JP2006170919A - Earthquake response analyzer, earthquake response analyzing method and earthquake response analyzing program - Google Patents

Earthquake response analyzer, earthquake response analyzing method and earthquake response analyzing program Download PDF

Info

Publication number
JP2006170919A
JP2006170919A JP2004366781A JP2004366781A JP2006170919A JP 2006170919 A JP2006170919 A JP 2006170919A JP 2004366781 A JP2004366781 A JP 2004366781A JP 2004366781 A JP2004366781 A JP 2004366781A JP 2006170919 A JP2006170919 A JP 2006170919A
Authority
JP
Japan
Prior art keywords
stress
time
earthquake response
detected
response analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004366781A
Other languages
Japanese (ja)
Other versions
JP4441397B2 (en
Inventor
Tadahiko Shiomi
忠彦 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004366781A priority Critical patent/JP4441397B2/en
Publication of JP2006170919A publication Critical patent/JP2006170919A/en
Application granted granted Critical
Publication of JP4441397B2 publication Critical patent/JP4441397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire an earthquake response analyzer, an earthquake response analyzing method and an earthquake response analyzing program tailored to a behavior of an actual earthquake, and accurately analyzing an earthquake response. <P>SOLUTION: When a calculation section 16 analyzes the earthquake response using at least a shearing stress of the ground as an analyzed object, a base time is a time for maximizing the corresponding stress in time series, a time is detected after the base time and an inner product of a stress vector at the time and a stress vector at the base time is predetermined value, a time is detected as a delimiter point after the detected time and the corresponding stress is minimized, and the shearing stress is derived based on the corresponding stress for a period from the detected delimiter point to the next detected delimiter point. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地震応答解析装置、地震応答解析方法及び地震応答解析プログラムに係り、より詳しくは、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析装置、地震応答解析方法及び地震応答解析プログラムに関する。   The present invention relates to an earthquake response analysis apparatus, an earthquake response analysis method, and an earthquake response analysis program. More specifically, the present invention relates to an earthquake response analysis apparatus and an earthquake response analysis that perform an earthquake response analysis using at least the shear stress of the ground to be analyzed. The present invention relates to a method and an earthquake response analysis program.

解析対象とする地盤のせん断応力を用いて地震応答解析を行う従来の技術として、本出願人らによる特許文献1には、解析対象とする地盤のせん断応力の時刻歴から液状化強度曲線を用いて累積損傷度を求め、累積損傷度から過剰間隙水圧比を求め、これによって得られる有効応力から液状化によるせん断剛性低下率を得て、せん断応力及びせん断ひずみの振幅の半波毎に、その半波内の最大せん断ひずみによる剛性低下率をそれぞれ求め、これらから、等価なせん断剛性を求め、この剛性(割線剛性)を用いて時刻歴応答解析(地震応答解析)を行うことが提案されている。   As a conventional technique for performing an earthquake response analysis using the shear stress of the ground to be analyzed, Patent Document 1 by the present applicants uses a liquefaction strength curve from the time history of the shear stress of the ground to be analyzed. The cumulative damage degree is obtained, the excess pore water pressure ratio is obtained from the cumulative damage degree, the shear stiffness reduction rate due to liquefaction is obtained from the effective stress obtained by this, and for each half wave of the amplitude of shear stress and shear strain, It has been proposed to calculate the stiffness reduction rate due to the maximum shear strain in the half-wave, to obtain the equivalent shear stiffness from these, and to perform time history response analysis (earthquake response analysis) using this stiffness (secant stiffness). Yes.

具体的には、図6に示すように、せん断応力の時刻歴において、せん断応力がゼロ線を横切る点を区切り点として、隣接する2つの区切り点で囲まれる間を「半波」と定義し(図7も参照。)、当該半波間のせん断応力の最大値τmaxを求め(図6(1))、これをせん断応力比Rに換算し、当該せん断応力比Rにより液状化強度曲線を用いて増分損傷度ΔDを求め(図6(3))、これを積算することにより累積損傷度Dを求め(図6(1))、更に累積損傷度Dから過剰間隙水圧比ruを求め(図6(4))、当該過剰間隙水圧比ruから液状化による剛性低下率G0を求め(図6(5))、図6(2)のひずみによる剛性低下率を合わせて、地震応答解析に用いる剛性を求めていた。 Specifically, as shown in FIG. 6, in the time history of shear stress, a point where the shear stress crosses the zero line is defined as a break point, and the interval between two adjacent break points is defined as “half wave”. (See also FIG. 7). The maximum value τ max of the shear stress between the half waves is obtained (FIG. 6 (1)), this is converted into the shear stress ratio R, and the liquefaction strength curve is determined by the shear stress ratio R. Using this, the incremental damage degree ΔD is obtained (FIG. 6 (3)), and the cumulative damage degree D is obtained by integrating these (FIG. 6 (1)), and the excess pore water pressure ratio ru is obtained from the cumulative damage degree D. (FIG. 6 (4)), the excess pore water pressure ratio determined stiffness reduction rate G 0 by liquefaction from r u (FIG. 6 (5)), the combined stiffness reduction rate due to the strain in FIG. 6 (2), earthquakes The rigidity used for response analysis was obtained.

ところで、特許文献1で提案されている技術では、水平2方向の地震成分(例えば、東西方向の成分(以下、「EW方向成分」という。)と南北方向の成分(以下、「NS方向成分」という。))を考慮した地震応答解析を行う場合、せん断応力が2方向(成分)に分けられるため、それぞれの成分について半波が考えられる。しかしながら、過剰間隙水圧は方向成分を持たないスカラー量であるので、これに対する累積損傷度もスカラー量であるものと考えられる。   By the way, in the technique proposed in Patent Document 1, two horizontal seismic components (for example, an east-west direction component (hereinafter referred to as “EW direction component”) and a north-south direction component (hereinafter referred to as “NS direction component”). When the seismic response analysis is taken into account, the shear stress is divided into two directions (components), so half-waves can be considered for each component. However, since the excess pore water pressure is a scalar amount that does not have a directional component, the cumulative damage to this is also considered to be a scalar amount.

この累積損傷度を算出するために、本出願人らによる非特許文献1では、せん断応力の2方向成分のベクトル和の大きさ(ここでは、最大せん断応力τmax)からせん断応力比を求め、これに基づいて累積損傷度を求める技術が提案されている。 In order to calculate this cumulative damage degree, in Non-Patent Document 1 by the present applicants, the shear stress ratio is obtained from the magnitude of the vector sum of the two-direction components of the shear stress (here, the maximum shear stress τ max ), A technique for obtaining the cumulative damage based on this has been proposed.

すなわち、最大せん断応力はベクトルの大きさなので必ず正(プラス)の値となるため、水平2方向の地震成分を考慮した地震応答解析では、特許文献1の技術で適用している1次元の解析(水平1方向の解析)と同様には半波を定義することができない。そこで、非特許文献1の技術では、図8に示すように、最大せん断応力τmaxを2つのせん断応力τxz(xz面のせん断応力)及びτyz(yz面のせん断応力)からなるベクトルと見なし、半波の区切り点を「最大せん断応力ベクトルの大きさが最大となる最大せん断応力ベクトルに対して、現時点の最大せん断応力ベクトルが垂直になった時点」と定義している。
特開2001−208641公報 貫井泰,瀧ヶ崎進,吉田洋之,塩見忠彦,「水平2方向入力を考慮した累積損傷度による自由地盤の液状化解析」,第39回地盤工学研究発表会(新潟),2004,p.1771−1772
In other words, the maximum shear stress is always a positive value because of the magnitude of the vector. Therefore, in the seismic response analysis considering the seismic component in two horizontal directions, the one-dimensional analysis applied by the technique of Patent Document 1 is used. A half wave cannot be defined as in (analysis in one horizontal direction). Therefore, in the technique of Non-Patent Document 1, as shown in FIG. 8, the maximum shear stress τ max is expressed as a vector composed of two shear stresses τ xz (xz plane shear stress) and τ yz (yz plane shear stress). The half-wave breakpoint is defined as “when the current maximum shear stress vector becomes perpendicular to the maximum shear stress vector with the maximum magnitude of the maximum shear stress vector”.
JP 2001-208641 A Nukii Yasushi, Chigasaki Susumu, Yoshida Hiroyuki, Shiomi Tadahiko, “Liquefaction Analysis of Free Ground Based on Cumulative Damage Considering Horizontal Two-way Input”, 39th Geotechnical Engineering Conference (Niigata), 2004, p. 1771-1772

しかしながら、上記非特許文献1で提案されている技術では、水平2方向の地震成分を考慮した地震応答解析はできるものの、3方向以上の地震成分を考慮した地震応答解析を行うことができないため、必ずしも高精度な地震応答解析を行うことができるとは限らない、という問題点があった。   However, since the technique proposed in Non-Patent Document 1 can perform an earthquake response analysis considering the horizontal two-direction earthquake component, it cannot perform an earthquake response analysis considering three or more earthquake components. There was a problem that high-precision seismic response analysis was not always possible.

すなわち、3次元解析では、応力は9つ(6つが独立)の成分(x方向の軸応力σxx、y方向の軸応力σyy、z方向の軸応力σzz、xy平面のせん断応力σxy、yz平面のせん断応力σyz、zx平面のせん断応力σzx)があり、過剰間隙水圧を生じさせるせん断応力成分としては9つ(6つが独立)のせん断応力成分(σxx−σyy、σyy−σzz、σzz−σxx、σxy、σyz、σzx)がある。 That is, in the three-dimensional analysis, the stress has nine components (six are independent) (the axial stress σ xx in the x direction, the axial stress σ yy in the y direction, the axial stress σ zz in the z direction, and the shear stress σ xy in the xy plane). , Yz plane shear stress σ yz , zx plane shear stress σ zx ), and nine (six are independent) shear stress components (σ xx −σ yy , σ yy −σ zz , σ zz −σ xx , σ xy , σ yz , and σ zx ).

これに対して、上記非特許文献1の技術では、これらの3方向以上の応力成分は考慮されていないため、実際の地震動の挙動に即した半波の区切り点を検出することができない場合があり、この場合には、高精度な地震応答解析を行うことはできない。   On the other hand, in the technique of Non-Patent Document 1, since stress components in these three directions or more are not taken into consideration, there may be a case where it is not possible to detect a half-wave breakpoint in accordance with the actual behavior of ground motion. Yes, in this case, high-precision seismic response analysis cannot be performed.

本発明は上記問題点を解決するためになされたものであり、実際の地震動の挙動に即した高精度な地震応答解析を行うことのできる地震応答解析装置、地震応答解析方法及び地震応答解析プログラムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an earthquake response analysis apparatus, an earthquake response analysis method, and an earthquake response analysis program capable of performing a highly accurate earthquake response analysis in accordance with the actual behavior of earthquake motion. The purpose is to provide.

上記目的を達成するために、請求項1記載の地震応答解析装置は、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析装置であって、時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出する検出手段と、前記検出手段によって検出された前記区切り点から次に前記検出手段によって検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出する導出手段と、を備えている。   In order to achieve the above object, an earthquake response analysis apparatus according to claim 1 is an earthquake response analysis apparatus that performs an earthquake response analysis using at least a shear stress of a ground to be analyzed, and includes a predetermined stress in time series order. Is the time after the base time, and the time when the inner product of the stress vector and the stress vector at the base time is a predetermined value is detected, the time after the detected time and the predetermined time Based on the predetermined stress within a period from the breakpoint detected by the detection means to the breakpoint detected by the detection means, and detecting means for detecting a time at which the stress is minimal Deriving means for deriving the shear stress.

請求項1記載の地震応答解析装置によれば、検出手段により、時系列順で所定応力が最大となる時刻が基点時刻とされて、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻が検出された後、検出された時刻以降で、かつ前記所定応力が極小となる時刻が区切り点として検出され、導出手段により、前記検出手段によって検出された前記区切り点から次に前記検出手段によって検出された前記区切り点までの期間内における前記所定応力に基づいて解析対象とする地盤のせん断応力が導出され、当該せん断応力が用いられて地震応答解析が行われる。   According to the earthquake response analysis apparatus according to claim 1, the time at which the predetermined stress is maximum in time series order is set as the base time by the detecting means, and the time after the base time and the stress vector and the base time After the time when the inner product with the stress vector at the predetermined value is detected, the time after the detected time and when the predetermined stress becomes minimum is detected as a breakpoint, and is detected by the detecting means by the deriving means The shear stress of the ground to be analyzed is derived based on the predetermined stress within the period from the determined break point to the break point detected by the detection means, and the shear stress is used to generate an earthquake response. Analysis is performed.

このように、請求項1記載の地震応答解析装置によれば、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行うに際し、時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出すると共に、これによって検出された前記区切り点から次に検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出しているので、実際の地震動の挙動に即した高精度な地震応答解析を行うことができる。   Thus, according to the earthquake response analysis apparatus according to claim 1, when the earthquake response analysis is performed using at least the shear stress of the ground to be analyzed, the time at which the predetermined stress becomes maximum in time series order is the base time. The time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value is detected, and the time when the predetermined stress becomes minimum after the detected time is separated. Since the shear stress is derived on the basis of the predetermined stress within a period from the detected breakpoint to the next detected breakpoint, it is detected as a point. Highly accurate seismic response analysis can be performed.

なお、本発明は、請求項2に記載の発明のように、前記所定応力を、相当応力又は最大せん断応力とするものとしてもよい。これにより、当該相当応力又は最大せん断応力に応じた地震応答解析を行うことができる。   In the present invention, as in the invention described in claim 2, the predetermined stress may be equivalent stress or maximum shear stress. Thereby, the earthquake response analysis according to the said equivalent stress or the maximum shear stress can be performed.

一方、上記目的を達成するために、請求項3記載の地震応答解析方法は、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析方法であって、時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出すると共に、これによって検出された前記区切り点から次に検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出するものである。   On the other hand, in order to achieve the above object, an earthquake response analysis method according to claim 3 is an earthquake response analysis method for performing an earthquake response analysis using at least shearing stress of the ground to be analyzed, and in time series order. The time at which the predetermined stress is maximum is set as a base time, and the time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value are detected, and after the detected time, and The time at which the predetermined stress is minimized is detected as a breakpoint, and the shear stress is derived based on the predetermined stress within a period from the breakpoint detected thereby to the breakpoint detected next. Is.

従って、請求項3記載の地震応答解析方法によれば、請求項1記載の発明と同様に作用するので、請求項1記載の発明と同様に、実際の地震動の挙動に即した高精度な地震応答解析を行うことができる。   Therefore, according to the seismic response analysis method described in claim 3, since it operates in the same manner as the invention described in claim 1, as in the invention described in claim 1, a highly accurate earthquake corresponding to the behavior of the actual seismic motion. Response analysis can be performed.

なお、請求項3記載の発明は、請求項4に記載の発明のように、前記所定応力を、相当応力又は最大せん断応力とするものとしてもよい。これにより、当該相当応力や当該最大せん断応力に応じた地震応答解析を行うことができる。   Note that, in the invention described in claim 3, as in the invention described in claim 4, the predetermined stress may be equivalent stress or maximum shear stress. Thereby, the seismic response analysis according to the equivalent stress or the maximum shear stress can be performed.

一方、上記目的を達成するために、請求項5記載の地震応答解析プログラムは、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析プログラムであって、時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出する検出ステップと、前記検出ステップによって検出された前記区切り点から次に前記検出ステップによって検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出する導出ステップと、をコンピュータに実行させるものである。   On the other hand, in order to achieve the above object, an earthquake response analysis program according to claim 5 is an earthquake response analysis program for performing an earthquake response analysis using at least shear stress of the ground to be analyzed, The time at which the predetermined stress is maximum is set as a base time, and the time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value are detected, and after the detected time, and A detection step of detecting a time when the predetermined stress is minimal as a breakpoint; and the predetermined stress in a period from the breakpoint detected by the detection step to the breakpoint detected by the detection step next. And a derivation step of deriving the shear stress based on the computer.

従って、請求項5記載の地震応答解析プログラムによれば、コンピュータに対して請求項1記載の発明と同様に作用させることができるので、請求項1記載の発明と同様に、実際の地震動の挙動に即した高精度な地震応答解析を行うことができる。   Therefore, according to the earthquake response analysis program according to claim 5, since it can be made to act on the computer in the same manner as the invention according to claim 1, the actual behavior of the earthquake motion as in the invention according to claim 1. Highly accurate earthquake response analysis can be performed in accordance with.

なお、請求項5記載の発明は、請求項6に記載の発明のように、前記所定応力を、相当応力又は最大せん断応力とするものとしてもよい。これにより、当該相当応力や当該最大せん断応力に応じた地震応答解析を行うことができる。   Note that, in the invention described in claim 5, as in the invention described in claim 6, the predetermined stress may be equivalent stress or maximum shear stress. Thereby, the seismic response analysis according to the equivalent stress or the maximum shear stress can be performed.

本発明によれば、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行うに際し、時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出すると共に、これによって検出された前記区切り点から次に検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出しているので、実際の地震動の挙動に即した高精度な地震応答解析を行うことができる、という効果が得られる。   According to the present invention, when performing an earthquake response analysis using at least the shear stress of the ground to be analyzed, the time at which the predetermined stress is maximum in time series order is set as the base time, and the time after the base time, and The time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value is detected, and the time when the predetermined stress becomes the minimum after the detected time is detected as a breakpoint, and this is detected Since the shear stress is derived based on the predetermined stress in the period from the breakpoint to the next detected breakpoint, a highly accurate seismic response analysis conforming to the actual behavior of ground motion is performed. The effect of being able to be obtained.

以下、図面を参照して本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1には、本実施の形態に係る地震応答解析装置10の要部構成が示されている。同図に示されるように、この地震応答解析装置10は、操作部12、記憶部14、演算部16、及び表示部18を含んで構成されている。   FIG. 1 shows a main configuration of an earthquake response analysis apparatus 10 according to the present embodiment. As shown in the figure, the earthquake response analysis apparatus 10 includes an operation unit 12, a storage unit 14, a calculation unit 16, and a display unit 18.

操作部12は、オペレータが表示部18に表示されたメニューに従って所望の解析モデルについての地震応答解析を演算部16に実行させるための指示や必要なパラメータを指定するためのものである。記憶部14は、演算部16において用いられる様々な解析モデルのパラメータや、所定応力(ここでは、相当応力)を算出する演算式等の地震応答解析に必要な各種演算式が記憶されている。また、記憶部14には、演算部16による地震応答解析の解析結果が格納される。なお、上記相当応力を算出する演算式としては、中間主応力成分を考慮したせん断応力の大きさを表す相当応力を算出することのできる演算式であれば、従来既知のあらゆる演算式を適用することができる。   The operation unit 12 is used by the operator to specify an instruction and necessary parameters for causing the arithmetic unit 16 to execute an earthquake response analysis for a desired analysis model according to a menu displayed on the display unit 18. The storage unit 14 stores various calculation formulas necessary for earthquake response analysis such as parameters of various analysis models used in the calculation unit 16 and calculation formulas for calculating a predetermined stress (equivalent stress here). In addition, the storage unit 14 stores an analysis result of the earthquake response analysis by the calculation unit 16. As the arithmetic expression for calculating the equivalent stress, any conventionally known arithmetic expression can be applied as long as it can calculate the equivalent stress representing the magnitude of the shear stress in consideration of the intermediate principal stress component. be able to.

演算部16は、操作部12からの指示に従って記憶部14から必要なデータを読み出して地震応答解析を行うと共に、解析結果を記憶部14へ記憶し、かつ表示部18へ出力する。   The calculation unit 16 reads necessary data from the storage unit 14 according to an instruction from the operation unit 12 to perform an earthquake response analysis, stores the analysis result in the storage unit 14, and outputs the analysis result to the display unit 18.

演算部16では、地震応答解析をおおよそ次のようにして行う。すなわち、せん断応力の時刻歴から累積損傷度を求め、累積損傷度から過剰間隙水圧を求め、これによって得られる有効応力から液状化によるせん断剛性低下率を得る。そして、せん断応力及びせん断ひずみの振幅の半波毎に、その半波内の最大せん断ひずみによる剛性低下率をそれぞれ求め、これらから、等価なせん断剛性を求め、この剛性(割線剛性)を用いて時刻歴応答解析、すなわち地震応答解析を行う。   The calculation unit 16 performs an earthquake response analysis in the following manner. That is, the cumulative damage degree is obtained from the time history of the shear stress, the excess pore water pressure is obtained from the cumulative damage degree, and the shear stiffness reduction rate due to liquefaction is obtained from the effective stress obtained thereby. Then, for each half wave of the amplitude of shear stress and shear strain, the stiffness reduction rate due to the maximum shear strain in the half wave is obtained, and from this, the equivalent shear stiffness is obtained, and this stiffness (secant stiffness) is used. Time history response analysis, that is, earthquake response analysis is performed.

なお、地震応答解析は、次式で示される運動方程式を時間積分することにより行う。   Earthquake response analysis is performed by time integration of the equation of motion shown by the following equation.

ここで、本実施の形態では、時間積分にはNewmark−β法を用い、時間積分に用いる剛性には割線剛性を用いている。   Here, in the present embodiment, the Newmark-β method is used for time integration, and secant rigidity is used for the rigidity used for time integration.

次に、本実施の形態の作用として、演算部16で実行される制御ルーチンについて図2に示すフローチャートを参照して説明する。なお、当該制御ルーチンでは、上述したような時刻歴応答解析(地震応答解析)が従来既知の技術(一例として、本出願人らによる特許文献1で提案されている技術)を利用して行われるが、ここでは、錯綜を回避するために、当該制御ルーチンにおける本発明に特に関係する部分のみについて説明する。   Next, as an operation of the present embodiment, a control routine executed by the calculation unit 16 will be described with reference to a flowchart shown in FIG. In the control routine, the time history response analysis (earthquake response analysis) as described above is performed using a conventionally known technique (for example, the technique proposed in Patent Document 1 by the present applicants). However, here, in order to avoid complications, only a portion particularly relevant to the present invention in the control routine will be described.

まず、図2のステップ100では、最大応力σmaxと最大応力ベクトルSij maxの初期設定として0(零)を代入する。 First, in step 100 of FIG. 2, 0 (zero) is substituted as the initial setting of the maximum stress σ max and the maximum stress vector S ij max .

次のステップ102では、記憶部14に記憶されている演算式を用いた所定応力σ(本実施の形態では、相当応力)の時系列順での算出を開始し、次のステップ104にて、所定応力σの記憶部14への時系列順での記録を開始する。なお、上記相当応力を算出する際に用いられる各種パラメータは、例えば、地震応答解析において変位を求め、当該変位に基づいてひずみを求めて、当該ひずみに基づいて求めたものを適用することができる。   In the next step 102, calculation of the predetermined stress σ (corresponding stress in the present embodiment) in time series using the arithmetic expression stored in the storage unit 14 is started, and in the next step 104, Recording of the predetermined stress σ in the storage unit 14 in chronological order is started. The various parameters used when calculating the equivalent stress can be obtained by, for example, obtaining a displacement in an earthquake response analysis, obtaining a strain based on the displacement, and obtaining the strain based on the displacement. .

次のステップ106では、所定応力σが極大となるまで待機し、次のステップ108では、所定応力σが最大応力σmaxを越えたか否かを判定し、肯定判定となった場合はステップ110に移行して、最大応力σmaxを所定応力σに置き換えると共に、最大応力ベクトルSij maxを所定応力σの応力ベクトルSijに置き換えた後にステップ112に移行する。なお、上記ステップ108において否定判定となった場合は上記ステップ110の処理を実行することなくステップ112に移行する。 In the next step 106, the process waits until the predetermined stress σ becomes maximum. In the next step 108, it is determined whether or not the predetermined stress σ has exceeded the maximum stress σ max. and migrated, is replaced with a maximum stress sigma max in a predetermined stress sigma, it shifts the maximum stress vector S ij max in step 112 after replacing the stress vector S ij predetermined stress sigma. If a negative determination is made in step 108, the process proceeds to step 112 without executing the process of step 110.

ステップ112では、所定応力σの応力ベクトルSijと最大応力ベクトルSij maxとの内積が所定値a以下となったか否か、すなわち、応力ベクトルSijと応力ベクトルSij maxとのなす角度が所定角度以下となったか否かを判定し、否定判定となった場合はステップ108に戻り、肯定判定となった時点でステップ114に移行する。なお、本ステップ112では、応力ベクトルSijが次の(2)式を満足するか否か(応力ベクトルSijと応力ベクトルSij maxの内積が上記所定角度に対応する所定値a以下となったか否か)を判定することによって上記所定応力の応力ベクトルSijと応力ベクトルSij maxとのなす角度が所定角度以下となったか否かを判定する。 In step 112, whether or not the inner product of the stress vector S ij of the predetermined stress σ and the maximum stress vector S ij max is equal to or smaller than the predetermined value a, that is, the angle formed between the stress vector S ij and the stress vector S ij max is determined. It is determined whether or not the angle is equal to or smaller than a predetermined angle. If the determination is negative, the process returns to step 108, and the process proceeds to step 114 when the determination is affirmative. In this step 112, the stress vector S ij is equal to or less than a predetermined value a which is the inner product of whether (stress vector S ij and the stress vector S ij max satisfies the following equation (2) corresponds to the predetermined angle It is determined whether or not the angle formed by the stress vector S ij of the predetermined stress and the stress vector S ij max is equal to or smaller than the predetermined angle.

なお、本実施の形態では、上記所定値aとして、解析対象とする地震動の特性等に応じて、最終的に主要な振動の最大値が得られるように経験値として予め指定したものを適用している。   In the present embodiment, as the predetermined value a, a value designated in advance as an empirical value is applied so as to finally obtain the maximum value of the main vibration according to the characteristics of the seismic motion to be analyzed. ing.

上記ステップ108〜ステップ112の繰り返し処理により、時系列順で所定応力σが最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルSijと前記基点時刻における応力ベクトルSij maxとの内積が所定値となる時刻を検出することができる。 By repeating the process of step 108 to step 112, when the base time to time a predetermined stress σ is maximum in chronological order, the base time in the subsequent time, and the stress vector S ij and the stress in the base point time vector S ij The time when the inner product with max becomes a predetermined value can be detected.

ステップ114では、所定応力σが極小となるまで待機し、次のステップ116にて、上記ステップ104の処理によって開始された所定応力σの記録を停止する。   In step 114, the process waits until the predetermined stress σ becomes minimum, and in the next step 116, recording of the predetermined stress σ started by the processing in step 104 is stopped.

次のステップ118では、以上の処理によって記憶部14に記憶された所定応力σの最大値と最小値との差を最大せん断応力τmaxとして算出すると共に、予め指定されたパラメータを用いて従来既知の技術(一例として、特許文献1に記載された技術)を用いて最大せん断ひずみγmaxを算出する。 In the next step 118, the difference between the maximum value and the minimum value of the predetermined stress σ stored in the storage unit 14 by the above processing is calculated as the maximum shear stress τ max , and is conventionally known using a previously designated parameter. The maximum shear strain γ max is calculated using the above technique (as an example, the technique described in Patent Document 1).

次のステップ120では、予め記憶部14に記憶されている液状化強度曲線と、上記ステップ118において算出された最大せん断応力τmaxを用いて、当該最大せん断応力τmaxにより液状化に至る載荷繰り返し回数Nifを導出し、導出した載荷繰り返し回数Nifから累積損傷度の増分ΔDを導出する。なお、当該累積損傷度の増分ΔDは、次の(3)式で示される。 In the next step 120, using the liquefaction strength curve stored in advance in the storage unit 14 and the maximum shear stress τ max calculated in step 118, the load repetition that leads to liquefaction by the maximum shear stress τ max is performed. The number N if is derived, and the cumulative damage increment ΔD is derived from the derived loading repetition number N if . The cumulative damage degree increment ΔD is expressed by the following equation (3).

そして、ステップ120では、導出した増分ΔDを、それまでに得られている累積損傷度Dに加算することにより、この時点の累積損傷度Dを算出する。なお、上記液状化強度曲線は、地盤調査における動的非排水変形試験等の繰り返し載荷試験により得られたものを用いることができる。   In step 120, the cumulative damage degree D at this time is calculated by adding the derived increment ΔD to the cumulative damage degree D obtained so far. In addition, the said liquefaction strength curve can use what was obtained by repeated loading tests, such as a dynamic undrained deformation test in a ground investigation.

次のステップ122では、予め試験によって得られて記憶部14に記憶されている累積損傷度Dと過剰間隙水圧比ruとの関係を示すテーブル(一例として、図6(4)に示されるグラフを示すテーブル)を参照して、上記ステップ120において算出された累積損傷度Dに対応する過剰間隙水圧比ruを導出する。 In the next step 122, a table (an example showing the relationship between the excess pore water pressure ratio r u and cumulative damage degree D stored in the storage unit 14 is obtained in advance by tests, the graph shown in FIG. 6 (4) referring to the table) indicating, it derives the excess pore water pressure ratio r u corresponding to the cumulative damage degree D calculated in step 120.

次のステップ124では、予め試験によって得られて記憶部14に記憶されている過剰間隙水圧比ruと剛性低下率G0との関係を示すテーブル(一例として、図6(5)に示されるグラフを示すテーブルであり、以下、「剛性低下率テーブル」という。)を参照して、上記ステップ122において導出された過剰間隙水圧比ruに対応する剛性低下率G0を導出する。 In the next step 124, a table (as an example, shown in FIG. 6 (5)) showing the relationship between the excess pore water pressure ratio ru and the rigidity reduction rate G 0 obtained in advance and stored in the storage unit 14. a table showing a graph, hereinafter referred to as "rigid reduction rate table".) see, derives the stiffness reduction rate G 0 corresponding to excess pore water pressure ratio r u derived in step 122.

次のステップ126では、上記ステップ118において算出した最大せん断ひずみγmaxと、上記ステップ122において導出した過剰間隙水圧比ruと、上記ステップ124において導出した剛性低下率G0と、を次の(4)式に代入することによってせん断剛性Gを算出する。なお、(4)式におけるnは入力パラメータ(通常n=0.5)であり、f(γmax)は剛性のひずみ依存特性である。 In the next step 126, the maximum shear strain gamma max calculated in Step 118, the excess pore water pressure ratio r u derived in step 122, the rigidity reduction rate G 0 derived in step 124, the next ( 4) The shear rigidity G is calculated by substituting it into the equation. In Equation (4), n is an input parameter (usually n = 0.5), and f (γ max ) is a strain-dependent characteristic of rigidity.

次のステップ128では、以上の処理によって導出されたせん断剛性Gを始めとする各種物理量を記憶部14の所定領域に記憶する。   In the next step 128, various physical quantities including the shear rigidity G derived by the above processing are stored in a predetermined area of the storage unit 14.

そして、次のステップ130にて、地震時間全体について以上の処理が終了したか否かを判定し、否定判定となった場合は上記ステップ104に戻り、肯定判定となった時点で、本制御ルーチンを終了する。   Then, in the next step 130, it is determined whether or not the above processing has been completed for the entire earthquake time. If a negative determination is made, the process returns to step 104, and when the determination is affirmative, this control routine is performed. Exit.

以上詳細に説明したように、本実施の形態では、少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行うに際し、時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出すると共に、これによって検出された前記区切り点から次に検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出しているので、実際の地震動の挙動に即した高精度な地震応答解析を行うことができる。   As described above in detail, in the present embodiment, when performing an earthquake response analysis using at least the shear stress of the ground to be analyzed, the time at which the predetermined stress is maximized in time series order is used as the base time. The time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value is detected, and the time after the detected time and when the predetermined stress becomes minimum is detected as a breakpoint In addition, since the shear stress is derived based on the predetermined stress within a period from the detected breakpoint to the next detected breakpoint, a high level that matches the actual behavior of the ground motion is obtained. Accurate seismic response analysis can be performed.

また、本実施の形態では、前記所定応力を相当応力としているので、当該相当応力に応じた地震応答解析を行うことができる。   Moreover, in this Embodiment, since the said predetermined stress is made into equivalent stress, the earthquake response analysis according to the said equivalent stress can be performed.

なお、本実施の形態では、本発明の所定応力として相当応力を適用した場合について説明したが、本発明はこれに限定されるものではなく、最大せん断応力を適用する形態とすることもできる。この場合、記憶部14に最大せん断応力を算出する従来既知の演算式を予め記憶しておき、図2に示される制御ルーチンにおいて適用されていた相当応力に代えて最大せん断応力を適用することになる。   In the present embodiment, the case where the equivalent stress is applied as the predetermined stress of the present invention has been described. However, the present invention is not limited to this, and a configuration in which the maximum shear stress is applied can also be employed. In this case, a conventionally known arithmetic expression for calculating the maximum shear stress is stored in the storage unit 14 in advance, and the maximum shear stress is applied instead of the equivalent stress applied in the control routine shown in FIG. Become.

この場合も、本実施の形態と同様の効果を奏することができる。   Also in this case, the same effects as in the present embodiment can be obtained.

その他、本実施の形態で説明した地震応答解析装置10の構成(図1参照。)は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。   In addition, the structure (refer FIG. 1) of the earthquake response analyzer 10 demonstrated by this Embodiment is an example, and it cannot be overemphasized that it can change suitably in the range which does not deviate from the main point of this invention.

例えば、本実施の形態に係る地震応答解析装置10で適用していた表示部18は必ずしも必要ではなく、削除することも可能である。   For example, the display unit 18 applied in the earthquake response analysis apparatus 10 according to the present embodiment is not necessarily required and can be deleted.

更に、本実施の形態で示した制御ルーチンの処理の流れ(図2参照。)も一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。   Furthermore, the flow of processing of the control routine shown in this embodiment (see FIG. 2) is also an example, and it goes without saying that it can be changed as appropriate without departing from the gist of the present invention.

[実施例]
以下、本実施の形態で示した地震応答解析手法による解析結果例について説明する。なお、図3は、ここで適用した3次元の解析モデルを示す図であり、ここでは模型振動実験シミュレーションを行った。
[Example]
Hereinafter, an example of an analysis result by the seismic response analysis method shown in the present embodiment will be described. FIG. 3 is a diagram showing the three-dimensional analysis model applied here, and a model vibration experiment simulation was performed here.

図4には、この解析手法によって求められた6つの応力成分の時刻歴が示されている。なお、図4(A)はσx−σyの時刻歴であり、図4(B)はσy−σzの時刻歴であり、図4(C)はσz−σxの時刻歴であり、図4(D)はτxyの時刻歴であり、図4(E)はτyzの時刻歴であり、図4(F)はτzxの時刻歴である。 FIG. 4 shows time histories of six stress components obtained by this analysis method. 4A shows a time history of σ x −σ y , FIG. 4B shows a time history of σ y −σ z , and FIG. 4C shows a time history of σ z −σ x . 4D shows a time history of τ xy , FIG. 4E shows a time history of τ yz , and FIG. 4F shows a time history of τ zx .

図5(A)には本発明の所定応力として相当応力を適用して検出した区切り点を適用したときの相当応力の最大値及び最小値の検出結果が、図5(B)には本発明の所定応力として最大せん断応力を適用して検出した区切り点を適用したときの最大せん断応力の最大値及び最小値の検出結果が、各々示されている。なお、ここでは、所定値aを0.35とした。   FIG. 5A shows the detection results of the maximum value and the minimum value of the equivalent stress when the breakpoint detected by applying the equivalent stress as the predetermined stress of the present invention is applied, and FIG. The detection results of the maximum value and the minimum value of the maximum shear stress when the break point detected by applying the maximum shear stress as the predetermined stress is applied are shown. Here, the predetermined value a is set to 0.35.

同図に示されるように、本発明の所定応力として相当応力及び最大せん断応力の何れを適用した場合も実際の最大値及び最小値と略同一の位置が検出されており、本発明による区切り点の検出手法の有効性が確認された。   As shown in the figure, when the equivalent stress or the maximum shear stress is applied as the predetermined stress of the present invention, a position substantially the same as the actual maximum value and the minimum value is detected, and the breakpoint according to the present invention is detected. The effectiveness of the detection method was confirmed.

実施の形態に係る地震応答解析装置の概略ブロック図である。It is a schematic block diagram of the earthquake response analysis apparatus which concerns on embodiment. 実施の形態に係る地震応答解析装置の演算部において実行される制御ルーチンのフローチャートである。It is a flowchart of the control routine performed in the calculating part of the earthquake response analyzer which concerns on embodiment. 実施の形態に係る地震応答解析手法による解析例(実施例)で用いた3次元の解析モデルを示す概略図である。It is the schematic which shows the three-dimensional analysis model used in the example of an analysis by the earthquake response analysis method concerning an embodiment (example). 実施の形態に係る地震応答解析手法による解析例(実施例)において求められた6つの応力成分の時刻歴を示す線図である。It is a diagram which shows the time history of six stress components calculated | required in the example of analysis (example) by the earthquake response analysis method which concerns on embodiment. 実施の形態に係る地震応答解析手法による解析例(実施例)において、本発明の所定応力として相当応力を適用した場合と、最大せん断応力を適用した場合の最大値及び最小値の検出結果を示す線図である。In the analysis example (example) by the seismic response analysis method according to the embodiment, the detection result of the maximum value and the minimum value when the equivalent stress is applied as the predetermined stress of the present invention and when the maximum shear stress is applied is shown. FIG. 従来の地震応答解析手法の説明に供する概略図である。It is the schematic where it uses for description of the conventional earthquake response analysis method. 従来技術における半波の定義の説明に供する線図である。It is a diagram with which it uses for description of the definition of the half wave in a prior art. 非特許文献1の技術の説明に供する線図である。It is a diagram with which it uses for description of the technique of a nonpatent literature 1. FIG.

符号の説明Explanation of symbols

10 地震応答解析装置
12 操作部
14 記憶部
16 演算部(検出手段、導出手段)
18 表示部
DESCRIPTION OF SYMBOLS 10 Earthquake response analyzer 12 Operation part 14 Memory | storage part 16 Calculation part (detection means, derivation means)
18 Display section

Claims (6)

少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析装置であって、
時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出する検出手段と、
前記検出手段によって検出された前記区切り点から次に前記検出手段によって検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出する導出手段と、
を備えた地震応答解析装置。
An earthquake response analyzer that performs an earthquake response analysis using at least the shear stress of the ground to be analyzed,
The time at which the predetermined stress is maximum in time series order is set as the base time, and the time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value is detected, and the detected time A detecting means for detecting the time when the predetermined stress is minimized as a break point thereafter;
Derivation means for deriving the shear stress based on the predetermined stress within a period from the breakpoint detected by the detection means to the breakpoint detected by the detection means;
Earthquake response analyzer with
前記所定応力を、相当応力又は最大せん断応力とした
請求項1記載の地震応答解析装置。
The earthquake response analysis apparatus according to claim 1, wherein the predetermined stress is equivalent stress or maximum shear stress.
少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析方法であって、
時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出すると共に、これによって検出された前記区切り点から次に検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出する、
地震応答解析方法。
An earthquake response analysis method for performing an earthquake response analysis using at least the shear stress of the ground to be analyzed,
The time at which the predetermined stress is maximum in time series order is set as the base time, and the time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value is detected, and the detected time Thereafter, the time at which the predetermined stress is minimized is detected as a breakpoint, and the shearing is performed based on the predetermined stress in a period from the breakpoint detected thereby to the breakpoint detected next. To derive the stress,
Earthquake response analysis method.
前記所定応力を、相当応力又は最大せん断応力とした
請求項3記載の地震応答解析方法。
The earthquake response analysis method according to claim 3, wherein the predetermined stress is equivalent stress or maximum shear stress.
少なくとも解析対象とする地盤のせん断応力を用いて地震応答解析を行う地震応答解析プログラムであって、
時系列順で所定応力が最大となる時刻を基点時刻として、当該基点時刻以降の時刻で、かつ応力ベクトルと前記基点時刻における応力ベクトルとの内積が所定値となる時刻を検出し、検出した時刻以降で、かつ前記所定応力が極小となる時刻を区切り点として検出する検出ステップと、
前記検出ステップによって検出された前記区切り点から次に前記検出ステップによって検出された前記区切り点までの期間内における前記所定応力に基づいて前記せん断応力を導出する導出ステップと、
をコンピュータに実行させる地震応答解析プログラム。
An earthquake response analysis program that performs an earthquake response analysis using at least the shear stress of the ground to be analyzed,
The time at which the predetermined stress is maximum in time series order is set as the base time, and the time after the base time and the time when the inner product of the stress vector and the stress vector at the base time becomes a predetermined value is detected, and the detected time A detection step of detecting the time when the predetermined stress is minimized as a breakpoint thereafter;
A derivation step for deriving the shear stress based on the predetermined stress within a period from the breakpoint detected by the detection step to the breakpoint detected by the detection step;
Seismic response analysis program that runs a computer.
前記所定応力を、相当応力又は最大せん断応力とした
請求項5記載の地震応答解析プログラム。
The earthquake response analysis program according to claim 5, wherein the predetermined stress is equivalent stress or maximum shear stress.
JP2004366781A 2004-12-17 2004-12-17 Earthquake response analysis apparatus, earthquake response analysis method, and earthquake response analysis program Expired - Fee Related JP4441397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366781A JP4441397B2 (en) 2004-12-17 2004-12-17 Earthquake response analysis apparatus, earthquake response analysis method, and earthquake response analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366781A JP4441397B2 (en) 2004-12-17 2004-12-17 Earthquake response analysis apparatus, earthquake response analysis method, and earthquake response analysis program

Publications (2)

Publication Number Publication Date
JP2006170919A true JP2006170919A (en) 2006-06-29
JP4441397B2 JP4441397B2 (en) 2010-03-31

Family

ID=36671828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366781A Expired - Fee Related JP4441397B2 (en) 2004-12-17 2004-12-17 Earthquake response analysis apparatus, earthquake response analysis method, and earthquake response analysis program

Country Status (1)

Country Link
JP (1) JP4441397B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059620A1 (en) * 2019-09-27 2021-04-01 清水建設株式会社 Design system and design method
JP2021056617A (en) * 2019-09-27 2021-04-08 清水建設株式会社 Design system and design method
JP2021056618A (en) * 2019-09-27 2021-04-08 清水建設株式会社 Design system and design method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059620A1 (en) * 2019-09-27 2021-04-01 清水建設株式会社 Design system and design method
JP2021056617A (en) * 2019-09-27 2021-04-08 清水建設株式会社 Design system and design method
JP2021056618A (en) * 2019-09-27 2021-04-08 清水建設株式会社 Design system and design method
GB2602592A (en) * 2019-09-27 2022-07-06 Shimizu Construction Co Ltd Design system and design method
GB2602592B (en) * 2019-09-27 2023-07-12 Shimizu Construction Co Ltd Design system and design method
JP7355574B2 (en) 2019-09-27 2023-10-03 清水建設株式会社 Design system and design method
JP7355575B2 (en) 2019-09-27 2023-10-03 清水建設株式会社 Design system and design method

Also Published As

Publication number Publication date
JP4441397B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US10156506B2 (en) Residual stress estimation method and residual stress estimation device
US9639656B2 (en) Machining simulation device and method
EP3267341A1 (en) Residual stress estimation method and residual stress estimation device
JP2003270060A (en) Stress strain analyzing system, stress strain analyzing method therefor, and program therefor
JP6655105B2 (en) Manufacturing auxiliary equipment
KR101420304B1 (en) Method for reliability analysis
JP6477411B2 (en) Analysis program
JP4441397B2 (en) Earthquake response analysis apparatus, earthquake response analysis method, and earthquake response analysis program
CN109388833B (en) Elastic element structure optimization design method based on fatigue life
JP2019057112A (en) Design information processing device and program
CN112149221B (en) Oil tank fluid-solid coupling transient analysis method and system considering liquid additional mass
López Aenlle et al. Some methods to determine scaled mode shapes in natural input modal analysis
JP2004045294A (en) Determination system and program for risk of damaging structure
JP2009222539A (en) Characteristic analyzer and characteristic analysis program
CN107644134B (en) A kind of dynamics tests die worker&#39;s tool
JP6680540B2 (en) Process evaluation method and device
JP6665023B2 (en) Monitoring system for estimating the displacement of the building.
US20220206828A1 (en) Input value setting assisting apparatus, input value setting assisting method and program
KR102446945B1 (en) Method for increasing effective modal mass in dynamic analysis for fixed platform
KR101645169B1 (en) Method for dynamic soil-structure interaction analysis by using flexible volume method
JP2016045836A (en) Calculation system and calculation program for constraint inherent deformation data, weld deformation predication system and weld deformation prediction program
JP2019082985A (en) Device, method, and program for nonlinear stress-strain analysis
WO2016159188A1 (en) Method of identifying layer stiffness of building and device therefor
KR101715669B1 (en) Method for preliminary verification of structure test and apparatus therefor
US11656599B2 (en) Machining simulator and storage medium encoded with machining simulation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees