably produce a conductive composite fiber having practically sufficient characteristics without winding in a separate step after winding.

そして、得られる導電性複合繊維は、導電性粒子の配列状態も良好となるため、電気抵抗値を1×108Ω/cm以下とすることができる。また導電性成分、非導電性成分ともにポリマーの結晶配向も進むことから、沸水収縮率を10%以下とすることができる。 And since the conductive composite fiber obtained becomes favorable in the arrangement state of the conductive particles, the electrical resistance value can be 1 × 10 8 Ω / cm or less. In addition, since both the conductive component and the non-conductive component advance the crystal orientation of the polymer, the boiling water shrinkage can be reduced to 10% or less.

また、上記した製造工程においては、導電性成分が芯成分、非導電性成分が鞘成分となるような複合繊維とするが、芯成分の形状は芯成分の全てが鞘成分により覆われていれば特に限定されるものではない。   In the manufacturing process described above, a composite fiber is used in which the conductive component is the core component and the non-conductive component is the sheath component. However, the core component is formed so that the core component is entirely covered with the sheath component. There is no particular limitation.

そして、本発明で得られる複合繊維は、非導電性成分と導電性成分の複合比率として、非導電性成分が繊維全体の質量の60〜90質量%、導電性成分が40〜10質量%とすることが好ましく、より好ましくは、非導電性成分が70〜85質量%、導電性成分が30〜15質量%である。導電性成分が繊維全体の質量の10質量%未満では、導電性能が十分でない場合があり、一方、導電性成分が40質量%を超えると、強伸度特性等の糸質性能が劣ったり、曳糸性に悪影響を及ぼす場合がある。   And as for the composite fiber obtained by this invention, as a composite ratio of a nonelectroconductive component and a conductive component, a nonconductive component is 60-90 mass% of the mass of the whole fiber, and a conductive component is 40-10 mass%. More preferably, the non-conductive component is 70 to 85% by mass, and the conductive component is 30 to 15% by mass. If the conductive component is less than 10% by mass of the total mass of the fiber, the conductive performance may not be sufficient. On the other hand, if the conductive component exceeds 40% by mass, the yarn performance such as the strength and elongation characteristics may be inferior, May adversely affect spinnability.

そして、紡出された糸条の冷却固化を早めることが、紡出糸条の糸切れを抑えるためには効果的であるため、冷却装置2で吹き付ける冷却風の風速を0.4m/秒〜0.6m/秒とすることが好ましい。また、オイリング装置3は、ローラ給油方式もしくは、スリット給油方式のいずれのものでもよい。   And, since it is effective to speed up the cooling and solidification of the spun yarn, it is effective to suppress the yarn breakage of the spun yarn, so the cooling air velocity blown by the cooling device 2 is set to 0.4 m / sec to 0.6 m. m / sec is preferable. In addition, the oiling device 3 may be either a roller oil supply system or a slit oil supply system.

本発明において、引取ローラ5、6での引取速度を4000〜5000m/分とし、中でも4200〜4800 m/分とすることが好ましい。引取速度が4000m/分未満の場合、ポリマーの配向が十分に進まないことから、得られる繊維の沸水収縮率が10%以上となりやすく、5000m/分以上の場合は、糸切れが増加し、安定して製造することが困難となる。また、導電性粒子の配列状態が乱れ、電気抵抗値も高いものとなりやすい。   In the present invention, the take-up speed of the take-up rollers 5 and 6 is preferably 4000 to 5000 m / min, and more preferably 4200 to 4800 m / min. When the take-up speed is less than 4000 m / min, the orientation of the polymer does not advance sufficiently, so the boiling water shrinkage of the resulting fiber tends to be 10% or more, and when it is 5000 m / min or more, yarn breakage increases and is stable. And difficult to manufacture. Also, the arrangement state of the conductive particles is disturbed, and the electric resistance value tends to be high.

また、巻き取る際には、捲き乱れを防止するためには、捲取機7の綾角を、6°以下とすることが好ましい。   Further, when winding up, in order to prevent twisting disturbance, it is preferable that the traverse angle of the winder 7 is 6 ° or less.

上記のような製造方法にて得られる本発明の導電性複合繊維は、導電性能として、電気抵抗値が1×108Ω/cm以下であり、中でも1×10Ω/cm〜1×10Ω/cmであることが好ましい。複合繊維の電気抵抗値が1×108Ω/cmを超えると導電性能が不十分となり、織編物に混用した場合、一般的な使用環境において織編物の帯電を十分になくすことができなくなる。 The conductive conjugate fiber of the present invention obtained by the production method as described above has an electrical resistance value of 1 × 10 8 Ω / cm or less as a conductive performance, and in particular, 1 × 10 4 Ω / cm to 1 × 10. It is preferably 7 Ω / cm. When the electrical resistance value of the composite fiber exceeds 1 × 10 8 Ω / cm, the conductive performance becomes insufficient, and when mixed with a woven or knitted fabric, the knitted or knitted fabric cannot be sufficiently charged in a general use environment.

なお、本発明における電気抵抗値は、AATCC76法に準じて以下のようにして測定するものである。1本の導電性複合繊維を長さ方向にカットして、10サンプルを採取する。このサンプルの両端の表面にケラチンクリームを塗布し、この表面部分を金属端子に接続し、50Vの直流電流を印加して電流値を測定し、下記式で電気抵抗値を算出する。   In addition, the electrical resistance value in this invention is measured as follows according to AATCC76 method. One conductive composite fiber is cut in the length direction, and 10 samples are collected. Keratin cream is applied to the surface of both ends of this sample, this surface portion is connected to a metal terminal, a direct current of 50 V is applied, a current value is measured, and an electric resistance value is calculated by the following formula.

電気抵抗値=E/(I×L)
E:電圧(V) I:測定電流(A) L:測定長(cm)
算出した10個のサンプルの電気抵抗値の相加平均値とする。
Electric resistance value = E / (I × L)
E: Voltage (V) I: Measurement current (A) L: Measurement length (cm)
The arithmetic average value of the calculated electric resistance values of 10 samples is used.

さらに、本発明の製造方法にて得られる導電性複合繊維は、沸水収縮率が10%以下である。沸水収縮率が10%を超えると、織編物にした際に収縮が大きくなり、得られる織編物の品位が非常に悪いものとなる。   Furthermore, the conductive conjugate fiber obtained by the production method of the present invention has a boiling water shrinkage of 10% or less. When the boiling water shrinkage rate exceeds 10%, the shrinkage increases when the knitted fabric is formed, and the quality of the resulting woven or knitted fabric becomes very poor.

次に、実施例により本発明を具体的に説明する。なお、実施例中の複合繊維の特性値の測定方法及び評価方法は次のとおりである。
〔電気抵抗値〕
前記と同様に測定した。
〔沸水収縮率〕
得られた繊維を検尺機で20回かせ取りを行い、1/33.3(cN/dtex) の荷重下で糸長L0を測定し、次いで無荷重下で沸水中に入れ30分間処理する。その後、風乾し、再度1/33.3(cN/dtex)の荷重下で収縮後の長さL1を測定し、沸水収縮率を次式で算出するものである。
沸水収縮率(%)=〔(L0 −L1)/L0〕×100
〔固有粘度〕
フェノールと四塩化エタンとの等質量混合物を溶媒とし、20℃で測定した。
〔操業性〕
1日あたりの糸切れ回数で次のように評価した。
0〜5回/日…○ 6回/日以上…×
Next, the present invention will be described specifically by way of examples. In addition, the measuring method and evaluation method of the characteristic value of the composite fiber in an Example are as follows.
[Electric resistance value]
Measurements were made as described above.
[Boiling water shrinkage]
The obtained fiber is scraped 20 times with a measuring instrument, the yarn length L0 is measured under a load of 1 / 33.3 (cN / dtex), and then placed in boiling water under no load for 30 minutes. . Thereafter, the sample is air-dried, the length L1 after shrinkage is measured again under a load of 1 / 33.3 (cN / dtex), and the boiling water shrinkage rate is calculated by the following equation.
Boiling water shrinkage (%) = [(L0−L1) / L0] × 100
[Intrinsic viscosity]
The measurement was performed at 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent.
[Operability]
The number of yarn breaks per day was evaluated as follows.
0-5 times / day… ○ 6 times / day or more… ×

実施例1
固有粘度0.70のPBT70質量部と、平均粒径0.2μm で比抵抗が0.5Ω・cmの導電性カーボンブラック30質量部を溶融混練し、常法によりチップ化して導電性成分用のポリマーを得た。
また、固有粘度0.61のイソフタル酸8モル%が共重合されたPETを用いて上記と同様に溶融混練し、常法によりチップ化して非導電性成分用のポリマーを得た。
次に、図1に示す概略工程図に従って溶融紡糸、巻取りを行った。まず、単糸の横断面形状が図2に示すような芯鞘形状となるように設計された紡糸口金1を用いて、導電性成分/非導電性成分の質量比率が20/80となるように供給し、紡糸温度260℃で紡糸した。紡出した糸条を0.45m/秒の空気流で冷却し、ローラ方式のオイリング装置3を通過させて油剤を付与した後、集束ガイド4で集束し、引取速度(周速度) 4500m/分の引取ローラ5,6で引き取り、捲取機7で巻取った。
得られた導電性複合繊維は39デシテックス/6フィラメントであった。
Example 1
70 parts by mass of PBT having an intrinsic viscosity of 0.70 and 30 parts by mass of conductive carbon black having an average particle size of 0.2 μm and a specific resistance of 0.5 Ω · cm are melt-kneaded and formed into a chip by a conventional method for use as a conductive component. A polymer was obtained.
Further, using PET in which 8 mol% of isophthalic acid having an intrinsic viscosity of 0.61 was copolymerized, it was melt-kneaded in the same manner as described above, and formed into a chip by a conventional method to obtain a polymer for a non-conductive component.
Next, melt spinning and winding were performed according to the schematic process diagram shown in FIG. First, by using the spinneret 1 designed so that the cross-sectional shape of the single yarn has a core-sheath shape as shown in FIG. 2, the mass ratio of the conductive component / non-conductive component is 20/80. And spinning at a spinning temperature of 260 ° C. The spun yarn is cooled with an air flow of 0.45 m / sec, passed through a roller-type oiling device 3, and then applied with an oil agent. Then, the yarn is focused by a focusing guide 4, and the take-up speed (circumferential speed) is 4500 m / min. The paper was taken up by take-up rollers 5 and 6 and taken up by a take-up machine 7.
The obtained conductive conjugate fiber was 39 dtex / 6 filament.

比較例1
引取ローラ5,6の引取速度を5100m/分とした以外は、実施例1と同様に行った。
Comparative Example 1
The same operation as in Example 1 was performed except that the take-up speed of the take-up rollers 5 and 6 was set to 5100 m / min.

比較例2
引取ローラ5,6の引取速度を3900m/分とした以外は、実施例1と同様に行った。
Comparative Example 2
The same operation as in Example 1 was performed except that the take-up speed of the take-up rollers 5 and 6 was 3900 m / min.

実施例1、比較例1〜2で得られた導電性複合繊維の特性値及び評価結果を表1に示す。   Table 1 shows the characteristic values and evaluation results of the conductive conjugate fibers obtained in Example 1 and Comparative Examples 1 and 2.

表1から明らかなように、実施例1では、糸切れの発生もなく操業性よく、導電性能、沸水収縮率を満足する複合繊維を得ることができた。 一方、比較例1では、引取速度が5000m/分を超えていたため、糸切れが多発して操業性が悪く、また、導電性粒子の配列状態も乱れたため、得られた導電性複合繊維の電気抵抗値が高いものであった。
また、比較例2では、引取速度が4000m/分未満であったため、導電性成分と非導電性成分の結晶配向が進まず、沸水収縮率が高い繊維となった。
As can be seen from Table 1, in Example 1, a composite fiber satisfying the electrical conductivity and the boiling water shrinkage rate was obtained with no thread breakage and good operability. On the other hand, in Comparative Example 1, since the take-up speed exceeded 5000 m / min, thread breakage occurred frequently, the operability was poor, and the arrangement state of the conductive particles was disturbed. The resistance value was high.
In Comparative Example 2, since the take-up speed was less than 4000 m / min, the crystal orientation of the conductive component and the non-conductive component did not progress, and the fiber had a high boiling water shrinkage rate.

本発明の製造方法の一実施態様を示す概略工程図である。It is a schematic process drawing which shows one embodiment of the manufacturing method of this invention. 実施例1で得られる導電性複合繊維の単糸の横断面形状を示す模式図である。2 is a schematic diagram showing a cross-sectional shape of a single yarn of conductive conjugate fiber obtained in Example 1. FIG.

符号の説明Explanation of symbols

1 紡糸口金
2 冷却装置
3 オイリング装置
4 集束ガイド
5、6 引取ローラ
7 捲取機
DESCRIPTION OF SYMBOLS 1 Spinneret 2 Cooling device 3 Oiling device 4 Converging guide 5, 6 Take-up roller 7 Take-off machine

Claims (1)

導電性粒子を含有する熱可塑性樹脂としてポリブチレンテレフタレート樹脂を導電性成分とし、繊維形成性を有するポリエステル系樹脂を非導電性成分とする両成分からなる導電性複合繊維を製造する方法であって、複合紡糸装置を用いて導電性成分が芯成分、非導電性成分が鞘成分となるように溶融紡糸し、糸条を冷却固化した後、4000〜5000m/分の速度で引き取ることにより、電気抵抗値が1×108Ω/cm以下、沸水収縮率が10%以下である導電性複合繊維を得ることを特徴とする導電性複合繊維の製造方法。 A method for producing a conductive composite fiber comprising both components of a polybutylene terephthalate resin as a conductive component as a thermoplastic resin containing conductive particles and a non-conductive component as a polyester resin having fiber formability. , Using a composite spinning device to melt and spin the conductive component to become the core component and the non-conductive component to be the sheath component, cool and solidify the yarn, and then pull it at a speed of 4000 to 5000 m / min. A method for producing a conductive composite fiber, comprising obtaining a conductive composite fiber having a resistance value of 1 × 10 8 Ω / cm or less and a boiling water shrinkage of 10% or less.
JP2004373520A 2004-12-24 2004-12-24 Method for producing conductive conjugate fiber Pending JP2006176940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373520A JP2006176940A (en) 2004-12-24 2004-12-24 Method for producing conductive conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373520A JP2006176940A (en) 2004-12-24 2004-12-24 Method for producing conductive conjugate fiber

Publications (1)

Publication Number Publication Date
JP2006176940A true JP2006176940A (en) 2006-07-06

Family

ID=36731297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373520A Pending JP2006176940A (en) 2004-12-24 2004-12-24 Method for producing conductive conjugate fiber

Country Status (1)

Country Link
JP (1) JP2006176940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021671A (en) * 2010-12-31 2011-04-20 中国纺织科学研究院 Macromolecular/ metal composite conductor and manufacture method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021671A (en) * 2010-12-31 2011-04-20 中国纺织科学研究院 Macromolecular/ metal composite conductor and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP4916460B2 (en) Core-sheath composite type conductive fiber
US5213892A (en) Antistatic core-sheath filament
JP5220673B2 (en) Conductive sewing thread and knitted fabric
JP2017172061A (en) Core-sheath composite fiber
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP2005194650A (en) Conductive conjugate fiber
JP2006176940A (en) Method for producing conductive conjugate fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JP5504048B2 (en) Conductive composite fiber
JP2010059589A (en) Conjugated conductive fiber
KR100633222B1 (en) High conductive fiber having antimicrobial effects and manufacturing method thereof
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JP3686126B2 (en) Fishing net
JP4763451B2 (en) Conductive composite fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JP2004044035A (en) Conductive conjugate fiber
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JP2019026991A (en) Black spun-dyed polyester fiber
CN106757507B (en) A kind of high-performance polyamide fibre base can contaminate conductive fiber and preparation method thereof
JP3635152B2 (en) Conductive composite fiber
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP4975471B2 (en) Conductive polyester fiber
JP6420141B2 (en) Conductive yarn and method for producing the same
CN117813425A (en) Core-sheath type polyester composite fiber and manufacturing method thereof
JPH0122366B2 (en)