JP2006169929A - Snow melting method in membrane structure, steel frame structure building, or the like - Google Patents

Snow melting method in membrane structure, steel frame structure building, or the like Download PDF

Info

Publication number
JP2006169929A
JP2006169929A JP2004382553A JP2004382553A JP2006169929A JP 2006169929 A JP2006169929 A JP 2006169929A JP 2004382553 A JP2004382553 A JP 2004382553A JP 2004382553 A JP2004382553 A JP 2004382553A JP 2006169929 A JP2006169929 A JP 2006169929A
Authority
JP
Japan
Prior art keywords
heat
film
paint
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004382553A
Other languages
Japanese (ja)
Inventor
Mitsuo Minagawa
光雄 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004382553A priority Critical patent/JP2006169929A/en
Publication of JP2006169929A publication Critical patent/JP2006169929A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a snow melting method for enhancing heat efficiency, stable as a technology, and dispensing with running cost, while minimizing an initial investment/construction cost for snow melting/ice melting of a roof surface of a membrane structure and a steel frame structure. <P>SOLUTION: A heating coating film layer 3 of applying heating paint of using graphite carbon and a thermosensible electric resistance composition as a filler to a synthetic resin emulsion composition, is formed on a coating film object surface of applying a primer 2 on a surface of an indoor side membrane of the membrane structure 1, and finish coat paint is applied to this surface by laminating a thermal insulation layer by applying thermal insulation paint 4 formed by blending a ceramic fine hollow particle with the same kind of synthetic resin emulsion composition on this film, and an electric current is carried to the heating coating film layer 3. A thermal insulation layer is formed on a surface of a steel frame structure by applying the thermal insulation paint to the coating film object surface of applying the primer, and the finish coat paint is applied to this surface by laminating the heating coating film layer by applying the heating paint on this film, and the electric current is carried to the heating coating film layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冬期の積雪時における膜構造建造物、橋梁等の鉄骨構造建造物の融雪を行なう際の手間及びランニングコストを大幅に低減することができ、且つ、初期投資を軽減せしめることのできる膜構造、鉄骨構造建造物等の融雪方法に関するものである。  INDUSTRIAL APPLICABILITY The present invention can greatly reduce labor and running costs when melting snow in a steel structure such as a membrane structure building and a bridge during snowfall in winter, and can reduce initial investment. The present invention relates to a snow melting method for a film structure, a steel structure structure or the like.

本出願人は、株式会社リボールに在籍中、発明者として多数の特許出願を行ない、更にそれらの生産販売を通じて多くの知見を得ることができた。例えば特開平8−24774に於て、建造物、電車の屋根や床下面、電車のトンネル内壁及び外壁等への着雪、着氷を防止することのできる防水塗膜として、合成樹脂エマルジョンからなる、同種塗膜防水材でプライマーの上にセラミック微細中空粒子をフィラーにした断熱中間層、黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした融雪塗膜層を積層し、この上に表面保護層を積層形成せしめ、長期間の0℃以下の低温時にのみ通電する防水機能を備えた融雪塗膜の技術を開示している。  The present applicant, while enrolled in Reball Co., Ltd., applied for numerous patents as an inventor, and was able to obtain many knowledge through their production and sales. For example, as disclosed in JP-A-8-24774, it is made of a synthetic resin emulsion as a waterproof coating capable of preventing snow and icing on buildings, train roofs and floors, train tunnel inner and outer walls, etc. A heat insulating intermediate layer made of ceramic fine hollow particles as a filler and a snow melting paint layer made of graphite carbon and a heat-sensitive electrical resistance composition as a filler are laminated on a primer with a waterproof coating material of the same type, and a surface protective layer is formed thereon. The technology of a snow melting coating film having a waterproof function of energizing only at a low temperature of 0 ° C. or lower for a long time is disclosed.

特開平8−127736於て、薄塗り塗膜においても断熱性を充分発揮することができ塗膜の密着性、塗膜間の密着性を高め耐候性、耐久性を高めることができ、更に表面硬度の高い断熱性塗材として、硬化後透明あるいは半透明塗膜層を形成する合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で、嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子又はセラミック微細中空粒子と粒径0.01〜5.0mmの無機質粉末を配合してなる断熱性塗材の技術を開示している。In Japanese Patent Application Laid-Open No. 8-127736, heat insulation can be sufficiently exerted even in a thin coating film, the adhesion of the coating film, the adhesion between the coating films can be increased, and the weather resistance and durability can be improved. As a heat-insulating coating material with high hardness, a synthetic resin emulsion composition that forms a transparent or translucent coating layer after curing has a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 , a melting point The technique of the heat insulating coating material which mix | blends the ceramic fine hollow particle of 1500 degreeC or more or the ceramic fine hollow particle, and the inorganic powder with a particle size of 0.01-5.0 mm is disclosed.

近年野球場、各種スポーツ、その他多目的施設等として、膜構造建造物が各地に建設されている。膜上屋で覆われた空間は、雨風に影響されずまた炎天下の直射日光を避け、年間を通して安定した多目的空間を維持することができる。これらの膜構造建造物は、気候の温暖な地方は無論のこと寒冷地域、豪雪地域にも建設設置されている。むしろ寒冷地域、豪雪地域等の場合は冬期においても安定的に使用することができるため、その必要性は高い。例えば、秋田県秋田市の「秋田ドーム」、福井県美浜町の「美浜町多目的広場、ゆうあいひろば」等は豪雪あるいは多雪地帯の典型的な例である。このような膜構造建造物は、除雪、融雪等の対策が重要事項である。  In recent years, membrane structures have been built in various places as baseball fields, various sports, and other multipurpose facilities. The space covered with the membrane roof is not affected by rain and wind and avoids direct sunlight under the hot sun, and can maintain a stable multipurpose space throughout the year. These membrane structures are built in cold and heavy snow areas, not to mention temperate regions. Rather, in cold areas, heavy snow areas, etc., it can be used stably even in winter, so the necessity is high. For example, “Akita Dome” in Akita City, Akita Prefecture, “Mihama Town Multipurpose Plaza, Yuai Hiroba” in Mihama Town, Fukui Prefecture, are typical examples of heavy snowfall or heavy snowfall areas. In such a membrane structure, measures such as snow removal and snow melting are important matters.

融雪を行なう際の手間を軽減することができるとともに、コスト低減を図ることができる膜構造物の膜屋根面の融雪方法として特開平9−112071がある。これは膜屋根を二重に構成して、この二重膜間の空間に温風を吹き込む。温風の吹き込みに際しては、空間に温風を吹き込む短管を壁部に沿って配置された空調用の主ダクトに接続し、更にこの単管に透光材で形成された延長ダクトを接続してその先端を屋根勾配20°以下となる部分(積雪部分)に位置させるという技術が開示されている。しかしこの技術では膜構造屋根にすべて温風を吹き込むことのできるよう膜を二重構造としなければならず、初期投資にかかる設備費の負担が非常に大きくなる。  Japanese Patent Laid-Open No. 9-112071 discloses a method for melting snow on the membrane roof surface of a membrane structure, which can reduce labor and time for melting snow and can reduce costs. This constitutes a double membrane roof and blows warm air into the space between the double membranes. When blowing hot air, a short pipe that blows hot air into the space is connected to the main duct for air conditioning arranged along the wall, and an extension duct made of translucent material is connected to this single pipe. A technique is disclosed in which the tip of the lever is positioned at a portion (snow cover portion) where the roof gradient is 20 ° or less. However, with this technology, the membrane must have a double structure so that all the warm air can be blown into the membrane structure roof, and the burden of equipment costs for initial investment becomes very large.

特開平9−203245及び特開平10−37526において、膜構造屋根の膜面下方温度と膜内表面温度を検出して、この両検出温度に基づいて膜構造屋根の膜面通過熱量を演算し、この膜面通過熱量が上限値を超えたか否かにより膜面下方温度を変化させ、膜面通過熱量が得られるように膜構造屋根内の空調温度を制御する。この空調温度の制御において、降雪強度と降雪時間との関係を分析し、降雪強度を予測する可能性推定モデルを作成し、この可能性推定モデルによる降雪予測方法により、予測値の入力値を求め、ファジィ規則にしたがって消雪運転の制御量を決定し、膜構造屋根内の空調温度を制御する技術が開示されている。しかしこの方法では、初期設備投資並びにランニングコスト共に過大なものとなる。  In JP-A-9-203245 and JP-A-10-37526, the temperature below the membrane surface of the membrane structure roof and the surface temperature inside the membrane are detected, and the membrane surface passing heat amount of the membrane structure roof is calculated based on both detected temperatures, The temperature below the membrane surface is changed depending on whether or not the membrane surface passing heat amount exceeds the upper limit value, and the air conditioning temperature in the membrane structure roof is controlled so that the membrane surface passing heat amount is obtained. In this air conditioning temperature control, the relationship between snowfall intensity and snowfall time is analyzed, a possibility estimation model for predicting snowfall intensity is created, and the predicted value input value is obtained by the snowfall prediction method using this possibility estimation model. A technique for determining the control amount of snow-melting operation according to fuzzy rules and controlling the air conditioning temperature in the membrane structure roof is disclosed. However, this method results in excessive initial capital investment and running costs.

エネルギー搬送中の不必要な熱ロスを排除でき、また、効率的な融雪促進と、結露受け等のメリットが得られる膜構造建造物の融雪方法の技術として特開平10−341323がある。膜屋根を室内側から加温して膜屋根上の積雪を融かす方法である。熱エネルギーである温水、蒸気、加熱オイル、加熱不凍液等液体又は気体の熱媒体を、熱源機器から融雪場所に配設した放熱部まで搬送した後、放熱部の周囲の空気に強制対流を加えることにより、熱エネルギーを温風に変換して、この変換した温風を融雪対象部位の膜屋根に対して直接放熱させて、融雪・滑雪促進、膜面結露防止を行わさせる技術が開示されている。しかしこの方法では、初期設備投資並びにランニングコスト共に過大なものとなる。  Japanese Patent Laid-Open No. 10-341323 discloses a technique for melting snow in a membrane structure that can eliminate unnecessary heat loss during energy transfer, and that can provide advantages such as efficient snow melting promotion and condensation reception. This is a method of melting the snow on the membrane roof by heating the membrane roof from the indoor side. After transporting a liquid or gaseous heat medium such as hot water, steam, heated oil, or heated antifreeze, which is thermal energy, from the heat source device to the heat dissipating part located in the snow melting place, add forced convection to the air around the heat dissipating part Thus, a technique is disclosed in which heat energy is converted into hot air, and the converted hot air is directly radiated to the membrane roof of the snow melting target part to perform snow melting / sliding promotion and prevention of film surface condensation. . However, this method results in excessive initial capital investment and running costs.

積雪は、大きく分けると4つに分けられる。降ったばかりの新雪、降り積もって少し時間が経ち固くなった小しまり雪、積もった雪の重さで固くしまったしまり雪、春が近くなり気温が高くなり融けかけてきてざらざらしたざらめ雪である。鉄骨構造建造物において橋梁、鉄塔等からの落雪は人に対して非常に危険であり、車両に対しても危険なものでフロントガラスを損壊するなどの事故も多々ある。特に小しまり雪、しまり雪やざらめ雪の塊などが落下しやすく危険である。  There are four types of snow cover. Fresh snow that has just fallen, small snow that has been hardened after a while, hard snow that has hardened due to the weight of the accumulated snow, rough snow that has melted as the temperature approaches and heats up near spring . In steel structure buildings, snowfall from bridges, steel towers, etc. is very dangerous for people, and it is also dangerous for vehicles, and there are many accidents such as breaking the windshield. In particular, small snow, small snow and rough snow blocks are easy to fall and are dangerous.

このような橋桁の融雪に対して特開平11−131422では、ヒーターを断面正方形のグラファイト繊維を耐熱樹脂被覆したものを、接着剤で橋桁に貼着する。この線状のヒータを熱反射層で覆い、更に、その線状ヒータを張り巡らせた全面を断熱材を吹きつけて断熱層を形成する。更にヒータはアルミペーストを吹きつけにより被覆して熱反射層を形成し、この熱反射層による熱輻射によって熱がフランジに円滑に伝達して融雪・融氷を行なう技術が開示されている。しかしこの技術には大きな問題がいくつかある。例えば初期設備投資並びに施工工事費が高騰すると共に、技術的に不安定であり、ランニングコスト及びメンテナンスにも大きな手間と時間がかかる。  In Japanese Patent Application Laid-Open No. 11-131422 for such snow melting of a bridge girder, a heater having a square cross-sectional graphite fiber coated with a heat-resistant resin is adhered to the bridge girder with an adhesive. The linear heater is covered with a heat reflecting layer, and further, a heat insulating material is blown over the entire surface where the linear heater is stretched to form a heat insulating layer. Further, a technique is disclosed in which a heater is coated with aluminum paste to form a heat reflecting layer, and heat is smoothly transmitted to the flange by heat radiation from the heat reflecting layer to melt and melt snow. However, there are some major problems with this technology. For example, initial capital investment and construction work costs increase, and it is technically unstable, which requires a lot of labor and time for running costs and maintenance.

本発明は、このような課題に鑑み発明されたものであって、膜構造建造物の屋根面及び鉄骨構造建造物就中鉄骨橋梁の橋桁、鉄塔、信号機、広告用看板等の融雪・融氷を初期設備投資を軽減すると共に、施工工事費を極めて低く押さえることができ、熱効率が高く技術的に安定した方法であり且つ、ランニングコストの費用が不要となる膜構造、鉄骨構造建造物等の融雪方法を提供することである。  The present invention has been invented in view of such problems, and it is intended to melt and melt snow on the roof surface of a membrane structure building and a bridge girder, a steel tower, a traffic light, an advertising billboard, etc. It is possible to reduce the initial capital investment, keep the construction cost extremely low, is a highly efficient and technically stable method, and eliminates the cost of running cost, such as membrane structure, steel structure building, etc. It is to provide a snow melting method.

上記のごとき課題を解決するため鋭意技術開発を行なった膜構造、鉄骨構造建造物等の融雪方法は、膜構造建造物の場合は膜構造物の室内側の膜の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を積層し、この上に同種合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を形成せしめ、この表面に上塗り塗料を塗布して表面保護層とし、発熱塗膜層に通電する。In order to solve the above-mentioned problems, the snow melting method for the membrane structure and steel structure building, etc., which has been intensively developed, applied a primer to the surface of the membrane inside the membrane structure in the case of the membrane structure building. On the surface to be coated, a heat-generating paint layer with a graphitic carbon and heat-sensitive electrical resistance composition filler was applied to the synthetic resin emulsion composition, and a heat-generating paint film layer was laminated. On top of this, a compressive strength was applied to the same synthetic resin emulsion composition. A heat insulating coating formed by blending ceramic fine hollow particles having a bulk specific gravity of 0.3 to 0.5 g / cm 3 and a melting point of 1500 ° C. or higher with 600 kgf / cm 2 or more is formed to form a heat insulating layer. Is applied to form a surface protective layer, and the heating film layer is energized.

鉄骨構造建造物の場合は鉄骨構造物の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を積層し、この上に同種合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を形成せしめ、この表面に上塗り塗料を塗布して表面保護層とし、発熱塗膜層に通電する。In the case of a steel structure structure, the surface of the steel structure is coated with a primer and the synthetic resin emulsion composition is applied to the surface of the coating film with a compressive strength of 600 kgf / cm 2 or more and a bulk specific gravity of 0.3 to 0.5 g / cm 3 , A heat insulating coating formed by blending ceramic hollow fine particles having a melting point of 1500 ° C. or more is applied and a heat insulating layer is laminated thereon, and heat generated by using the same kind of synthetic resin emulsion composition as a filler with graphitic carbon and a thermosensitive electric resistance composition. A paint is applied to form an exothermic coating layer, and a top coating is applied to the surface to form a surface protective layer, and the exothermic coating layer is energized.

発熱塗膜層は、合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにして塗布したものではなく、プライマーを塗布した上に、フイルムの表面に黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷してこのフイルムを貼着し、この上を更にプライマーを塗布し、黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷したフイルムに通電してもよい。この場合は、フィルムを貼着する前後にプライマーを塗布する。  The exothermic coating layer is not a synthetic resin emulsion composition coated with graphite carbon and a thermosensitive electrical resistance composition as a filler, but with a primer applied on the surface of the film, the graphitic carbon and the thermosensitive electrical resistance composition An object may be applied or printed to attach the film, and a primer may be further applied thereon, and the graphitic carbon and the thermosensitive electrical resistance composition may be energized to the applied or printed film. In this case, a primer is applied before and after the film is attached.

発熱塗膜層は、膜構造建造物あるいは鉄骨構造建造物が積雪によって塗膜表面温度が0℃以下の降下時に通電して発熱する自動温度管理機能を備えていると共に、コンデンサー付太陽光発電システムを設置し、この電力を通電に使用する。  The exothermic coating layer is equipped with an automatic temperature management function that generates heat when a film structure building or steel structure building is energized when the surface temperature of the coating film drops below 0 ° C due to snow, and a photovoltaic power generation system with a capacitor And use this power for energization.

膜構造建造物の場合は膜構造物の室内側の膜の表面に、プライマーを塗布した被塗膜面に、合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を積層し、この上に同種合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を形成せしめ、この表面に上塗り塗料を塗布して表面保護塗膜層とし、発熱塗膜層に通電する。このように、発熱塗膜層の上層にセラミック微細中空粒子を配合してなる断熱塗料を塗布し、断熱層を形成することにより、発熱塗膜層から発生する熱は膜構造建造物の室外側に流れることになる。膜構造建造物の膜の方へ放熱され緩和性ができるので、屋外の冷却熱は膜構造建造物の内部には侵入せず、また着雪もし難くなる。これは膜構造建造物の室内側には放熱されず、膜面の方向すなわち室外側に放熱され、このため発熱は有効に融雪に使用される。In the case of a membrane structure building, an exothermic paint in which the surface of the film on the indoor side of the membrane structure is coated with a primer, and the synthetic resin emulsion composition is made of graphite carbon and a thermosensitive electrical resistance composition as a filler. And a heat-generating coating layer is laminated thereon, and a ceramic fine particle having a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 , and a melting point of 1500 ° C. or more is formed thereon. A heat insulating coating formed by blending hollow particles is applied to form a heat insulating layer, and a top coating is applied to the surface to form a surface protective coating layer, and the heat generating coating layer is energized. In this way, the heat generated from the exothermic coating layer is applied to the outdoor side of the membrane structure building by applying the heat insulating paint comprising ceramic fine hollow particles to the upper layer of the exothermic coating layer and forming the heat insulating layer. Will flow into. Since heat is released toward the membrane of the membrane structure building and relaxation can be achieved, outdoor cooling heat does not enter the inside of the membrane structure building, and it is difficult to snow. This is not radiated to the indoor side of the membrane structure building, but is radiated in the direction of the membrane surface, that is, the outdoor side, so that the heat is effectively used for melting snow.

鉄骨構造建造物の場合は鉄骨構造物の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を積層し、この上に同種合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を、塗布して発熱塗膜層を形成せしめ、この表面に上塗り塗料を塗布して表面保護塗膜層とし、発熱塗膜層に通電する。セラミック微細中空粒子を配合してなる断熱塗料を塗布した断熱層の上層に発熱塗膜層を形成することにより、発熱塗膜層から発生する熱は鉄骨構造物の方へは行かず、外部すなわち積雪面のほうへ放熱する。鉄骨構造物の冷却熱は断熱層で押さえられ緩和性ができることにより、鉄骨外部の積雪は発熱塗膜層から発生する熱によって有効に融雪される。In the case of a steel structure structure, the surface of the steel structure is coated with a primer and the synthetic resin emulsion composition is applied to the surface of the coating film with a compressive strength of 600 kgf / cm 2 or more and a bulk specific gravity of 0.3 to 0.5 g / cm 3 , A heat insulating coating formed by blending ceramic hollow fine particles having a melting point of 1500 ° C. or more is applied and a heat insulating layer is laminated thereon, and heat generated by using the same kind of synthetic resin emulsion composition as a filler with graphitic carbon and a thermosensitive electric resistance composition. A paint is applied to form an exothermic coating layer, and a top coating is applied to the surface to form a surface protective coating layer, and the heating coating layer is energized. By forming a heat generating coating layer on the heat insulating layer coated with a heat insulating coating composed of ceramic fine hollow particles, the heat generated from the heat generating coating layer does not go to the steel structure, Dissipate heat toward the snow cover. The cooling heat of the steel structure is suppressed by the heat insulating layer, and the snow accumulation outside the steel frame is effectively melted by the heat generated from the heat generation coating layer.

発熱塗料を塗布した発熱塗膜層は、合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにして塗布したものではなく、プライマーを塗布した上に、フイルムの表面に黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷してこのフイルムを貼着し、この上を更にプライマーを塗布し、黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷したフイルムに通電してもよい。黒鉛質炭素は、低比熱であり且つ高熱伝導性を有するものであるため、融雪及び融氷効果に優れている。又感熱電気抵抗組成物は、温度上昇によって抵抗値が増加する正の温度係数を持つもので、発熱温度が異常に高くなると抵抗値が急激に高くなり電流抑制をし得るものである。このため合成樹脂エマルジョンのフィラーとして配合しても、フィルムに塗布あるいは印刷しても発熱効果は同様に得ることができるのである。  The exothermic coating layer to which the exothermic paint is applied is not a synthetic resin emulsion composition coated with graphitic carbon and a thermosensitive electrical resistance composition as a filler, but with a primer and a graphitic carbon on the surface of the film. In addition, the thermal resistance composition is applied or printed, and this film is applied, and a primer is further applied thereon, and the graphitic carbon and the thermal resistance composition are passed through the applied or printed film. Good. Since graphitic carbon has low specific heat and high thermal conductivity, it has excellent snow melting and ice melting effects. The thermosensitive electrical resistance composition has a positive temperature coefficient that increases in resistance value due to temperature rise. If the heat generation temperature becomes abnormally high, the resistance value increases rapidly and current can be suppressed. For this reason, even if it is blended as a filler of a synthetic resin emulsion or applied or printed on a film, the heat generation effect can be obtained in the same manner.

融雪のメカニズム及び必要なエネルギーは、膜構造建造物及び鉄骨構造建造物共に、表面温度を常時0℃以上に維持していれば、降雪時の着雪あるいは夜半の温度抵下時の氷結現象は生じない。しかし長時間に亘る降雪や豪雪地帯などのような降雪量の多い場合には、対象表面温度を多少加熱し0℃を上回るように維持しなければならない。しかしその熱量は表面温度を0℃以上に保つに充分なものであれば良く、熱源は極めて低いレベルのもので足りるのである。  The mechanism of snow melting and the required energy are as follows. If the surface temperature is constantly maintained at 0 ° C or higher for both the membrane structure and the steel structure, the icing phenomenon at the time of snowfall or refrigeration at night is half Does not occur. However, when the amount of snowfall is large, such as snowfall over a long period of time or heavy snowfall, the surface temperature of the object must be slightly heated and maintained above 0 ° C. However, the amount of heat only needs to be sufficient to keep the surface temperature at 0 ° C. or higher, and a very low level heat source is sufficient.

合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにして、発熱塗料を塗布した発熱塗膜層を、膜構造建造物あるいは鉄骨構造建造物の対象物面に塗布形成せしめても、容易に効果を示すことはできない。発熱塗膜層の熱は膜構造建造物の場合は、室内側、鉄骨構造建造物の場合は、鉄骨構造物側に奪われてしまうため温度の抵下により、0℃以上に保たせることが困難となるからである。  An exothermic coating layer in which a synthetic carbon emulsion and a thermosensitive electrical resistance composition are used as fillers in a synthetic resin emulsion composition and an exothermic paint is applied may be applied to the surface of an object of a film structure structure or a steel structure structure. Can not show the effect easily. The heat of the exothermic coating layer is lost to the indoor side in the case of a film structure building, and to the steel structure side in the case of a steel structure structure. It will be difficult.

このため合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料によって無駄な放熱を防止するのである。膜構造物建造の場合は膜構造物の室内側の膜の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を形成し、この上に同種合成樹脂エマルジョン組成物に、セラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を積層して、この表面に上塗り塗料を塗布して表面保護塗膜層とする。鉄骨構造建造物の場合は鉄骨構造物の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物にセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を形成し、この上に同種合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を積層して、この表面に上塗り塗料を塗布して表面保護塗膜層とする。このように断熱塗料による断熱層及び融雪を行なう発熱塗膜層の2重構造による塗膜の構成にすることにより、初期の目的を達成しその成果を上げることができたのである。For this reason, waste heat is dissipated by a heat insulating paint comprising a synthetic resin emulsion composition containing fine ceramic hollow particles having a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 and a melting point of 1500 ° C. or more. It prevents it. In the case of membrane structure construction, an exothermic paint containing a graphite resin and a thermosensitive electrical resistance composition as a filler is added to the synthetic resin emulsion composition on the surface of the film on the indoor side of the membrane structure on which the primer is applied. A heat-generating coating layer is formed by coating, and a heat-insulating coating composed of ceramic fine hollow particles is applied to the same type of synthetic resin emulsion composition, and a heat-insulating layer is laminated thereon. Apply to make a surface protective coating layer. In the case of a steel structure building, a heat insulating layer is formed by applying a heat insulating paint formed by mixing ceramic fine hollow particles to a synthetic resin emulsion composition on the surface of the steel structure on which the primer is applied, On top of this, an exothermic paint containing graphite carbon and a thermosensitive electrical resistance composition as a filler is applied to the same synthetic resin emulsion composition to form an exothermic coating layer, and a top coat is applied to this surface to apply a surface protective coating. A film layer is used. Thus, by forming a coating film having a double layer structure of a heat insulating coating layer and a heat generating coating layer for melting snow, the initial purpose was achieved and the result was achieved.

本発明に使用する合成樹脂エマルジョンは、これ自身が優れた防水効果を有する塗膜防水材である。塗膜防水材に黒鉛質炭素及び感熱電気抵抗組成物を含有せしめることによってかかる性能が得られる塗膜が得られたのである。更に断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンは、同種のものが要求される。合成樹脂エマルジョンの種類が異なると熱膨張も異なり塗膜間に剥離現象を生ずるからである。プライマーも同様の理由で同種の合成樹脂エマルジョンを使用した。  The synthetic resin emulsion used in the present invention is a waterproof coating material having an excellent waterproof effect. A coating film capable of obtaining such performance was obtained by incorporating a graphitic carbon and a thermosensitive electrical resistance composition into the waterproof coating material. Furthermore, the same kind of synthetic resin emulsion is required for the heat insulating layer and the exothermic coating layer. This is because different types of synthetic resin emulsions have different thermal expansion and cause a peeling phenomenon between coating films. The same kind of synthetic resin emulsion was also used for the primer for the same reason.

上塗り塗料として用いる表面保護塗膜層は、優れた電気絶縁塗膜であるため発熱塗膜層への通電による発熱効果を向上せしめることができ放電による電気の損失を防止することができる。更に、断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンと同種のものをベースとして、これに四フッ化エチレンの粉末を特定割合混入することにより、塗膜自体の耐候性を向上させ、耐電圧性、耐水性、耐候性、耐着雪性に優れたものとすることができる。  Since the surface protective coating layer used as the top coating is an excellent electrical insulating coating layer, it is possible to improve the heat generation effect due to energization of the heat generation coating layer and to prevent the loss of electricity due to discharge. Furthermore, based on the same type of synthetic resin emulsion used for the heat insulating layer and the heat generating coating layer, by mixing a specific proportion of ethylene tetrafluoride powder, the weather resistance of the coating itself is improved, It can be excellent in voltage, water resistance, weather resistance, and snow resistance.

本発明の断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンは、アクリル樹脂系エマルジョン、酢酸ビニル樹脂系エマルジョン、スチレン・ブタジエン樹脂系エマルジョン、エポキシ樹脂系エマルジョン及びアクリル酸エステル、スチレン、エチレン、ビニルエステル、酢酸ビニル、合成ゴム等との共重合したものである。  Synthetic resin emulsions used in the heat insulation layer and the heat generation coating layer of the present invention are acrylic resin emulsion, vinyl acetate resin emulsion, styrene / butadiene resin emulsion, epoxy resin emulsion and acrylic ester, styrene, ethylene, vinyl. Copolymerized with ester, vinyl acetate, synthetic rubber or the like.

黒鉛質炭素は、微粉にしてこれを合成樹脂エマルジョンのフィラーとして配合する。黒鉛質炭素は、低比熱であり且つ高熱伝導性を有するものであるため、融雪及び融氷効果がある。特に常時0℃以上に保つ機能が断熱層の塗膜の効果によって得ることができる。更に通電することによって表面温度を2〜20℃程度に上げることができる。黒鉛質炭素の含有量は、通電しなくとも融雪効果が発揮できる量で且つ通電によって発熱塗膜層が発熱する量であれば制限されないが、2〜50重量%が好ましい。2重量%以下では黒鉛質炭素の機能特性を充分得ることができず、50重量%以上では発熱塗膜の物理的性能を低下させる。黒鉛質炭素は、その組織が高密度化し黒鉛化の進んだものを選択使用する。  Graphite carbon is finely powdered and blended as a filler for the synthetic resin emulsion. Since graphitic carbon has a low specific heat and high thermal conductivity, it has snow melting and ice melting effects. In particular, the function of constantly maintaining the temperature at 0 ° C. or higher can be obtained by the effect of the coating film of the heat insulating layer. Furthermore, the surface temperature can be raised to about 2 to 20 ° C. by energization. The content of the graphitic carbon is not limited as long as the snow melting effect can be exhibited without energization and the exothermic coating layer generates heat by energization, but is preferably 2 to 50% by weight. If it is 2% by weight or less, the functional properties of graphitic carbon cannot be obtained sufficiently, and if it is 50% by weight or more, the physical performance of the exothermic coating film is lowered. As the graphitic carbon, one having a highly densified structure and advanced graphitization is selectively used.

通電による発熱の程度は、発熱塗膜層の表面温度が2〜20℃程度で充分であり、この時の表面抵抗値は100〜1000Ω/inである。通電の電圧は30〜60Vが好ましい。As for the degree of heat generation by energization, it is sufficient that the surface temperature of the heat generation coating layer is about 2 to 20 ° C., and the surface resistance value at this time is 100 to 1000 Ω / in 2 . The energization voltage is preferably 30 to 60V.

感熱電気抵抗組成物は、温度上昇によって抵抗値が増加する正の温度係数を持つもので発熱温度が異状に高くなると抵抗値が急激に高くなり電流を制御するものである。感熱電気抵抗組成物は、ポリエチレン、ポリプロピレン等の結晶性樹脂、ポリエチレングリコール等でこれに黒鉛質炭素を練り込んで使用する。  The thermosensitive electrical resistance composition has a positive temperature coefficient in which the resistance value increases as the temperature rises, and when the heat generation temperature becomes abnormally high, the resistance value increases rapidly to control the current. The thermosensitive electric resistance composition is used by kneading graphite carbon into a crystalline resin such as polyethylene or polypropylene, polyethylene glycol or the like.

本発明の断熱層となる断熱塗料は、合成樹脂エマルジョンに圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合する。このようなセラミック微細中空粒子を含有せしめることによって、高断熱性により防水機能、耐蝕機能を備えた融雪機能を発揮することができるのである。更に収縮防止、衝撃強度の向上、コストの低減を図ることができる。The heat insulating paint to be the heat insulating layer of the present invention comprises ceramic fine hollow particles having a compressive strength of 600 kgf / cm 2 or higher, a bulk specific gravity of 0.3 to 0.5 g / cm 3 and a melting point of 1500 ° C. or higher. By incorporating such ceramic fine hollow particles, it is possible to exhibit a snow melting function having a waterproof function and a corrosion resistant function due to high heat insulation. Furthermore, shrinkage can be prevented, impact strength can be improved, and cost can be reduced.

セラミック微細中空粒子や微細中空発泡体の圧縮強度とは、耐水圧強度と同意語であり、圧縮強度の測定は、セラミック微細中空粒子や微細中空発泡体を水中で加圧し水に加えられた圧力がセラミック微細中空粒子や微細中空発泡体に伝わり破壊する圧力を圧縮強度とするのである。本発明に使用するセラミック微細中空粒子は、従来の微細中空発泡体であるシラスバルーン、ガラスマイクロバルーン、シリカバルーン等に比較して格段に圧縮強度が高いものであり、しかもセラミック微細中空粒子は、100%完全な球状である。従来の微細中空発泡体の圧縮強度は80〜300kgf/cmである。The compressive strength of ceramic fine hollow particles and fine hollow foams is synonymous with the hydrostatic strength, and the measurement of compressive strength is the pressure applied to the water by pressing the ceramic fine hollow particles and fine hollow foams in water. Compressive strength is the pressure that is transmitted to the ceramic fine hollow particles or fine hollow foam and breaks. The ceramic fine hollow particles used in the present invention have significantly higher compressive strength than the conventional fine hollow foamed shirasu balloons, glass micro balloons, silica balloons, etc. 100% perfect sphere. The compressive strength of the conventional fine hollow foam is 80 to 300 kgf / cm 2 .

次にセラミック微細中空粒子を使用する場合に重要なことは熱伝導率である。セラミック微細中空粒子や微細中空発泡体は、その粒径によるが一般に0.1kcal/mhr℃前後であり、微細中空発泡体は破壊され易く、熱伝導率は大体0.2kcal/mhr℃以下に低下する。完全中空で破壊されないセラミック微細中空粒子が使用された場合のみ優れた耐熱性の効果が得られるのである。  The next important thing when using ceramic fine hollow particles is thermal conductivity. Ceramic fine hollow particles and fine hollow foams are generally around 0.1 kcal / mhr ° C. depending on the particle size, but the fine hollow foams are easily broken, and the thermal conductivity is lowered to about 0.2 kcal / mhr ° C. or less. To do. Only when ceramic hollow particles that are completely hollow and not broken are used, an excellent heat resistance effect can be obtained.

本発明に使用するセラミック微細中空粒子の融点は、1500℃以上である。セラミック微細中空粒子はその材質に起因するのは当然であるが、一般的に融点の高いものほど圧縮強度も高くなる。完全中空で破壊されないセラミック微細中空粒子を使用するため、圧縮強度を600kgf/cm以上とするので、その融点は1500℃以上になるのである。The melting point of the ceramic fine hollow particles used in the present invention is 1500 ° C. or higher. Naturally, the ceramic fine hollow particles are caused by the material, but generally, the higher the melting point, the higher the compressive strength. Since ceramic fine hollow particles that are completely hollow and are not broken are used, the compression strength is 600 kgf / cm 2 or more, so that the melting point is 1500 ° C. or more.

以上により本発明に於て使用するセラミック微細中空粒子は、シリカ50〜60%、アルミナ40〜45%、その他1,5〜2,5%からなるセラミック組成物を発泡生成せしめたもので、その物性は圧縮強度700kgf/cm、融点1600℃、嵩比重0,35g/cm、熱伝導率0.1kcal/mhr℃で完全な中空粒子のみで構成されている。セラミック微細中空粒子の粒径は、5〜300μmのものを使用する。As described above, the ceramic fine hollow particles used in the present invention are foamed ceramic compositions comprising 50 to 60% silica, 40 to 45% alumina, and 1,5 to 2,5%. The physical properties are composed of only hollow particles having a compressive strength of 700 kgf / cm 2 , a melting point of 1600 ° C., a bulk specific gravity of 0.35 g / cm 3 and a thermal conductivity of 0.1 kcal / mhr ° C. The particle size of the ceramic fine hollow particles is 5 to 300 μm.

セラミック微細中空粒子の配合割合は、合成樹脂エマルジョン100重量%に対して5〜40重量%が好適である。5重量%以下では断熱層としての効果が低く、40重量%以上では断熱塗膜としての物性が低下する。  The blending ratio of the ceramic fine hollow particles is preferably 5 to 40% by weight with respect to 100% by weight of the synthetic resin emulsion. If it is 5% by weight or less, the effect as a heat insulating layer is low, and if it is 40% by weight or more, the physical properties as a heat insulating coating are lowered.

膜構造建造物の室内面及び鉄骨構造建造物等の対象物表面に同種の合成樹脂エマルジョンからなるプライマーで下地処理を行なった後、膜構造建造物の室内面の場合は、発熱塗膜層を形成せしめ、この上に断熱層を積層する。又鉄骨構造建造物等の場合は、この逆で断熱層を形成せしめ、この上に発熱塗膜層を積層する。発熱塗料を塗布する場合対象物表面に、数cm〜数mの間隔で極板を貼り付けこの上から塗布する。これらの塗膜層の上層に、断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンと同種のものをベースとして、これに四フッ化エチレンの粉末を、特定割合混入した表面保護塗膜層となる上塗り塗料を塗布する。  After surface treatment with the primer made of the same kind of synthetic resin emulsion on the interior surface of the membrane structure building and the surface of the target object such as a steel structure building, Then, a heat insulating layer is laminated thereon. In the case of a steel structure structure or the like, a heat insulating layer is formed in the reverse order, and a heat generation coating layer is laminated thereon. When applying exothermic paint, an electrode plate is applied to the surface of the object at intervals of several centimeters to several meters and applied from above. On top of these coating layers, based on the same kind of synthetic resin emulsion used for the heat insulation layer and heat generation coating layer, a surface protective coating layer containing a specific proportion of ethylene tetrafluoride powder, Apply a top coat.

塗布方法はローラー塗り、刷毛塗り、スプレー塗りいずれでも良く、塗膜の厚みは、断熱層が0.5〜3mmで発熱塗膜層は0.5〜2mm程度が好ましい。  The application method may be any of roller coating, brush coating, and spray coating. The thickness of the coating film is preferably about 0.5 to 3 mm for the heat insulating layer and about 0.5 to 2 mm for the exothermic coating layer.

発熱塗膜層を合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにして塗布したものではなく、プライマーを塗布した上に、フイルムの表面に黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷してこのフイルムを貼着し、この上を更にプライマーを塗布し発熱塗膜層とする。黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷したフイルムを貼着し通電する場合も同様に対象物表面に、数cm〜数mの間隔で極板を貼り付け施工する。  The exothermic coating layer was not applied to the synthetic resin emulsion composition using the graphite carbon and the thermoelectric resistance composition as fillers, but the primer was applied and the graphite carbon and the thermoelectric resistance composition were applied to the film surface. The film is applied or printed to adhere this film, and a primer is further applied thereon to form an exothermic coating layer. Similarly, when a graphitic carbon and a thermosensitive electrical resistance composition are applied to a coated or printed film and then energized, an electrode plate is applied to the surface of the object at intervals of several centimeters to several meters.

本発明になる耐電圧性、耐水性、耐候性、耐着雪性を備えた融雪方法は、膜構造建造物の室内面及び鉄骨構造建造物等の対象物表面に同種の合成樹脂エマルジョンからなるプライマーで下地処理を行なった後、膜構造建造物の場合は室内面に、発熱塗膜層を形成せしめ、この上に断熱塗膜層を積層する。又鉄骨構造建造物等の場合は、この逆で断熱層を形成せしめ、この上に発熱塗膜層を積層する。これらの塗膜層の上層に、断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンと同種のものをベースとして、これに四フッ化エチレンの粉末を、特定割合混入した表面保護塗膜層となる上塗り塗料を塗布することによって、完全な耐電圧性、耐水性、耐候性、耐着雪性を備えていると共に、積雪時に於ても対象物の表面温度を0℃に保持する機能を有することができ、長期の降雪時等に於ては通電することによって対象物の表面温度を上昇させ着雪、着氷を完全に防止せしめることができた。又この通電に使用した電力は、コンデンサー付太陽光発電システムによるものを使用した。  The snow melting method with voltage resistance, water resistance, weather resistance, and snow resistance according to the present invention comprises the same kind of synthetic resin emulsion on the interior surface of a membrane structure building and the surface of an object such as a steel structure building. After the primer treatment with the primer, in the case of a film structure building, an exothermic coating layer is formed on the indoor surface, and a heat insulating coating layer is laminated thereon. In the case of a steel structure structure or the like, a heat insulating layer is formed in the reverse order, and a heat generation coating layer is laminated thereon. On top of these coating layers, based on the same kind of synthetic resin emulsion used for the heat insulation layer and heat generation coating layer, a surface protective coating layer containing a specific proportion of ethylene tetrafluoride powder, By applying the top coating, it has complete voltage resistance, water resistance, weather resistance, snow resistance, and has the function of maintaining the surface temperature of the object at 0 ° C. even during snow accumulation. It was possible to increase the surface temperature of the object by energizing the snow during long periods of snowfall, etc., and to completely prevent snow and icing. The power used for this energization was from a solar power generation system with a condenser.

本発明を実施する場合、プライマー、断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンは、アクリル樹脂系エマルジョン、酢酸ビニル樹脂系エマルジョン、スチレン・ブタジエン樹脂系エマルジョン、エポキシ樹脂系エマルジョン及びアクリル酸エステル、スチレン、エチレン、ビニルエステル、酢酸ビニル、合成ゴム等との共重合したものであるが、アクリル樹脂系エマルジョンをベースとして酢酸ビニル等で共重合したものなどが好適である。  When practicing the present invention, the synthetic resin emulsion used for the primer, the heat insulating layer and the exothermic coating layer is an acrylic resin emulsion, a vinyl acetate resin emulsion, a styrene / butadiene resin emulsion, an epoxy resin emulsion and an acrylate ester. Copolymerized with styrene, ethylene, vinyl ester, vinyl acetate, synthetic rubber, etc., but copolymerized with vinyl acetate or the like based on an acrylic resin emulsion is preferable.

これらの塗膜層の上層に塗装して表面保護塗膜層となる上塗り塗料は、断熱層及び発熱塗膜層に使用する合成樹脂エマルジョンと同種のものをベースとして、これに四フッ化エチレンの粉末を、特定割合混入して使用する。  The top coating that is applied to the upper layer of these coating layers to form a surface protective coating layer is based on the same type of synthetic resin emulsion used for the heat insulation layer and the heat generation coating layer. The powder is used in a specific ratio.

黒鉛質炭素は、低比熱であり且つ高熱伝導性を有するものであるため、融雪及び融氷効果がある。特に常時0℃以上に保つ機能が断熱層の塗膜の効果によって得ることができる。更に通電することによって表面温度を2〜20℃程度に上げることができる。黒鉛質炭素の含有量は、通電しなくとも融雪効果が発揮できる量で且つ通電によって発熱塗膜層が発熱する量であれば制限されないが、2〜50重量%が好ましい。2重量%以下では黒鉛質炭素の機能特性を充分得ることができず、50重量%以上では発熱塗膜の物理的性能を低下させる。黒鉛質炭素は、その組織が高密度化し黒鉛化の進んだものを選択使用する。通電による発熱の程度は、発熱塗膜層の表面温度が2〜20℃程度で充分であり、この時の表面抵抗値は100〜1000Ω/inである。通電の電圧は30〜60Vが好ましい。Since graphitic carbon has a low specific heat and high thermal conductivity, it has snow melting and ice melting effects. In particular, the function of constantly maintaining the temperature at 0 ° C. or higher can be obtained by the effect of the coating film of the heat insulating layer. Furthermore, the surface temperature can be raised to about 2 to 20 ° C. by energization. The content of the graphitic carbon is not limited as long as the snow melting effect can be exhibited without energization and the exothermic coating layer generates heat by energization, but is preferably 2 to 50% by weight. If it is 2% by weight or less, the functional properties of graphitic carbon cannot be obtained sufficiently, and if it is 50% by weight or more, the physical performance of the exothermic coating film is lowered. As the graphitic carbon, one having a highly densified structure and advanced graphitization is selectively used. As for the degree of heat generation by energization, it is sufficient that the surface temperature of the heat generation coating layer is about 2 to 20 ° C., and the surface resistance value at this time is 100 to 1000 Ω / in 2 . The energization voltage is preferably 30 to 60V.

感熱電気抵抗組成物は、温度上昇によって抵抗値が増加する正の温度係数を持つもので発熱温度が以上に高くなると抵抗値が急激に高くなり電流を制御するものである。感熱電気抵抗組成物は、ポリエチレン、ポリプロピレン等の結晶性樹脂、ポリエチレングリコール等でこれに黒鉛質炭素を練り込んで使用する。含有量は黒鉛質炭素に対して20〜60重量%が好適である。  The thermosensitive electrical resistance composition has a positive temperature coefficient in which the resistance value increases as the temperature rises, and when the heat generation temperature becomes higher than that, the resistance value increases rapidly to control the current. The thermosensitive electric resistance composition is used by kneading graphite carbon into a crystalline resin such as polyethylene or polypropylene, polyethylene glycol or the like. The content is preferably 20 to 60% by weight based on graphitic carbon.

本発明に於て使用するセラミック微細中空粒子は、シリカ50〜60%、アルミナ40〜45%、その他1,5〜2,5%からなるセラミック組成物を発泡生成せしめたもので、その物性は圧縮強度700kgf/cm、融点1600℃、嵩比重0,35g/cm、熱伝導率0.1kcal/mhr℃で完全な中空粒子のみで構成されている。セラミック微細中空粒子の粒径は、5〜300μmのものを使用する。セラミック微細中空粒子の配合割合は、合成樹脂エマルジョン100重量%に対して5〜40重量%が好適である。5重量%以下では断熱層としての効果が低く、40重量%以上では断熱塗膜としての物性が低下する。The ceramic fine hollow particles used in the present invention are produced by foaming a ceramic composition comprising 50 to 60% silica, 40 to 45% alumina, and 1,5 to 2,5%. It has a compressive strength of 700 kgf / cm 2 , a melting point of 1600 ° C., a bulk specific gravity of 0.35 g / cm 3 , and a thermal conductivity of 0.1 kcal / mhr ° C., and is composed only of complete hollow particles. The particle size of the ceramic fine hollow particles is 5 to 300 μm. The blending ratio of the ceramic fine hollow particles is preferably 5 to 40% by weight with respect to 100% by weight of the synthetic resin emulsion. If it is 5% by weight or less, the effect as a heat insulating layer is low, and if it is 40% by weight or more, the physical properties as a heat insulating coating are lowered.

発熱塗膜層を合成樹脂エマルジョン組成物に、黒鉛質炭素及び感熱電気抵抗組成物をフィラーにして発熱塗料として塗布したものではなく、プライマーを塗布した上に、フイルムの表面に黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷してこのフイルムを貼着し、この上を更にプライマーを塗布し、黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷したフイルムに通電する場合に使用するフィルムは、ポリエチレン、ポリ塩化ビニル、アセテート、ポリプロピレン、ポリビニルアルコール、ポリスチレン、ポリエステルなどが使用できる。フィルム面に塗布または印刷する基本的な組成は、黒鉛質炭素及び感熱電気抵抗組成物、バインダー、揮発性有機溶剤、可塑剤、可塑性樹脂、ワックス類、分散剤などの各種添加剤である。  The exothermic coating layer was not applied to the synthetic resin emulsion composition as a exothermic paint using the graphitic carbon and the thermosensitive electrical resistance composition as a filler, but the primer was applied and the graphitic carbon and the thermosensitive material were applied to the film surface. The electric resistance composition is applied or printed, and this film is applied. Further, a primer is applied thereon, and the graphitic carbon and the thermosensitive electric resistance composition are used to energize the applied or printed film. For the film, polyethylene, polyvinyl chloride, acetate, polypropylene, polyvinyl alcohol, polystyrene, polyester, or the like can be used. The basic composition to be applied or printed on the film surface is various additives such as graphitic carbon and thermosensitive electrical resistance composition, binder, volatile organic solvent, plasticizer, plastic resin, wax, and dispersant.

コンデンサー付太陽光発電システムは、薄型多結晶シリコン太陽電池を使用し、コンデンサーは、長寿命シール型鉛蓄電池を使用することによりランニングコストを大幅に低減することができる。  The photovoltaic power generation system with a capacitor uses a thin polycrystalline silicon solar cell, and the capacitor can greatly reduce the running cost by using a long-life sealed lead-acid battery.

本発明の実施例を詳述する。  Examples of the present invention will be described in detail.

実施例1 図1は本発明に関わる膜構造建造物の膜の断面を示したものである。膜構造建造物の膜の室内側の面にプライマーによる下地処理を行ない、発熱塗料を塗布して発熱塗膜層を形成し、更にその上に断熱塗料を塗布して断熱層を積層して、この上表面に上塗り塗料を塗布して表面保護塗膜層とした。塗装方法はいずれもローラー塗りである。  Example 1 FIG. 1 shows a cross section of a membrane of a membrane structure building according to the present invention. The surface of the interior of the membrane of the membrane structure building is treated with a primer, a heat generating paint is applied to form a heat generating paint film layer, a heat insulating paint is further applied thereon, and a heat insulating layer is laminated. A top coat was applied to the upper surface to form a surface protective coating layer. All coating methods are roller coating.

本実施例に用いた合成樹脂エマルジョンは、合成ゴム変性アクリル共重合エマルジョンをベースとするものである。この合成ゴム変性アクリル共重合エマルジョンは、プライマー、発熱塗膜層の発熱塗料、断熱層を形成する断熱塗料いずれも同様である。表面保護塗膜層として用いた上塗り塗料は、この合成ゴム変性アクリル共重合エマルジョンに四ふっ化エチレンを適量加えたものである。  The synthetic resin emulsion used in this example is based on a synthetic rubber-modified acrylic copolymer emulsion. This synthetic rubber-modified acrylic copolymer emulsion is the same in all of the primer, the heat-generating paint for the heat-generating coating layer, and the heat-insulating paint for forming the heat-insulating layer. The top coating used as the surface protective coating layer is obtained by adding an appropriate amount of ethylene tetrafluoride to this synthetic rubber-modified acrylic copolymer emulsion.

発熱塗膜層の発熱塗料は、合成ゴム変性アクリル共重合エマルジョンの全体量に30重量%の結晶子が200オングストローム以上の黒鉛質炭素粉末を加え、更に13重量%の感熱電気抵抗組成物を加えた。これを1.5mmの厚みにローラー塗りで塗布した。感熱電気抵抗組成物はポリエチレングリコールを使用した。発熱塗料を塗布した際、対象物表面に数cm〜数mの間隔で極板を貼り付けこの上から塗布した。  For the exothermic paint of the exothermic coating layer, 30% by weight of graphitic carbon powder having a crystallite of 200 angstroms or more is added to the total amount of the synthetic rubber-modified acrylic copolymer emulsion, and further 13% by weight of a thermosensitive electric resistance composition is added It was. This was applied by roller coating to a thickness of 1.5 mm. Polyethylene glycol was used as the thermosensitive electrical resistance composition. When the exothermic paint was applied, an electrode plate was applied to the surface of the object at intervals of several centimeters to several meters and applied from above.

断熱層を形成する断熱塗料は、合成ゴム変性アクリル共重合エマルジョンの全体量に23重量%の耐水圧強度600kgf/cm以上で粒子径が5〜300μm、嵩比重0.35g/cm、熱伝導率0.1kcal/mhr℃で完全な中空粒子のみで構成されている。セラミック微細中空粒子を加えた。これを2.5mmの厚みでローラー塗りにより塗布した。The heat-insulating coating for forming the heat-insulating layer is a total weight of the synthetic rubber-modified acrylic copolymer emulsion with a 23% by weight water pressure resistance of 600 kgf / cm 2 or more, a particle size of 5 to 300 μm, a bulk specific gravity of 0.35 g / cm 3 , It has a conductivity of 0.1 kcal / mhr ° C. and is composed only of complete hollow particles. Ceramic fine hollow particles were added. This was applied by roller coating at a thickness of 2.5 mm.

上塗り塗料として用いた表面保護塗膜層は、合成ゴム変性アクリル共重合エマルジョンの全体量に15重量%の四ふっ化エチレンを加えた。表面保護塗膜層は、電気絶縁性が高く、耐電圧性、耐水性、耐候性、耐着雪性に優れたものである。  For the surface protective coating layer used as the top coating, 15% by weight of ethylene tetrafluoride was added to the total amount of the synthetic rubber-modified acrylic copolymer emulsion. The surface protective coating layer has high electrical insulation and is excellent in voltage resistance, water resistance, weather resistance and snow resistance.

実施例2 図2は鉄骨構造建造物の断面を示したものである。鉄骨構造物の面にプライマーによる下地処理を行ない、断熱塗料を塗布して断熱層を形成し、その上に発熱塗料を塗布して発熱塗膜層を積層し、この上表面に上塗り塗料を塗布した。塗装方法はいずれもローラー塗りである。プライマー、断熱層を形成する断熱塗料、発熱塗膜層を形成する発熱塗料、表面保護塗膜層として用いた上塗り塗料等いずれも実施例1と同じものを使用した。発熱塗料を塗布した際、対象物表面に数cm〜数mの間隔で極板を貼り付けこの上から塗布した。  Example 2 FIG. 2 shows a cross section of a steel structure building. The surface of the steel structure is treated with a primer, and a heat insulating paint is applied to form a heat insulating layer. A heat generating paint is applied on top of the heat generating paint layer, and a top coating is applied to the upper surface. did. All coating methods are roller coating. The same materials as in Example 1 were used for the primer, the heat-insulating paint for forming the heat-insulating layer, the heat-generating paint for forming the heat-generating coating layer, and the top coating used as the surface protective coating layer. When the exothermic paint was applied, an electrode plate was applied to the surface of the object at intervals of several centimeters to several meters and applied from above.

実施例3 図3は実施例1同じ膜構造建造物の室内側の膜の面に、プライマーによる下地処理を行ない、発熱塗膜層を印刷したポリエステルフィルムを貼着し、更にその上に再度プライマーによる下地処理を行なってから断熱塗料を塗布して断熱層を形成し、この上表面に上塗り塗料を塗布した。発熱塗膜層を印刷したポリエステルフィルム表面に数cm〜数mの間隔で極板を貼り付けこの上から塗布した。  Example 3 FIG. 3 shows the same film structure building of Example 1 on the surface of the film on the indoor side, a primer treatment was performed with a primer, a polyester film on which a heat generation coating layer was printed was pasted, and the primer was again coated thereon. After the surface treatment was performed, a heat insulating coating was applied to form a heat insulating layer, and a top coating was applied to the upper surface. An electrode plate was attached to the surface of the polyester film on which the exothermic coating layer was printed at intervals of several centimeters to several meters and applied from above.

冬期の積雪時における膜構造建造物の屋根面、及び鉄骨構造建造物就中鉄骨橋梁の橋桁、鉄塔、信号機、広告用看板等の融雪・融氷において初期設備投資を軽減すると共に、施工工事費を極めて低く押さえることができ、更にコンデンサー付太陽光発電システムを設置し、この電力を通電に使用して、技術的、効率的に安定した方法であるため、ランニングコストの費用が不要となる膜構造、鉄骨構造建造物等の融雪方法を提供することを可能ならしめた。  In addition to reducing initial capital investment in snow melting and melting ice such as roof surfaces of membrane-structured buildings during snowfall in winter and steel girder bridges, steel towers, traffic lights, advertising billboards, etc. This is a stable and technically efficient method by installing a photovoltaic power generation system with a condenser and using this power for energization. It has become possible to provide snow melting methods for structures, steel structure structures, etc.

実施例1の融雪処理をした膜構造の膜断面図。  1 is a film cross-sectional view of a film structure subjected to a snow melting process in Example 1. FIG. 実施例2の融雪処理をした鉄骨構造の断面図。  Sectional drawing of the steel frame structure which performed the snow melting process of Example 2. FIG. 実施例3の融雪処理をした膜構造の膜断面図。  The film sectional view of the film structure which performed the snow melting process of Example 3. 膜構造建造物の融雪方法フローチャート  Flow chart of snow melting method for membrane structure building

符号の説明Explanation of symbols

1.膜構造建造物の膜断面
2.プライマー
3.発熱塗料を塗布した発熱塗膜層
4.断熱塗料を塗布した断熱層
5.上塗り塗料を塗布した表面保護塗膜層
6.室内側
7.室外側
8.鉄骨構造物の断面
9.発熱塗膜層を印刷したポリエステルフィルム
10.極板
11.膜構造建造物
12.太陽光発電パネル
13.コンデンサー
1. 1. Film cross section of membrane structure building Primer 3. 3. Exothermic coating layer with exothermic paint applied. 4. Heat insulation layer with heat insulation paint applied 5. Surface protective coating layer with top coating applied Indoor side Outdoor side 8. Section of steel structure 9. 9. Polyester film printed with exothermic coating layer Electrode plate 11. Membrane structure building 12. Solar power generation panel 13. condenser

Claims (5)

膜構造建造物の室内側の膜の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を積層し、この上に同種合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を形成せしめ、この表面に上塗り塗料を塗布して表面保護塗膜層とし、発熱塗膜層に通電することを特徴とする膜構造、鉄骨構造建造物等の融雪方法。Heat generation coating film by applying exothermic paint with graphite carbon and heat-sensitive electrical resistance composition filler to synthetic resin emulsion composition on the surface of coating film coated with primer on the indoor film surface of the membrane structure building A layer is laminated, and ceramic fine hollow particles having a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 and a melting point of 1500 ° C. or more are blended on the same synthetic resin emulsion composition. Applying heat-insulating paint to form a heat-insulating layer, applying a top-coating paint on this surface to form a surface protective paint film layer, and applying heat to the heat-generating paint film layer, snow melting in film structures, steel structure structures, etc. Method. 鉄骨構造建造物の表面に、プライマーを塗布した被塗膜面に合成樹脂エマルジョン組成物に圧縮強度600kgf/cm以上で嵩比重0.3〜0.5g/cm、融点1500℃以上のセラミック微細中空粒子を配合してなる断熱塗料を塗布して断熱層を積層し、この上に同種合成樹脂エマルジョン組成物に黒鉛質炭素及び感熱電気抵抗組成物をフィラーにした発熱塗料を塗布して発熱塗膜層を形成せしめ、この表面に上塗り塗料を塗布して表面保護塗膜層とし、発熱塗膜層に通電することを特徴とする膜構造、鉄骨構造建造物等の融雪方法。A ceramic having a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 , and a melting point of 1500 ° C. or more on the surface of the steel structure building on which the primer is applied. Heat insulation paint composed of fine hollow particles is applied to laminate a heat insulation layer, and then heat generation paint is applied to the synthetic resin emulsion composition of the same type using graphite carbon and a thermosensitive electrical resistance composition as a filler. A snow melting method for a film structure, a steel structure structure, or the like, comprising forming a coating layer, applying a top coating to the surface to form a surface protective coating layer, and energizing the heat generating coating layer. 発熱塗膜層がフイルムの表面に黒鉛質炭素及び感熱電気抵抗組成物を、塗布または印刷したものを使用し、フィルム貼着の前後にプライマーを塗布すでることを特徴とする請求項1および請求項2記載の膜構造、鉄骨構造建造物等の融雪方法。  The heat-generating coating layer is formed by applying or printing a graphitic carbon and a thermosensitive electrical resistance composition on the surface of a film, and applying a primer before and after film sticking. Item 3. A snow melting method for a film structure, a steel structure structure or the like according to item 2. 当該塗膜表面温度が0℃以下の降下時に通電して発熱する自動温度管理機能を備えていることを特徴とする請求項1および請求項2記載の膜構造、鉄骨構造建造物等の融雪方法。  3. A snow melting method for a film structure, a steel structure structure or the like according to claim 1 or 2, further comprising an automatic temperature management function for generating heat when energized when the coating surface temperature drops below 0 ° C. . コンデンサー付太陽光発電システムを設置し、この電力を通電に使用することを特徴とする請求項1および請求項2記載の膜構造、鉄骨構造建造物等の融雪方法。  3. A snow melting method for a film structure, a steel structure structure or the like according to claim 1 or 2, wherein a solar power generation system with a condenser is installed and this electric power is used for energization.
JP2004382553A 2004-12-16 2004-12-16 Snow melting method in membrane structure, steel frame structure building, or the like Pending JP2006169929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004382553A JP2006169929A (en) 2004-12-16 2004-12-16 Snow melting method in membrane structure, steel frame structure building, or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004382553A JP2006169929A (en) 2004-12-16 2004-12-16 Snow melting method in membrane structure, steel frame structure building, or the like

Publications (1)

Publication Number Publication Date
JP2006169929A true JP2006169929A (en) 2006-06-29

Family

ID=36670971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004382553A Pending JP2006169929A (en) 2004-12-16 2004-12-16 Snow melting method in membrane structure, steel frame structure building, or the like

Country Status (1)

Country Link
JP (1) JP2006169929A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852374A (en) * 2011-07-01 2013-01-02 张瀛 Detachable thermal insulating tent
JP2016178072A (en) * 2015-03-18 2016-10-06 株式会社日本ロック Planar heating element
KR101807651B1 (en) * 2015-12-07 2017-12-11 (주) 파루 Air cushion type film panel of ethylene tetrafluoroethylene containing heating film
CN108643609A (en) * 2018-05-21 2018-10-12 许继集团有限公司 Prefabricated cabin and its cabin top
CN112223436A (en) * 2020-10-26 2021-01-15 重庆巨能建设集团路桥工程有限公司 Snow removing and maintaining method and device for precast beam piece

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852374A (en) * 2011-07-01 2013-01-02 张瀛 Detachable thermal insulating tent
JP2016178072A (en) * 2015-03-18 2016-10-06 株式会社日本ロック Planar heating element
KR101807651B1 (en) * 2015-12-07 2017-12-11 (주) 파루 Air cushion type film panel of ethylene tetrafluoroethylene containing heating film
CN108643609A (en) * 2018-05-21 2018-10-12 许继集团有限公司 Prefabricated cabin and its cabin top
CN112223436A (en) * 2020-10-26 2021-01-15 重庆巨能建设集团路桥工程有限公司 Snow removing and maintaining method and device for precast beam piece
CN112223436B (en) * 2020-10-26 2022-05-10 重庆巨能建设集团路桥工程有限公司 Snow removing and maintaining method and device for precast beam piece

Similar Documents

Publication Publication Date Title
Petrenko et al. Pulse electro-thermal de-icer (PETD)
Erell et al. Radiative cooling of buildings with flat-plate solar collectors
CN206922714U (en) Road surface electrification component with heating function
WO2011007009A3 (en) Solar heating system, air-conditioning system and accumulator heating plate therefor
US11761211B2 (en) Retrofit roof with a phase change material modulated climate space
JP2006169929A (en) Snow melting method in membrane structure, steel frame structure building, or the like
WO2019007212A1 (en) Roadway power generation system
CN107222166A (en) Road surface electricity generation system with heating support bar
Matejicka et al. Cable surface for the reduction of risk associated with bridge cable ice accretions
CN206894587U (en) Road surface electricity generation system with heater
CN206894584U (en) Road surface electricity generation system with heating support bar
JP2009299404A (en) Temperature resistant system
Jerz et al. Energy demand reduction in nearly zero-energy buildings by highly efficient aluminium foam heat exchangers
Aketouane et al. Development of a night-time radiative sky cooling production & storage system: A proposal for a robust sizing and potential estimation methodology
JP2008266962A (en) Snow removal sheet
CN107143056A (en) A kind of ecological energy conservation building walling system
CN1229595C (en) Static thermal-storage heating-amount slow-release structure and construction process and use thereof
RU132820U1 (en) HEATING ELEMENT (OPTIONS)
JP2015086566A (en) Snow melting and sliding system and method using geothermal heat and solar energy
JPH0824774A (en) Snow melting coating film provided with water-proofing function
Lieff et al. Moisture Migration in Buildings: A Symposium
CN207597596U (en) A kind of heat insulation and heat control movable plank house
CN210085343U (en) Outdoor thermal-insulated powder coating structure of scribbling
Chavan et al. Recent advances in frosting for heat transfer applications
JP6938059B1 (en) Roof snowmelt structure