JP2006168137A - Multiplication encoder control circuit - Google Patents

Multiplication encoder control circuit Download PDF

Info

Publication number
JP2006168137A
JP2006168137A JP2004362792A JP2004362792A JP2006168137A JP 2006168137 A JP2006168137 A JP 2006168137A JP 2004362792 A JP2004362792 A JP 2004362792A JP 2004362792 A JP2004362792 A JP 2004362792A JP 2006168137 A JP2006168137 A JP 2006168137A
Authority
JP
Japan
Prior art keywords
multiplication
signal
printing
output
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004362792A
Other languages
Japanese (ja)
Inventor
Takashi Kawabata
隆 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004362792A priority Critical patent/JP2006168137A/en
Publication of JP2006168137A publication Critical patent/JP2006168137A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Character Spaces And Line Spaces In Printers (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continue printing without dislocation due to reversal when a reciprocating printer reverses and performs printing without being driven to the right and left ends depending on the width of a printed paper or the detail of printing due to fast printing in the case of the reciprocating printer, and finishes a correction process only in a first stage without using another positioning means and using an advanced computation process for functional simplification. <P>SOLUTION: In the printing machine that prints to-and-fro by using pulse in which position encoder output is multiplied, a multiplication encoder control circuit has a circuit which makes it possible to select a multiplication circuit by using a drive control signal and corrects a multiplication signal starting position by using non multiplication signal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は往復駆動による印刷機で、インクリメンタル・エンコーダーを印字制御に用いた逓倍エンコーダー制御回路に関する。   The present invention relates to a multiplying encoder control circuit using an incremental encoder for printing control in a reciprocating printing press.

インクリメンタル・エンコーダーは簡易に高精度の位置パルスを出力可能で便利であるが、駆動停止時や駆動反転時にチャタリングや振動に依って異常なパルスが出力されて、位置ズレが発生する事がある。   Incremental encoders are convenient because they can easily output high-accuracy position pulses, but abnormal pulses may be output due to chattering or vibration when driving is stopped or when driving is reversed.

即ち、一般にはエンコーダーから90度ズレた2位相の出力を得、その出力4状態の遷移状況から正逆の判定が可能であるが、出力位相角度に比べて大きな振動やガタが在った場合に、予想外の状態変化が発生して正逆が判定不可能になったり、変化点近傍でのチャタリングや振動によって高周波での正逆方向のエンコーダー出力に応答する必要があった。   That is, in general, it is possible to obtain a two-phase output with a 90-degree deviation from the encoder, and to determine whether the output is positive or reverse based on the transition state of the four output states. In addition, it is necessary to respond to the encoder output in the forward / reverse direction at a high frequency due to chattering or vibration near the change point due to an unexpected change in state that makes it impossible to determine forward / reverse.

印字に必要なパルスは2400DPIならピッチは0.01mm、数mmの(停止)振動は数百のパルスが数msの振動周期に発生し、停止位置を正確に捉える為には、パルスの位相処理に依る正/逆方向の有効/無効の判別正しく行い、MHz台の信号を正確に応答処理する必要があった。   If the pulse required for printing is 2400 DPI, the pitch is 0.01 mm and several mm (stop) vibrations occur in the vibration cycle of several hundreds of pulses, and in order to accurately capture the stop position, pulse phase processing Therefore, it is necessary to correctly determine whether valid / invalid in the forward / reverse direction according to the above, and to accurately perform a response process on signals in the MHz range.

何故なら、正逆の誤判定や高周波への誤応答に依っては、印字位置を制御している原点がズレてしまい、結果として印字位置がズレてしまうからである。   This is because the origin for controlling the printing position is deviated and the printing position is deviated as a result, depending on whether it is a forward / reverse misjudgment or an erroneous response to a high frequency.

無論、それを避ける為に別の原点信号を用いて毎回補正することも出来る。   Of course, it can be corrected every time using another origin signal in order to avoid it.

しかしその原点位置信号は印字の始まる前に必要で、その原点位置を通過させる為に余分に移動させる必要があり、往復印字においては印字不要な領域が在っても両端の原点位置を通過させるように全長を往復駆動させる必要があり、印字必要な領域のみを走査して印刷を速く出来なかった。   However, the origin position signal is required before printing starts, and it is necessary to move it extra to pass the origin position. In reciprocating printing, even if there is an unnecessary area for printing, the origin positions at both ends are passed. Thus, it is necessary to drive the entire length in a reciprocating manner, and it is impossible to perform printing quickly by scanning only the area where printing is necessary.

また、原点信号が全く非同期な信号の為、位相差に依っては±1カウントの誤差が発生し、印字位置がズレる場合があった。   Further, since the origin signal is a completely asynchronous signal, an error of ± 1 count is generated depending on the phase difference, and the print position may be shifted.

この問題対策として下記特許のように、エンコーダー出力に何らかの処理をして、チャタリング防止や振動時の誤信号防止の目的で、インクリメンタル・エンコーダーの原点を維持させるようにした発明があった。   As a countermeasure against this problem, as described in the following patent, there has been an invention in which the origin of the incremental encoder is maintained for the purpose of preventing any chattering or erroneous signal during vibration by performing some processing on the encoder output.

特許文献1:エンコーダーの「異常に短周期なパルス」をマスクする。   Patent Document 1: Masks “abnormally short pulse” of an encoder.

しかし、停止時条件が不安定な場合は、単純なマスクでは必要なパルスまでマスクされたり、散発的に誤パルスを計数する可能性が高く、結果としてパルス位置のズレが予想され、このズレに関して補正パルスを発生する必要が生じる。   However, when the conditions at the time of stop are unstable, it is highly possible that a simple mask masks up to the necessary pulses or sporadically counts erroneous pulses, and as a result, pulse position deviation is expected. It is necessary to generate a correction pulse.

特許文献2:エンコーダー方向反転時にパルスをマスクする。   Patent Document 2: Masks pulses when reversing the encoder direction.

しかし、振動時にはエンコーダーからの方向情報も不確実に成ってしまい、必要なパルスまでマスクする可能性もあり、マスク解除までの間で位置ズレに至ることがあり、その際は調整する為に、余分にパルスをマスクしたり、パルスを擬発生させる必要があった。
特開平5−022976号公報 特開平1−219672号公報
However, during vibration, the direction information from the encoder also becomes uncertain, and there is a possibility of masking up to the necessary pulse, which may lead to positional misalignment until mask release, in order to adjust it, It was necessary to mask an extra pulse or to simulate a pulse.
JP-A-5-022976 JP-A-1-219672

必要部分は細かいパルスを取得可能にし、往復駆動のパルス開始位置の再現性を確保する事、往復駆動端部での振動やガタによる誤パルス発生や誤パルスによる印字開始位置のズレを防止することが必要である。   The necessary part can acquire fine pulses, ensure the reproducibility of the pulse start position of the reciprocating drive, and prevent the occurrence of erroneous pulses due to vibration and backlash at the end of the reciprocating drive, and the misalignment of the print start position due to erroneous pulses. is required.

往復駆動プリンターの場合は高速印字の為に、被印刷紙幅や印字内容によって、左右端まで駆動せずに、逆転して印字を行う場合があり、この際にも逆転時の位置ズレなく印字が継続できるようにする必要がある。   In the case of a reciprocating printer, because of high-speed printing, depending on the width of the paper to be printed and the content of printing, printing may be performed in reverse without driving to the left and right edges. You need to be able to continue.

加えて、機能の単純化の為、他の位置出し手段を用いる事無く、高度な演算処理を用いずに、初段のみで補正処理が完結することが望まれる。   In addition, for simplification of functions, it is desired that the correction process is completed only in the first stage without using other positioning means and without using advanced arithmetic processing.

逓倍としては、エンコーダーのアナログ出力を用いて、正確なアナログ位相角から出力逓倍を行えるようにした。   For multiplication, the output of the encoder can be output from an accurate analog phase angle using the analog output of the encoder.

機構的には高精度のエンコーダーを高精度の保持機構で用いるよりも、粗いエンコーダーを用いて逓倍パルスを得る方が、汚れの影響の排除や精度維持にとって容易と言える。   In terms of mechanism, it can be said that it is easier to eliminate the influence of dirt and maintain accuracy than to use a coarse encoder to obtain a multiplied pulse, rather than using a highly accurate encoder with a highly accurate holding mechanism.

そこで、印字時は2400DPI=0.01mmの逓倍出力を用いて安定した高精度の印字を行い、駆動停止近傍では(方向付きで)150DPI=0.17mmの非逓倍出力を使って振動などの数mm間の停止状況を正確に計測、補正可能にした。   Therefore, when printing, stable high-precision printing is performed using a multiplied output of 2400 DPI = 0.01 mm, and the number of vibrations is calculated using a non-multiplied output of 150 DPI = 0.17 mm (with direction) in the vicinity of driving stop. It is now possible to accurately measure and correct the stopping situation between mm.

そして往復駆動の特色から、両者を駆動条件で切り替え、非逓倍出力を基に反転後の同じ位置から逓倍を開始させ、印字パルスがズレないように補正を行う。   Then, due to the feature of reciprocal driving, both are switched under driving conditions, and multiplication is started from the same position after inversion based on the non-multiplied output, and correction is performed so that the printing pulse does not shift.

例えば、アナログ逓倍を行うエンコーダーで、印字制御と駆動制御を行う。   For example, an encoder that performs analog multiplication performs print control and drive control.

理由:特にアナログ逓倍回路では、通常時の信号精度は高いが、2位相信号のアナログ・レベルから内挿して角度状態を算出する為、状態数が多くて、方向判別が難しく、振動時は信号変動によって状態の飛躍が在る場合が予想され、その飛躍部分にパルスを創造する必要が在るが、困難で有ると言える。   Reason: Especially in the analog multiplier circuit, the signal accuracy during normal operation is high, but since the angle state is calculated by interpolating from the analog level of the two-phase signal, the number of states is large and direction determination is difficult, and the signal during vibration is difficult. It is expected that there will be a jump in the state due to fluctuations, and it is necessary to create a pulse at that jump, but it can be said that it is difficult.

すなわち、本発明の技術内容は以下の構成を備えることにより前記課題を解決できた。   That is, the technical contents of the present invention can solve the above-described problems by including the following configuration.

(1)印字領域に関して、位置エンコーダー出力を逓倍したパルスを用いて往復印字する印刷機において、駆動制御信号を用いて逓倍回路を選択可能にし、非逓倍信号を用いて逓倍信号開始位置の補正を行う回路を有したことを特徴とする逓倍エンコーダー制御回路。   (1) In a printing machine that reciprocally prints using a pulse obtained by multiplying the position encoder output with respect to the print area, a multiplication circuit can be selected using a drive control signal, and a multiplication signal start position is corrected using a non-multiplication signal. A multiplying encoder control circuit comprising a circuit for performing the operation.

印字パルス制御と印字時の速度制御には、細かい逓倍出力を使う。   Fine multiplication output is used for print pulse control and speed control during printing.

非逓倍出力を低解像度に抑えて、駆動停止区間での移動検知を正確に行う。   Reduces the non-multiplied output to a low resolution and accurately detects movement in the drive stop zone.

駆動停止近傍のパルスとしては、振動やチャタを避ける(為、非逓倍出力を使う)。   Avoid pulses and chatter as pulses near the drive stop (and therefore use unmultiplied output).

粗い信号の為、振動やチャタが高周波で一部ミスをしても、状態変化を基に計数を行う為に吸収が可能である。   Since it is a rough signal, even if a vibration or chatter partially misses at a high frequency, it can be absorbed to perform counting based on the state change.

両者を駆動条件と非逓倍出力で切り替え、計測した非逓倍出力によって駆動端側の逓倍開始位置を揃えて、印字位置がズレないように補正された逓倍パルスの出力を行う。   Both are switched between the driving condition and the non-multiplied output, and the multiplication start position on the driving end side is aligned by the measured non-multiplied output, and the multiplied pulse corrected so as not to shift the printing position is output.

非逓倍の元信号を用いて、逓倍の開始・終了を制御している為、開始・終了での誤パルスが発生することが無い。   Since the start / end of multiplication is controlled using a non-multiplied original signal, no erroneous pulse occurs at the start / end.

駆動と同様な簡単な信号で折り返し原点の再設定が可能である。   The return origin can be reset with a simple signal similar to driving.

すべてが初段で処理可能となり、任意の印字位置に関して原点を維持した印字制御が可能になった。   Everything can be processed at the first stage, and printing control with the origin maintained at any printing position is now possible.

以下本発明を実施するための最良の形態を、実施例により詳しく説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図1は本発明のブロック実施例で、アナログ出力のエンコーダー1から例えば150DPIの2相出力が出ている。バッファー増幅器2を通して、アナログ信号による逓倍器3で16倍の逓倍パルス(≒2,400DPI)が得られる、その信号を選択器5を通して、ライン4に印字用の逓倍パルスを出力するように構成している。   FIG. 1 shows a block embodiment of the present invention. An analog output encoder 1 outputs a two-phase output of 150 DPI, for example. A 16-fold multiplication pulse (≈2,400 DPI) is obtained by the multiplier 3 based on the analog signal through the buffer amplifier 2, and the signal is configured to output the multiplication pulse for printing to the line 4 through the selector 5. ing.

図2は本発明の状態説明図で、復帰逆転駆動11から減速停止12に至る途中で、駆動終了後の非逓倍出力の位相変化から逓倍17を中止して非逓倍18へ移行する。その後の減速期間中13、非逓倍出力を監視して位置の観測を行う。   FIG. 2 is an explanatory diagram of the state of the present invention. In the middle from the return reverse rotation drive 11 to the deceleration stop 12, the multiplication 17 is stopped from the phase change of the non-multiplied output after the driving is completed, and the non-multiplied 18 is shifted to. During the subsequent deceleration period 13, the non-multiplied output is monitored and the position is observed.

その後、正転駆動時14には、非逓倍出力の監視結果から、先ほどの移行位置に至ったら、逓倍17を始めさせ、細かい印字パルスが得られる。   Thereafter, at the time of forward rotation drive 14, when the shift position is reached from the monitoring result of the non-multiplied output, multiplication 17 is started and a fine print pulse is obtained.

次に、正転駆動14から減速停止15に至る途中で、駆動終了後の非逓倍出力の位相変化から逓倍17を中止して非逓倍19へ移行する。その後の減速期間中15、非逓倍出力を監視して位置の観測を行う。   Next, on the way from the normal rotation drive 14 to the deceleration stop 15, the multiplication 17 is stopped from the phase change of the non-multiplied output after the driving is completed, and the operation proceeds to the non-multiplied 19. During the subsequent deceleration period 15, the non-multiplied output is monitored and the position is observed.

その後、復帰逆転駆動時11には、非逓倍出力の監視結果から、先ほどの移行位置に復帰したら、逓倍17を始めさせ、細かい印字パルスが得られる。   Thereafter, at the time of return reverse drive 11, from the monitoring result of the non-multiplied output, when returning to the previous transition position, the multiplication 17 is started and a fine print pulse is obtained.

例えば、印刷機の制御としては、格納位置から右の収納方向へ突き当て駆動して仮原点を作り、左方に駆動して逓倍信号で印字位置まで駆動、仮に右駆動信号を発生して右原点と記憶させる。   For example, to control the printing press, drive to the right storage direction from the storage position to create a temporary origin, drive to the left to drive to the print position with a multiplication signal, and temporarily generate a right drive signal to the right Remember the origin.

ここから左右に駆動することで、駆動区間の内は逓倍信号が得られ、この逓倍信号に応じて印字する事が可能になる。   By driving left and right from here, a multiplied signal is obtained in the drive section, and printing can be performed in accordance with the multiplied signal.

駆動後の減速区間については、上述のように内部カウンターで逓倍信号を抑圧して、印字しないようにしている。   In the deceleration zone after driving, the multiplication signal is suppressed by the internal counter as described above so as not to print.

往復駆動はモーター6で駆動され、この動作の為にモーター制御信号7が与えられる。このモーター制御信号を使って逓倍位置制御回路8は逓倍の制御を行う。   The reciprocating drive is driven by a motor 6, and a motor control signal 7 is given for this operation. Using this motor control signal, the multiplication position control circuit 8 performs multiplication control.

図4は逓倍位置制御8の内容で、2相信号の変化点抽出部分と、逓倍中を意味するフリップフロップ27で構成され、セット条件は(復帰駆動中信号2)&カウンター零信号22)or(正転駆動中信号2)&カウンター零信号22)、リセット条件は変化点信号28。カウンター9は逓倍中信号の反転出力で零リセットされ、2相信号でアップ・ダウンするように構成している。   FIG. 4 shows the contents of the multiplication position control 8, which is composed of a change point extraction part of a two-phase signal and a flip-flop 27 meaning that multiplication is in progress, and the set condition is (return drive signal 2) & counter zero signal 22) or (Normal driving signal 2) & counter zero signal 22), reset condition is change point signal 28. The counter 9 is configured to be reset to zero by the inverted output of the multiplying signal and to be up / down by a two-phase signal.

上記図2の説明に沿って動作を説明すると、通常は、カウンター9はリセットされて零にあり、逓倍中フリップフロップ27は復帰駆動21を止めた後はAnd論理23とOr論理26が不成立からSet条件を失い、2相信号の変化点信号28をReset条件に受け出力10をLowとして、逓倍を止め、Reset条件を解除する事で、2相信号29の位相関係によって減速停止量をカウンター9によって減算計数する。   The operation will be described with reference to FIG. 2 above. Normally, the counter 9 is reset to zero, and the multiplying flip-flop 27 stops the return drive 21 and then the And logic 23 and the Or logic 26 are not established. The set condition is lost, the change point signal 28 of the two-phase signal is received under the reset condition, the output 10 is set to low, the multiplication is stopped, and the reset condition is canceled, so that the deceleration stop amount is countered by the phase relationship of the two-phase signal 29. Subtract by

その後の正転駆動時は2相信号29によってカウンター9の加算を行い、零に成った時22に左駆動信号24とのAnd論理25とOr論理26に依って逓倍中フリップフロップ27はセットされ、逓倍を開始し、カウンター9はReset信号によって零リセットされる。このため逓倍信号は逆→正で同じ位置から出力を開始するように構成している。   At the time of subsequent forward rotation, the counter 9 is incremented by the two-phase signal 29, and when it becomes zero, the multiplying flip-flop 27 is set by the And logic 25 and the Or logic 26 with the left drive signal 24 when it becomes zero. The counter 9 is reset to zero by the Reset signal. For this reason, the multiplication signal is configured to start output from the same position in the reverse → positive direction.

このため、印字右端位置に関しての位置再現性が確保され、逓倍されたパルスに依って左方への印字が可能になる。   For this reason, the position reproducibility with respect to the right end position of printing is ensured, and printing to the left is enabled by the multiplied pulse.

次に、逓倍中フリップフロップ27は正転駆動24を止めた後はAnd論理25とOr論理26が不成立からSet条件を失い、2相信号の変化点信号28をReset条件に受け出力10をLowとして、逓倍を止め、Reset条件を解除することで減速停止量を2相信号29からカウンター9に加算計数する。   Next, the multiplying flip-flop 27 stops the forward rotation drive 24 and then loses the Set condition because the And logic 25 and the Or logic 26 are not established, receives the change point signal 28 of the two-phase signal under the Reset condition, and outputs the output 10 Low. Then, the multiplication is stopped and the Reset condition is canceled, and the deceleration stop amount is added to the counter 9 from the two-phase signal 29 and counted.

その後の復帰逆転駆動時は、カウンター9の減算を行い、零になった時22に右駆動信号21とのAnd論理23とOr論理26に依って逓倍中フリップフロップ27はセットされて逓倍を開始し、零カウンター9はReset信号によって零リセットされる。このため逓倍信号は正→逆で同じ位置から出力を開始するように構成している。   At the time of subsequent reverse driving, the counter 9 is subtracted, and when it becomes zero, the multiplying flip-flop 27 is set according to the And logic 23 and the Or logic 26 with the right drive signal 21 to start the multiplication. The zero counter 9 is reset to zero by the Reset signal. For this reason, the multiplication signal is configured to start outputting from the same position in the forward to reverse direction.

このため、印字左端位置に関しても位置再現性が確保され、逓倍されたパルスに依って右方へ移動時にも印字が可能になる。   For this reason, position reproducibility is also ensured with respect to the left end position of printing, and printing is possible even when moving to the right by the multiplied pulse.

なお、図でも明らかなように、回路上も左右駆動信号は似た意味で使用しており、重要なのは「本」駆動信号と逓倍中フリップフロップと非逓倍時のオーバーランを計数補正することにある。   As can be seen in the figure, the left and right drive signals are used in a similar sense on the circuit, and the important thing is to correct the "main" drive signal, the multiplying flip-flop, and the overrun when not multiplied. is there.

逆転時の振動やガタが在っても、0.17mmと粗い非逓倍信号を用いているので、応答周波数が高い必要もなく、計数最大値も限られる為、少数のカウンター段数で構成出来る。   Even if there is vibration or backlash at the time of reverse rotation, since a coarse unmultiplied signal of 0.17 mm is used, there is no need for a high response frequency, and the maximum count value is limited, so that it can be configured with a small number of counter stages.

例えば、振動はkHzオーダー、振幅(ガタ)が数mm在っても、最大計数値は100未満で、応答周波数は100kHz程度に抑えられる。   For example, even if the vibration is in the order of kHz and the amplitude (backlash) is several mm, the maximum count value is less than 100 and the response frequency is suppressed to about 100 kHz.

また、粗い非逓倍信号なので、2位相信号4状態の飛躍は発生せずに、方向が正確に判定できる。   In addition, since the signal is a coarse non-multiplied signal, the direction can be accurately determined without causing a jump of the two-phase signal 4 state.

駆動初期などの位置校正が必要な時は、別に設けた初期位置信号か端部突き当て時に同一方向の駆動信号を再発生させることで一時的に逓倍中フリップフロップをセットさせてから、逆方向に駆動することで、当該位置の1変化点手前を原点とした逓倍出力を得られるように構成している。   When position calibration is necessary, such as in the initial stage of driving, the initial position signal provided separately or the driving signal in the same direction at the end is regenerated to temporarily set the multiplying flip-flop and then reverse By driving in this way, a multiplied output with the origin immediately before the first change point of the position is obtained.

別の実施例として、非逓倍時に図1の選択器5を用いて非逓倍パルスを出力することも出来、停止時のモーター駆動制御などに用いることも出来る。   As another embodiment, a non-multiplied pulse can be output by using the selector 5 of FIG. 1 at the time of non-multiplication, and can be used for motor drive control at the time of stopping.

図3はアナログ逓倍の実施例で、エンコーダー30からの透過光を90度位相のずれたセンサー31,32,33,34で取得、参照電圧35を用いて電圧変換し、演算用の参照電圧36を用いて、増幅器37,38,39でSin、Cos、−Sinの信号を得、Sin振幅とCos信号の比較を行って、位相角を算出し、状態遷移をExor論理40で出力41を反転するようにして、逓倍したパルスを出力する。   FIG. 3 shows an embodiment of analog multiplication. The transmitted light from the encoder 30 is acquired by the sensors 31, 32, 33, and 34 that are 90 degrees out of phase, converted into a voltage by using the reference voltage 35, and the calculation reference voltage 36 is obtained. , Sin, Cos, and -Sin signals are obtained by the amplifiers 37, 38, and 39, the Sin amplitude is compared with the Cos signal, the phase angle is calculated, the state transition is inverted by the Exor logic 40, and the output 41 is inverted. In this way, the multiplied pulse is output.

図示は行わないが、逓倍を他の手段で行うことも可能であることは言うまでもない。   Although not shown, it goes without saying that multiplication may be performed by other means.

純粋にデジタルの時間間隔から逓倍を行ったり、PLLを用いて逓倍出力を生成する事も出来る。しかしいずれも、上述のアナログ逓倍の場合と同様に逆転時に正しいマスクが掛け難く、パルス位置がズレてしまう問題点があって、本案の改良によって改善される。   Multiplication can be performed from a purely digital time interval, or a multiplication output can be generated using a PLL. However, in both cases, as in the case of the analog multiplication described above, there is a problem that it is difficult to apply a correct mask at the time of reverse rotation, and the pulse position is deviated.

本発明の主実施ブロック図Main implementation block diagram of the present invention 本発明の状態を説明する図The figure explaining the state of the present invention アナログ逓倍の実施例を示す図Diagram showing an example of analog multiplication 逓倍制御部分の実施例を示す図The figure which shows the Example of the multiplication control part

符号の説明Explanation of symbols

1 エンコーダー
8 逓倍開始位置制御
9 補正用カウンター
7 逓倍制御フリップフロップ
1 Encoder 8 Multiplication start position control 9 Correction counter 7 Multiplication control flip-flop

Claims (2)

印字領域に関して、位置エンコーダー出力を逓倍したパルスを用いて往復印字する印刷機において、駆動制御信号を用いて逓倍回路を選択可能にし、非逓倍信号を用いて逓倍信号開始位置の補正を行う回路を有したことを特徴とする逓倍エンコーダー制御回路。   In a printing machine that reciprocally prints using a pulse obtained by multiplying the position encoder output with respect to the print area, a circuit that makes it possible to select a multiplication circuit using a drive control signal and corrects the multiplication signal start position using a non-multiplication signal. A multiplying encoder control circuit comprising: 請求項1記載の逓倍エンコーダー制御回路において、逓倍出力を非選択な場合は、非逓倍出力を出力することを特徴とする逓倍エンコーダー制御回路。   2. The multiplication encoder control circuit according to claim 1, wherein when the multiplication output is not selected, a non-multiplication output is output.
JP2004362792A 2004-12-15 2004-12-15 Multiplication encoder control circuit Withdrawn JP2006168137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362792A JP2006168137A (en) 2004-12-15 2004-12-15 Multiplication encoder control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362792A JP2006168137A (en) 2004-12-15 2004-12-15 Multiplication encoder control circuit

Publications (1)

Publication Number Publication Date
JP2006168137A true JP2006168137A (en) 2006-06-29

Family

ID=36669387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362792A Withdrawn JP2006168137A (en) 2004-12-15 2004-12-15 Multiplication encoder control circuit

Country Status (1)

Country Link
JP (1) JP2006168137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210347A (en) * 2009-03-09 2010-09-24 Brother Ind Ltd Encoder signal processor, encoder signal processing method, and transport apparatus
JP2013060004A (en) * 2011-08-25 2013-04-04 Canon Inc Recording apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210347A (en) * 2009-03-09 2010-09-24 Brother Ind Ltd Encoder signal processor, encoder signal processing method, and transport apparatus
US8289569B2 (en) 2009-03-09 2012-10-16 Brother Kogyo Kabushiki Kaisha Encoder signal processor, encoder signal processing method, and transport apparatus
JP2013060004A (en) * 2011-08-25 2013-04-04 Canon Inc Recording apparatus

Similar Documents

Publication Publication Date Title
US8250910B2 (en) Method for incrementally ascertaining a rotation angle of a shaft
US20060202646A1 (en) Conveyance control apparatus and image forming apparatus
US8706269B2 (en) Controller and machining apparatus with position encoder compensation
EP1598643B1 (en) Encoder error correction circuit
JP2006168137A (en) Multiplication encoder control circuit
JP2995097B2 (en) Position detection device
KR102419489B1 (en) Apparatus and method for measuring speed of motor
JP2006109544A (en) Device and method for evaluating rotator, and device and method for setting amount of corrective operation, and controller and its method and program
JP3596942B2 (en) Speed detector
JPH0474192B2 (en)
JP2598254B2 (en) Setting method of reference value of automatic register adjustment device
JPS6316318Y2 (en)
JP2003130683A (en) Device for detecting position
CN113632370B (en) Control device for motor
JP2580398B2 (en) Printer print position correction processing method
JPH1127986A (en) Motor controller
US8289569B2 (en) Encoder signal processor, encoder signal processing method, and transport apparatus
JP2008241536A (en) Displacement detector
JPH11221910A (en) Image output apparatus
JPH0655795A (en) Printing signal generation method and device in serial printer
JP2004279378A (en) Dislocation correcting method and cross-direction profile measuring device for sheet product using the same
KR940022059A (en) Encoder Output Error Compensation Method
JP2005111712A (en) Printer
JP2006256786A (en) Position control device and image forming device
JP2007333669A (en) Encoder signal processing circuit and motor control system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304