JP2006170627A - Vacuum heat-insulating temperature sensor - Google Patents

Vacuum heat-insulating temperature sensor Download PDF

Info

Publication number
JP2006170627A
JP2006170627A JP2004359275A JP2004359275A JP2006170627A JP 2006170627 A JP2006170627 A JP 2006170627A JP 2004359275 A JP2004359275 A JP 2004359275A JP 2004359275 A JP2004359275 A JP 2004359275A JP 2006170627 A JP2006170627 A JP 2006170627A
Authority
JP
Japan
Prior art keywords
temperature sensor
box
temperature
vacuum
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004359275A
Other languages
Japanese (ja)
Inventor
Kazuo Okazaki
一雄 岡崎
Mitsuaki Mochizuki
光明 望月
Masabumi Terada
正文 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP2004359275A priority Critical patent/JP2006170627A/en
Publication of JP2006170627A publication Critical patent/JP2006170627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tip part mechanism of a temperature sensor capable of suppressing low a measurement error caused by an influence of the atmospheric temperature even when used for a measuring object having a large temperature difference with the atmospheric temperature, on which installation of a heat insulating material is not allowed, in measurement of a surface temperature of an apparatus such as piping or a vessel. <P>SOLUTION: In this vacuum heat-insulating temperature sensor constituted of the temperature sensor and a box whose tip part is made of a metal, the temperature sensor is fitted on the box inside of the surface to be in contact with a measuring object of the box by welding or an adhesive, and an MI cable is used for a box penetration part of a lead wire of the temperature sensor, and the inside of the box is vacuum below 10 Torr. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機器の表面温度を測定する温度センサーに関するものである。   The present invention relates to a temperature sensor that measures the surface temperature of a device.

従来、配管や容器等の機器の表面温度を測定する場合、図9、図10に示すようなパッドを温度センサーの先端に取付けて測定対象に設置するのが一般的であった。図9は従来の温度センサーの平面図、図10はそのIX−IX断面図である。   Conventionally, when measuring the surface temperature of equipment such as pipes and containers, it has been common to attach a pad as shown in FIGS. 9 and 10 to the tip of the temperature sensor and place it on the object to be measured. FIG. 9 is a plan view of a conventional temperature sensor, and FIG. 10 is a sectional view taken along the line IX-IX.

これらの図に示すように、温度センサー102を金属製のパッド101に、104a部で溶接することや、接着材を塗布することなどにより取付け、これを測定対象物5に104b部を溶接することにより設置していた。   As shown in these figures, the temperature sensor 102 is attached to the metal pad 101 at 104a or by applying an adhesive, and this is welded to the measurement object 5 at 104b. It was installed by.

上記のパッドの変形として、図11、図12に示す断面形状のパッドが用いられることもある。図11は、配管など円形表面の温度測定用のパッドで、測定対象物5の表面形状に合わせて接触面に曲率を持たせている。   As a modification of the above-described pad, a pad having a cross-sectional shape shown in FIGS. 11 and 12 may be used. FIG. 11 is a pad for measuring the temperature of a circular surface such as a pipe, and the contact surface has a curvature according to the surface shape of the measurement object 5.

また、図12はシース熱電対を温度センサー102として使用しているもので、図9のパッド101において、シース熱電対を位置する箇所に切り欠きを入れて、シース熱電対を測定対象物と直接接触させ、さらに、シース熱電対に測定対象物方向の力を加えて断面形状を扁平にし、測定対象物とシース熱電対の接触面積を増やしたものである。   FIG. 12 shows a case where a sheath thermocouple is used as the temperature sensor 102. In the pad 101 of FIG. 9, a notch is made at a position where the sheath thermocouple is located, and the sheath thermocouple is directly connected to the measurement object. Further, the cross-sectional shape is flattened by applying a force in the direction of the measurement object to the sheath thermocouple, and the contact area between the measurement object and the sheath thermocouple is increased.

また、公知文献には、管路の外側の外管の空間部を真空部として形成し、管路の外周面に管路と一体的に温度センサを配設した構造のものが記載されている(特許文献1参照)。   Further, the publicly known document describes a structure in which a space portion of the outer tube outside the pipeline is formed as a vacuum portion, and a temperature sensor is disposed integrally with the pipeline on the outer peripheral surface of the pipeline. (See Patent Document 1).

しかしながら、公知文献には、温度センサーを管路内流体に突出させないという課題の解決のための手段および外部温度の影響を受け難いため、高い精度で管路内流体の温度を測定できるという定性的な効果が記載されているのみで、本発明の目的および課題を解決するための手段(構成あるいは構造)を異にするものであり、さらに温度測定の精度向上も定量的に記載されていない。
特開2001−153731
However, in the known literature, since it is difficult to be influenced by the means for solving the problem of preventing the temperature sensor from protruding into the fluid in the pipeline and the external temperature, it is possible to measure the temperature of the fluid in the pipeline with high accuracy. However, the means (configuration or structure) for solving the objects and problems of the present invention are different, and the improvement in accuracy of temperature measurement is not described quantitatively.
JP 2001-153731 A

従来の技術によれば、ボイラ、精油施設の加熱炉、焼却炉などの燃料が燃焼する炉の内部において、蒸気の流れる低温配管などの雰囲気温度との温度差が大きく、かつ、保温材の設置ができない機器の表面温度を測定する場合、雰囲気から温度センサーへ熱の流入があるため、雰囲気温度の影響により温度測定値に誤差が生じる。   According to the conventional technology, there is a large temperature difference from the ambient temperature of low-temperature pipes where steam flows in the furnace where fuel burns, such as boilers, heating furnaces in refinery facilities, incinerators, etc. When measuring the surface temperature of equipment that cannot be used, there is an inflow of heat from the atmosphere to the temperature sensor, which causes an error in the temperature measurement value due to the influence of the ambient temperature.

図12に示す形状のパッドの場合は、図10、図11の形状のものに比べて、測定対象物とシース熱電対先端部の間の伝熱が促進されてこの誤差は減少するが、温度センサーの上面が雰囲気から熱の流入を受けることに変わりはなく、誤差の大きな軽減には至らないという課題がある。   In the case of the pad shown in FIG. 12, heat transfer between the measurement object and the sheath thermocouple tip is promoted and the error is reduced as compared with the pads shown in FIGS. There is no change in the upper surface of the sensor receiving inflow of heat from the atmosphere, and there is a problem that the error is not greatly reduced.

本発明は、上記課題を解決するために鋭意検討して成されたものであり、配管、容器などの機器の表面温度の測定において、雰囲気温度との温度差が大きく、かつ、保温材の設置が許されない測定対象物の温度測定においても、雰囲気温度の影響による測定誤差を低く抑えることのできる高精度の温度センサーを提供することを目的とする。   The present invention has been made in earnest to solve the above problems, and in measuring the surface temperature of equipment such as pipes and containers, the temperature difference from the ambient temperature is large, and the installation of a heat insulating material An object of the present invention is to provide a high-accuracy temperature sensor that can suppress a measurement error due to the influence of the ambient temperature even when measuring the temperature of a measurement object that is not permitted.

上記の事情に鑑み、請求項1の発明は、温度センサーと金属製の箱から構成され、箱の測定対象物と接触する面の箱の内側に温度センサーを溶接または接着材により取付け、温度センサーのリード線の箱貫通部にMIケーブルを使用し、箱の内部を10Torr以下の真空にした真空断熱温度センサーとした。   In view of the above circumstances, the invention of claim 1 is composed of a temperature sensor and a metal box, and the temperature sensor is attached to the inside of the box in contact with the object to be measured by welding or an adhesive, and the temperature sensor An MI cable was used for the lead-through portion of the lead wire to obtain a vacuum adiabatic temperature sensor in which the inside of the box was evacuated to 10 Torr or less.

また、請求項2の発明は、請求項1の発明の箱の内面を研磨したものを使用する真空断熱温度センサーとした。   Further, the invention of claim 2 is a vacuum adiabatic temperature sensor using a polished inner surface of the box of the invention of claim 1.

請求項1の発明による真空断熱温度センサーは、温度センサーと金属製の箱から構成され、箱の測定対象物と接触する面の箱の内側に温度センサーを溶接または接着材により取付け、温度センサーのリード線の箱貫通部にMIケーブルを使用し、箱の内部を10Torr以下の真空にした真空断熱温度センサーであるので、雰囲気と温度センサーは真空断熱をされており、かつ、温度センサーは箱の測定対象物と接触している面の温度を測定しているために、周囲温度の影響を受けることが少なく、測定対象物の表面の温度を測定できる。また、箱内を真空にするために、温度センサーのリード線の箱からの取出部の密閉性を確保する必要があり、これにはハーメチックシールなどの従来の機構を使用することができる。しかしながら、ハーメチックシールでは、箱の大型化、構造の複雑化が避けられないので、本発明では、温度センサーのリード線の箱からの取出部にMIケーブルを使用することにより、小型で簡単な構造とすることが可能となった。   The vacuum adiabatic temperature sensor according to the invention of claim 1 is composed of a temperature sensor and a metal box, and the temperature sensor is attached to the inside of the box in contact with the object to be measured by welding or an adhesive. Since it is a vacuum adiabatic temperature sensor that uses a MI cable in the lead-through part of the lead wire and the inside of the box is evacuated to 10 Torr or less, the atmosphere and temperature sensor are vacuum insulated, and the temperature sensor is Since the temperature of the surface in contact with the measurement object is measured, the temperature of the surface of the measurement object can be measured with little influence of the ambient temperature. Moreover, in order to make the inside of a box into a vacuum, it is necessary to ensure the sealing property of the extraction part from the box of the lead wire of a temperature sensor, For this, conventional mechanisms, such as a hermetic seal, can be used. However, the hermetic seal inevitably increases the size of the box and the complexity of the structure. Therefore, in the present invention, the MI cable is used to extract the lead wire of the temperature sensor from the box. And became possible.

さらに、請求項2の発明による真空断熱温度センサーは、内面を研磨して熱放射率を小さくした箱を使用するものである。箱の雰囲気に接する部分は雰囲気から入る熱によって高温となるが、この高温部の熱が箱内部の輻射伝熱によって温度センサーに伝わることを、箱内面の熱放射率を小さくすることにより少なく抑えることができ、雰囲気温度の影響による温度測定誤差をさらに減少させる効果が高まる。   Furthermore, the vacuum adiabatic temperature sensor according to the invention of claim 2 uses a box whose inner surface is polished to reduce the thermal emissivity. The part in contact with the atmosphere of the box becomes high temperature due to the heat entering from the atmosphere, but the heat of this high temperature part is transferred to the temperature sensor by radiant heat transfer inside the box, by reducing the heat emissivity on the inner surface of the box Therefore, the effect of further reducing the temperature measurement error due to the influence of the ambient temperature is enhanced.

本発明を、添付する図面に示す実施例により、以下詳細に説明する。   The present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

図1および図2は全体形状を示す図で、図1は平面図、図2は図1のI−I断面図、図3および図4は図1および図2に示されているMIケーブルの形状図で、図4は図3のIII −III 断面図である。   1 and 2 are diagrams showing the overall shape, FIG. 1 is a plan view, FIG. 2 is a cross-sectional view taken along the line II in FIG. 1, and FIGS. 3 and 4 are views of the MI cable shown in FIGS. FIG. 4 is a sectional view taken along the line III-III in FIG.

ステンレス製で円筒形の箱1の内部に図1、図2に示すように、温度センサーとして熱電対素線3aと3bが挿入されている。熱電対の+側素線3aと−側素線3bは、箱1が測定対象物5と接触する底面の中央4a部で箱に溶接されており、ここの温度を測定している。熱電対素線の箱の貫通部には、MIケーブル2が使用されており、MIケーブルは4b部において箱に溶接されている。   As shown in FIGS. 1 and 2, thermocouple wires 3 a and 3 b are inserted as temperature sensors in a cylindrical box 1 made of stainless steel. The + side strand 3a and the − side strand 3b of the thermocouple are welded to the box at the center 4a portion of the bottom surface where the box 1 comes into contact with the measurement object 5, and the temperature here is measured. The MI cable 2 is used in the penetration portion of the thermocouple element box, and the MI cable is welded to the box at a portion 4b.

MIケーブル2は、図3、図4に示すように、ステンレス製のシース6の内部に、熱電対の+側素線3aと−側素線3bを酸化マグネシウム(MgO)またはアルミナ(Al2 3 )の絶縁材7を介在させて収容したもので、その両端部にはエポキシ樹脂、ガラス等によるシール8が絶縁材への湿気の浸入防止と真空維持のために施されている。図3の素線3a、3bの左端が前記のように箱底面中央に溶接される。なお、シール8は図3では図示を省略している右端にのみ設けたとしても、左端は真空内にあるので防湿、密閉機能は変わらない。 As shown in FIGS. 3 and 4, the MI cable 2 has a thermocouple positive side wire 3 a and negative side wire 3 b in a stainless steel sheath 6 and magnesium oxide (MgO) or alumina (Al 2 O). 3 ) Insulating material 7 is accommodated, and seals 8 made of epoxy resin, glass or the like are provided at both ends to prevent moisture from entering the insulating material and maintain a vacuum. The left ends of the wires 3a and 3b in FIG. 3 are welded to the center of the box bottom as described above. Even if the seal 8 is provided only at the right end (not shown in FIG. 3), the moisture resistance and sealing function does not change because the left end is in a vacuum.

箱1は、上蓋と本体が4c部で溶接されていて、これと4bの溶接およびMIケーブルのシース6、シール8によって密閉され、箱内の真空が保持されている。箱内の真空化は、組立てにおいて4a、4b部を溶接した後、最後に真空中で4c部を溶接することにより可能である。もしくは、箱に径0.5mm程度の貫通穴を設けておいて、最後に真空中でこの穴を溶接で塞ぐことでもよい。   In the box 1, the upper lid and the main body are welded at a part 4 c, and the box 1 is sealed by welding of this and 4 b and the sheath 6 and the seal 8 of the MI cable, and the vacuum in the box is maintained. The inside of the box can be evacuated by welding the parts 4a and 4b in the assembly, and finally welding the part 4c in a vacuum. Alternatively, a through hole having a diameter of about 0.5 mm may be provided in the box, and finally the hole may be closed by welding in a vacuum.

組立て後、4d部の溶接によって測定対象物に設置する。   After assembly, it is installed on the measurement object by welding at 4d.

本発明のもう一つの実施形態を図5に示す。図1は図5の平面図で、図5はそのI−I断面図である。   Another embodiment of the present invention is shown in FIG. FIG. 1 is a plan view of FIG. 5, and FIG.

この実施形態では、温度センサーとして薄膜式測温抵抗体3cを使用している。薄膜式測温抵抗体は、箱の底面の中央部に接着材9で接着されており、そのリード線3dはMIケーブル2の芯線10と接続部11において接続されている。MIケーブル2は図3、図4に示す構造のものであるが、芯線は銅、ニッケル等の抵抗の小さいリード線材料となっている。その他は図1ないし図4の実施形態と同じである。   In this embodiment, the thin film type resistance thermometer 3c is used as a temperature sensor. The thin film type resistance temperature detector is bonded to the center of the bottom of the box with an adhesive 9, and the lead wire 3 d is connected to the core wire 10 of the MI cable 2 at the connection portion 11. The MI cable 2 has the structure shown in FIGS. 3 and 4, but the core wire is a lead wire material having a low resistance such as copper or nickel. Others are the same as the embodiment of FIGS.

次に、本発明の真空断熱温度センサーの効果について、定量的に説明する。   Next, the effect of the vacuum adiabatic temperature sensor of the present invention will be quantitatively described.

図6は、真空中に設けた発熱量一定のヒータの温度を測定した実験結果である。   FIG. 6 shows experimental results obtained by measuring the temperature of a heater having a constant calorific value provided in a vacuum.

大気圧760Torrから圧力を低くしていくと、ヒータ温度は上昇していくが、圧力が約10Torr以下では、上昇は僅かになる。このことは、圧力が大気圧から約10Torrまでは空気を介した伝熱が比較的多く、これ以下では輻射伝熱が支配的になることを表している。したがって、圧力を10Torr以下とすることが真空断熱を行う上で効果的であることが分かる。   When the pressure is decreased from the atmospheric pressure of 760 Torr, the heater temperature increases, but when the pressure is about 10 Torr or less, the increase is slight. This indicates that heat transfer through air is relatively large when the pressure is from atmospheric pressure to about 10 Torr, and radiation heat transfer is dominant below this. Therefore, it can be seen that setting the pressure to 10 Torr or less is effective in performing vacuum insulation.

図7、図8は、各々500℃、300℃の液体を内包した厚さ10mmのステンレス槽の表面温度測定について、従来のパッドによる温度測定の誤差と、本発明の断熱温度センサーによる測定の誤差を、雰囲気温度をパラメータとして表した図である。   FIGS. 7 and 8 show the measurement error of the temperature by the conventional pad and the measurement error by the adiabatic temperature sensor of the present invention for the surface temperature measurement of the stainless steel tank having a thickness of 10 mm containing the liquid of 500 ° C. and 300 ° C. It is the figure which represented atmospheric temperature as a parameter.

これらの図には以下が示されている。   These figures show the following:

・破線:図1、図2に示す真空断熱温度センサーで、外径30mm、高さ20mm、肉 厚2mmの内面を研磨した箱を使用したものの測定誤差の有限要素解析値。   -Broken line: Finite element analysis value of measurement error of the vacuum adiabatic temperature sensor shown in FIGS. 1 and 2, using a box whose outer diameter is 30 mm, height is 20 mm, and wall thickness is 2 mm.

・点線:図1、図2に示す真空断熱温度センサーで、外径40mm、高さ20mm、肉 厚2mmの内面を研磨した箱を使用したものの測定誤差の有限要素解析値。   ・ Dotted line: Finite element analysis value of measurement error of the vacuum adiabatic temperature sensor shown in FIGS. 1 and 2, using a box whose outer diameter is 40 mm, height is 20 mm, and wall thickness is 2 mm.

・細線:図1、図2に示す真空断熱温度センサーで、外径30mm、高さ20mm、肉 厚2mmの内面を研磨していない箱を使用したものの測定誤差の有限要素解析 値。   Fine line: Finite element analysis value of measurement error of the vacuum adiabatic temperature sensor shown in FIGS. 1 and 2, using a box whose outer diameter is 30 mm, height is 20 mm, and thickness is 2 mm and the inner surface is not polished.

・×印:図9および図12に示す従来のパッドで横25mm、縦20mm、肉厚2mm のステンレス製のものを用いて測定した実験値。   -X: Experimental value measured using a conventional pad shown in FIGS. 9 and 12 made of stainless steel having a width of 25 mm, a length of 20 mm, and a wall thickness of 2 mm.

・実線:図12に示す従来のパッドで、平面形状が×印のパッドと同等面積の径25m mの円形で、肉厚2mmのステンレス製のものを用いた場合の測定誤差の有限 要素解析値。   Solid line: Finite element analysis value of measurement error when using the conventional pad shown in FIG. 12 and a planar shape having a diameter of 25 mm with the same area as the pad marked with x and a 2 mm thick stainless steel one. .

有限要素解析は、ステンレスおよび溶接部の熱伝導率を16W/m ℃、研磨した面、即ち真空断熱温度センサーの研磨した箱内面の熱放射率を0.1、研磨していない面すなわちステンレス槽表面、従来のパッドの表面、真空断熱温度センサーの箱外面および研磨していない箱内面の熱放射率を0.4として計算した。これらはステンレスの代表的な値である。   Finite element analysis was conducted with a heat conductivity of 16 W / m ° C. for stainless steel and welds, a polished surface, that is, a thermal emissivity of the inner surface of the polished box of the vacuum adiabatic temperature sensor, and a non-polished surface, ie, a stainless steel bath. The thermal emissivity of the surface, the surface of the conventional pad, the outer surface of the vacuum adiabatic temperature sensor box and the inner surface of the unpolished box was calculated as 0.4. These are typical values for stainless steel.

また、真空断熱温度センサーの箱内部の圧力は10Torr以下となっていて、空気を介する伝熱は無視できるとし、輻射伝熱のみを考慮した。図7に示す従来のパッドによる実験値(×印)は、これと同等寸法のパッドによる測定の解析値(実線)とほぼ一致しており、解析値に信頼性があることを示している。   Moreover, the pressure inside the box of the vacuum adiabatic temperature sensor is 10 Torr or less, and heat transfer through the air is negligible, and only radiant heat transfer is considered. The experimental value (x mark) with the conventional pad shown in FIG. 7 is almost the same as the analytical value (solid line) of the measurement with the pad of the same size as this, indicating that the analytical value is reliable.

図7および図8は、従来のパッドによる場合(実線)に比べて内面を研磨しない外径30mmの真空断熱温度センサー(細線)では誤差が約3/4に減少することを示しており、内面を研磨した外径30mmの真空断熱温度センサー(破線)では誤差が約2/3に減少することを示している。さらに、外径40mmの内面を研磨した真空断熱温度センサー(点線)では約1/3に誤差は減少する。   7 and 8 show that the error is reduced to about 3/4 in the vacuum heat insulation temperature sensor (thin line) having an outer diameter of 30 mm that does not polish the inner surface as compared with the case using the conventional pad (solid line). In the vacuum adiabatic temperature sensor (broken line) having an outer diameter of 30 mm, the error is reduced to about 2/3. Further, in the vacuum adiabatic temperature sensor (dotted line) whose inner surface having an outer diameter of 40 mm is polished, the error is reduced to about 1/3.

以上の如く、本発明は、温度センサーと金属製の箱から構成され、箱の測定対象物と接触する面の箱の内側に温度センサーを溶接または接着材により取付け、温度センサーのリード線の箱貫通部にMIケーブルを使用し、箱の内部を10Torr以下の真空にした真空断熱温度センサーであるので、雰囲気温度との温度差が大きい機器の表面温度を測定する場合に、従来のパッドによる測定に比べて、雰囲気温度の影響による測定誤差を低く抑えることができる。   As described above, the present invention is composed of a temperature sensor and a metal box, and the temperature sensor is attached to the inside of the box in contact with the object to be measured by welding or an adhesive, and the lead wire box of the temperature sensor. Since it is a vacuum adiabatic temperature sensor that uses MI cable in the penetrating part and the inside of the box is evacuated to 10 Torr or less, when measuring the surface temperature of equipment with a large temperature difference from the ambient temperature, measurement with a conventional pad Compared to the above, the measurement error due to the influence of the ambient temperature can be kept low.

また、この誤差抑制効果は、箱の内面を研磨して熱放射率を小さくして輻射伝熱を少なくすることにより大きくなる。   Further, this error suppressing effect is increased by polishing the inner surface of the box to reduce the heat emissivity and reduce the radiant heat transfer.

ボイラ、精油施設の加熱炉、焼却炉などの燃料が燃焼する炉の内部において、蒸気の流れる低温配管などの雰囲気温度との温度差が大きく、かつ、保温材の設置ができない機器を測定対象としてその表面温度を測定する場合に効果を発揮する。   Equipment that has a large temperature difference from the ambient temperature, such as low-temperature pipes through which steam flows, and where heat insulation cannot be installed, is measured in boilers, refinery facilities such as heating furnaces and incinerators This is effective when measuring the surface temperature.

本発明の真空断熱温度センサーの平面図である。It is a top view of the vacuum adiabatic temperature sensor of the present invention. 熱電対を使用した場合の図1のI−I断面図である。It is II sectional drawing of FIG. 1 at the time of using a thermocouple. 図1、図2および図5の実施例における貫通部MIケーブルの縦断面図である。It is a longitudinal cross-sectional view of the penetration part MI cable in the Example of FIG.1, FIG2 and FIG.5. 図3のIII −III 断面図である。It is III-III sectional drawing of FIG. 薄膜式測温抵抗体を使用した場合の図1のI−I断面図である。It is II sectional drawing of FIG. 1 at the time of using a thin film type resistance thermometer. 真空度による伝熱量の変化を調べた実験値を示す図である。It is a figure which shows the experimental value which investigated the change of the heat-transfer amount by a vacuum degree. 内包流体温度500℃、厚さ10mmのステンレス槽の表面温度を、本発明の真空断熱温度センサーを用いて測定した場合と、従来のパッドを用いて測定した場合の誤差解析値および従来のパッドを用いた実測値の誤差を示す図である。When the surface temperature of the stainless steel tank having an inclusion fluid temperature of 500 ° C. and a thickness of 10 mm is measured using the vacuum adiabatic temperature sensor of the present invention, and the error analysis value when measuring using the conventional pad and the conventional pad It is a figure which shows the error of the measured value used. 内包流体温度300℃、厚さ10mmのステンレス槽の表面温度を、本発明の真空断熱温度センサーを用いて測定した場合と、従来のパッドを用いて測定した場合の誤差解析値を示す図である。It is a figure which shows the error analysis value at the time of measuring the surface temperature of the stainless steel tank of the inclusion fluid temperature of 300 degreeC and thickness 10mm using the vacuum adiabatic temperature sensor of this invention, and using the conventional pad. . 従来の温度センサー先端パッドの平面図である。It is a top view of the conventional temperature sensor tip pad. 図9のパッドのIX−IX断面図である。FIG. 10 is a cross-sectional view of the pad of FIG. 9 taken along the line IX-IX. 配管表面温度測定用に作られた図9のパッドのIX−IX断面図である。FIG. 10 is a cross-sectional view taken along the line IX-IX of the pad of FIG. 9 made for pipe surface temperature measurement. 改良された図9のパッドのIX−IX断面図である。FIG. 10 is a cross-sectional view of the improved pad of FIG. 9 taken along the line IX-IX.

符号の説明Explanation of symbols

1…真空断熱のための箱
2…MIケーブル
3…温度センサー(3a:熱電対の+側素線、3b:熱電対の−側素線、3c:薄膜 式測温抵抗体、3d:薄膜式測温抵抗体のリード線)
4…溶接部(4a:熱電対素線と真空断熱箱底面との溶接部、4b:MIケーブルと 真空断熱箱との溶接部、4c:真空断熱箱の本体と上蓋との溶接部、4d:真空 断熱箱と測定対象物との溶接部)
5…測定対象物
6…シース
7…絶縁材
8…シール
9…薄膜式測温抵抗体と真空断熱箱底面との接着材
10…MIケーブルのリード線材を材質とする芯線
11…薄膜式測温抵抗体のリード線とMIケーブルのリード線材を材質とする芯線の接 続部
101…パッド
102…温度センサー
104…溶接などによる接着部(104a:温度センサーとパッドとの接着部、104b :パッドと測定対象物との溶接部)
DESCRIPTION OF SYMBOLS 1 ... Box for vacuum insulation 2 ... MI cable 3 ... Temperature sensor (3a: + side strand of thermocouple, 3b: -side strand of thermocouple, 3c: Thin film type resistance temperature detector, 3d: Thin film type RTD lead wire)
4 ... Welded part (4a: Welded part between thermocouple wire and vacuum insulation box bottom, 4b: Welded part between MI cable and vacuum insulation box, 4c: Welded part between main body of vacuum insulation box and top cover, 4d: (Welded part between vacuum insulation box and measurement object)
DESCRIPTION OF SYMBOLS 5 ... Measuring object 6 ... Sheath 7 ... Insulating material 8 ... Seal 9 ... Adhesive material of thin film type resistance temperature detector and vacuum heat insulation box bottom 10 ... Core wire made of lead wire of MI cable 11 ... Thin film type temperature measuring Core wire connection portion 101 made of resistor lead wire and MI cable lead wire material ... Pad 102 ... Temperature sensor 104 ... Adhesion portion by welding or the like (104a: Adhesion portion between temperature sensor and pad, 104b: Pad Welded part with measurement object)

Claims (2)

温度センサーと金属製の箱から構成され、箱の測定対象物と接触する面の箱の内側に温度センサーを溶接または接着材により取付け、温度センサーのリード線の箱貫通部にMIケーブルを使用し、箱の内部を10Torr以下の真空にした真空断熱温度センサー。   Consists of a temperature sensor and a metal box. A temperature sensor is attached to the inside of the box that contacts the measurement object of the box by welding or adhesive, and an MI cable is used for the box penetration of the lead wire of the temperature sensor. A vacuum adiabatic temperature sensor with a vacuum of 10 Torr or less inside the box. 内面を研磨した箱を使用する請求項1に記載の真空断熱温度センサー。
The vacuum adiabatic temperature sensor according to claim 1, wherein a box whose inner surface is polished is used.
JP2004359275A 2004-12-13 2004-12-13 Vacuum heat-insulating temperature sensor Pending JP2006170627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359275A JP2006170627A (en) 2004-12-13 2004-12-13 Vacuum heat-insulating temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359275A JP2006170627A (en) 2004-12-13 2004-12-13 Vacuum heat-insulating temperature sensor

Publications (1)

Publication Number Publication Date
JP2006170627A true JP2006170627A (en) 2006-06-29

Family

ID=36671562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359275A Pending JP2006170627A (en) 2004-12-13 2004-12-13 Vacuum heat-insulating temperature sensor

Country Status (1)

Country Link
JP (1) JP2006170627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120569A (en) * 2009-11-12 2011-06-23 Idemitsu Kosan Co Ltd Method for controlling temperature for plant cultivation, temperature controlling device for plant cultivation, plant cultivation unit, and plant cultivation plant
KR20220045650A (en) * 2020-10-06 2022-04-13 홍춘강 Storage Condition Check Pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137337A (en) * 1979-04-11 1980-10-27 Japan Electronic Control Syst Co Ltd Return control circuit for electronic fuel injection device
JPH07127789A (en) * 1993-11-04 1995-05-16 Nisshin Steel Co Ltd Vacuum insulation pipe
JPH07260597A (en) * 1993-10-18 1995-10-13 Westinghouse Electric Corp <We> Nonintrusive-type temperature measuring instrument and thermometry method
JP2001153731A (en) * 1999-11-25 2001-06-08 Fumio Utsue Temperature measuring instrument for fluid in duct

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137337A (en) * 1979-04-11 1980-10-27 Japan Electronic Control Syst Co Ltd Return control circuit for electronic fuel injection device
JPH07260597A (en) * 1993-10-18 1995-10-13 Westinghouse Electric Corp <We> Nonintrusive-type temperature measuring instrument and thermometry method
JPH07127789A (en) * 1993-11-04 1995-05-16 Nisshin Steel Co Ltd Vacuum insulation pipe
JP2001153731A (en) * 1999-11-25 2001-06-08 Fumio Utsue Temperature measuring instrument for fluid in duct

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120569A (en) * 2009-11-12 2011-06-23 Idemitsu Kosan Co Ltd Method for controlling temperature for plant cultivation, temperature controlling device for plant cultivation, plant cultivation unit, and plant cultivation plant
KR20220045650A (en) * 2020-10-06 2022-04-13 홍춘강 Storage Condition Check Pack
KR102450874B1 (en) 2020-10-06 2022-10-04 홍춘강 Storage Condition Check Pack

Similar Documents

Publication Publication Date Title
US11415466B2 (en) Temperature measuring device and method for determining temperature
CA2809995C (en) Immersion temperature sensor
US4971452A (en) RTD assembly
US9074946B2 (en) Protective tube inner part for a thermometer with a protective tube
KR20070049188A (en) Flow sensor
US4964736A (en) Immersion measuring probe for use in molten metals
US11802799B2 (en) Temperature measuring device and method for determining temperature
JP4553201B2 (en) Interface level sensor and container equipped with interface level sensor
US4238957A (en) Pyrometric sheath and process
KR101107924B1 (en) Temperature-measuring sensor and method of manufacturing the same
CN107014513B (en) Sleeve type platinum resistor temperature sensing device
CN106352995A (en) Thermocouple-based temperature measurement device
JP2006170627A (en) Vacuum heat-insulating temperature sensor
KR101225096B1 (en) Temperature sensor and method of manufacturing thereof
KR102278286B1 (en) Hydrogen detector for gas media
RU2307330C1 (en) Temperature gage
US20240044723A1 (en) Noninvasive thermometer
CN115701529A (en) Temperature sensor assembly
JP3985072B2 (en) Liquid level switch
JP2006242574A (en) Pad type thermocouple
US20220334003A1 (en) Noninvasive thermometer
CN217878063U (en) Surface temperature measuring structure suitable for jacket structure and thermocouple using same
JP7056256B2 (en) Temperature detection sensor and temperature measuring device
JPS6145462Y2 (en)
US20220341794A1 (en) Thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220