JP2006168692A - Stern tow wave reduction device and catamaran equipped with the same - Google Patents

Stern tow wave reduction device and catamaran equipped with the same Download PDF

Info

Publication number
JP2006168692A
JP2006168692A JP2004368014A JP2004368014A JP2006168692A JP 2006168692 A JP2006168692 A JP 2006168692A JP 2004368014 A JP2004368014 A JP 2004368014A JP 2004368014 A JP2004368014 A JP 2004368014A JP 2006168692 A JP2006168692 A JP 2006168692A
Authority
JP
Japan
Prior art keywords
wave
stern
demi
catamaran
hydrofoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004368014A
Other languages
Japanese (ja)
Inventor
Kazuya Hatta
和也 八田
Toshio Tanaka
寿夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2004368014A priority Critical patent/JP2006168692A/en
Publication of JP2006168692A publication Critical patent/JP2006168692A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/40Other means for varying the inherent hydrodynamic characteristics of hulls by diminishing wave resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catamaran capable of reducing wave height of tow wave by a simple constitution. <P>SOLUTION: In the catamaran 1 provided with a front hydrofoil 3 and a rear hydrofoil 4 installed so as to be laid on a demi-hull 2a and a demi-hull 2b, a rear aileron 6 having a rear edge side upwardly inclined (attack angle is minus) toward a stern direction is provided at a stern part between the demi-hull 2a and the demi-hull 2b. Further, the rear aileron 6 is controlled according to vessel speed and further, the rear aileron 6 constitutes a part of the rear hydrofoil 4. Accordingly, the wave behind the demi-hulls 2a, 2b and the wave nipped between the demi-hulls 2a, 2b are interfered and canceled out at a rear part separated from the stern. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、船尾波による曳波の波高を小さくすることができる双胴船に関する。   The present invention relates to a catamaran that can reduce the wave height of a sine wave caused by a stern wave.

近年、特に高速で航行する船舶について、船尾端の後方に発生する船尾波による曳波(以下「曳波」と称す)は波高が高いため、これによる影響が問題視されている。すなわち、近くを航行する船舶、航路に近い施設(養殖筏や養殖生け簀等)、港湾作業(荷役や係留等)、および海岸線や護岸等に対して、その運転や作業が阻害したり、さらには装置や構造物に損傷を与えたりする懸念がある。
特に、島に挟まれた狭い航路を航行する際には、減速航行しても、曳波の問題が解決されないでいた。
そこで、下記技術が開示されているものの、双胴船においては、船首から発した波が双胴(以下「デミハル」と称す)間で干渉し、これが曳波に影響するため現象を複雑にしている(これについては、別途説明する)。
In recent years, especially for ships that travel at high speed, the stern waves generated by the stern waves that occur behind the stern ends (hereinafter referred to as “south waves”) have a high wave height, and the influence of this has been regarded as a problem. In other words, the operation and work of a ship that navigates nearby, facilities close to the sea route (cultured culverts and aquaculture cages, etc.), port work (such as cargo handling and mooring), and coastlines and revetments, etc. There are concerns about damage to equipment and structures.
In particular, when navigating a narrow route between islands, the problem of surfing has not been solved even if sailing at a reduced speed.
Therefore, although the following technology is disclosed, in catamaran ships, waves generated from the bow interfere between catamarans (hereinafter referred to as “Demihal”), which affects the waves, complicating the phenomenon. (This will be explained separately.)

(あ)たとえば、船尾端の底面に略三角形状のウエッジを設けたり、船尾端の端面から後方に向かって斜め下方に延びる略三角形状のフラップを設けたりして、船尾端を持ち上げて曳波の波高を小さくする技術が開示されている(例えば、非特許文献1参照)。
(い)また、船尾端から後方に所定間隔をおいて複数の翼形断面の翼体を平行に配置し、船尾波を前後に分断して曳波の波高を小さくする技術が開示されている(例えば、特許文献1参照)。
(う)さらに、一対のデミハルを前後方向で対称な両頭双胴船とし、その外側は互いに略平行な略直線状にして、対峙する内側は平面視で弓状に膨らませて、デミハル間で波の干渉を促進したり、デミハルの内側に水中翼を設置して、船尾においてデミハルの内側の水位と外側の水位とを等しくしたりして、曳波の波高を小さくする技術が開示されている(例えば、非特許文献2参照)。
(A) For example, a substantially triangular wedge is provided on the bottom surface of the stern end, or a substantially triangular flap extending obliquely downward from the end surface of the stern end is provided, and the stern is lifted up and swelled. Has been disclosed (see, for example, Non-Patent Document 1).
(Ii) In addition, a technique is disclosed in which a plurality of airfoil cross-section wings are arranged in parallel at a predetermined interval rearward from the stern end, and the stern wave is divided forward and backward to reduce the wave height of the tsunami wave. (For example, refer to Patent Document 1).
(Iii) Furthermore, the pair of Demihals is a double-headed catamaran that is symmetrical in the front-rear direction, and the outsides of the Demihals are substantially straight and parallel to each other. Has been disclosed to reduce the wave height of the tsunami wave by promoting the interference of the water or installing a hydrofoil inside the demihull and making the water level inside the demihull equal to the water level outside the stern (For example, refer nonpatent literature 2).

21st UJNR Marine Facilities Panel Meeting Tokyo,Japan May 17-28,1997(255頁、図1)21st UJNR Marine Facilities Panel Meeting Tokyo, Japan May 17-28, 1997 (page 255, Fig. 1) 特開平11−180379号公報(2頁、図1)JP-A-11-180379 (2 pages, FIG. 1) 西部造船学会々報 第99号(48頁、図9)Bulletin of the Western Shipbuilding Society No. 99 (48 pages, Fig. 9)

しかしながら、前記(あ)は、単胴船において船尾端を持ち上げることによって曳波の波高を小さくしようとする発明、すなわち、船尾後方の水位と船体の外側後方の水位との差を小さくしようとする発明であるところ、双胴船には、船尾端(デミハルの後端部に同じ)を持ち上げることができるだけの大きさのウエッジやフラップを設置するスペースがないという問題があった。また、双胴船では、デミハルの後端部が持ち上がったとしても、デミハルに挟まれた内側の波と、デミハルの外側の波とがそれぞれ存在するため、曳波の波高が小さくならないという問題があった。   However, the above (a) is an invention that attempts to reduce the wave height of the tsunami wave by raising the stern end in a monohull, that is, attempts to reduce the difference between the water level behind the stern and the water level behind the hull. As a matter of invention, the catamaran has a problem that there is no space for installing a wedge or a flap large enough to lift the stern end (same as the rear end of the demi-hal). Also, in catamaran, even if the rear end of the demi-hal is lifted, there is an inner wave sandwiched between the demi-hals and an outer wave of the demi-hal, so there is a problem that the wave height of the tsunami does not become small. there were.

また、前記(い)は、単胴船において船尾端の後方に発生する船尾波を前後に分断する発明であるところ、双胴船では、デミハルの後方に発生する船尾波が前後に分断されたとしても、デミハルに挟まれた内側の波と、デミハルの外側の波とがそれぞれ存在するため、曳波の波高が小さくならないという問題があった。   In addition, the above (ii) is an invention that divides the stern wave generated behind the stern end of the monohull into the front and rear, and in the catamaran, the stern wave generated behind the demi-hal is divided into the front and back. However, there is a problem that the wave height of the tsunami does not become small because there is an inner wave sandwiched between the demihal and an outer wave of the demihal.

さらに、前記(う)は、船尾におけるデミハルの内側と外側との水位差を小さくして、該水位差が原因となり発生する引波(曳波に同じ)を小さくする発明であるところ、該水位差が小さいだけでは、船形(デミハルの形状、長さや間隔等)および航行速度によって、曳波低減効果が発揮されないことがあり、該発明の適用が制限されるという問題があった。   Further, the above (u) is an invention in which the difference in water level between the inside and outside of the demi-hal at the stern is reduced to reduce the wave (same as the surf) caused by the water level difference. If the difference is small, there is a problem that the wave reduction effect may not be exhibited depending on the ship shape (the shape, length, interval, etc.) and the navigation speed, and the application of the present invention is limited.

本発明は、上記に鑑みて実施された広範な試験研究の過程において、発明者によって発見された新たな知見に基づくものであって、船型を変更することなく、簡素な構成で、曳波の波高を小さくすることができる双胴船を提供することを目的とする。   The present invention is based on new findings discovered by the inventor in the course of extensive testing and research conducted in view of the above, and has a simple configuration without changing the hull form. The object is to provide a catamaran where the wave height can be reduced.

(1)本発明に係る双胴船は、一方のデミハルと他方のデミハルとの間で船尾部に配置され、船尾方向に向かって後縁側が上方になるように傾斜する翼体を有することを特徴とする双胴船。   (1) A catamaran according to the present invention has a wing body that is disposed on the stern portion between one Demi Hull and the other Demi Hull and is inclined so that the trailing edge side is upward in the stern direction. A characteristic catamaran.

(2)また、前記翼体の傾動角度が、前記双胴船の航行速度に応じて制御されることを特徴とする。   (2) Further, the tilt angle of the wing body is controlled according to the navigation speed of the catamaran.

(3)前記一対のデミハルを跨いで前部水中翼および後部水中翼が設置されてなることを特徴とする。   (3) A front hydrofoil and a rear hydrofoil are installed across the pair of demihals.

(4)前記翼体が、後部水中翼の一部を構成することを特徴とする。   (4) The wing body constitutes a part of a rear hydrofoil.

したがって、翼体によって形成されたデミハルの内側の波と、デミハルの後方に形成される波とが、船尾の後方の離れた位置で干渉するから、簡素な構成でもって、曳波の波高を小さくすることができる。   Therefore, the wave inside the demi-hal formed by the wing body and the wave formed behind the demi-hal interfere with each other at a distant position behind the stern, so the wave height of the tsunami wave can be reduced with a simple configuration. can do.

以下、実施形態1として本発明の実施形態に係る双胴船を、実施形態2として船尾曳波軽減装置を説明する。なお、以下の各図において、同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。また、同一または相当する内容のものについては添え字「a、b、またはc」を省略する。   Hereinafter, a catamaran according to an embodiment of the present invention will be described as a first embodiment, and a stern wave reduction device will be described as a second embodiment. In the following drawings, the same or corresponding portions are denoted by the same reference numerals, and a part of the description is omitted. Further, the suffix “a, b, or c” is omitted for the same or equivalent content.

[実施形態1]
(翼付双胴船1)
図1および図2は、本発明の実施形態1に係る双胴船を模式的に示すものであって、図1は一部断面の斜視図、図2の(a)は側面図、図2の(b)は後部水中翼の位置における断面図、図2の(c)は後部水中翼を示す平面断面図、図2の(d)は前部水中翼の位置における断面図、図2の(e)は前部水中翼を示す平面断面図、図2の(f)はセンターストラップを示す断面図、図2の(g)はサイドストラップを示す断面図、図2の(h)は翼端板を示す断面図である。
図1および図2において、翼付双胴船1(以下「双胴船1」と称す)は、船底部に左右一対の船首尾方向で扁平な脚部2a、2b(以下「デミハル2a、2b」と称す)が突設され、デミハル2aとデミハル2bとを跨いで水没型の前部水中翼3と後部水中翼4が固定されている。なお、デミハル2a、2bを跨いで、これを連結する部位をクロスデッキと称し、クロスデッキの下面1aで船尾にはセンターストラップ9が設置されている。
[Embodiment 1]
(Winged catamaran 1)
1 and 2 schematically show a catamaran according to Embodiment 1 of the present invention. FIG. 1 is a partially sectional perspective view, FIG. 2A is a side view, and FIG. (B) is a sectional view at the position of the rear hydrofoil, FIG. 2 (c) is a plan sectional view showing the rear hydrofoil, FIG. 2 (d) is a sectional view at the position of the front hydrofoil, FIG. (E) is a plan sectional view showing the front hydrofoil, FIG. 2 (f) is a sectional view showing the center strap, (g) in FIG. 2 is a sectional view showing the side strap, and (h) in FIG. It is sectional drawing which shows an end plate.
1 and 2, a winged catamaran 1 (hereinafter referred to as “catamaran 1”) has a pair of legs 2a, 2b (hereinafter referred to as “Demihal 2a, 2b”) that are flat on the bottom of the ship in a pair of left and right bows. The submerged front hydrofoil 3 and the rear hydrofoil 4 are fixed across the demihull 2a and the demihull 2b. In addition, the part which straddles Demiharu 2a and 2b and connects this is called a cross deck, and a center strap 9 is installed on the stern of the lower surface 1a of the cross deck.

前部水中翼3は、中央が僅かに折れ曲がった略V字状であって、左右に前部補助翼5a、5b(以下、まとめて前部補助翼5と称す)が傾動自在に設置されている。
一方、後部水中翼4は、略平面状であって、3枚の後部補助翼6a、6b、6c(以下、まとめて後部補助翼6と称す)が並んで設置され、後部水中翼4の後側縁の略全幅を構成している。このとき、後部補助翼6は船尾方向に向かって後縁側が上方に傾斜可能になっている。すなわち、アタックアングルをマイナス(俯角に同じ)にすることができる。
また、後部水中翼4の両端部には、略鉛直方向に断面翼形状(扁平略楕円、扁平水滴状を含む)の翼端板7a、7bが固定されている。そして、後部水中翼4の両端近くは断面翼形状のサイドストラップ8a、8bによって、中央は断面翼形状のセンターストラップ9によって支持されている。
さらに、デミハル2a、2bの後部端面には、推進力を付与するためのウォータージェット機構が設置されているが、本発明は推進力がその他の手段(たとえば、プロペラ等)によって付与されてもよい。
The front hydrofoil 3 is substantially V-shaped with the center slightly bent, and front auxiliary wings 5a and 5b (hereinafter collectively referred to as front auxiliary wings 5) are installed so as to be tiltable. Yes.
On the other hand, the rear hydrofoil 4 has a substantially planar shape, and three rear auxiliary wings 6 a, 6 b, 6 c (hereinafter collectively referred to as rear auxiliary wings 6) are installed side by side. It constitutes the substantially full width of the side edge. At this time, the rear auxiliary wing 6 can tilt upward on the rear edge side in the stern direction. That is, the attack angle can be negative (same as the depression angle).
Further, at both ends of the rear hydrofoil 4, blade end plates 7 a and 7 b having a cross-sectional wing shape (including a flat oval shape and a flat water droplet shape) are fixed in a substantially vertical direction. Near the both ends of the rear hydrofoil 4 are supported by side straps 8a and 8b having a cross-sectional wing shape, and the center is supported by a center strap 9 having a cross-sectional wing shape.
Furthermore, although a water jet mechanism for applying a propulsive force is installed on the rear end faces of the demi-hals 2a and 2b, the propulsive force may be applied by other means (for example, a propeller or the like) in the present invention. .

図3は、単胴船に一般に発生する波を模式的に示す説明図である。
図3の(a)は、天状の撹乱が水面上を動くときのケルビン波を模式的に示している。すなわち、移動する撹乱点99から、後方に向かってV字状の縦波(ダイバージェントウェーブ)100Dが形成される。縦波100Dは、水面をV字状にかき分けるように進行するものであって、所定の波長で、一対の山(縦波山)110Dと一対の谷(縦波谷)120Dとが交互に形成されている。このとき、前記一対の縦波山110D同士の間隔および前記一対の縦波谷120D同士の間隔が、それぞれ進行前方になる程狭くなっているから、平面視でこれらは進行前方になる程尖って見える。
FIG. 3 is an explanatory view schematically showing a wave generally generated in a monohull.
FIG. 3A schematically shows a Kelvin wave when a celestial disturbance moves on the water surface. That is, a V-shaped longitudinal wave (divergent wave) 100D is formed backward from the moving disturbance point 99. The longitudinal wave 100D travels so as to divide the water surface into a V shape, and a pair of peaks (vertical wave peaks) 110D and a pair of valleys (longitudinal wave valleys) 120D are alternately formed at a predetermined wavelength. Yes. At this time, since the distance between the pair of longitudinal wave peaks 110D and the distance between the pair of longitudinal wave valleys 120D are narrower as they proceed forward, they appear to be sharper as they travel forward.

また、前記V字状の範囲内で、進行方向に略垂直は横波(トランスバースウェーブ)100Tが形成されている。横波100Tは、縦波100Dの縦波山110Dを結ぶ位置に形成される山(横波山)110Tと、縦波100Tの縦波谷110Dを結ぶ位置に形成される谷(横波谷)110Tとを有し、横波山110Tおよび横波谷120Tは、いずれも、前記V字状の中央位置から遠ざかる程、遅れている(進行後方に位置してする)。なお、前記V字状の範囲の外側には波が存在しない。   Further, within the V-shaped range, a transverse wave 100T is formed substantially perpendicular to the traveling direction. The transverse wave 100T has a mountain (a transverse wave mountain) 110T formed at a position connecting the longitudinal wave peaks 110D of the longitudinal wave 100D, and a valley (a transverse wave valley) 110T formed at a position connecting the longitudinal wave valleys 110D of the longitudinal wave 100T. Both the Yokonami mountain 110T and Yokonami valley 120T are delayed as they move away from the V-shaped central position (positioned backward). There is no wave outside the V-shaped range.

図3の(b)は、単胴船90に一般に発生する波を模式的に示している。
すなわち、単胴船99の船首部92から、縦波200D(以下「船首縦波200D」と称す)と横波200T(以下「船首横波200T」と称す)とが発生する。そして、船首縦波200Dは、図示しない船首縦波山と船首縦波谷とを有し、船首横波200Tは、図示しない船首横波山と船首横波谷とを有している。以下、船首縦波200Dと船首横波200Tとをまとめて「船首波200」と総称する。
FIG. 3B schematically shows waves generally generated in the monohull ship 90.
That is, a longitudinal wave 200D (hereinafter referred to as “the bow longitudinal wave 200D”) and a transverse wave 200T (hereinafter referred to as “the bow transverse wave 200T”) are generated from the bow portion 92 of the monohull ship 99. The bow longitudinal wave 200D has a bow longitudinal wave mountain and a bow longitudinal wave valley (not shown), and the bow transverse wave 200T has a bow transverse wave mountain and a bow transverse wave valley (not shown). Hereinafter, the bow longitudinal wave 200D and the bow transverse wave 200T are collectively referred to as a “bow bow 200”.

一方、単胴船99の船尾部93から、縦波300D(以下「船尾縦波300D」と称す)と横波300T(以下「船尾横波300T」と称す)とが発生する。そして、船尾縦波300Dは、図示しない船尾縦波山と船尾縦波谷とを有し、船尾横波300Tは、図示しない船尾横波山と船尾横波谷とを有している。以下、船尾縦波300Dと船尾横波300Tとをまとめて「船尾波300」と総称する。
そして、単胴船99の後方で船首波200および船尾波300が複雑に競合して「曳波」を形成し、そのうちの比較的減衰の遅い成分が、海岸や岸壁に到達する。
On the other hand, a longitudinal wave 300D (hereinafter referred to as “stern longitudinal wave 300D”) and a transverse wave 300T (hereinafter referred to as “stern transverse wave 300T”) are generated from the stern portion 93 of the monohull ship 99. The stern longitudinal wave 300D has a stern longitudinal wave mountain and a stern longitudinal wave valley not shown, and the stern longitudinal wave 300T has a stern longitudinal wave mountain and a stern longitudinal wave valley not shown. Hereinafter, the stern longitudinal wave 300D and the stern transverse wave 300T are collectively referred to as “stern wave 300”.
Then, the bow wave 200 and the stern wave 300 compete in a complex manner behind the monohull 99 to form a “wave”, and a relatively slow decay component thereof reaches the coast or quay.

図4は、本発明の実施形態1に係る双胴船の航行状況および発生する波を説明するものであって、比較的低速(静止時〜15ノット程度)で航行しているときの模式図である。
図4の(a)および(b)は、正面図(船尾から見た図に同じ)および側面図(船側より見た図に同じ)である。このとき、前部水中翼3および後部水中翼4は、双胴船1の浮上にほとんど寄与しないから、双胴船1の一対のデミハル2a、2bの大半が水中にあって、クロスデッキの下面1aは海面WLに比較的近い位置にある。また、デミハル2a、2bが水面を分ける幅(図中「イ−ロ」)が広くなっている。
FIG. 4 is a schematic diagram for explaining the navigation situation of the catamaran and the generated waves according to Embodiment 1 of the present invention, and navigating at a relatively low speed (about 15 knots when stationary). It is.
4A and 4B are a front view (same as the view seen from the stern) and a side view (same as the view seen from the ship side). At this time, since the front hydrofoil 3 and the rear hydrofoil 4 hardly contribute to the ascent of the catamaran 1, most of the pair of demi-hals 2a, 2b of the catamaran 1 are underwater, and the bottom surface of the cross deck 1a is located relatively close to the sea level WL. Moreover, the width | variety ("Ilo" in a figure) which demi-hal 2a, 2b divides a water surface is wide.

図4の(c)は、平面図(船底から上を見た図に同じ)である。一対のデミハル2a、2bの両方から、それぞれ船首波200a、200bと、船尾波300a、300bとが発生している。なお、以下の説明で、同様の内容については添え字「a、b」の記載を省略する。
船首波200および船尾波300は、いずれも前述のように船首縦波200Dと船首横波200T、および船尾縦波300Dと船尾横波300Tとを有している。
さらに、デミハル2b側の船首波200aとデミハル2a側の船首波2bとは、一対のデミハル2a、2bに挟まれた範囲で互いに干渉し、やがて、該挟まれた範囲から船尾後方に伝播している。以下、かかる干渉した波を「胴間波400」と称す。
そして、双胴船1の後方で、船首波200と船尾波300と胴間波400とは互いに干渉し、後述するように曳波の波高が低減している(これについては別途説明する)。
FIG. 4C is a plan view (same as the top view from the bottom). Bow waves 200a and 200b and stern waves 300a and 300b are generated from both of the pair of demi-hals 2a and 2b, respectively. In the following description, the subscript “a, b” is omitted for the same contents.
As described above, the bow wave 200 and the stern wave 300 both have the bow longitudinal wave 200D and the bow transverse wave 200T, and the stern longitudinal wave 300D and the stern transverse wave 300T.
Further, the bow wave 200a on the Demi Hull 2b side and the bow wave 2b on the Demi Hull 2a side interfere with each other in a range sandwiched between the pair of Demi Hulls 2a and 2b, and eventually propagate from the sandwiched range to the rear of the stern. Yes. Hereinafter, such interfering waves are referred to as “trunk waves 400”.
Then, behind the catamaran 1, the bow wave 200, the stern wave 300, and the inter-body wave 400 interfere with each other, and the wave height of the tsunami wave is reduced as will be described later (this will be described separately).

図5は、本発明の実施形態1に係る双胴船の航行状況および発生する波を説明するものであって、中速(15〜25ノット程度)で航行しているときの模式図である。
図5の(a)および(b)は、正面図(船尾から見た図に同じ)および側面図(船側より見た図に同じ)である。このとき、双胴船1は、前部水中翼3および後部水中翼4の作用による浮力によって浮上している。このとき、デミハル2a、2bは正面視で下方が狭くなった略台形であるため、水面を分ける幅(図中「ハ−ニ」)が狭くなっている。
FIG. 5 is a schematic diagram for explaining the navigation situation of the catamaran and the generated waves according to Embodiment 1 of the present invention, and navigating at medium speed (about 15 to 25 knots). .
FIGS. 5A and 5B are a front view (same as the view seen from the stern) and a side view (same as the view seen from the ship side). At this time, the catamaran 1 is levitated by buoyancy due to the action of the front hydrofoil 3 and the rear hydrofoil 4. At this time, since the demi-hals 2a and 2b are substantially trapezoids whose lower part is narrowed in a front view, the width for dividing the water surface ("Hani" in the figure) is narrow.

図5の(c)は、平面図(船底から上を見た図に同じ)である。一対のデミハル2a、2bの両方から、それぞれ船首波200と、船尾波300とが発生している。
このとき、双胴船1は比較的速く航行しているものの、浮上して、水面を分ける幅(図中「ハ−ニ」)が狭くなっているから、船首波200および船尾波300は、前述の低速航行時よりも小さくなっている。
なお、通常、双胴船1は海岸や岸壁等から離れてた航路で、速度を速めるため、仮に大きな船首波200および船尾波300が発生したとしても、曳波としての実害は問題にならない。
FIG. 5 (c) is a plan view (same as the top view from the bottom). A bow wave 200 and a stern wave 300 are generated from both of the pair of demi-hals 2a and 2b, respectively.
At this time, although the catamaran 1 is navigating relatively fast, the width ("Hani" in the figure) that rises and separates the water surface is narrow, so the bow wave 200 and the stern wave 300 are It is smaller than the aforementioned low speed navigation.
In general, the catamaran 1 is on a route away from the coast, quay, etc., and speeds up. Therefore, even if a large bow wave 200 and stern wave 300 are generated, the actual damage as a tsunami does not matter.

図6は、本発明の実施形態1に係る双胴船における船尾の波の様子を模式的に示すものであって、側面視の船体中央部における断面図である。
図6の(a)は航行速度が比較的遅い場合であって、船体の浮上量が少ないものの、クロスデッキの下面1aは水面から離れている。
そして、後部補助翼6は船尾方向に向かって後縁側が上方(マイナスのアタックアングル)で傾斜しているから、胴間波400は後部補助翼6の位置において後方に向かって持ち上げられ(盛り上がるに同じ、図中、実線の矢印にて示す)、その後、所定波長の波になる。
一方、デミハル2aおよびデミハル2b(以下、まとめてデミハル2と称す)の後端部の後方直近では、水面は喫水線の下方にあるものの、後端部から所定の距離だけ後方に離れると喫水線の上方に高く盛り上がり(図中、破線の矢印にて示す)、その後、所定波長の波になる。
したがって、後部補助翼6の位置で盛り上がった流れ(たとえば、波の谷)と、デミハル2の後方の離れた位置で盛り上がった流れ(たとえば、波の山)とが、船尾の後方で略扇状に広がりながら干渉し、その結果、曳波の高さが小さくなると考えられる。
なお、デミハル2の後方に発生する波の波長は、航行速度に応じて変動するため、後部補助翼6のアタックアングルのマイナス(俯角)量も又、航行速度に応じて制御する。
FIG. 6 schematically shows a state of stern waves in the catamaran according to Embodiment 1 of the present invention, and is a cross-sectional view at the center of the hull in a side view.
FIG. 6 (a) shows a case where the navigation speed is relatively slow, and the bottom surface 1a of the cross deck is separated from the water surface, although the flying height of the hull is small.
Since the rear auxiliary wing 6 is inclined with the rear edge side upward (negative attack angle) toward the stern direction, the inter-body wave 400 is lifted rearward at the position of the rear auxiliary wing 6. The same wave is indicated by a solid arrow in the figure), and then becomes a wave of a predetermined wavelength.
On the other hand, in the immediate vicinity of the rear end of the Demi Hull 2a and Demi Hull 2b (hereinafter collectively referred to as Demi Hull 2), the water surface is below the water line, but above the water line when the water surface is separated from the rear end by a predetermined distance. (Shown by a broken arrow in the figure), and then becomes a wave of a predetermined wavelength.
Therefore, the flow rising at the position of the rear auxiliary wing 6 (for example, wave valley) and the flow rising at a position behind the demi-hal 2 (for example, wave peak) are substantially fan-shaped at the rear of the stern. It spreads and interferes, and as a result, it is thought that the height of a surf becomes small.
In addition, since the wavelength of the wave generated behind the demi-hal 2 varies according to the navigation speed, the minus amount of the attack angle of the rear auxiliary wing 6 is also controlled according to the navigation speed.

図6の(b)3は航行速度が比較的速い場合であって、たとえば、外洋を高速で航行する際など、曳波の問題がないから、後部補助翼6のアタックアングルをプラス(仰角)にすることによって船体浮上効果を得たり、複数枚の後部補助翼6をそれぞれ別個に傾動することによって船体の揺動低減効果を得たりしている。   (B) 3 in FIG. 6 is a case where the navigation speed is relatively fast. For example, when there is no problem of waves when navigating the open ocean at a high speed, the attack angle of the rear auxiliary wing 6 is increased (elevation angle). Thus, the hull floating effect is obtained, or the plurality of rear auxiliary wings 6 are separately tilted to obtain the hull swing reduction effect.

なお、図1において後部補助翼6を3枚の翼で構成しているが、その枚数は限定するものではない。
また、後部補助翼6は、後部水中翼4の一部を構成するものとして後部水中翼4内に組み込まれたものに限定するものではなく、後部水中翼4とは別体にして、デミハル2の側面に片端支持(片持ち)で、あるいはデミハル2を跨いで両端支持で設置してもよい。このとき、後部補助翼6を後部水中翼4よりも高い位置に設置して、航行速度が比較的遅いときは水中に沈み、且つ、航行速度が比較的速いときは水上に露出するようにしてもよい。
また、後部補助翼6の傾動機構は限定するものではない。
In FIG. 1, the rear auxiliary wing 6 is composed of three wings, but the number is not limited.
Further, the rear auxiliary wing 6 is not limited to one that is incorporated in the rear hydrofoil 4 as constituting a part of the rear hydrofoil 4. It may be installed on one side surface with one end support (cantilever) or with both end support straddling Demihal 2. At this time, the rear auxiliary wing 6 is installed at a position higher than the rear hydrofoil 4, so that it sinks in water when the navigation speed is relatively slow, and is exposed on the water when the navigation speed is relatively high. Also good.
Further, the tilting mechanism of the rear auxiliary blade 6 is not limited.

また、前部補助翼5a、5b(以下、まとめて前部補助翼5と称す)は、前部水中翼3に傾動自在に設置されている。したがって、前部水中翼3の船体浮上効果を補完すると共に、揺動低減効果を奏する。また、後部補助翼6の曳波軽減効果が最大になるように、前部水中翼3および前部補助翼5の傾斜角度を調整することができる。   Further, the front auxiliary blades 5a and 5b (hereinafter collectively referred to as the front auxiliary blade 5) are installed on the front hydrofoil 3 so as to be freely tiltable. Therefore, the hull floating effect of the front hydrofoil 3 is complemented, and the swing reduction effect is achieved. Moreover, the inclination angle of the front hydrofoil 3 and the front auxiliary wing 5 can be adjusted so that the ripple reduction effect of the rear auxiliary wing 6 is maximized.

(試験結果)
図7〜図10は、本発明の実施形態1に係る船尾曳波軽減装置の曳波軽減効果を確認するための試験結果であって、図7は小型模型、図8は大型模型、図9は実船によるものである。
図7は、前部補助翼および後部補助翼のアタックアングルを変更した場合の、曳波の高さを比率で比較したものである。すなわち、前部補助翼5が基準迎角で後部補助翼6も基準迎角であるときの曳波の高さを100%とすると、前部補助翼5が正迎角で後部補助翼6も正迎角であるとき、曳波の高さは前記基準に対して概ね10%増大している。一方、前部補助翼5が正迎角で後部補助翼6が負迎角(マイナス)であるとき、曳波の高さは前記基準に対して概ね30%低減しているから、このとき、曳波のエネルギは概ね50%低減している。
(Test results)
7 to 10 are test results for confirming the tsunami reduction effect of the stern tsunami reduction device according to Embodiment 1 of the present invention. FIG. 7 is a small model, FIG. 8 is a large model, and FIG. Is due to the actual ship.
FIG. 7 is a comparison of the heights of the swells in proportion when the attack angles of the front auxiliary wing and the rear auxiliary wing are changed. That is, if the height of the surf wave is 100% when the front auxiliary blade 5 is the reference angle of attack and the rear auxiliary blade 6 is also the reference angle of attack, the front auxiliary blade 5 is the normal angle of attack and the rear auxiliary blade 6 is When the angle of attack is positive, the wave height is increased by approximately 10% with respect to the reference. On the other hand, when the front auxiliary wing 5 has a positive angle of attack and the rear auxiliary wing 6 has a negative angle of attack (minus), the height of the surf is reduced by approximately 30% with respect to the reference. The wave energy is reduced by approximately 50%.

すなわち、この小型模型によって、排水量が小さい程、曳波の高さは小さくなること、曳波の周期や波長は、速力に比例するものであって、航行速度によって決定され排水量には無関係であること、曳波の高さは、水中翼の取り付け角度やフラップ角度に左右され、後部フラップを俯角(負迎角)にすることが有効であることが示されている。   That is, with this small model, the smaller the amount of drainage, the smaller the height of the surf, and the period and wavelength of the surf are proportional to the speed, and are determined by the navigation speed and are independent of the amount of drainage. In addition, the height of the surf depends on the mounting angle and the flap angle of the hydrofoil, and it has been shown that it is effective to make the rear flap a depression angle (negative attack angle).

図8は、図7に準じるものであって、前部補助翼および後部補助翼が設置されていない場合の曳波の高さを100%とすると、前部補助翼5が基準迎角で後部補助翼6も基準迎角であるときの曳波の高さは僅かに減少し、前部補助翼5が基準迎角で後部補助翼6が0(ゼロ)であるとき、曳波は前記基準に対して概ね5%低減している。一方、前部補助翼5が基準迎角で後部補助翼6が負迎角(マイナス)であるとき、曳波は前記基準に対して概ね15%低減しているから、このとき、曳波のエネルギは概ね30%低減している。
このとき、曳波の高さを低減するには、後部フラップを俯角(負迎角)にすることが有効であることが確認されている。
FIG. 8 is similar to FIG. 7, and assuming that the height of the surf when the front auxiliary wing and the rear auxiliary wing are not installed is 100%, the front auxiliary wing 5 has the reference angle of attack and the rear part. When the auxiliary blade 6 is also at the reference angle of attack, the height of the wave is slightly reduced. When the front auxiliary blade 5 is at the reference angle of attack and the rear auxiliary blade 6 is 0 (zero), the wave is About 5%. On the other hand, when the front auxiliary wing 5 is the reference angle of attack and the rear auxiliary wing 6 is the negative angle of attack (minus), the surf is reduced by approximately 15% with respect to the reference. The energy is reduced by approximately 30%.
At this time, it has been confirmed that it is effective to make the rear flap a depression angle (negative attack angle) in order to reduce the height of the depression.

図9は、岸壁に略平行して走行する実船から生じた曳波の高さを、岸壁に設置した波高計によって測定したものである。図中、実線は後部フラップ角度が負迎角(マイナス)のもの、破線は後部フラップ角度が基準状態のものである。図9より、実線で示す後部フラップ角度が負迎角(マイナス)の曳波は、基準状態のもの(破線にて示す)に比較して明らかに小さくなっている。   FIG. 9 shows the height of the tsunami generated from an actual ship traveling substantially parallel to the quay with a wave height meter installed on the quay. In the figure, the solid line indicates that the rear flap angle is a negative angle of attack (minus), and the broken line indicates that the rear flap angle is in a reference state. From FIG. 9, the wave having a negative angle of attack (minus) with the rear flap angle indicated by the solid line is clearly smaller than that in the reference state (indicated by the broken line).

図10は、図9に示す実測値をフーリエ解析により周波数分析したものである。すなわち、曳波は0.3Hzにピークを有し、0.2〜0.4Hzの範囲に表れている。このとき、実線で示す後部フラップ角度が負迎角(マイナス)のときの曳波の高さは、基準状態のものに比較して、概ね30%低減し、前記小型模型と同様の結果が表れている。
かかる曳波の高さの低減は、岸壁を洗うエネルギに換算すると約50%減少に相当する大きな効果が得られている。
なお、航行速度12ノット付近では後部フラップを俯角にしても、航走船体姿勢に影響がないことが確認されている。
FIG. 10 shows a result of frequency analysis of the measured values shown in FIG. 9 by Fourier analysis. That is, the wave has a peak at 0.3 Hz and appears in the range of 0.2 to 0.4 Hz. At this time, the height of the surf when the rear flap angle indicated by the solid line is a negative angle of attack (minus) is reduced by approximately 30% compared to the standard state, and the same result as the small model appears. ing.
Such a reduction in the height of the tsunami has a great effect corresponding to a reduction of about 50% in terms of energy for washing the quay.
It has been confirmed that even if the rear flap is at a depression angle, the navigation hull posture is not affected near the navigation speed of 12 knots.

以上より、本発明が曳波の高さ低減に有効であることが確認された。すなわち、従来の曳波低減技術が、デミハルの後方近傍で、デミハルに挟まれた範囲とデミハルの外側における水面の高さを揃えることを主眼にしていたのに対し、本発明は、デミハルの後方の波と、デミハルに挟まれた範囲の後方の波との干渉、つまり、船尾から所定距離離れた位置における波の干渉による相殺を図っている。
このため、デミハルに挟まれた範囲の波と、デミハルの外側における波との周波数や波長が相違する場合、従来技術では曳波の低減が困難であったのに対し、本発明ではこれが可能になる。
From the above, it was confirmed that the present invention is effective in reducing the height of the surf. In other words, the conventional tsunami reduction technology has focused on aligning the area sandwiched between the demi-halls and the height of the water surface outside the demi-hal in the vicinity of the demi-hal, whereas the present invention And the waves behind the range sandwiched between the demi-hals, that is, cancellation by interference of waves at a position away from the stern by a predetermined distance.
For this reason, when the frequency and wavelength of the wave in the range sandwiched between the demi-halls and the wave outside the demi-hal are different, it is difficult to reduce the tsunami in the prior art, but this is possible in the present invention. Become.

[実施形態2]
(翼付双胴船2)
図11は本発明の実施形態2に係る双胴船を模式的に示すものであって、(a)は裏面図、(b)は正面図である。図11において、双胴船10は後部水中翼4の前方斜め上方で、デミハル2aの側面にデミハル2bに向かって後部補助翼6aが、デミハル2bの側面にデミハル2aに向かって後部補助翼6b(以下まとめて「後部補助翼6」と称す)が、それぞれ設置されている。よって、双胴船10が低速航行する際、後部補助翼6は海中、すなわち、胴間波400の中にあって、後縁部が上になるように設置されている(マイナスのアタックアングルを有している)。一方、双胴船10が比較的速く(前記中速に相当する)以上の速度で航行する際、後部補助翼6は海面上に表れ、すなわち、胴間波400の中から脱出している。
[Embodiment 2]
(Winged catamaran 2)
FIG. 11 schematically shows a catamaran according to Embodiment 2 of the present invention, in which (a) is a back view and (b) is a front view. In FIG. 11, the catamaran 10 is obliquely above the front of the rear hydrofoil 4, the rear auxiliary wing 6 a toward the demihal 2 b on the side of the demihal 2 a, and the rear auxiliary wing 6 b ( Hereinafter, they are collectively referred to as “rear auxiliary wings 6”). Therefore, when the catamaran 10 travels at a low speed, the rear auxiliary wing 6 is installed in the sea, that is, in the inter-body wave 400, and the rear edge is on the upper side (with a negative attack angle). Have). On the other hand, when the catamaran 10 is traveling at a relatively high speed (corresponding to the medium speed) or higher, the rear auxiliary wing 6 appears on the sea surface, that is, escapes from the inter-body wave 400.

したがって、双胴船10は前述の双胴船1と同様、低速航行する際、後部補助翼6によってコントロールされた胴間波400が、後方において船尾波300等と干渉して、相互に弱め合うから、曳波の波高が低下する。
なお、後部補助翼6は所定の傾斜角度でデミハル2に固定しても、また、所定の範囲で傾斜角度を変更自在にしてもよい。さらに、中速ないし高速航行中は、デミハル2内に収納自在にしてもよい。
また、前部水中翼3および後部水中翼4には、それぞれ前部フラップ3a、3bおよび後部フラップ4a、4bが設置され、これの傾斜角度を制御することによって、中速ないし高速航行中に所定の浮力と姿勢の安定とが図られている。
Therefore, when the catamaran 10 travels at a low speed like the catamaran 1 described above, the torso wave 400 controlled by the rear auxiliary wing 6 interferes with the stern wave 300 and the like behind and weakens each other. Therefore, the wave height of the tsunami decreases.
The rear auxiliary blade 6 may be fixed to the demi-hull 2 at a predetermined inclination angle, or the inclination angle may be freely changed within a predetermined range. Further, it may be stored in the demi-hull 2 during medium speed or high speed navigation.
Further, the front hydrofoil 3 and the rear hydrofoil 4 are respectively provided with front flaps 3a, 3b and rear flaps 4a, 4b. Buoyancy and stable posture.

[実施形態3]
(排水量型双胴船)
図12は本発明の実施形態3に係る双胴船を模式的に示す正面図である。 図12において、双胴船20は、前述の双胴船10における前部水中翼3および後部水中翼4を撤去したものに相当する。
したがって、双胴船20は前述の双胴船1と同様、低速航行する際、後部補助翼6によってコントロールされた胴間波400が、後方において船尾波300等と干渉して、相互に弱め合うから、曳波の波高が低下する。
なお、双胴船20航行速度が増しても浮上することがないから、航行速度に応じて後部補助翼6の傾斜角度を変更自在にするのが望ましい。また、中速ないし高速航行中は、後部補助翼6をデミハル2内に収納自在にしてもよい。
[Embodiment 3]
(Displacement type catamaran)
FIG. 12 is a front view schematically showing a catamaran according to Embodiment 3 of the present invention. In FIG. 12, the catamaran 20 corresponds to a structure obtained by removing the front hydrofoil 3 and the rear hydrofoil 4 from the catamaran 10 described above.
Therefore, when the catamaran 20 travels at a low speed like the catamaran 1 described above, the torso wave 400 controlled by the rear auxiliary wing 6 interferes with the stern wave 300 and the like in the rear to weaken each other. Therefore, the wave height of the tsunami wave decreases.
Since the catamaran 20 does not rise even if the navigation speed increases, it is desirable that the inclination angle of the rear auxiliary wing 6 can be changed according to the navigation speed. Further, the rear auxiliary wing 6 may be freely housed in the demihull 2 during medium speed or high speed navigation.

本発明は以上の構成であるから、各種複胴船の船尾曳波の高さ軽減装置として広く利用することができる。   Since the present invention has the above-described configuration, it can be widely used as a device for reducing the height of stern wave of various double hulls.

本発明の実施形態1に係る双胴船を模式的に示す一部断面の斜視図。The perspective view of the partial cross section which shows typically the catamaran which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る双胴船を模式的に示す、部位毎の側面図等。The side view etc. for every site | part which show typically the catamaran which concerns on Embodiment 1 of this invention. 単胴船に一般に発生する波を模式的に示す説明図。Explanatory drawing which shows typically the wave generally generate | occur | produced on a monohull ship. 本発明の実施形態1に係る双胴船の航行状況および発生する波を説明する模式図(比較的低速(静止時〜15ノット程度)で航行しているとき)。The schematic diagram explaining the navigation situation of the catamaran according to Embodiment 1 of the present invention and the generated waves (when navigating at a relatively low speed (about 15 knots at rest)). 本発明の実施形態1に係る双胴船の航行状況および発生する波を説明する模式図(中速(15〜25ノット程度)で航行しているとき)。The schematic diagram explaining the navigation situation of the catamaran and the wave which generate | occur | produces about Embodiment 1 of this invention (when navigating at medium speed (about 15-25 knots)). 本発明の実施形態1に係る双胴船における船尾の波の様子を模式的に示す側面視の船体中央部における断面図。Sectional drawing in the hull center part of the side view which shows typically the mode of the wave of the stern in the catamaran which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る船尾曳波軽減装置の曳波軽減効果を確認するための実船による試験結果(小型模型)。The test result (small model) by the actual ship for confirming the tsunami reduction effect of the stern tsunami reduction apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る船尾曳波軽減装置の曳波軽減効果を確認するための実船による試験結果(大型模型)。The test result (large model) by the actual ship for confirming the tsunami reduction effect of the stern tsunami reduction apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る船尾曳波軽減装置の曳波軽減効果を確認するための実船による試験結果(実船)。The test result (actual ship) by the actual ship for confirming the tsunami reduction effect of the stern swell reduction apparatus which concerns on Embodiment 2 of this invention. 図9に示す実測値をフーリエ解析により周波数分析したもの。A frequency analysis of the actual measurement values shown in FIG. 9 by Fourier analysis. 本発明の実施形態2に係る双胴船を模式的に示す裏面図および正面図。The rear view and front view which show typically the catamaran which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る双胴船を模式的に示す正面図。The front view which shows typically the catamaran which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 ウォータージェット式水中翼付双胴船(双胴船)
2 デミハル
3 前部水中翼
4 後部水中翼
5 前部補助翼
6 後部補助翼
7 翼端板
8 サイドストラップ
9 センターストラップ
10 翼付双胴船
20 排水量型双胴船
1 Waterjet hydrofoil catamaran (Catalan)
2 Demiharu 3 Front hydrofoil 4 Rear hydrofoil 5 Front auxiliary wing 6 Rear auxiliary wing 7 Wing end plate 8 Side strap 9 Center strap 10 Wing catamaran 20 Drainage type catamaran

Claims (6)

一対のデミハルと該デミハルを跨いで設置された前部水中翼および後部水中翼とを具備する双胴船において、一方のデミハルと他方のデミハルとの間で船尾部に配置され、船尾方向に向かって後縁側が上方になるように傾斜する翼体を有することを特徴とする船尾曳波軽減装置。   In a catamaran equipped with a pair of demi-hales and a front hydrofoil and a rear hydrofoil installed across the demi-hales, they are arranged at the stern between one demi-hal and the other demi-hal and are directed toward the stern. And a stern wave mitigating device having a wing body inclined so that the trailing edge side is upward. 前記翼体の傾動角度が、前記双胴船の船速に応じて制御されることを特徴とする請求項1記載の船尾曳波軽減装置。   2. The stern wave reduction device according to claim 1, wherein an inclination angle of the wing body is controlled in accordance with a ship speed of the catamaran. 前記翼体が、後部水中翼の一部を構成することを特徴とする請求項1または2記載の船尾曳波軽減装置。   The stern wave mitigation device according to claim 1 or 2, wherein the wing body constitutes a part of a rear hydrofoil. 一対のデミハルと該デミハルを跨いで設置された前部水中翼および後部水中翼と、一方のデミハルと他方のデミハルとの間で船尾部に配置され、船尾方向に向かって後縁側が上方になるように傾斜する翼体とを有することを特徴とする双胴船。   A pair of demi-hals, a front hydrofoil and a rear hydrofoil installed across the demi-hals, and one demi-hal and the other demi-hull are arranged at the stern, with the trailing edge facing upward in the stern direction A catamaran having an inclined wing body. 前記翼体の傾動角度が、船速に応じて制御されることを特徴とする請求項4記載の双胴船。   The catamaran according to claim 4, wherein the tilt angle of the wing body is controlled in accordance with a ship speed. 前記翼体が、後部水中翼の一部を構成することを特徴とする請求項4または5記載の双胴船。
The catamaran according to claim 4 or 5, wherein the wing body constitutes a part of a rear hydrofoil.
JP2004368014A 2004-12-20 2004-12-20 Stern tow wave reduction device and catamaran equipped with the same Pending JP2006168692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368014A JP2006168692A (en) 2004-12-20 2004-12-20 Stern tow wave reduction device and catamaran equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368014A JP2006168692A (en) 2004-12-20 2004-12-20 Stern tow wave reduction device and catamaran equipped with the same

Publications (1)

Publication Number Publication Date
JP2006168692A true JP2006168692A (en) 2006-06-29

Family

ID=36669876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368014A Pending JP2006168692A (en) 2004-12-20 2004-12-20 Stern tow wave reduction device and catamaran equipped with the same

Country Status (1)

Country Link
JP (1) JP2006168692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134241A (en) * 2011-12-27 2013-07-08 National Maritime Research Institute Wave making method and wave making system for wave place
EP3885245A1 (en) * 2020-03-26 2021-09-29 Rasmussen Maritime Design AS Vessel with stern positioned foil to reduce wave resistance
WO2023210366A1 (en) * 2022-04-25 2023-11-02 川崎重工業株式会社 Ship wake reduction assistance device, program, and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640094U (en) * 1979-09-06 1981-04-14
JPS6294998U (en) * 1985-12-04 1987-06-17
JPH06263082A (en) * 1993-03-12 1994-09-20 Hitachi Zosen Corp Catamaran type hydrofoil craft
JPH0717472A (en) * 1992-11-24 1995-01-20 Yusaku Fujii Ship
JPH11180379A (en) * 1997-12-25 1999-07-06 Hitachi Zosen Corp Stern backwash reducing device
JP2000142554A (en) * 1998-11-05 2000-05-23 Hitachi Zosen Corp Ship with hull posture control function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640094U (en) * 1979-09-06 1981-04-14
JPS6294998U (en) * 1985-12-04 1987-06-17
JPH0717472A (en) * 1992-11-24 1995-01-20 Yusaku Fujii Ship
JPH06263082A (en) * 1993-03-12 1994-09-20 Hitachi Zosen Corp Catamaran type hydrofoil craft
JPH11180379A (en) * 1997-12-25 1999-07-06 Hitachi Zosen Corp Stern backwash reducing device
JP2000142554A (en) * 1998-11-05 2000-05-23 Hitachi Zosen Corp Ship with hull posture control function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134241A (en) * 2011-12-27 2013-07-08 National Maritime Research Institute Wave making method and wave making system for wave place
EP3885245A1 (en) * 2020-03-26 2021-09-29 Rasmussen Maritime Design AS Vessel with stern positioned foil to reduce wave resistance
WO2021191387A1 (en) * 2020-03-26 2021-09-30 Rasmussen Maritime Design As Vessel with stern positioned foil to reduce wave resistance
WO2023210366A1 (en) * 2022-04-25 2023-11-02 川崎重工業株式会社 Ship wake reduction assistance device, program, and method

Similar Documents

Publication Publication Date Title
US4606291A (en) Catamaran with hydrofoils
JPS6271787A (en) Hydrocraft
JP3660683B2 (en) Watercraft
US8955451B2 (en) Foil structure for providing buoyancy and lift
JP2010076764A (en) Low drag submerged asymmetric displacement lifting body
JPH0858674A (en) Ship
JP4889238B2 (en) Ship with bow fin
US5794558A (en) Mid foil SWAS
EP2029420B1 (en) Vessel provided with a foil below the waterline
EP0134767A1 (en) Hull configuration
JPH01503133A (en) Ship with good hydrodynamic performance
JP2006168692A (en) Stern tow wave reduction device and catamaran equipped with the same
US3495563A (en) Seaworthy hydroplanes
Latorre et al. Reduction of amphibious vehicle resistance and bow swamping by fitting a wave cancellation bow plate
CA2964797C (en) Minimum wave bow
JP2010047248A (en) Stern wave interference fin
US3550550A (en) Ocean-going barge
RU2167078C1 (en) High-speed vessel
JP5143510B2 (en) Hull structure
RU2088463C1 (en) High-speed vessel
JP2003285790A (en) Hull structure for reducing propulsion resistance
JP2023082737A (en) Tow wave reduction system for vessel, vessel, tow wave reduction method for vessel, and wave making resistance reduction method for vessel
JP2023067299A (en) Interference wave generation system for ship, ship, and tow wave reduction method for ship and the like
JPH01109192A (en) Catamaran with hydrofoil
KR100544899B1 (en) The type of ship with airpoil-fin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705