JP2006174639A - Stator structure for dynamo-electric machine - Google Patents

Stator structure for dynamo-electric machine Download PDF

Info

Publication number
JP2006174639A
JP2006174639A JP2004365622A JP2004365622A JP2006174639A JP 2006174639 A JP2006174639 A JP 2006174639A JP 2004365622 A JP2004365622 A JP 2004365622A JP 2004365622 A JP2004365622 A JP 2004365622A JP 2006174639 A JP2006174639 A JP 2006174639A
Authority
JP
Japan
Prior art keywords
stator
expansion coefficient
linear expansion
electrical machine
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004365622A
Other languages
Japanese (ja)
Inventor
Takashi Kato
崇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004365622A priority Critical patent/JP2006174639A/en
Publication of JP2006174639A publication Critical patent/JP2006174639A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stator structure for dynamo-electric machine which can surely prevent the occurrence of phenomena of winding slippage due to resin molding pressure in the heating state for resin molding. <P>SOLUTION: In the stator structure for dynamo-electric machine where a resin mold part 27 is made by the resin molding of winding a coil 6 around a stator core 5 made of stacked steel plates and putting a stator frame body, where a stator core 5 fitted with two or more coils 6 is fixed by the fastening force given in its axial direction, in a stator forming mold, and applying heated fused resin into the stator forming mold, the linear expansion coefficient αc of the above stator core 5 is set to a value equivallent to the linear expansion coefficient αb of the above coil 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハイブリッド車や電気自動車等の動力源として適用される回転電機のステータ構造に関するものである。   The present invention relates to a stator structure of a rotating electrical machine applied as a power source for a hybrid vehicle, an electric vehicle, or the like.

ハイブリッド駆動ユニットに適用される回転電機としては、例えば、複合電流によって駆動され、アウターロータと、インナーロータと、アウターロータとインナーロータとの間に挟まれた一つのステータと、からなる回転電機が知られている。この回転電機のステータ構造は、積層鋼鈑によるステータコアの両端に第1カラーと第2カラーを配置し、両カラーを軸方向力付与部材により軸方向に締結し、周方向に配列される複数のステータコア間の空間部を、冷却水路を除き樹脂モールド部により埋めるようにしている(例えば、特許文献1参照)。
特開2003−34153号公報。
As a rotating electrical machine applied to the hybrid drive unit, for example, a rotating electrical machine that is driven by a composite current and includes an outer rotor, an inner rotor, and a single stator sandwiched between the outer rotor and the inner rotor. Are known. In the stator structure of the rotating electrical machine, a first collar and a second collar are arranged at both ends of a stator core made of laminated steel plates, and both collars are fastened in an axial direction by an axial force applying member, and are arranged in a circumferential direction. The space between the stator cores is filled with a resin mold part except for the cooling water channel (for example, see Patent Document 1).
JP2003-34153A.

しかしながら、従来の回転電機のステータ構造にあっては、積層鋼鈑によるステータコアの外周に巻き線を巻き付け、軸方向に付与した締結力により複数の前記巻き線付きステータコアを固定した骨格体をステータ成形型に入れ、該ステータ成形型に加熱溶融樹脂を流し込む樹脂モールド成形により樹脂モールド部を形成していた。この場合のステータコアは、鋼板打ち抜き時のバリやダレによって微小な空隙を有しており、無垢材料に対して軸方向の線膨張係数が定性的に小さくなる。また、電磁鋼鈑自体の線膨張係数も巻き線の線膨張係数よりも小さいことが一般的である。従って、樹脂モールド成形する際の加熱工程において、通常、銅系の材料にて構成される巻き線の熱膨張量が大きく、巻き線の張力抜けが発生するため、樹脂成形時の圧力によって、巻き線が正規の位置に対してズレが生じる可能性がある、という問題があった。   However, in the conventional stator structure of a rotating electrical machine, a stator body is formed by winding a winding around the outer periphery of a stator core made of laminated steel plates and fixing a plurality of the stator cores with the winding by a fastening force applied in the axial direction. The resin mold portion was formed by resin mold molding that was put into a mold and poured into the stator mold with heat-melted resin. In this case, the stator core has a minute gap due to burrs or sag at the time of punching the steel sheet, and the linear expansion coefficient in the axial direction is qualitatively smaller than that of the solid material. In general, the linear expansion coefficient of the electromagnetic steel sheet itself is also smaller than the linear expansion coefficient of the winding. Therefore, in the heating process at the time of resin molding, since the amount of thermal expansion of the winding composed of a copper-based material is usually large and the tension of the winding is lost, the winding is caused by the pressure at the time of resin molding. There is a problem that the line may be displaced from the normal position.

本発明は、上記問題に着目してなされたもので、樹脂モールド成形の加熱状態において、樹脂成形圧力による巻き線ズレの現象の発生を確実に防止することができる回転電機のステータ構造を提供することを目的とする。   The present invention has been made paying attention to the above problem, and provides a stator structure of a rotating electrical machine that can reliably prevent the occurrence of winding deviation due to resin molding pressure in a heated state of resin molding. For the purpose.

上記目的を達成するため、本発明の回転電機のステータ構造では、積層鋼鈑によるステータコアの外周に巻き線を巻き付け、軸方向に付与した締結力により複数の前記巻き線付きステータコアを固定したステータ骨格体をステータ成形型に入れ、該ステータ成形型に加熱溶融樹脂を流し込む樹脂モールド成形により樹脂モールド部を形成した回転電機のステータ構造において、
前記ステータコアの線膨張係数を、前記巻き線の線膨張係数と同等の値に設定したことを特徴とする。
In order to achieve the above object, in the stator structure of a rotating electric machine according to the present invention, a stator skeleton in which windings are wound around the outer periphery of a stator core made of laminated steel plates and a plurality of stator cores with windings are fixed by a fastening force applied in an axial direction. In a stator structure of a rotating electrical machine in which a body is placed in a stator mold and a resin mold portion is formed by resin mold molding in which a molten resin is poured into the stator mold.
The linear expansion coefficient of the stator core is set to a value equivalent to the linear expansion coefficient of the winding.

よって、本発明の回転電機のステータ構造にあっては、ステータコアの線膨張係数が、巻き線の線膨張係数と同等の値に設定されているため、樹脂モールド成形する際の加熱工程において、ステータコアの熱膨張量と巻き線の熱膨張量がほぼ等しくなり、巻き線の張力抜けが防止される。この結果、樹脂モールド成形の加熱状態において、樹脂成形圧力による巻き線ズレの現象の発生を確実に防止することができる。   Therefore, in the stator structure of the rotating electrical machine of the present invention, since the linear expansion coefficient of the stator core is set to a value equivalent to the linear expansion coefficient of the winding, the stator core in the heating process at the time of resin molding The amount of thermal expansion of the coil and the amount of thermal expansion of the winding become substantially equal, and the tension loss of the winding is prevented. As a result, it is possible to reliably prevent the occurrence of winding deviation due to the resin molding pressure in the heated state of resin molding.

以下、本発明の回転電機のステータ構造を実現する最良の形態を、図面に示す実施例1〜実施例5に基づいて説明する。   Hereinafter, the best mode for realizing the stator structure of a rotating electrical machine of the present invention will be described based on Examples 1 to 5 shown in the drawings.

まず、構成を説明する。
図1は本発明のステータ構造が適用された複軸多層モータM(回転電機)を示す断面図、図2は実施例1の複軸多層モータMの1/3モデルを示す縦断正面図、図3は実施例1の複軸多層モータMのステータコイルに印加する複合電流の一例を示す図である。
First, the configuration will be described.
1 is a sectional view showing a multi-axis multilayer motor M (rotary electric machine) to which the stator structure of the present invention is applied, and FIG. 2 is a longitudinal front view showing a 1/3 model of the multi-axis multilayer motor M of the first embodiment. 3 is a diagram illustrating an example of a composite current applied to the stator coil of the multi-axis multilayer motor M according to the first embodiment.

前記複軸多層モータMは、外観的には1つのモータであるが2つのモータジェネレータ機能を有する。この複軸多層モータMは、モータケース1に固定され、コイルを巻いた固定電機子としてのステータSと、前記ステータSの内側に配置し、永久磁石を埋設したインナーロータIRと、前記ステータSの外側に配置し、永久磁石を埋設したアウターロータORと、を同軸上に三層配置することで構成されている。   The multi-axis multilayer motor M is a single motor in appearance but has two motor generator functions. This multi-shaft multilayer motor M is fixed to a motor case 1 and has a stator S as a fixed armature wound with a coil, an inner rotor IR disposed inside the stator S and embedded with permanent magnets, and the stator S The outer rotor OR is embedded on the outer side of the outer rotor, and the permanent magnet is embedded in three layers on the same axis.

前記インナーロータIRは、その内筒面が第1モータ中空軸2の段差軸端部に対して圧入(或いは、焼きばめ)により固定されている。このインナーロータIRには、図2に示すように、積層された電磁鋼鈑による積層コア3に対し磁束形成を考慮した配置によるインナーロータマグネット4が軸方向に12本埋設されている。また、インナーロータIRは、コギングトルク低減対策として、軸方向で2分割し、インナーロータマグネット4の配置を周方向にずらし、例えば、10度のスキュー角度を設定している。ここで、「コギングトルク」とは、ステータSとインナーロータIRとの間に発生する軸吸引力に基づくトルクの回転角に対する変化、いわゆる、トルクムラのことをいう。但し、W字配置による4本のインナーロータマグネット4が1極対を構成し、全周で3極対としてある。   The inner rotor surface of the inner rotor IR is fixed to the end of the stepped shaft of the first motor hollow shaft 2 by press-fitting (or shrink fitting). In this inner rotor IR, as shown in FIG. 2, twelve inner rotor magnets 4 are embedded in the axial direction with respect to the laminated core 3 made of laminated electromagnetic steel plates in consideration of magnetic flux formation. Further, the inner rotor IR is divided into two in the axial direction as a cogging torque reduction measure, and the arrangement of the inner rotor magnet 4 is shifted in the circumferential direction, for example, a skew angle of 10 degrees is set. Here, the “cogging torque” refers to a change with respect to the rotation angle of the torque based on the shaft attractive force generated between the stator S and the inner rotor IR, that is, so-called torque unevenness. However, the four inner rotor magnets 4 by W-shape comprise 1 pole pair, and it is set as 3 pole pairs in the perimeter.

前記ステータSは、モータケース1に固定された静止部材であり、電磁鋼鈑を積層してなる複数のステータコア5と、各ステータコア5に巻き付けたコイル6(巻き線)と、を有している。前記コイル付きステータコア5は、6相コイルを3回繰り返しながら円周上に18個配置され、該6相コイルに対しては、図外のインバータから軸方向積層したバスバー7を介して複合電流が印加される。この複合電流は、図3に示すように、インナーロータIRを駆動させるための第1の交流電流と、アウターロータORを駆動させるための第2の交流電流とを複合させたものである。   The stator S is a stationary member fixed to the motor case 1 and includes a plurality of stator cores 5 formed by laminating electromagnetic steel plates and coils 6 (windings) wound around the stator cores 5. . The stator core 5 with coils is arranged on the circumference while repeating the 6-phase coil three times, and the composite current is applied to the 6-phase coil via the bus bar 7 laminated in the axial direction from an inverter (not shown). Applied. As shown in FIG. 3, this composite current is a combination of a first alternating current for driving the inner rotor IR and a second alternating current for driving the outer rotor OR.

前記アウターロータORは、その外筒面がアウターロータケース8に対してロー付け、或いは、接着により固定されている。そして、アウターロータケース8の正面側には正面側連結ケース9が固定され、背面側には背面側連結ケース10が固定されている。そして、この背面側連結ケース10に第2モータ軸11がスプライン結合されている。このアウターロータORには、図2に示すように、積層された電磁鋼鈑による積層コア12に対し磁束形成を考慮した配置によるアウターロータマグネット13が、両端位置に空間を介して軸方向に12本埋設されている。このアウターロータマグネット13は、インナーロータマグネット4と異なり、2本のアウターロータマグネット13,13が1極対を構成し、全周で6極対としてある。   The outer rotor OR has an outer cylindrical surface fixed to the outer rotor case 8 by brazing or bonding. And the front side connection case 9 is being fixed to the front side of the outer rotor case 8, and the back side connection case 10 is being fixed to the back side. The second motor shaft 11 is splined to the back side connection case 10. In this outer rotor OR, as shown in FIG. 2, an outer rotor magnet 13 having an arrangement in which magnetic flux formation is considered with respect to a laminated core 12 made of laminated electromagnetic steel plates is arranged in the axial direction 12 at both ends via a space. This is buried. The outer rotor magnet 13 is different from the inner rotor magnet 4 in that the two outer rotor magnets 13 and 13 form a single pole pair, and the entire circumference is a six pole pair.

図4は実施例1のステータ骨格体を示す一部平面図であり、積層鋼鈑による前記18個のコイル付きステータコア5の両端に第1カラー20,21と第2カラー22を配置し、両カラー20,21,22を軸方向に締結固定するボルト23,24及びナット25,26(軸方向力付与部材)により軸方向に締結し、その締結力により前記コイル付きステータコア5を固定することで、ステータ骨格体を構成している。   FIG. 4 is a partial plan view showing the stator skeleton of the first embodiment. The first collars 20 and 21 and the second collar 22 are arranged at both ends of the 18 coiled stator cores 5 made of laminated steel plates. By fastening the collars 20, 21, 22 in the axial direction by bolts 23, 24 and nuts 25, 26 (axial direction force applying members), the stator core 5 with coil is fixed by the fastening force. The stator skeleton is configured.

そして、前記ステータ骨格体をステータ成形型に入れ、該ステータ成形型に加熱溶融樹脂を流し込む樹脂モールド成形により樹脂モールド部27を形成している。なお、前記樹脂モールド部27には、ステータSを冷却する冷却媒体を通す冷却媒体通路28が周方向に隣接するステータコア5,5間の位置に形成されている。   The stator skeleton body is placed in a stator mold, and the resin mold portion 27 is formed by resin mold molding in which a molten resin is poured into the stator mold. Note that a cooling medium passage 28 through which a cooling medium for cooling the stator S passes is formed in the resin mold portion 27 at a position between the stator cores 5 and 5 adjacent in the circumferential direction.

図5はコイル付きステータコア5を示す図であり、前記ステータコア5の線膨張係数αc、前記ボルト23,24の線膨張係数αb、前記コイル6の線膨張係数をαm、としたとき、前記ステータコア5の線膨張係数αcを、前記ボルト23,24の線膨張係数αbよりも大きな値に設定すると共に、前記ステータコア5の線膨張係数αcと前記コイル6の線膨張係数αmとを同等に設定している。   FIG. 5 is a view showing a stator core 5 with a coil. When the linear expansion coefficient αc of the stator core 5, the linear expansion coefficient αb of the bolts 23 and 24, and the linear expansion coefficient of the coil 6 are αm, the stator core 5 is shown. Is set to a value larger than the linear expansion coefficient αb of the bolts 23 and 24, and the linear expansion coefficient αc of the stator core 5 and the linear expansion coefficient αm of the coil 6 are set to be equal. Yes.

図6は実施例1〜3でのステータコア5を示す図であり、実施例1のステータコア5は、図6(b)に示すように、表面に接着剤を兼ねた絶縁皮膜5aを有する薄板の電磁鋼板5bを積層して構成し、且つ、前記電磁鋼板5bと前記絶縁皮膜5aを合わせたコア全体での等価線膨張係数(=ステータコア5の線膨張係数αc)が、前記コイル6の線膨張係数αmと同等となるように、絶縁皮膜5aの種類を選定している。ここで、絶縁皮膜5aとしては、等価線膨張係数がコイル6の線膨張係数αmに対し、大きな線膨張係数を持った材料が選択される。   FIG. 6 is a view showing the stator core 5 in the first to third embodiments. As shown in FIG. 6B, the stator core 5 in the first embodiment is a thin plate having an insulating film 5a serving as an adhesive on the surface. The equivalent linear expansion coefficient (= linear expansion coefficient αc of the stator core 5) of the entire core including the electromagnetic steel sheet 5b and the magnetic steel sheet 5b and the insulating coating 5a is linearly expanded. The type of insulating film 5a is selected so as to be equal to the coefficient αm. Here, as the insulating film 5a, a material whose equivalent linear expansion coefficient is larger than the linear expansion coefficient αm of the coil 6 is selected.

次に、作用を説明する。   Next, the operation will be described.

従来は、薄板の電磁鋼鈑を積層し、かしめや溶接等によりステータコアを形成し、且つ、そのステータコアに巻き線を施してコイル付きステータコア(=ステータティース)を構成していた。この場合のステータコアは、鋼板打ち抜き時のバリやダレによって微小な空隙を有しており、無垢材料に対して軸方向の線膨張係数が定性的に小さくなる。また、電磁鋼鈑自体の線膨張係数も巻線の線膨張係数よりも小さいことが一般的である。従って、樹脂モールド成形する際の加熱工程において、通常、銅系の材料で構成される巻き線の熱膨張量が大きく、巻き線の張力抜けが発生するため、樹脂成形時の圧力によって巻き線が押し流され、巻き線が正規の位置に対してズレる可能性があった。   Conventionally, thin electromagnetic steel plates are laminated, a stator core is formed by caulking, welding, or the like, and the stator core is wound to form a stator core with a coil (= stator teeth). In this case, the stator core has a minute gap due to burrs or sag at the time of punching the steel sheet, and the linear expansion coefficient in the axial direction is qualitatively smaller than that of the solid material. In general, the linear expansion coefficient of the electromagnetic steel plate itself is also smaller than the linear expansion coefficient of the winding. Therefore, in the heating process at the time of resin molding, the amount of thermal expansion of the winding made of a copper-based material is usually large and tension of the winding is lost. There was a possibility that the winding was displaced and the winding was displaced from the normal position.

これに対し、実施例1のステータ構造では、ステータSを製造するにあたり、電磁鋼板5bと前記絶縁皮膜5aを合わせたコア全体での等価線膨張係数を、コイル6の線膨張係数αmと同等としておき、このコイル6付きステータコア5の両端に第1カラー20,21と第2カラー22を配置し、両カラー20,21,22を軸方向に締結固定するボルト23,24及びナット25,26により軸方向に締結し、その締結力により前記コイル付きステータコア5を固定することで、ステータ骨格体を構成する(図4参照)。   On the other hand, in the stator structure of Example 1, when manufacturing the stator S, the equivalent linear expansion coefficient of the entire core including the electromagnetic steel sheet 5b and the insulating coating 5a is set equal to the linear expansion coefficient αm of the coil 6. The first collars 20 and 21 and the second collar 22 are arranged at both ends of the stator core 5 with the coil 6 and are fixed by bolts 23 and 24 and nuts 25 and 26 for fastening and fixing the collars 20, 21, and 22 in the axial direction. A stator skeleton is formed by fastening in the axial direction and fixing the coiled stator core 5 by the fastening force (see FIG. 4).

そして、冷却媒体通路28となる位置に抜き型を配置したステータ骨格体を円筒上の空間を有するステータ成形型に入れ、且つ、該ステータ成形型に加熱溶融樹脂を流し込む樹脂モールド成形により樹脂モールド部27を形成する。   Then, the resin mold part is formed by resin mold molding in which a stator skeleton body in which a punching die is arranged at a position to become the cooling medium passage 28 is placed in a stator molding die having a space on a cylinder, and a hot melt resin is poured into the stator molding die. 27 is formed.

この樹脂モールド成形をする際の加熱工程において、ステータコア5の線膨張係数αcが、コイル6の線膨張係数αmと同等の値に設定されているため、ステータコア5の熱膨張量とコイル6のの熱膨張量がほぼ等しくなるので、コイル6の上記張力抜けが発生しない。この結果、樹脂モールド成形の加熱状態において、樹脂成形圧力による巻き線ズレの現象の発生が確実に防止される。そして、コイル6付きステータコア5のコイル6が正規の位置に対してズレを生じたままで樹脂により固定されてしまい、例えば、所望の出力性能が出ないとか、トルクむらを生じるというような不具合を解消することができる。   In the heating process at the time of resin molding, since the linear expansion coefficient αc of the stator core 5 is set to a value equivalent to the linear expansion coefficient αm of the coil 6, the amount of thermal expansion of the stator core 5 and the coil 6 Since the thermal expansion amounts are almost equal, the above-described tension drop of the coil 6 does not occur. As a result, the occurrence of winding deviation due to the resin molding pressure is reliably prevented in the heated state of the resin molding. And the coil 6 of the stator core 5 with the coil 6 is fixed by the resin while causing a deviation with respect to the normal position, and for example, a problem that the desired output performance does not appear or torque unevenness is eliminated. can do.

次に、効果を説明する。
実施例1の回転電機のステータ構造にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the stator structure of the rotating electrical machine of the first embodiment, the effects listed below can be obtained.

(1) 積層鋼鈑によるステータコア5の外周にコイル6を巻き付け、軸方向に付与した締結力により複数の前記コイル6付きステータコア5を固定したステータ骨格体をステータ成形型に入れ、該ステータ成形型に加熱溶融樹脂を流し込む樹脂モールド成形により樹脂モールド部27を形成した回転電機のステータ構造において、前記ステータコア5の線膨張係数αcを、前記コイル6の線膨張係数αmと同等の値に設定したため、樹脂モールド成形の加熱状態において、樹脂成形圧力による巻き線ズレの現象の発生を確実に防止することができる。   (1) A coil 6 is wound around the outer periphery of a stator core 5 made of laminated steel sheets, and a stator skeleton body in which a plurality of stator cores 5 with the coils 6 are fixed by an axially applied fastening force is placed in a stator mold, and the stator mold In the stator structure of the rotating electrical machine in which the resin mold portion 27 is formed by resin molding that pours the heated molten resin into the linear expansion coefficient αc of the stator core 5 is set to a value equivalent to the linear expansion coefficient αm of the coil 6, In the heated state of resin molding, it is possible to reliably prevent the occurrence of winding deviation due to resin molding pressure.

(2) 前記回転電機は、円筒状のステータSの内外に、それぞれ独立に制御可能なアウタロータOR及びインナロータIRを配置した複軸多層モータMであるため、ステータSに対しアウタロータORとインナロータIRとの間にて位相管理やエアギャップ管理が要求される複軸多層モータMにおいて、要求に応える高いステータSのコア位置精度や形状精度を確保することができる。   (2) Since the rotating electric machine is a multi-axis multilayer motor M in which an outer rotor OR and an inner rotor IR that can be independently controlled are arranged inside and outside a cylindrical stator S, the outer rotor OR and the inner rotor IR In the multi-axis multilayer motor M in which phase management and air gap management are required, high core position accuracy and shape accuracy of the stator S that meet the requirements can be ensured.

(3) 前記ステータコア5は、表面に接着剤を兼ねた絶縁皮膜5aを有する薄板の電磁鋼板5bを積層して構成し、且つ、前記電磁鋼板5bと前記絶縁皮膜5aを合わせたコア全体での等価線膨張係数が、前記コイル6の線膨張係数αmと同等の値となるように、絶縁皮膜5aの種類を選定したため、電磁鋼板5bを積層する際の接着剤を兼ねた絶縁皮膜5aを利用し、容易にステータコア5の線膨張係数αcをコイル6の線膨張係数αmと同等の値に設定することができる。加えて、絶縁皮膜5aの線膨張係数を調整することでコア部全体の等価線膨張係数を調整するので、電磁鋼板5bと絶縁皮膜5aの厚さの比率を変える必要がなく、積層方向の占積率が変わらない。   (3) The stator core 5 is formed by laminating a thin electromagnetic steel plate 5b having an insulating coating 5a which also serves as an adhesive on the surface, and the entire core including the electromagnetic steel plate 5b and the insulating coating 5a. Since the type of the insulating film 5a is selected so that the equivalent linear expansion coefficient is equal to the linear expansion coefficient αm of the coil 6, the insulating film 5a that also serves as an adhesive for laminating the electromagnetic steel sheets 5b is used. Then, the linear expansion coefficient αc of the stator core 5 can be easily set to a value equivalent to the linear expansion coefficient αm of the coil 6. In addition, since the equivalent linear expansion coefficient of the entire core portion is adjusted by adjusting the linear expansion coefficient of the insulating film 5a, there is no need to change the ratio of the thickness of the electromagnetic steel sheet 5b and the insulating film 5a, and the stacking direction is increased. The momentum does not change.

実施例2は、絶縁コーティング厚さの調整によりコア部全体の等価線膨張係数を調整するようにした例である。   Example 2 is an example in which the equivalent linear expansion coefficient of the entire core portion is adjusted by adjusting the insulating coating thickness.

すなわち、実施例2のステータ構造では、図6(c)に示すように、前記ステータコア5は、表面に接着材を兼ねた絶縁皮膜5aを有する薄板の電磁鋼板5bを積層して構成し、且つ、前記絶縁皮膜5aのコーティング厚さtaと前記電磁鋼板5bの厚さtbの比率によって線膨張係数を、交互に配置された電磁鋼板5bと絶縁皮膜5aを含めた等価線膨張係数が、コイル6の線膨張係数αmと同等の値になるように調整している。なお、他の構成は実施例1と同様であり、作用についても実施例1と同様であるので説明を省略する。   That is, in the stator structure of Example 2, as shown in FIG. 6 (c), the stator core 5 is formed by laminating a thin electromagnetic steel plate 5b having an insulating film 5a also serving as an adhesive on the surface, and The linear expansion coefficient is determined by the ratio of the coating thickness ta of the insulating film 5a and the thickness tb of the electromagnetic steel sheet 5b, and the equivalent linear expansion coefficient including the alternately disposed electromagnetic steel sheets 5b and insulating film 5a is determined by the coil 6. The linear expansion coefficient αm is adjusted to be equal to the value. The other configuration is the same as that of the first embodiment, and the operation is also the same as that of the first embodiment, so that the description thereof is omitted.

次に、効果を説明する。
実施例2の回転電機のステータ構造にあっては、実施例1の(1),(2)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the stator structure of the rotating electrical machine according to the second embodiment, the following effects can be obtained in addition to the effects (1) and (2) of the first embodiment.

(4) 前記ステータコア5は、表面に接着材を兼ねた絶縁皮膜5aを有する薄板の電磁鋼板5bを積層して構成し、且つ、前記絶縁皮膜5aのコーティング厚さtaと前記電磁鋼板5bの厚さtbの比率によって線膨張係数を調整したため、絶縁皮膜5aの材料を変えることなく、容易にステータコア5の線膨張係数αcとコイル6の線膨張係数αmとを同等の値に設定することができる。   (4) The stator core 5 is configured by laminating a thin electromagnetic steel plate 5b having an insulating coating 5a also serving as an adhesive on the surface, and the coating thickness ta of the insulating coating 5a and the thickness of the electromagnetic steel plate 5b. Since the linear expansion coefficient is adjusted by the ratio of the thickness tb, the linear expansion coefficient αc of the stator core 5 and the linear expansion coefficient αm of the coil 6 can be easily set to the same value without changing the material of the insulating film 5a. .

実施例3のステータコアは、磁性材料をバインダーにて混成して圧縮成形した圧粉材料にて構成し、バインダーの種類により線膨張係数を調整するようにした例である。   The stator core of Example 3 is an example in which a magnetic material is mixed with a binder and is made of a compacted material that is compression-molded, and the linear expansion coefficient is adjusted depending on the type of the binder.

すなわち、実施例3のステータ構造では、図6(d)に示すように、前記ステータコア5は、磁性材料5cをバインダー5dにて混成して圧縮成形した圧粉材料にて構成し、且つ、該ステータコア5の線膨張係数αcが前記コイル6の線膨張係数αmと同等の値になるように、バインダー5dの種類を選定している。なお、他の構成は実施例1と同様であり、作用についても実施例1と同様であるので説明を省略する。   That is, in the stator structure of Example 3, as shown in FIG. 6 (d), the stator core 5 is composed of a compacted material obtained by compressing and molding a magnetic material 5c with a binder 5d, and The type of the binder 5d is selected so that the linear expansion coefficient αc of the stator core 5 is equal to the linear expansion coefficient αm of the coil 6. The other configuration is the same as that of the first embodiment, and the operation is also the same as that of the first embodiment, so that the description thereof is omitted.

次に、効果を説明する。
実施例3の回転電機のステータ構造にあっては、実施例1の(1),(2)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the stator structure of the rotating electrical machine of the third embodiment, in addition to the effects (1) and (2) of the first embodiment, the following effects can be obtained.

(5) 前記ステータコア5は、磁性材料5cをバインダー5dにて混成して圧縮成形した圧粉材料にて構成し、且つ、該ステータコア5の線膨張係数αcが前記コイル6の線膨張係数αmと同等の値になるように、バインダー5dの種類を選定したため、磁性材料5cとバインダー5dの成分比率を変更する必要がなく、ステータコア5の磁束密度に影響を与えることなく、ステータコア5の線膨張係数αcをコイル6の線膨張係数αmと同等の値に設定することができる。   (5) The stator core 5 is made of a powder material obtained by compressing and molding the magnetic material 5c with the binder 5d, and the linear expansion coefficient αc of the stator core 5 is equal to the linear expansion coefficient αm of the coil 6. Since the type of the binder 5d is selected so as to have an equivalent value, it is not necessary to change the component ratio of the magnetic material 5c and the binder 5d, and the linear expansion coefficient of the stator core 5 is not affected without affecting the magnetic flux density of the stator core 5. αc can be set to a value equivalent to the linear expansion coefficient αm of the coil 6.

実施例4は、ステータコア5の両端面とコイル6との間に中間調整部材14を介在させ、ステータコア5の等価線膨張係数を調整するようにした例である。   The fourth embodiment is an example in which an intermediate adjusting member 14 is interposed between both end faces of the stator core 5 and the coil 6 to adjust the equivalent linear expansion coefficient of the stator core 5.

すなわち、実施例4のステータ構造では、図7に示すように、前記ステータコア5の両端面とコイル6(巻き線)との間に中間調整部材14を介在させ、且つ、該中間調整部材14は、ステータコア5と組み合わせた状態での等価線膨張係数が、前記コイル6の線膨張係数αmと同等の値となる線膨張係数の材料を選定する。ここで、ステータコア5と中間調整部材14を組み合わせた状態での等価線膨張係数の微調整は、中間調整部材14の板厚を調整することで行う。また、前記中間調整部材14とコイル6間には、両者5,6間の絶縁確保のために用いるインシュレータ部材15が介装されている。なお、他の構成は実施例1と同様であり、作用についても実施例1と同様であるので説明を省略する。   That is, in the stator structure of the fourth embodiment, as shown in FIG. 7, the intermediate adjustment member 14 is interposed between both end faces of the stator core 5 and the coil 6 (winding), and the intermediate adjustment member 14 is A material having a linear expansion coefficient that makes the equivalent linear expansion coefficient in combination with the stator core 5 equal to the linear expansion coefficient αm of the coil 6 is selected. Here, the fine adjustment of the equivalent linear expansion coefficient in a state where the stator core 5 and the intermediate adjustment member 14 are combined is performed by adjusting the plate thickness of the intermediate adjustment member 14. An insulator member 15 used for securing insulation between the intermediate adjusting member 14 and the coil 6 is interposed between the intermediate adjusting member 14 and the coil 6. The other configuration is the same as that of the first embodiment, and the operation is also the same as that of the first embodiment, so that the description thereof is omitted.

次に、効果を説明する。
実施例4の回転電機のステータ構造にあっては、実施例1の(1),(2)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the stator structure of the rotating electrical machine of the fourth embodiment, the following effects can be obtained in addition to the effects (1) and (2) of the first embodiment.

(6) 前記ステータコア5の両端面とコイル6(巻き線)との間に中間調整部材14を介在させ、且つ、該中間調整部材14は、ステータコア5と組み合わせた状態での等価線膨張係数が、前記コイル6の線膨張係数αmと同等の値になる材料を選定したため、電磁鋼板5bや絶縁皮膜5aなどコア自体の線膨張係数調整が不要であり、且つ、コア材料以外の中間調整部材14にて、コア部全体の線膨張係数を調整するので、磁気性能への影響を考慮する必要がなく、ステータコア5の線膨張係数αcをコイル6の線膨張係数αmと同等の値に設定することができる。   (6) An intermediate adjustment member 14 is interposed between both end faces of the stator core 5 and the coil 6 (winding), and the intermediate adjustment member 14 has an equivalent linear expansion coefficient in a state where it is combined with the stator core 5. Since a material having a value equivalent to the linear expansion coefficient αm of the coil 6 is selected, it is not necessary to adjust the linear expansion coefficient of the core itself such as the electromagnetic steel sheet 5b and the insulating coating 5a, and the intermediate adjustment member 14 other than the core material is used. Since the linear expansion coefficient of the entire core portion is adjusted, it is not necessary to consider the influence on the magnetic performance, and the linear expansion coefficient αc of the stator core 5 is set to a value equivalent to the linear expansion coefficient αm of the coil 6. Can do.

実施例5は、実施例4において、中間調整部材をインシュレータ部材と兼用させた例である。   The fifth embodiment is an example in which the intermediate adjustment member is also used as the insulator member in the fourth embodiment.

すなわち、実施例5のステータ構造では、図8に示すように、前記ステータコア5の両端面とコイル6との間に、前記中間調整部材14と、ステータコア5とコイル6間の絶縁確保のために用いるインシュレータ部材15と、を兼ねた絶縁調整部材16を介在させた構成としている。なお、他の構成は実施例4と同様であり、作用についても実施例4と同様であるので説明を省略する。   That is, in the stator structure of the fifth embodiment, as shown in FIG. 8, in order to ensure insulation between the intermediate adjustment member 14 and the stator core 5 and the coil 6 between the both end faces of the stator core 5 and the coil 6. The insulation adjusting member 16 that also serves as the insulator member 15 to be used is interposed. The other configuration is the same as that of the fourth embodiment, and the operation is also the same as that of the fourth embodiment.

次に、効果を説明する。
実施例5の回転電機のステータ構造にあっては、実施例4の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the stator structure of the rotating electrical machine of the fifth embodiment, the following effects can be obtained in addition to the effects of the fourth embodiment.

(7) 前記ステータコア5の両端面とコイル6との間に、前記中間調整部材14と、ステータコア5とコイル6間の絶縁確保のために用いるインシュレータ部材15と、を兼ねた絶縁調整部材16を介在させたため、実施例4に比べ部品点数が減少すると共に、絶縁調整部材16はコイル6の巻き付けによりステータコア5に固定されるので、別途の固定手段が不要である。   (7) An insulation adjusting member 16 serving as both the intermediate adjusting member 14 and an insulator member 15 used for ensuring insulation between the stator core 5 and the coil 6 is provided between both end faces of the stator core 5 and the coil 6. Since it is interposed, the number of parts is reduced as compared with the fourth embodiment, and the insulation adjusting member 16 is fixed to the stator core 5 by winding the coil 6, so that no separate fixing means is required.

以上、本発明の回転電機のステータ構造を実施例1〜実施例5に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the stator structure of the rotary electric machine of this invention has been demonstrated based on Example 1-Example 5, it is not restricted to these Examples about a concrete structure, Each claim of a claim Design changes and additions are permitted without departing from the spirit of the invention according to the paragraph.

例えば、実施例1〜5では、ステータコア側の線膨張係数を調整する例を示したが、ステータコア側の線膨張係数の調整手法としては、これら以外の手法によるものや、実施例1〜5の組み合わせ手法によるものであっても良い。さらに、ステータコア側の線膨張係数はそのままで、巻き線の線膨張係数を材料の選定等により調整するようにしても良い。要するに、ステータコアの線膨張係数を、巻き線の線膨張係数と同等の値に設定したものであれば本発明に含まれる。   For example, in Examples 1-5, although the example which adjusts the linear expansion coefficient by the side of a stator core was shown, as an adjustment method of the linear expansion coefficient by the side of a stator core, those by other methods, Examples 1-5 A combination method may be used. Furthermore, the linear expansion coefficient on the stator core side may be left as it is, and the linear expansion coefficient of the winding may be adjusted by selecting a material or the like. In short, the present invention includes any stator core whose linear expansion coefficient is set to a value equivalent to the linear expansion coefficient of the winding.

実施例1〜5では、回転電機として、2ロータ・1ステータによる複軸多層モータへの適用例を示したが、本発明の回転電機のステータ構造は、1ロータ・1ステータのモータ等、少なくとも一つのステータを有する回転電機であれば、他の回転電機にも適用できる。   In Examples 1 to 5, an example of application to a multi-axis multilayer motor using two rotors and one stator as a rotating electric machine has been shown. However, the stator structure of the rotating electric machine of the present invention includes at least a motor of one rotor and one stator, etc. If it is a rotary electric machine having one stator, it can be applied to other rotary electric machines.

実施例1のステータ構造が適用された複軸多層モータ(回転電機)を示す断面図である。It is sectional drawing which shows the multi-axis multilayer motor (rotary electric machine) to which the stator structure of Example 1 was applied. 実施例1の複軸多層モータMの1/3モデルを示す縦断正面図である。1 is a longitudinal front view showing a 1/3 model of a multi-axis multilayer motor M according to Embodiment 1. FIG. 実施例1の複軸多層モータMのステータコイルに印加する複合電流の一例を示す図である。3 is a diagram illustrating an example of a composite current applied to a stator coil of the multi-axis multilayer motor M of Embodiment 1. FIG. 実施例1の複軸多層モータMのステータ骨格体を示す一部平面図である。3 is a partial plan view showing a stator skeleton of the multi-axis multilayer motor M of Embodiment 1. FIG. 実施例1の複軸多層モータMのコイル付きステータコアを示す図である。1 is a diagram illustrating a stator core with a coil of a multi-axis multilayer motor M according to Embodiment 1. FIG. 実施例1,2,3の複軸多層モータMのステータ構造を示すステータコア図(a)及びステータコアのA部拡大断面図(b),(c),(d)である。FIG. 2 is a stator core diagram (a) showing a stator structure of a multi-shaft multilayer motor M of Examples 1, 2, and 3, and an enlarged sectional view (b), (c), (d) of the A part of the stator core. 実施例4の複軸多層モータMのステータ構造を示す図である。FIG. 6 is a diagram illustrating a stator structure of a multi-axis multilayer motor M according to a fourth embodiment. 実施例5の複軸多層モータMのステータ構造を示す図である。FIG. 10 is a diagram illustrating a stator structure of a multi-axis multilayer motor M according to a fifth embodiment.

符号の説明Explanation of symbols

M 複軸多層モータ(回転電機)
S ステータ
IR インナーロータ
OR アウターロータ
1 モータケース
2 第1モータ中空軸
3 積層コア
4 インナーロータマグネット
5 ステータコア
5a 絶縁皮膜
5b 電磁鋼板
5c 磁性材料
5d バインダー
6 コイル(巻き線)
7 バスバー
8 アウターロータケース
9 正面側連結ケース
10 背面側連結ケース
11 第2モータ軸
12 積層コア
13 アウターロータマグネット
14 中間調整部材
15 インシュレータ部材
16 絶縁調整部材
20,21 第1カラー
22 第2カラー
23,24ボルト
25,26 ナット
27 樹脂モールド部
28 冷却媒体通路
αc ステータコア5の線膨張係数
αb ボルト23,24の線膨張係数
αm コイル6の線膨張係数
M Double-axis multilayer motor (rotary electric machine)
S stator
IR inner rotor
OR outer rotor 1 motor case 2 first motor hollow shaft 3 laminated core 4 inner rotor magnet 5 stator core 5a insulating film 5b magnetic steel sheet 5c magnetic material 5d binder 6 coil (winding)
7 Bus Bar 8 Outer Rotor Case 9 Front Side Connection Case 10 Back Side Connection Case 11 Second Motor Shaft 12 Laminated Core 13 Outer Rotor Magnet 14 Intermediate Adjustment Member 15 Insulator Member 16 Insulation Adjustment Member 20, 21 First Color 22 Second Color 23 , 24 bolts 25, 26 nut 27 resin mold portion 28 cooling medium passage αc linear expansion coefficient of stator core 5 αb linear expansion coefficient of bolts 23, 24 αm linear expansion coefficient of coil 6

Claims (7)

積層鋼鈑によるステータコアの外周に巻き線を巻き付け、軸方向に付与した締結力により複数の前記巻き線付きステータコアを固定したステータ骨格体をステータ成形型に入れ、該ステータ成形型に加熱溶融樹脂を流し込む樹脂モールド成形により樹脂モールド部を形成した回転電機のステータ構造において、
前記ステータコアの線膨張係数を、前記巻き線の線膨張係数と同等の値に設定したことを特徴とする回転電機のステータ構造。
A stator skeleton body in which a plurality of stator cores with windings are fixed by a fastening force applied in an axial direction is placed in a stator mold, and a heated molten resin is placed in the stator mold. In the stator structure of a rotating electrical machine in which the resin mold part is formed by casting resin mold,
A stator structure for a rotating electrical machine, wherein a linear expansion coefficient of the stator core is set to a value equivalent to a linear expansion coefficient of the winding.
請求項1に記載された回転電機のステータ構造において、
前記回転電機は、円筒状のステータの内外に、それぞれ独立に制御可能なアウタロータ及びインナロータを配置した複軸多層モータであることを特徴とする回転電機のステータ構造。
In the stator structure of the rotating electrical machine according to claim 1,
The rotating electric machine is a multi-axis multilayer motor in which an outer rotor and an inner rotor that can be independently controlled are arranged inside and outside a cylindrical stator, respectively.
請求項1または2に記載された回転電機のステータ構造において、
前記ステータコアは、表面に接着剤を兼ねた絶縁皮膜を有する薄板の電磁鋼板を積層して構成し、且つ、前記電磁鋼板と前記絶縁皮膜を合わせたコア全体での等価線膨張係数が、前記巻き線の線膨張係数と同等の値になるように、絶縁皮膜の種類を選定したことを特徴とする回転電機のステータ構造。
In the stator structure of the rotating electrical machine according to claim 1 or 2,
The stator core is configured by laminating thin electromagnetic steel sheets having an insulating film also serving as an adhesive on the surface, and an equivalent linear expansion coefficient of the entire core including the electromagnetic steel sheet and the insulating film is determined by the winding. A stator structure of a rotating electrical machine, wherein the type of insulating film is selected so as to have a value equivalent to the linear expansion coefficient of the wire.
請求項1または2に記載された回転電機のステータ構造において、
前記ステータコアは、表面に接着材を兼ねた絶縁皮膜を有する薄板の電磁鋼板を積層して構成し、且つ、前記絶縁皮膜のコーティング厚さと前記電磁鋼板の厚さの比率によって線膨張係数を調整したことを特徴とする回転電機のステータ構造。
In the stator structure of the rotating electrical machine according to claim 1 or 2,
The stator core is formed by laminating thin electromagnetic steel sheets having an insulating film also serving as an adhesive on the surface, and the linear expansion coefficient is adjusted by the ratio of the coating thickness of the insulating film and the thickness of the electromagnetic steel sheet. A stator structure for a rotating electrical machine.
請求項1または2に記載された回転電機のステータ構造において、
前記ステータコアは、磁性材料をバインダーにて混成して圧縮成形した圧粉材料にて構成し、且つ、該ステータコアの線膨張係数が前記巻き線の線膨張係数と同等の値になるように、バインダーの種類を選定したことを特徴とする回転電機のステータ構造。
In the stator structure of the rotating electrical machine according to claim 1 or 2,
The stator core is composed of a compacted material that is compression-molded with a magnetic material mixed with a binder, and the binder has a linear expansion coefficient equal to the linear expansion coefficient of the winding. A stator structure for a rotating electrical machine characterized by the selection of the type.
請求項1または2に記載された回転電機のステータ構造において、
前記ステータコアの両端面と巻き線との間に中間調整部材を介在させ、且つ、該中間調整部材は、ステータコアと組み合わせた状態での等価線膨張係数が、前記巻き線の線膨張係数と同等の値になる材料を選定したことを特徴とする回転電機のステータ構造。
In the stator structure of the rotating electrical machine according to claim 1 or 2,
An intermediate adjustment member is interposed between both end faces of the stator core and the winding, and the intermediate adjustment member has an equivalent linear expansion coefficient in the state combined with the stator core equal to the linear expansion coefficient of the winding. A stator structure for a rotating electrical machine, characterized by selecting a material to be a value.
請求項6に記載された回転電機のステータ構造において、
前記ステータコアの両端面と巻き線との間に、前記中間調整部材と、ステータコアと巻き線間の絶縁確保のために用いるインシュレータ部材と、を兼ねた絶縁調整部材を介在させことを特徴とする回転電機のステータ構造。
In the stator structure of the rotating electrical machine according to claim 6,
A rotation characterized by interposing an insulation adjusting member serving as both the intermediate adjusting member and an insulator member used for securing insulation between the stator core and the winding between both end faces of the stator core and the winding. Electric stator structure.
JP2004365622A 2004-12-17 2004-12-17 Stator structure for dynamo-electric machine Pending JP2006174639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365622A JP2006174639A (en) 2004-12-17 2004-12-17 Stator structure for dynamo-electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365622A JP2006174639A (en) 2004-12-17 2004-12-17 Stator structure for dynamo-electric machine

Publications (1)

Publication Number Publication Date
JP2006174639A true JP2006174639A (en) 2006-06-29

Family

ID=36674769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365622A Pending JP2006174639A (en) 2004-12-17 2004-12-17 Stator structure for dynamo-electric machine

Country Status (1)

Country Link
JP (1) JP2006174639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303293A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Rotor of rotating electric machine
JP2010166741A (en) * 2009-01-17 2010-07-29 Nissan Motor Co Ltd Rotating electrical machine
JP2015073413A (en) * 2013-10-04 2015-04-16 トヨタ自動車株式会社 Resolver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328656A (en) * 1992-05-26 1993-12-10 Toshiba Corp Mold motor
JPH07312839A (en) * 1994-05-16 1995-11-28 Mitsubishi Electric Corp Coil device for ac generator
JP2004072948A (en) * 2002-08-08 2004-03-04 Nissan Motor Co Ltd Outer rotor supporting bearing attachment structure for multiple shaft multilayer motor
JP2004112856A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Cooling structure for rotary electric machine and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328656A (en) * 1992-05-26 1993-12-10 Toshiba Corp Mold motor
JPH07312839A (en) * 1994-05-16 1995-11-28 Mitsubishi Electric Corp Coil device for ac generator
JP2004072948A (en) * 2002-08-08 2004-03-04 Nissan Motor Co Ltd Outer rotor supporting bearing attachment structure for multiple shaft multilayer motor
JP2004112856A (en) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd Cooling structure for rotary electric machine and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303293A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Rotor of rotating electric machine
JP2010166741A (en) * 2009-01-17 2010-07-29 Nissan Motor Co Ltd Rotating electrical machine
JP2015073413A (en) * 2013-10-04 2015-04-16 トヨタ自動車株式会社 Resolver

Similar Documents

Publication Publication Date Title
JP4882211B2 (en) Axial gap motor structure
WO2015019948A1 (en) Brushless motor
US10348174B2 (en) Electric motor
JPH11332140A (en) Armature structure for radial rib winding type rotating electric machine
JP3137510B2 (en) Stator for synchronous machine, method of manufacturing the same, teeth piece and yoke piece
JP2009273216A (en) Motor
JP2001128423A (en) Dynamo-electric machine
WO2018037529A1 (en) Rotary electric machine
JP2002095227A (en) Rotor of synchronous reluctance motor and synchronous reluctance motor equipped therewith
WO2007123057A1 (en) Motor
JP2006174638A (en) Stator structure for dynamo-electric machine
JP2009284626A (en) Stator of rotating machine and motor
JP4929962B2 (en) Slotless motor
JP2004015998A (en) Permanent magnet version rotating machine with three-phase stator winding divided in axial direction
JP2006174639A (en) Stator structure for dynamo-electric machine
JP2003199273A (en) Permanent magnet system reluctance type rotating electric machine
TWI552486B (en) Axial air gap motor
JP2010004635A (en) Field magneton, manufacturing method therefor, and rotating electrical machine
JP2006174637A (en) Manufacturing method for stator of rotary electric machine
JP2003304656A (en) Stator structure of dynamo-electric machine and method of manufacturing stator
JP2004201488A (en) Synchronous motor and its manufacturing method
JP2005124378A (en) Induction motor having annular stator coil
JP3551732B2 (en) Stator for rotating electric machine
JP3829888B2 (en) Synchronous rotating machine with permanent magnet
JP2004304995A (en) Exciter, field unit, and motor using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316