JP2006170496A - Method of manufacturing high-temperature treated object - Google Patents

Method of manufacturing high-temperature treated object Download PDF

Info

Publication number
JP2006170496A
JP2006170496A JP2004361607A JP2004361607A JP2006170496A JP 2006170496 A JP2006170496 A JP 2006170496A JP 2004361607 A JP2004361607 A JP 2004361607A JP 2004361607 A JP2004361607 A JP 2004361607A JP 2006170496 A JP2006170496 A JP 2006170496A
Authority
JP
Japan
Prior art keywords
temperature
gas
heating furnace
carbon
graphite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004361607A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kotani
知之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004361607A priority Critical patent/JP2006170496A/en
Publication of JP2006170496A publication Critical patent/JP2006170496A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a high-temperature treated object (carbon fiber or the like) capable of elongating service life of a heating furnace applying a graphite material, in a method of manufacturing the high-temperature treated object by treating the treated object (carbon fiber precursor fiber or the like) in the heating furnace applying the graphite material at a temperature of 1600°C or more. <P>SOLUTION: In this method of manufacturing the high-temperature heated object for treating the treated object in the heating furnace applying the graphite material and heated to the temperature of 1600°C or more, a mixed gas of an inert gas and a carbon-containing compound gas is supplied to the heating furnace. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、1600℃以上の温度に加熱した、黒鉛材料を用いてなる加熱炉内で、被処理物を処理する高温処理物の製造方法に関し、詳しくは、加熱炉を長時間にわたって使用できる、高温処理物の製造方法に関する。   The present invention relates to a method for producing a high-temperature treatment product that treats an object to be treated in a heating furnace using a graphite material heated to a temperature of 1600 ° C. or more. Specifically, the heating furnace can be used for a long time. The present invention relates to a method for producing a high-temperature processed product.

黒鉛材料は、金属材料やセラミックス系材料では、実用に供し得ない1600℃以上の高温領域においても、溶融、分解等を起こさないので、加熱炉の構成材料として十分にその機能を発揮しする。そして、比較的安価な材料であるので、炭素繊維等の炭素材料やセラミックス系材料等の高温処理物の焼成等の熱処理に用いられる加熱炉の構造材、断熱材、抵抗発熱体等として幅広く用いられている。   A graphite material does not cause melting, decomposition, etc. even in a high temperature region of 1600 ° C. or higher, which cannot be put to practical use with a metal material or a ceramic material, and therefore sufficiently exhibits its function as a constituent material of a heating furnace. And since it is a relatively inexpensive material, it is widely used as a structural material, heat insulating material, resistance heating element, etc. for heating furnaces used for heat treatment such as firing of high-temperature processed materials such as carbon materials such as carbon fibers and ceramic materials. It has been.

しかし、そのような黒鉛材料といえども、前述の高温下で長時間使用すると徐々に減耗・劣化するので継続使用が困難となる欠点があった。特に2000℃以上の高温が必要な場合には、黒鉛材料の減耗・劣化は一層著しいものであった。   However, even such a graphite material has a drawback that continuous use becomes difficult because it gradually wears and deteriorates when used at a high temperature for a long time. In particular, when a high temperature of 2000 ° C. or higher was required, the graphite material was more significantly depleted and deteriorated.

このような黒鉛材料の減耗・劣化は、構造材や抵抗発熱体として使用しているものであれば、折損を引き起こす原因となり、断熱材として使用しているものであれば、使用を断念せざるを得ない断熱性の劣化の原因となる。   Such depletion / degradation of graphite material can cause breakage if used as a structural material or resistance heating element, and must be abandoned if used as a heat insulating material. This may cause deterioration of the heat insulating property.

そこで、黒鉛材料をしばしば新しいものと交換する必要がある。黒鉛材料の交換作業は、安全上、炉を冷却した後に行う必要があり、特に大型の加熱炉では、冷却、解体、組立、再加熱といった一連の作業に多大の時間や労力を必要とし、黒鉛材料の交換周期が短欠ければ短いほど、単に黒鉛材料の材料費だけでなく加熱炉を使用して生産する高温処理物の生産性を著しく阻害し、コストの増大をもたらすことになる。
したがって、黒鉛材料の減耗・劣化を抑制し、加熱炉を長時間使用できる、高温処理物の製造方法が、要望されている。
Therefore, it is often necessary to replace the graphite material with a new one. For safety reasons, it is necessary to replace the graphite material after cooling the furnace. Especially in large heating furnaces, a series of operations such as cooling, dismantling, assembly and reheating require a lot of time and labor. The shorter the material replacement cycle, the more seriously hinders not only the material cost of the graphite material but also the high-temperature processed product produced using the heating furnace, resulting in an increase in cost.
Therefore, there is a demand for a method for producing a high-temperature-treated product that suppresses the depletion / deterioration of the graphite material and can use the heating furnace for a long time.

かかる問題を解決する手法として、円筒状黒鉛抵抗発熱体の外周面に炭素繊維糸条を捲回積層して発熱体炭素の蒸発、酸化を抑制する方法(特許文献1)が提案されている。しかしながら、この手法では、長寿命化の観点からは必ずしも満足できるものではなかった。   As a technique for solving such a problem, a method (Patent Document 1) has been proposed in which carbon fiber yarns are wound and laminated on the outer peripheral surface of a cylindrical graphite resistance heating element to suppress evaporation and oxidation of the heating element carbon. However, this method is not always satisfactory from the viewpoint of extending the life.

また、黒鉛材料からなる円筒状抵抗発熱体を有する加熱炉において、該発熱体の外表面に融点が2800℃以上で、かつ熱膨張係数が該抵抗発熱体材料と同等以上2.0倍以下の高融点材料の中から選ばれた1種以上の被覆層が形成する黒鉛繊維製造用加熱炉(特許文献2)が提案されている。しかしながら、この手法では、被覆層を形成する際にコストがかかり、経済的観点からは必ずしも満足できるものではなかった。   Further, in a heating furnace having a cylindrical resistance heating element made of graphite material, the melting point is 2800 ° C. or more on the outer surface of the heating element, and the thermal expansion coefficient is equal to or more than 2.0 times that of the resistance heating element material. A heating furnace for producing graphite fibers (Patent Document 2) formed by one or more coating layers selected from high melting point materials has been proposed. However, this method requires a cost when forming the coating layer, and is not always satisfactory from an economical viewpoint.

特公昭59−25936号公報Japanese Patent Publication No.59-25936 特開平6−280117公報JP-A-6-280117

本発明の目的は、以上の現状に鑑み、1600℃以上の温度に加熱した、黒鉛材料を用いてなる加熱炉内で、被処理物を処理する高温処理物の製造方法に際し、加熱炉を長時間使用できる、高温処理物の製造方法を提供することにある。   In view of the above situation, the object of the present invention is to lengthen the heating furnace in the manufacturing method of a high-temperature processed product in which a workpiece is processed in a heating furnace using a graphite material heated to a temperature of 1600 ° C. or higher. An object of the present invention is to provide a method for producing a high-temperature processed product that can be used for a long time.

本発明の要旨は、1600℃以上の温度に加熱した、黒鉛材料を用いてなる加熱炉内で、被処理物を処理する高温処理物の製造方法であって、加熱炉内に不活性ガスと炭素含有化合物ガスの混合ガスを供給する、高温処理物の製造方法である。   The gist of the present invention is a method for producing a high-temperature processed material for processing an object to be processed in a heating furnace using a graphite material heated to a temperature of 1600 ° C. or higher. This is a method for producing a high-temperature processed product, in which a mixed gas of a carbon-containing compound gas is supplied.

本発明によれば、黒鉛材料を用いた加熱炉を1600℃以上で運転するに際し、黒鉛材料の減耗・劣化を抑制し、長時間にわたって加熱炉の使用が可能となる。   According to the present invention, when a heating furnace using a graphite material is operated at 1600 ° C. or higher, depletion / deterioration of the graphite material is suppressed, and the heating furnace can be used for a long time.

以下に本発明を詳細に説明する。
『黒鉛材料の1600℃以上での減耗・劣化のメカニズム』
黒鉛材料の1600℃以上での減耗・劣化は、以下の2つのメカニズムが考えられる。
(1)黒鉛がC、C、C、C、C等の気体(多い順、以下、単に昇華ガスという。)として昇華する。(この昇華は、温度が高くなればなるほど著しく顕著になる。)
(2)炉内に供給する不活性ガスやその不活性ガスに含まれる微量のガスと黒鉛が反応する。(たとえば、2C+N→2CN、2C+N→C
したがって、黒鉛材料の減耗、劣化の速度は、その黒鉛材料の温度、供給する不活性ガスの種類、不活性ガスに含まれる微量のガスの種類、量により決まる。
The present invention is described in detail below.
"Deterioration / deterioration mechanism of graphite materials above 1600 ° C"
The following two mechanisms can be considered for the depletion and deterioration of the graphite material at 1600 ° C. or higher.
(1) Graphite sublimates as a gas such as C 3 , C, C 2 , C 5 , C 4 (in descending order, hereinafter simply referred to as sublimation gas). (This sublimation becomes more noticeable as the temperature increases.)
(2) The inert gas supplied into the furnace and a trace amount of gas contained in the inert gas react with graphite. (For example, 2C + N 2 → 2CN, 2C + N 2 → C 2 N 2 )
Therefore, the rate of depletion and deterioration of the graphite material is determined by the temperature of the graphite material, the type of inert gas supplied, and the type and amount of a small amount of gas contained in the inert gas.

『加熱炉内に供給するガス―混合ガス―』
本発明では、加熱炉内に不活性ガスと炭素含有化合物ガスの混合ガスを供給することが必要である。これにより上述(1)や(2)に起因する減耗・劣化を抑制することが可能となる。
"Gas to be supplied into heating furnace -mixed gas"
In the present invention, it is necessary to supply a mixed gas of an inert gas and a carbon-containing compound gas into the heating furnace. Thereby, it becomes possible to suppress the wear and deterioration due to the above (1) and (2).

まず(1)のメカニズムについて考えると、炭素含有化合物ガスが存在することにより、1600℃以上の高温下で、まず、炭素含有化合物ガスが昇華ガスとなり、黒鉛材料の減耗・劣化が抑制される。
一方、(2)のメカニズムに対しても、炭素含有化合物ガスが存在していない状態で、不活性ガスに微量の酸素原子、窒素原子、水素原子がそれぞれ含まれていれば、1600℃以上の高温下で黒鉛材料と反応し、安定な、一酸化炭素、ジシアンやCNガス、アセチレンやCHガス等が生成する反応がそれぞれ起こり、黒鉛材料が減耗・劣化する。しかし、炭素含有化合物ガスが存在していれば、その炭素とそれぞれの原子がまず反応するため、黒鉛材料の減耗・劣化が抑制される。
First, considering the mechanism of (1), the presence of the carbon-containing compound gas causes the carbon-containing compound gas to become a sublimation gas at a high temperature of 1600 ° C. or higher, thereby suppressing the depletion and deterioration of the graphite material.
On the other hand, for the mechanism (2), if the inert gas contains a small amount of oxygen atom, nitrogen atom, and hydrogen atom in the absence of the carbon-containing compound gas, the temperature is 1600 ° C. or higher. Reactions with graphite material at high temperatures cause stable reactions of carbon monoxide, dicyan, CN gas, acetylene, CH gas, etc., resulting in depletion and deterioration of the graphite material. However, if a carbon-containing compound gas is present, the carbon and each atom first react with each other, so that the depletion / deterioration of the graphite material is suppressed.

さらに、不活性ガスに2種の微量のガスが含まれている場合でも同様である。すなわち、炭素含有化合物ガスが存在していない状態で、不活性ガスに微量の水素原子および窒素原子が含まれていれば、1600℃以上の高温下で黒鉛材料と反応し、安定なシアン等が生成する反応がそれぞれ起こり、黒鉛材料が減耗・劣化する。しかし、が存在していれば、その炭素とそれぞれの原子がまず反応するため、黒鉛材料の減耗・劣化が抑制される。   Further, the same applies to the case where the inert gas contains two kinds of trace gases. In other words, in the absence of a carbon-containing compound gas, if the inert gas contains a small amount of hydrogen atoms and nitrogen atoms, it reacts with the graphite material at a high temperature of 1600 ° C. or higher, and stable cyan and the like are produced. Each reaction that occurs causes the graphite material to wear out and deteriorate. However, since the carbon and each atom first react with each other, the depletion / deterioration of the graphite material is suppressed.

『加熱炉材料の黒鉛材料』
本発明で用いる加熱炉材料の黒鉛材料は、その炭素含有率が90質量%以上、好ましくは95質量%以上であるものが好ましい。1600℃以上で被処理物を処理することから、1600℃以上の耐熱が必要である。
"Graphite materials for furnace materials"
The graphite material of the heating furnace material used in the present invention preferably has a carbon content of 90% by mass or more, preferably 95% by mass or more. Since the object to be processed is processed at 1600 ° C. or higher, heat resistance of 1600 ° C. or higher is required.

『不活性ガス』
本発明で用いる混合ガス中の不活性ガスは、加熱炉内で処理する被処理物の種類により、ヘリウム、アルゴン、ネオン等の希ガス類、フッ素、塩素等のハロゲン類、窒素、水素、一酸化炭素等を選んで用いることができる。また、これらの中から2種類以上を組み合わせて用いることもできる。経済的な観点からは窒素、アセチレンが好ましい。
"Inert gas"
The inert gas in the mixed gas used in the present invention may be a rare gas such as helium, argon, or neon, a halogen such as fluorine or chlorine, nitrogen, hydrogen, or carbon monoxide, depending on the type of object to be processed in the heating furnace. Etc. can be selected and used. Two or more of these can be used in combination. Nitrogen and acetylene are preferable from an economical viewpoint.

『炭素含有化合物ガス』
本発明で用いる、炭素含有化合物ガスは、ジシアン、アセチレン、ナフタレン、シアン、四塩化炭素、シアノアセチレン、ベンゼン等の化合物ガスを好ましいものとして挙げることができるが、本発明はこれらに特に限定されるものではなく、炭素を含んだ化合物のガスであれば用いることができる。また、これらの中から2種類以上を組み合わせて用いることもできる。黒鉛材料の減耗・劣化を抑制するためには、炭素含有率が高い化合物が好ましく、たとえば、ジシアン、アセチレンが好ましい。
"Carbon-containing compound gas"
As the carbon-containing compound gas used in the present invention, compound gases such as dicyan, acetylene, naphthalene, cyan, carbon tetrachloride, cyanoacetylene, and benzene can be mentioned as preferred, but the present invention is particularly limited to these. Any compound gas containing carbon can be used. Two or more of these can be used in combination. In order to suppress the depletion / deterioration of the graphite material, a compound having a high carbon content is preferable. For example, dicyan and acetylene are preferable.

『混合ガス中の炭素含有化合物ガスの体積含有率』
混合ガス中の炭素含有化合物ガスの体積含有率は、たとえば1600℃以下では、1体積ppm〜10体積%であることが好ましい。しかしながら、黒鉛材料がさらされる温度、加熱炉に供給する不活性ガスの種類および不活性ガスに含まれる微量のガスの種類、量に応じた最適な体積含有率が存在する。1600℃以上では化学熱力学的平衡状態にあると考えられるので、最適な体積含有率は、NIST-JANAF Thermochemical Tables等のデータを元に化学熱力学的平衡状態の計算から求めることができる。
“Volume content of carbon-containing compound gas in mixed gas”
The volume content of the carbon-containing compound gas in the mixed gas is preferably 1 ppm to 10% by volume, for example, at 1600 ° C. or lower. However, there is an optimal volume content depending on the temperature to which the graphite material is exposed, the type of inert gas supplied to the heating furnace, and the type and amount of trace amounts of gas contained in the inert gas. Since it is considered that there is a chemical thermodynamic equilibrium state at 1600 ° C. or higher, the optimum volume content can be obtained from the calculation of the chemical thermodynamic equilibrium state based on data such as NIST-JANAF Thermochemical Tables.

混合ガス中の炭素含有化合物ガスの体積含有率を1体積ppm以上の最適な体積含有率に保つことにより、黒鉛の析出、加熱炉の閉塞、絶縁不良、断熱不良などの問題の発生を抑制することができる。また、炭素含有化合物ガスの体積含有率が10体積%以下とすることにより、経済的観点からも実用に耐えうるものとすることができる。
特に、供給する不活性ガスがアルゴンである場合は、混合ガス中の炭素含有化合物ガスの体積含有率Vが
−2.55×10-6×T2+18.6×10-3×T-35.8≦logV≦−2.55×10-6×T2+18.6×10-3×T-32.8(T:最高温度 ℃)
を満たすことが好ましい。
By maintaining the volume content of the carbon-containing compound gas in the mixed gas at an optimal volume content of 1 ppm by volume or more, the occurrence of problems such as precipitation of graphite, clogging of the heating furnace, poor insulation, and poor heat insulation is suppressed. be able to. Moreover, when the volume content of the carbon-containing compound gas is 10% by volume or less, the carbon-containing compound gas can be practically used from an economical viewpoint.
In particular, when the inert gas to be supplied is argon, the volume content V of the carbon-containing compound gas in the mixed gas is −2.55 × 10 −6 × T 2 + 18.6 × 10 −3 × T-35.8 ≦ log V ≦ −2.55 × 10 −6 × T 2 + 18.6 × 10 −3 × T-32.8 (T: Maximum temperature ° C)
It is preferable to satisfy.

また、供給する不活性ガスが窒素である場合は、混合ガス中の炭素含有化合物ガスの体積含有率Vが
−0.582×10-6×T2+5.59×10-3×T−14.0≦logV≦−0.582×10-6×T2+5.59×10-3×T−11.0(T:最高温度 ℃)を満たすことが好ましい。
Further, when the inert gas to be supplied is nitrogen, the volume content V of the carbon-containing compound gas in the mixed gas is −0.582 × 10 −6 × T 2 + 5.59 × 10 −3 × T-14.0 ≦ logV ≦ −0.582 × 10 −6 × T 2 + 5.59 × 10 −3 × T-11.0 (T: maximum temperature ° C.) is preferably satisfied.

本発明で用いる加熱炉は、特に限定されるものではなく、公知の黒鉛材料を用いてなる加熱炉で、その黒鉛材料が1600℃以上に耐えるものであればよい。加熱炉の構造上、多数の不活性ガス供給口がある場合は、その供給口から供給されるガスの最高温度に好適な量の炭素含有化合物ガスを含む不活性ガスを供給することが好ましい。   The heating furnace used in the present invention is not particularly limited as long as it is a heating furnace using a known graphite material and the graphite material can withstand 1600 ° C. or more. When there are a large number of inert gas supply ports due to the structure of the heating furnace, it is preferable to supply an inert gas containing a carbon-containing compound gas in an amount suitable for the maximum temperature of the gas supplied from the supply ports.

以下に本発明を実施例によりさらに具体的に説明する。なお、実施例では実際に高温処理物の製造は行わず、加熱炉の評価のみを次の方法に拠って行った。   Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, high-temperature processed products were not actually manufactured, and only the evaluation of the heating furnace was performed according to the following method.

『黒鉛材料を用いた加熱炉の寿命測定』
黒鉛材料を用いた加熱炉の運転日数を評価基準として、
10日未満を×、
10日以上30日未満を○、
30日以上を◎
とした。
“Lifetime measurement of heating furnace using graphite material”
With the operating days of the furnace using graphite material as the evaluation criteria,
X less than 10 days,
○ 10 days or more and less than 30 days
30 days or more
It was.

上述のように黒鉛材料の減耗・劣化は、高温になればなるほど顕著になることから、温度が高くなるほど加熱炉の運転可能日数は短くなる。実施例では2600℃以上の高温で行ったが、2600℃以下の温度でも黒鉛材料の減耗・劣化は起こる。   As described above, the depletion / deterioration of the graphite material becomes more noticeable as the temperature becomes higher. Therefore, the operating days of the heating furnace become shorter as the temperature becomes higher. In the examples, the heat treatment was performed at a high temperature of 2600 ° C. or higher. However, the graphite material was worn and deteriorated even at a temperature of 2600 ° C. or lower.

(実施例1)
黒鉛製(炭素含有率99質量%以上)円筒状抵抗発熱体(内径50mm、外径60mm、長さ1200mm)からなるタンマン炉形式の加熱炉を2600℃で連続運転した。加熱炉に供給する混合ガスとして、窒素99体積%/アセチレン1体積%の混合ガスをもしいた。黒鉛製円筒状抵抗発熱体の折損はなく、30日以上運転可能であった。
Example 1
A Tamman furnace type heating furnace made of graphite (carbon content 99% by mass or more) cylindrical resistance heating element (inner diameter 50 mm, outer diameter 60 mm, length 1200 mm) was continuously operated at 2600 ° C. As a mixed gas supplied to the heating furnace, a mixed gas of 99 volume% nitrogen / 1 volume% acetylene was also provided. The graphite cylindrical resistance heating element was not broken and could be operated for 30 days or more.

(実施例2)
加熱炉に供給する混合ガスとして、窒素99.99体積%/アセチレン100体積ppmの混合ガスを用いるほかは、実施例1と同様に操作した。黒鉛製円筒状抵抗発熱体は、11日で折損した。
(Example 2)
The same operation as in Example 1 was performed except that a mixed gas of 99.99 vol% nitrogen / 100 vol ppm acetylene was used as the mixed gas supplied to the heating furnace. The graphite cylindrical resistance heating element broke in 11 days.

(実施例3)
加熱炉に供給する混合ガスとして、窒素99.99体積%/ジシアン100体積ppmの混合ガスを用いるほかは、実施例1と同様に操作した。黒鉛製円筒状抵抗発熱体は、14日で折損した。
(Example 3)
The same operation as in Example 1 was performed except that a mixed gas of 99.99% by volume of nitrogen / 100% by volume of dicyan was used as a mixed gas to be supplied to the heating furnace. The graphite cylindrical resistance heating element broke in 14 days.

(比較例1)
加熱炉に供給するガスを窒素としたほかはは、実施例1と同様に操作した。黒鉛製円筒状抵抗発熱体は、6日で折損した。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the gas supplied to the heating furnace was nitrogen. The graphite cylindrical resistance heating element broke in 6 days.

(実施例4)
温度を2900℃とし、加熱炉に供給する混合ガスとして、アルゴン99体積%/アセチレン1体積%の混合ガスを用いるほかは、実施例1と同様に操作した。黒鉛製円筒状抵抗発熱体は、折損なく、30日以上運転可能であった。
Example 4
The operation was performed in the same manner as in Example 1 except that the temperature was 2900 ° C. and a mixed gas of 99 volume% argon / 1 volume% acetylene was used as the mixed gas supplied to the heating furnace. The graphite cylindrical resistance heating element could be operated for 30 days or more without breakage.

(実施例5)
温度を2900℃とし、加熱炉に供給する混合ガスとして、アルゴン99体積%/ジシアン1体積%の混合ガスを用いるほかは、実施例1と同様に操作した。黒鉛製円筒状抵抗発熱体は、折損なく、30日以上運転可能であった。
(Example 5)
The operation was performed in the same manner as in Example 1 except that the temperature was 2900 ° C. and a mixed gas of 99 volume% argon / 1 volume% dicyan was used as the mixed gas supplied to the heating furnace. The graphite cylindrical resistance heating element could be operated for 30 days or more without breakage.

(比較例2)
温度を2900℃とし、加熱炉に供給するガスとしてアルゴンを用いるほかは、実施例1と同様に操作した。黒鉛製円筒状抵抗発熱体は、7日で折損した。
(Comparative Example 2)
The operation was performed in the same manner as in Example 1 except that the temperature was 2900 ° C. and argon was used as the gas supplied to the heating furnace. The graphite cylindrical resistance heating element broke in 7 days.

Figure 2006170496
Figure 2006170496

被処理物を、1600℃以上の温度で黒鉛材料を用いた加熱炉内で処理する高温処理物の製造方法に際し、黒鉛材料を用いた加熱炉を長寿命化する。   In the manufacturing method of the high temperature processed material which processes a to-be-processed object in the heating furnace using a graphite material at the temperature of 1600 degreeC or more, the heating furnace using a graphite material is extended.

Claims (4)

1600℃以上の温度に加熱した、黒鉛材料を用いてなる加熱炉内で、被処理物を処理する高温処理物の製造方法であって、加熱炉内に不活性ガスと炭素含有化合物ガスの混合ガスを供給する、高温処理物の製造方法。   A method for producing a high-temperature treatment product for treating an object to be treated in a heating furnace using a graphite material heated to a temperature of 1600 ° C. or more, comprising mixing an inert gas and a carbon-containing compound gas in the heating furnace A method for producing a high-temperature processed product by supplying gas. 被処理物が耐炎化繊維であり、高温処理物が炭素繊維である、請求項1記載の高温処理物の製造方法。   2. The method for producing a high-temperature treated product according to claim 1, wherein the article to be treated is a flame-resistant fiber and the high-temperature treated product is a carbon fiber. 混合ガス中の炭素含有化合物ガスの体積含有率が1体積ppm〜10体積%である、請求項1または2記載の高温処理物の製造方法。   The manufacturing method of the high temperature processed material of Claim 1 or 2 whose volume content rate of the carbon containing compound gas in mixed gas is 1 volume ppm-10 volume%. 混合ガス中の炭素含有化合物ガスがアセチレンまたはジシアンである、請求項1〜3のいずれか1項記載の高温処理物の製造方法。   The manufacturing method of the high temperature processed material of any one of Claims 1-3 whose carbon containing compound gas in mixed gas is acetylene or dicyan.
JP2004361607A 2004-12-14 2004-12-14 Method of manufacturing high-temperature treated object Pending JP2006170496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361607A JP2006170496A (en) 2004-12-14 2004-12-14 Method of manufacturing high-temperature treated object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361607A JP2006170496A (en) 2004-12-14 2004-12-14 Method of manufacturing high-temperature treated object

Publications (1)

Publication Number Publication Date
JP2006170496A true JP2006170496A (en) 2006-06-29

Family

ID=36671444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361607A Pending JP2006170496A (en) 2004-12-14 2004-12-14 Method of manufacturing high-temperature treated object

Country Status (1)

Country Link
JP (1) JP2006170496A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010509A1 (en) * 2015-07-14 2017-01-19 三菱レイヨン株式会社 Carbon material and method for producing same
WO2017010546A1 (en) * 2015-07-14 2017-01-19 三菱レイヨン株式会社 Carbon material and production method for same
JP2017020142A (en) * 2015-07-14 2017-01-26 三菱レイヨン株式会社 Carbon fiber and manufacturing method therefor
JP2018111638A (en) * 2017-01-13 2018-07-19 三菱ケミカル株式会社 Carbon material and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010509A1 (en) * 2015-07-14 2018-06-07 三菱ケミカル株式会社 Carbon material and manufacturing method thereof
WO2017010546A1 (en) * 2015-07-14 2017-01-19 三菱レイヨン株式会社 Carbon material and production method for same
JP2017020142A (en) * 2015-07-14 2017-01-26 三菱レイヨン株式会社 Carbon fiber and manufacturing method therefor
JPWO2017010546A1 (en) * 2015-07-14 2017-07-20 三菱ケミカル株式会社 Carbon material and manufacturing method thereof
KR20180019704A (en) * 2015-07-14 2018-02-26 미쯔비시 케미컬 주식회사 Carbon material and its manufacturing method
CN107849748A (en) * 2015-07-14 2018-03-27 三菱化学株式会社 Carbon material and its manufacture method
WO2017010509A1 (en) * 2015-07-14 2017-01-19 三菱レイヨン株式会社 Carbon material and method for producing same
KR102016272B1 (en) * 2015-07-14 2019-08-29 미쯔비시 케미컬 주식회사 Carbon material and its manufacturing method
CN107849748B (en) * 2015-07-14 2020-09-15 三菱化学株式会社 Carbon material and method for producing same
US10975501B2 (en) 2015-07-14 2021-04-13 Mitsubishi Chemical Corporation Carbon material and production method for same
JP2021175843A (en) * 2015-07-14 2021-11-04 三菱ケミカル株式会社 Method for producing carbon material
JP7264190B2 (en) 2015-07-14 2023-04-25 三菱ケミカル株式会社 Method for manufacturing carbon material
JP2018111638A (en) * 2017-01-13 2018-07-19 三菱ケミカル株式会社 Carbon material and method for producing the same

Similar Documents

Publication Publication Date Title
Sundberg et al. Alumina forming high temperature silicides and carbides
JPS6218000A (en) Arc electrode
BRPI0609255A2 (en) method for the production of high purity silicon
JP2006170496A (en) Method of manufacturing high-temperature treated object
US6482367B1 (en) Method and apparatus for removing harmful components in an exhaust gas
CA2940179C (en) Cast product having alumina barrier layer
JPH105993A (en) Flux brazing method of aluminum and furnace therefor
JP4906359B2 (en) heating furnace
JP2007096280A (en) Vapor-phase growth apparatus
JP2002013031A (en) Method for graphitizing carbon material and apparatus therefor
JP3287029B2 (en) heating furnace
JP2001031473A (en) Graphite heater
JP2005240124A (en) Thermally sprayed film coated on hearth roll
JP2020164932A (en) Electric heating wire, manufacturing method of electric heating wire, and vacuum treatment apparatus
JP2010138011A (en) Method of producing aluminum nitride powder
WO2002051208A1 (en) A resistor element for extreme temperatures
JP2000074324A (en) Carburizing preventive surface working
JP2012087392A (en) Method for forming aluminum nitride film
JPH06280117A (en) Heating furnace for graphite fiber production
JPH01176064A (en) Formation of thermal sprayed film having excellent buildup resistance
JPH047078B2 (en)
JPH0570823A (en) Roller for roller hearth kiln
FI81384B (en) Process for manufacturing a cutting tool
JP2005214512A (en) Contact heating/atmospheric furnace for long and flat material
JPS6410930B2 (en)