JP2006165117A - Substrate with built-in resistive element and its manufacturing method - Google Patents

Substrate with built-in resistive element and its manufacturing method Download PDF

Info

Publication number
JP2006165117A
JP2006165117A JP2004351729A JP2004351729A JP2006165117A JP 2006165117 A JP2006165117 A JP 2006165117A JP 2004351729 A JP2004351729 A JP 2004351729A JP 2004351729 A JP2004351729 A JP 2004351729A JP 2006165117 A JP2006165117 A JP 2006165117A
Authority
JP
Japan
Prior art keywords
resistance
film
resistance value
substrate
value change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004351729A
Other languages
Japanese (ja)
Other versions
JP4626282B2 (en
Inventor
Tatsuhiro Okano
達広 岡野
Yuka Mizuno
由香 水野
Takayuki Fukada
隆之 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004351729A priority Critical patent/JP4626282B2/en
Publication of JP2006165117A publication Critical patent/JP2006165117A/en
Application granted granted Critical
Publication of JP4626282B2 publication Critical patent/JP4626282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate with a built-in resistive element wherein resistive elements with different sheet resistances can be accurately formed by using the same resistance film, and to provide its manufacturing method. <P>SOLUTION: The substrate with built-in resistive elements incorporates a plurality of resistive elements 2 and 2A having resistance films 11 made of the same plating resistive layer. The sheet resistance of the resistance film 11 of at least one resistive element 2 is different from that of the resistance film 11a of the other resistive element 2A. In this case, a protective layer 20 is provided to cover the resistance film 11 of at least one resistive element 2, and the resistance film 11a of the other resistive element 2A is treated so as to change its resistance value. Thus, the substrate with built-in resistive elements can be manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の抵抗素子を内蔵する抵抗素子内蔵基板に関し、特に、従来より抵抗素子の抵抗値の精度が高く、プリント配線板に適した抵抗素子内蔵基板に関する。   The present invention relates to a resistor element-embedded substrate that includes a plurality of resistor elements, and more particularly to a resistor element-embedded substrate that has a higher resistance value accuracy than conventional ones and is suitable for a printed wiring board.

近年、携帯電話やデジタルカメラなどの機器の小型化と軽量化が進むにつれて、プリント配線板に実装する素子においては、素子の小型化や素子同士の間隔の削減といった従来の実装技術では対応が難しくなり、これら素子をプリント配線板内に内蔵した多層プリント配線板への期待が高まっている。受動素子(キャパシタ、抵抗、インダクタ)は既存のチップ素子を埋め込めば機器メーカーが必要とする特性を比較的容易に満たすことができるが、素子を内蔵した基板が厚くなってしまうという問題点がある。そのため、薄い部品や薄膜素子で十分に特性を満たすことができる方法の開発などが急がれている。   In recent years, as devices such as mobile phones and digital cameras have become smaller and lighter, it is difficult for conventional devices to be mounted on printed wiring boards using conventional mounting technologies such as reducing the size of devices and reducing the distance between devices. Thus, there is an increasing expectation for a multilayer printed wiring board in which these elements are incorporated in the printed wiring board. Passive elements (capacitors, resistors, inductors) can satisfy the characteristics required by device manufacturers relatively easily by embedding existing chip elements, but there is a problem that the substrate containing the elements becomes thick. . Therefore, development of a method capable of sufficiently satisfying characteristics with thin parts and thin film elements is urgently required.

プリント配線板内部に抵抗素子を作り込む方法としては、銅箔上に金属薄膜で抵抗層を形成する方法、絶縁基板上にめっきで形成する方法、抵抗性の厚膜ポリマーを印刷する方法などがある。これらの方法の中から、抵抗値、精度、形状、価格などから用途に応じて形成方法を選択していく必要がある。厚膜ポリマーを印刷する方法では、高抵抗なものを形成できるが、微細な寸法になると形成が困難である。金属材料を用いた薄膜タイプは、厚膜タイプに比べ、抵抗値範囲が低抵抗に制約されるが、小さなサイズで高精度に形成できる。   As a method of creating a resistance element inside a printed wiring board, a method of forming a resistance layer with a metal thin film on a copper foil, a method of forming a plating on an insulating substrate, a method of printing a resistive thick film polymer, etc. is there. From these methods, it is necessary to select a forming method according to the application from the resistance value, accuracy, shape, price, and the like. In the method of printing a thick film polymer, it is possible to form a high-resistance material, but it is difficult to form a fine size. The thin film type using a metal material is restricted to a low resistance range as compared with the thick film type, but can be formed with a small size and high accuracy.

銅箔上に金属薄膜で抵抗層を形成した材料には、Omega TechnologiesのOmega−Plyがある(例えば、特許文献1参照)。この材料は、銅箔上に電解ニッケル、リンめっきにより薄膜抵抗層を形成したものを絶縁基板上に積層形成したものである。銅箔と薄膜抵抗層を一括エッチングして配線形成し、所定の配線部をエッチングし、下の抵抗層を露出させることにより、抵抗体を形成する。しかしこの構成では、同一の抵抗膜を使用するため、抵抗素子の抵抗値を変化させる場合には、抵抗の長さと幅で制御するしかないため、形成できる抵抗値の幅に制限があった。
絶縁基板上にめっきで抵抗層を形成した材料には、MacdermidのM−Passがある。この方法では、絶縁基板上に配線の一部が分離している配線パターンを形成した後に、抵抗層をこの一部分離している配線と配線の間に無電解ニッケル・リンめっきによって形成する。抵抗層は配線の厚み分の段差がある面にめっきされるため、めっき膜厚が薄いと配線と抵抗素子の接続信頼性が悪くなるという問題があった(例えば、特許文献2参照)。
米国特許第4808967号明細書 特開平10−190183号公報
Omega Technologies' Omega-Ply is a material in which a resistance layer is formed of a metal thin film on a copper foil (see, for example, Patent Document 1). This material is obtained by laminating a thin film resistance layer formed by electrolytic nickel and phosphor plating on a copper foil on an insulating substrate. The copper foil and the thin film resistance layer are collectively etched to form a wiring, a predetermined wiring portion is etched, and the lower resistance layer is exposed to form a resistor. However, in this configuration, since the same resistance film is used, when the resistance value of the resistance element is changed, there is only a control by the length and width of the resistance, so that the width of the resistance value that can be formed is limited.
As a material in which a resistance layer is formed by plating on an insulating substrate, there is Mcdermid's M-Pass. In this method, after a wiring pattern in which a part of wiring is separated is formed on an insulating substrate, a resistance layer is formed between the partly separated wiring and the wiring by electroless nickel / phosphorous plating. Since the resistance layer is plated on a surface having a level difference corresponding to the thickness of the wiring, there is a problem that the connection reliability between the wiring and the resistance element is deteriorated when the plating film thickness is thin (see, for example, Patent Document 2).
US Pat. No. 4,808,967 JP-A-10-190183

このように、金属箔による同一の抵抗皮膜を用いて複数の抵抗素子を形成する場合、抵抗素子の抵抗値を抵抗皮膜の長さと幅で制御する方法では、得られる抵抗素子の抵抗値が狭い範囲に限られていた。   Thus, when a plurality of resistance elements are formed using the same resistance film made of metal foil, the resistance value of the resistance element obtained is narrow in the method of controlling the resistance value of the resistance element by the length and width of the resistance film. It was limited in scope.

本発明は、上記事情に鑑みてなされたものであって、シート抵抗の異なる複数の抵抗素子を容易に且つ精度良く形成することが可能な抵抗素子内蔵基板およびその製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a resistance element built-in substrate capable of easily and accurately forming a plurality of resistance elements having different sheet resistances, and a method for manufacturing the same. And

前記課題を解決するため、本発明は、同一のめっき抵抗層からなる抵抗皮膜を有する複数の抵抗素子を内蔵する抵抗素子内蔵基板において、少なくとも一つの抵抗素子の有する抵抗皮膜のシート抵抗は、他の抵抗素子の有する抵抗皮膜のシート抵抗と異なることを特徴とする抵抗素子内蔵基板を提供する。
また、本発明は、同一のめっき抵抗層からなる抵抗皮膜を有する複数の抵抗素子を内蔵する抵抗素子内蔵基板の製造方法において、少なくとも一つの抵抗素子の有する抵抗皮膜を覆う保護層を設け、他の抵抗素子の有する抵抗皮膜に抵抗値変化処理を施すことを特徴とする抵抗素子内蔵基板の製造方法を提供する。
また、本発明は、前記製造方法において、前記抵抗値変化処理は、前記保護層が設けられていない抵抗皮膜の抵抗値変化処理液への浸漬または散布により行うことを特徴とする抵抗素子内蔵基板の製造方法を提供する。
また、本発明は、前記製造方法において、前記抵抗値変化処理液は、少なくともニッケル、銅、金、パラジウムからなる群から選ばれるいずれかの金属塩を含む溶液であることを特徴とする抵抗素子内蔵基板の製造方法を提供する。
また、本発明は、前記製造方法において、前記抵抗値変化処理後に、抵抗皮膜に加熱処理を施すことを特徴とする抵抗素子内蔵基板の製造方法を提供する。
また、本発明は、前記製造方法において、前記抵抗値変化処理後、前記保護層を剥離せずに当該抵抗素子を基板内に埋め込むことを特徴とする抵抗素子内蔵基板の製造方法を提供する。
In order to solve the above problems, the present invention provides a resistance element built-in substrate including a plurality of resistance elements each having a resistance film made of the same plating resistance layer. A resistive element-embedded substrate is provided that is different from the sheet resistance of the resistive film of the resistive element.
According to another aspect of the present invention, there is provided a method of manufacturing a resistance element-embedded substrate having a plurality of resistance elements each having a resistance film made of the same plating resistance layer, and a protective layer covering the resistance film of at least one resistance element is provided. A resistance element-embedded substrate manufacturing method is provided, in which a resistance film is subjected to a resistance value change process.
In the manufacturing method according to the present invention, the resistance value change process is performed by immersing or spraying a resistance film not provided with the protective layer in a resistance value change processing solution. A manufacturing method is provided.
In the manufacturing method according to the present invention, the resistance value change processing solution is a solution containing at least one metal salt selected from the group consisting of nickel, copper, gold, and palladium. A method for manufacturing a built-in substrate is provided.
The present invention also provides a method for manufacturing a resistance element-embedded substrate, wherein the resistance film is subjected to heat treatment after the resistance value change processing in the manufacturing method.
The present invention also provides a method for manufacturing a resistance element built-in substrate, wherein the resistance element is embedded in the substrate without peeling off the protective layer after the resistance value changing process.

本発明によれば、複数の抵抗素子の抵抗皮膜を同一のめっき抵抗層から形成するので、工程の簡略化や低コスト化が可能となり、しかも抵抗皮膜に抵抗値変化処理を施すことによって、抵抗素子の抵抗値を広い範囲で調整することが可能となる。すなわち、抵抗値の精度が高い抵抗素子を低コストにて製造することができる。これによって、配線基板に内蔵できる抵抗素子の数を増加し、配線基板の軽薄短小化という効果が得られる。また、内蔵素子の増加によって実装部品の数を減らすことができるため、実装のコストの低減にもつながる。   According to the present invention, since the resistance films of a plurality of resistance elements are formed from the same plating resistance layer, the process can be simplified and the cost can be reduced. It becomes possible to adjust the resistance value of the element in a wide range. That is, a resistance element with high resistance value accuracy can be manufactured at low cost. As a result, the number of resistance elements that can be built in the wiring board is increased, and the effect of reducing the thickness and thickness of the wiring board can be obtained. In addition, since the number of mounted components can be reduced by increasing the number of built-in elements, the mounting cost can be reduced.

以下、最良の形態に基づき、本発明を説明する。
図1は、本発明の第1形態例の抵抗素子内蔵基板1A(図1(e)参照)の製造工程を示す図面である。
図1(e)に示すように、本発明の第1形態例の抵抗素子内蔵基板1Aは、絶縁基板10と、この絶縁基板10の両面に形成された複数の抵抗素子2,2Aと、抵抗素子2,2Aを覆うように設けられた絶縁層3と、絶縁層3を貫通するように設けられた導通ビア4と、絶縁層3上に形成された配線層5とを備え、前記抵抗素子2,2Aの抵抗皮膜11,11aは、同一のめっき抵抗層からなり、前記抵抗素子2,2Aのうち少なくとも一つは、抵抗皮膜11に抵抗値変化処理を施されていない抵抗素子2であり、他の抵抗素子2Aは、抵抗値変化処理が施された抵抗皮膜11aを有するものである。
The present invention will be described below based on the best mode.
FIG. 1 is a drawing showing a manufacturing process of a resistance element built-in substrate 1A (see FIG. 1 (e)) according to a first embodiment of the present invention.
As shown in FIG. 1 (e), a resistance element built-in substrate 1A according to the first embodiment of the present invention includes an insulating substrate 10, a plurality of resistance elements 2 and 2A formed on both surfaces of the insulating substrate 10, and a resistance. An insulating layer 3 provided so as to cover the elements 2 and 2A; a conductive via 4 provided so as to penetrate the insulating layer 3; and a wiring layer 5 formed on the insulating layer 3; The resistance films 11 and 11a of 2 and 2A are made of the same plating resistance layer, and at least one of the resistance elements 2 and 2A is the resistance element 2 in which the resistance film 11 is not subjected to the resistance value change process. The other resistance element 2A has a resistance film 11a subjected to a resistance value change process.

ここで、絶縁基板10としては、特に限定されず、各種の合成樹脂からなる板や可撓性シート、ガラス板、セラミックス板、表面に絶縁層を有する金属製基板の中から、用途などに応じて適宜選択して用いることができる。
抵抗素子2,2Aは、めっき抵抗層からなる抵抗皮膜11,11aと、この抵抗皮膜11,11aに接する2つの導体層12,12とを有する。各抵抗素子2,2Aにおいて、2つの導体層12,12は互いに分離されており、抵抗素子2,2Aの素子電極として用いることができる。それぞれの導体層12,12は、導通ビア4を介して絶縁層3上の配線層5と接続されている。
絶縁層3は、熱硬化樹脂や光硬化性樹脂などの絶縁樹脂から形成することができる。
Here, the insulating substrate 10 is not particularly limited, and can be selected from various synthetic resin plates, flexible sheets, glass plates, ceramic plates, and metal substrates having an insulating layer on the surface, depending on the application. Can be appropriately selected and used.
The resistance elements 2 and 2A have resistance films 11 and 11a made of a plating resistance layer, and two conductor layers 12 and 12 in contact with the resistance films 11 and 11a. In each resistance element 2 and 2A, the two conductor layers 12 and 12 are separated from each other and can be used as element electrodes of the resistance elements 2 and 2A. Each of the conductor layers 12 and 12 is connected to the wiring layer 5 on the insulating layer 3 through the conductive via 4.
The insulating layer 3 can be formed from an insulating resin such as a thermosetting resin or a photocurable resin.

本発明において「同一のめっき抵抗層」とは、同一の抵抗性材料から厚みを等しくして形成されためっき抵抗層であることを意味する。望ましくは、絶縁基板10上に一回のめっき工程で形成されためっき抵抗層をエッチング等によって複数の抵抗皮膜11,11,…に分離したもの(図1(a)参照)である。
めっき抵抗層は、例えばニッケルやニッケル合金などからなる抵抗性材料を絶縁基板10上に無電解めっきすることによって形成することができる。
In the present invention, the “same plating resistance layer” means a plating resistance layer formed from the same resistive material with the same thickness. Desirably, the plating resistance layer formed in a single plating step on the insulating substrate 10 is separated into a plurality of resistance films 11, 11,... By etching or the like (see FIG. 1A).
The plating resistance layer can be formed by electrolessly plating a resistive material made of, for example, nickel or a nickel alloy on the insulating substrate 10.

本発明において、抵抗値変化処理とは、抵抗皮膜のシート抵抗を変化させる処理(すなわち、当該シート抵抗を上昇または低下させる処理)をいう。従って、抵抗値変化処理後の抵抗皮膜11aの抵抗値は、抵抗値変化処理前の抵抗皮膜11のシート抵抗と異なる。
抵抗値変化処理は、例えば抵抗皮膜の抵抗値変化処理液への浸漬または散布によって当該抵抗皮膜11の抵抗値を上昇または低下させることにより行うことができる。例えば、抵抗値変化処理液として少なくともニッケル、銅、金、パラジウムからなる群から選ばれるいずれかの金属塩を含む処理液を用いることにより、抵抗皮膜の表面にそれらの金属塩が析出し、抵抗値を下げることが可能である。また、市販のエッチング液を使用し、膜厚を薄くすることで、抵抗値を上げることもできる。
In the present invention, the resistance value changing process refers to a process of changing the sheet resistance of the resistance film (that is, a process of increasing or decreasing the sheet resistance). Therefore, the resistance value of the resistance film 11a after the resistance value change process is different from the sheet resistance of the resistance film 11 before the resistance value change process.
The resistance value changing process can be performed, for example, by increasing or decreasing the resistance value of the resistance film 11 by immersing or spraying the resistance film in a resistance value changing treatment liquid. For example, by using a treatment liquid containing at least any metal salt selected from the group consisting of nickel, copper, gold, and palladium as the resistance value change treatment liquid, the metal salt is deposited on the surface of the resistance film, and the resistance change The value can be lowered. Moreover, resistance value can also be raised by using a commercially available etching liquid and making a film thickness thin.

本形態例の抵抗素子内蔵基板1Aの製造方法は、以下のとおりである。
まず、図1(a),図3(a)に示すように絶縁基板10上に複数の抵抗素子2,2,…を形成する。この段階における抵抗素子2,2,…は、抵抗値変化処理を施していないものであり、これらの抵抗素子2,2,…の形成方法は、特に限定されるものではなく、オメガプライやマクダーミットの方式が使用できる。
The manufacturing method of the resistive element-embedded substrate 1A of the present embodiment is as follows.
First, as shown in FIGS. 1A and 3A, a plurality of resistance elements 2, 2,... The resistance elements 2, 2,... At this stage are not subjected to resistance value change processing, and the formation method of these resistance elements 2, 2,. Can be used.

次に、図1(b)に示すように絶縁基板10上を耐薬品性のレジスト(保護層)20で保護し、抵抗値を変化させる抵抗素子2の抵抗皮膜11をレジスト20の開口部21に露出させる。
次に、レジスト20の開口部21に露出された抵抗皮膜11の抵抗値変化処理液への浸漬または散布によって当該抵抗皮膜11の抵抗値を変化させる。これにより、抵抗値変化処理された抵抗皮膜11aを有する抵抗素子2Aを得ることができる(図1(c),図3(c)参照)。
抵抗値変化処理によって抵抗皮膜の抵抗値を下げる場合には、抵抗値変化処理液として少なくともニッケル、銅、金、パラジウムからなる群から選ばれるいずれかの金属塩を含む処理液を用いればよい。これにより、抵抗皮膜の表面にそれらの金属塩が析出し、抵抗値を下げることが可能である。
Next, as shown in FIG. 1B, the insulating substrate 10 is protected with a chemical-resistant resist (protective layer) 20, and the resistance film 11 of the resistance element 2 that changes the resistance value is formed in the opening 21 of the resist 20. To expose.
Next, the resistance value of the resistance film 11 is changed by immersing or spraying the resistance film 11 exposed in the opening 21 of the resist 20 in the resistance value change processing solution. Thereby, the resistance element 2A having the resistance film 11a subjected to the resistance value change process can be obtained (see FIGS. 1C and 3C).
When the resistance value of the resistance film is lowered by the resistance value change treatment, a treatment liquid containing at least one metal salt selected from the group consisting of nickel, copper, gold, and palladium may be used as the resistance value change treatment liquid. Thereby, those metal salts precipitate on the surface of the resistance film, and the resistance value can be lowered.

抵抗値変化処理後は、図1(d)に示すようにレジスト20を剥離したのち、図1(e)に示すように絶縁層3を用いて通常の多層配線基板の工程で次の配線層を形成することで、配線層5や導通ビア4を含み、抵抗素子2,2Aを内蔵した多層配線回路基板1Aを製造することができる。
なお、抵抗素子の形成後、抵抗値を安定化させるため、上記工程の適当な段階において熱処理を施すことが好ましい。上記の熱処理は、例えば、100〜850℃の温度範囲内で行うことができる。
After the resistance value changing process, the resist 20 is peeled off as shown in FIG. 1D, and the next wiring layer is formed in the normal multilayer wiring board process using the insulating layer 3 as shown in FIG. The multilayer wiring circuit board 1A including the wiring layer 5 and the conductive via 4 and including the resistance elements 2 and 2A can be manufactured.
Note that after the formation of the resistance element, it is preferable to perform heat treatment at an appropriate stage of the above process in order to stabilize the resistance value. Said heat processing can be performed within the temperature range of 100-850 degreeC, for example.

以上説明したように、第1形態例の抵抗素子内蔵基板1Aによれば、複数の抵抗素子2,2Aの抵抗皮膜11,11aを同一のめっき抵抗層から形成するので、工程の簡略化や低コスト化が可能となる。しかも、少なくとも一つの抵抗素子2ではめっき抵抗層をそのまま抵抗皮膜11として利用するのに対して、他の抵抗素子2Aではめっき抵抗層に抵抗値変化処理を施すことによって、めっき抵抗層とはシート抵抗が異なる抵抗皮膜11aを得ることができる。
なお、図1(d)でレジスト20を剥離する代わりに、例えば、開口部21を絶縁性封止材料で封止することにより、抵抗値変化処理を施した抵抗素子2Aを基板内に埋め込むことができる。この場合、絶縁層3がレジスト20および前記絶縁性封止材料から構成された多層配線回路基板を製造することができる。
As described above, according to the resistance element built-in substrate 1A of the first embodiment, the resistance films 11 and 11a of the plurality of resistance elements 2 and 2A are formed from the same plating resistance layer. Cost can be reduced. In addition, the plating resistance layer is used as it is as the resistance film 11 in at least one resistance element 2, whereas in the other resistance element 2 </ b> A, the plating resistance layer is a sheet by performing a resistance value changing process. Resistance films 11a having different resistances can be obtained.
Instead of removing the resist 20 in FIG. 1D, for example, the opening 21 is sealed with an insulating sealing material to embed the resistance element 2A subjected to the resistance change process in the substrate. Can do. In this case, a multilayer wiring circuit board in which the insulating layer 3 is composed of the resist 20 and the insulating sealing material can be manufactured.

次に、本発明の第2形態例の抵抗素子内蔵基板1Bについて説明する。
本発明において抵抗値変化処理は、抵抗値変化処理液の組成や濃度、処理条件等によって抵抗値変化の程度を調整することが可能である。従って、少なくとも一つの抵抗素子の抵抗皮膜に施す抵抗値変化処理と、他の抵抗素子の抵抗皮膜に施す抵抗値変化処理とで、それぞれ抵抗値変化の程度を変えることによって、抵抗皮膜のシート抵抗が異なる抵抗素子が内蔵された本発明の抵抗素子内蔵基板を得ることができる。
図2(g)に示す第2形態例の抵抗素子内蔵基板1Bの場合は、抵抗値変化処理が施された第1の抵抗皮膜11aを有する第1の抵抗素子2Aと、抵抗値変化処理が施された第2の抵抗皮膜11bを有する第2の抵抗素子2Bとを備え、抵抗値変化処理が施された第1の抵抗皮膜11aのシート抵抗が、抵抗値変化処理が施された第2の抵抗皮膜11bのシート抵抗と異なっている。
Next, the resistive element built-in substrate 1B according to the second embodiment of the present invention will be described.
In the present invention, the resistance value change process can adjust the degree of resistance value change according to the composition and concentration of the resistance value change processing solution, the processing conditions, and the like. Accordingly, the sheet resistance of the resistance film is changed by changing the degree of the resistance value change between the resistance value change process applied to the resistance film of at least one resistance element and the resistance value change process applied to the resistance film of the other resistance element. Thus, it is possible to obtain the resistance element built-in substrate of the present invention in which the resistance elements having different values are incorporated.
In the case of the resistance element built-in substrate 1B of the second embodiment shown in FIG. 2G, the first resistance element 2A having the first resistance film 11a subjected to the resistance value change process and the resistance value change process are performed. The second resistance element 2B having the second resistance film 11b applied thereto, and the sheet resistance of the first resistance film 11a subjected to the resistance value change process is the second resistance value subjected to the resistance value change process. This is different from the sheet resistance of the resistance film 11b.

第2形態例の抵抗素子内蔵基板1Bの製造方法は、以下のとおりである。
まず、図2(a)に示すように絶縁基板10上に複数の抵抗素子2,2,…を形成する。この段階における抵抗素子2,2,…は、抵抗値変化処理を施していないものであり、これらの抵抗素子2,2,…の形成方法は、特に限定されるものではなく、オメガプライやマクダーミットの方式が使用できる。
The manufacturing method of the resistive element built-in substrate 1B of the second embodiment is as follows.
First, a plurality of resistance elements 2, 2,... Are formed on the insulating substrate 10 as shown in FIG. The resistance elements 2, 2,... At this stage are not subjected to resistance value change processing, and the formation method of these resistance elements 2, 2,. Can be used.

次に、図2(b)に示すように絶縁基板10上を耐薬品性の第1のレジスト20(第1の保護層)で保護し、抵抗値を変化させる抵抗素子2の抵抗皮膜11を第1のレジスト20の開口部21に露出させる。
次に、開口部21に露出された抵抗皮膜の抵抗値変化処理液への浸漬または散布によって抵抗値を上昇または低下させる。これにより、抵抗値変化処理された第1の抵抗皮膜11aを有する抵抗素子2Aを得ることができる(図2(c)参照)。
Next, as shown in FIG. 2B, the insulating film 10 is protected with a chemical-resistant first resist 20 (first protective layer), and the resistance film 11 of the resistance element 2 that changes the resistance value is formed. The first resist 20 is exposed to the opening 21.
Next, the resistance value is increased or decreased by immersing or spraying the resistance film exposed to the opening 21 in the resistance value change processing solution. Thereby, the resistance element 2A having the first resistance film 11a subjected to the resistance value change process can be obtained (see FIG. 2C).

次に、第1のレジスト20を剥離したのち、図2(d)に示すように絶縁基板10上を耐薬品性の第2のレジスト22(第2の保護層)で保護し、抵抗値を変化させる抵抗素子2の抵抗皮膜11を第2のレジスト22の開口部23に露出させる。この段階では、抵抗値変化処理を施した抵抗皮膜11aを有する抵抗素子2A上には第2のレジスト22を積層し、抵抗値変化処理を施していない抵抗素子2の抵抗皮膜11は開口部23に露出されるようにする。
次に、開口部23に露出された抵抗皮膜11の抵抗値変化処理液への浸漬または散布によって当該抵抗皮膜11の抵抗値を変化させる。これにより、抵抗値変化処理された第2の抵抗皮膜11bを有する抵抗素子2Bを得ることができる(図2(e)参照)。
抵抗値変化処理後は、図2(f)に示すように第2のレジスト22を剥離したのち、図2(g)に示すように絶縁層3を用いて通常の多層配線基板の工程で次の配線層を形成することで、配線層5や導通ビア4を含む抵抗素子2A,2Bを内蔵した多層配線回路基板1Bを製造することができる。
抵抗素子の熱処理を行う場合は、第1形態例の抵抗素子内蔵基板1Aの製造方法における熱処理の方法と同様にして行うことができる。
Next, after removing the first resist 20, the insulating substrate 10 is protected with a chemical-resistant second resist 22 (second protective layer) as shown in FIG. The resistance film 11 of the resistance element 2 to be changed is exposed to the opening 23 of the second resist 22. At this stage, the second resist 22 is laminated on the resistance element 2A having the resistance film 11a subjected to the resistance value change process, and the resistance film 11 of the resistance element 2 not subjected to the resistance value change process has the opening 23. To be exposed.
Next, the resistance value of the resistance film 11 is changed by immersing or spraying the resistance film 11 exposed in the opening 23 in the resistance value change processing solution. Thereby, the resistance element 2B having the second resistance film 11b subjected to the resistance value change process can be obtained (see FIG. 2E).
After the resistance value changing process, the second resist 22 is peeled off as shown in FIG. 2 (f), and then the normal multilayer wiring board process is performed using the insulating layer 3 as shown in FIG. 2 (g). By forming this wiring layer, it is possible to manufacture the multilayer wiring circuit board 1B including the resistance elements 2A and 2B including the wiring layer 5 and the conductive via 4.
The heat treatment of the resistance element can be performed in the same manner as the heat treatment method in the method of manufacturing the resistance element built-in substrate 1A of the first embodiment.

第1及び第2の抵抗皮膜11a,11bの抵抗値変化は、めっき抵抗層より抵抗値を上昇させてもよいし、逆に抵抗値を低下させてもよい。従って、第1の抵抗皮膜11aと第2の抵抗皮膜11bの両方が抵抗値変化処理を施したものである場合、本発明は、(1)〜(4)のいずれでも差し支えない。
(1) 第1の抵抗皮膜11aのシート抵抗を上昇させて第2の抵抗皮膜11bのシート抵抗を低下させる。
(2) 第1の抵抗皮膜11aのシート抵抗を低下させて第2の抵抗皮膜11bのシート抵抗を上昇させる。
(3) 第1の抵抗皮膜11aも第2の抵抗皮膜11bもシート抵抗を上昇させるが、シート抵抗を上昇させた抵抗値変化量が互いに異なる。
(4) 第1の抵抗皮膜11aも第2の抵抗皮膜11bもシート抵抗を低下させるが、シート抵抗を低下させた抵抗値変化量が互いに異なる。
The change in resistance value of the first and second resistance films 11a and 11b may increase the resistance value from the plating resistance layer, or conversely decrease the resistance value. Accordingly, when both the first resistance film 11a and the second resistance film 11b are subjected to resistance value change processing, the present invention may be any of (1) to (4).
(1) The sheet resistance of the first resistance film 11a is increased to decrease the sheet resistance of the second resistance film 11b.
(2) The sheet resistance of the first resistance film 11a is decreased to increase the sheet resistance of the second resistance film 11b.
(3) Although both the first resistance film 11a and the second resistance film 11b increase the sheet resistance, the resistance value change amounts that increase the sheet resistance are different from each other.
(4) Although both the first resistance film 11a and the second resistance film 11b reduce the sheet resistance, the amount of change in resistance value that reduced the sheet resistance is different.

以上説明したように、第2形態例の抵抗素子内蔵基板1Bによれば、複数の抵抗素子2の抵抗皮膜11a,11bを同一のめっき抵抗層から形成するので、工程の簡略化や低コスト化が可能となる。しかも、少なくとも一つの抵抗素子2Aのめっき抵抗層に抵抗値変化処理を施した後に、他の抵抗素子2Bのめっき抵抗層に抵抗値変化の程度が異なる抵抗値変化処理を施すことによって、第1の抵抗素子2Aの抵抗皮膜11aのシート抵抗と、第2の抵抗素子2Bの抵抗皮膜11bのシート抵抗とを、互いに異なる抵抗値にすることができる。   As described above, according to the resistance element built-in substrate 1B of the second embodiment, the resistance films 11a and 11b of the plurality of resistance elements 2 are formed from the same plating resistance layer, thereby simplifying the process and reducing the cost. Is possible. In addition, after the resistance value change process is performed on the plating resistance layer of at least one resistance element 2A, the resistance value change process having a different degree of resistance value change is performed on the plating resistance layer of the other resistance element 2B. The sheet resistance of the resistance film 11a of the resistance element 2A and the sheet resistance of the resistance film 11b of the second resistance element 2B can have different resistance values.

以下、実施例1について図1を用いて詳細に説明する。実施例1の抵抗素子内蔵基板1Aは、以下に説明する方法により製造することができる。
絶縁基板10上に無電解Niめっきを用いて、厚さ0.5μmのNiめっき膜からなる抵抗皮膜を形成する。Niめっき後に無電解銅めっき工程によって厚さ1μmの銅めっき層を形成する。さらに、電気銅めっきによって厚さ15μmになる条件で銅めっき層の厚みを調整する。
配線パターン形状にフォトリソグラフィ工程とエッチング工程によって銅とNiの不要部分を除去し、配線パターン形状を得る。そして、レジスト剥離後に抵抗素子2,2,…を形成する部分以外に再度レジストパターンを形成する。さらに、CuはエッチングするがNiをエッチングしないエッチング液(アルカリ性エッチング液)を使用して抵抗素子の銅層を除去する。これらの工程で、導体層12を含む抵抗素子2,2,…を形成することができる(図1(a)参照)。
Hereinafter, Example 1 will be described in detail with reference to FIG. The resistance element-embedded substrate 1A of Example 1 can be manufactured by the method described below.
A resistance film made of a Ni plating film having a thickness of 0.5 μm is formed on the insulating substrate 10 using electroless Ni plating. After the Ni plating, a 1 μm thick copper plating layer is formed by an electroless copper plating process. Furthermore, the thickness of the copper plating layer is adjusted under the condition that the thickness becomes 15 μm by electrolytic copper plating.
The wiring pattern shape is obtained by removing unnecessary portions of copper and Ni by a photolithography process and an etching process. Then, a resist pattern is formed again in addition to the portion where the resistance elements 2, 2,. Further, the copper layer of the resistance element is removed using an etchant (alkaline etchant) that etches Cu but does not etch Ni. Through these steps, the resistance elements 2, 2,... Including the conductor layer 12 can be formed (see FIG. 1A).

さらに抵抗素子2の抵抗皮膜11のシート抵抗を調整するために、抵抗値変化処理を施す抵抗素子の抵抗皮膜が露出され、それ以外の抵抗素子が保護されるように、耐薬品性を有するレジストにより保護層20を形成する。具体的には、日立化成工業製27μm厚の感光性レジスト(RY−3237)を絶縁基板10上の全面にラミネートしたのち、フォトリソグラフィ工程で露光、現像することで、抵抗値変化処理を施す抵抗素子の抵抗皮膜が露出されるようにパターニングし、レジスト20に開口部21を形成する(図1(b)参照)。
次に、レジスト20の開口部21から露出した抵抗皮膜11に対して抵抗値変化処理液の浸漬または噴霧の処理を施すことにより、抵抗値変化処理を施した抵抗皮膜11aが得られる(図1(c)参照)。
抵抗値変化処理液として、10容量%の硫酸溶液に30g/lの硫酸銅を溶かした溶液を用いることにより、抵抗皮膜上に薄膜の銅が析出し、抵抗皮膜のシート抵抗を大幅に低下させることができる。抵抗値変化処理液の温度は30℃、浸漬時間は5分程度で良い。
これらのパターニングと処理を繰り返すことで、シート抵抗の異なる抵抗皮膜11,11aを同じのめっき抵抗層から得ることが可能となった。
Further, in order to adjust the sheet resistance of the resistance film 11 of the resistance element 2, a resist having chemical resistance so that the resistance film of the resistance element subjected to the resistance value change process is exposed and other resistance elements are protected. Thus, the protective layer 20 is formed. Specifically, a 27 μm-thick photosensitive resist (RY-3237) manufactured by Hitachi Chemical Co., Ltd. is laminated on the entire surface of the insulating substrate 10, and then exposed and developed in a photolithography process, whereby a resistance value is changed. Patterning is performed so that the resistive film of the element is exposed, and an opening 21 is formed in the resist 20 (see FIG. 1B).
Next, the resistance film 11a subjected to the resistance value change process is obtained by subjecting the resistance film 11 exposed from the opening 21 of the resist 20 to immersion or spraying of the resistance value change processing liquid (FIG. 1). (See (c)).
By using a solution in which 30 g / l copper sulfate is dissolved in a 10% by volume sulfuric acid solution as the resistance value change treatment solution, a thin film of copper is deposited on the resistance film, and the sheet resistance of the resistance film is greatly reduced. be able to. The temperature of the resistance value change processing solution may be 30 ° C., and the immersion time may be about 5 minutes.
By repeating these patterning and processing, it becomes possible to obtain the resistance films 11 and 11a having different sheet resistances from the same plating resistance layer.

抵抗値変化処理後に、図1(d)に示すようにレジスト20を除去したのち、代わりに熱硬化型の絶縁層3を貼付け、さらに、レーザー加工による絶縁層3への穴開けや導通ビア4および絶縁層3上の配線層5の形成など通常のプリント基板の多層配線基板工程を行う。
以上の工程により、図1(e)に示すように、絶縁層3、導通ビア4、配線層5を含み、抵抗値変化処理が施されていない抵抗素子2と抵抗値変化処理が施された抵抗素子2Aとを内蔵した多層配線基板1Aを製造することができる。
After the resistance change process, after removing the resist 20 as shown in FIG. 1 (d), a thermosetting insulating layer 3 is pasted instead, and holes are formed in the insulating layer 3 by laser processing or conductive vias 4 are formed. Then, a general printed circuit board multilayer wiring board process such as formation of the wiring layer 5 on the insulating layer 3 is performed.
Through the above steps, as shown in FIG. 1E, the resistance element 2 including the insulating layer 3, the conductive via 4 and the wiring layer 5 and not subjected to the resistance value change process and the resistance value change process were performed. A multilayer wiring board 1A including the resistance element 2A can be manufactured.

以下、実施例2について図2を用いて詳細に説明する。
実施例2の抵抗素子内蔵基板1Bは、以下の方法により製造することができる。
実施例1と同様に抵抗素子2,2,…を絶縁基板10の両面に形成する(図2(a)参照)。
Hereinafter, Example 2 will be described in detail with reference to FIG.
The resistance element built-in substrate 1B of Example 2 can be manufactured by the following method.
.. Are formed on both surfaces of the insulating substrate 10 as in the first embodiment (see FIG. 2A).

次に、少なくとも一つの抵抗素子が保護され、他の抵抗素子の抵抗皮膜が開口部21に露出されるように、耐薬品性を有するレジスト20を形成する。具体的には、日立化成工業製27μm厚の感光性レジスト(RY−3237)を絶縁基板10上の全面にラミネートしたのち、フォトリソグラフィ工程で露光、現像することで、抵抗値変化処理を施す抵抗素子の抵抗皮膜が露出されるようにパターニングし、第1のレジスト20に開口部21を形成する(図2(b)参照)。
次に、第1のレジスト20の開口部21から露出した抵抗皮膜11に対して抵抗値変化処理液の浸漬または噴霧の処理を施すことにより、抵抗値変化処理を施した抵抗皮膜11aが得られる(図2(c)参照)。ここでは、塩化第二鉄液(10%溶液)に30℃で1分浸漬すると、抵抗皮膜11aの抵抗値は60%程度上昇する。
Next, a resist 20 having chemical resistance is formed so that at least one resistance element is protected and the resistance film of the other resistance element is exposed to the opening 21. Specifically, a 27 μm-thick photosensitive resist (RY-3237) manufactured by Hitachi Chemical Co., Ltd. is laminated on the entire surface of the insulating substrate 10, and then exposed and developed in a photolithography process, whereby a resistance value is changed. Patterning is performed so that the resistive film of the element is exposed, and an opening 21 is formed in the first resist 20 (see FIG. 2B).
Next, the resistance film 11a subjected to the resistance value change process is obtained by subjecting the resistance film 11 exposed from the opening 21 of the first resist 20 to immersion or spraying of the resistance value change processing liquid. (See FIG. 2 (c)). Here, when immersed in a ferric chloride solution (10% solution) at 30 ° C. for 1 minute, the resistance value of the resistance film 11a increases by about 60%.

次に、第1のレジスト20を剥離した後、抵抗値変化処理を施した抵抗皮膜11aを有する抵抗素子2Aが保護され、抵抗値変化処理を施していない抵抗素子2の抵抗皮膜11が開口部23に露出されるように、耐薬品性を有するレジスト22を形成する。具体的には、日立化成工業製27μm厚の感光性レジスト(RY−3237)を絶縁基板10上の全面にラミネートしたのち、フォトリソグラフィ工程で露光、現像することで、抵抗値変化処理を施す抵抗素子の抵抗皮膜が露出されるようにパターニングし、第2のレジスト22に開口部23を形成する(図2(d)参照)。
次に、第2のレジスト22の開口部23から露出した抵抗皮膜11に対して抵抗値変化処理液の浸漬または噴霧の処理を施すことにより、抵抗値変化処理を施した抵抗皮膜11bが得られる(図2(e)参照)。ここでは、10容量%硫酸に硫酸銅20g/lを入れた溶液で30℃、10分間浸漬すると、抵抗皮膜11bの抵抗値は20%程度低下する。
Next, after peeling off the first resist 20, the resistance element 2A having the resistance film 11a subjected to the resistance value change process is protected, and the resistance film 11 of the resistance element 2 not subjected to the resistance value change process is opened. A resist 22 having chemical resistance is formed so as to be exposed to 23. Specifically, a 27 μm-thick photosensitive resist (RY-3237) manufactured by Hitachi Chemical Co., Ltd. is laminated on the entire surface of the insulating substrate 10, and then exposed and developed in a photolithography process, whereby a resistance value is changed. Patterning is performed so that the resistance film of the element is exposed, and an opening 23 is formed in the second resist 22 (see FIG. 2D).
Next, the resistance film 11b subjected to the resistance value change process is obtained by subjecting the resistance film 11 exposed from the opening 23 of the second resist 22 to the immersion or spraying of the resistance value change processing liquid. (See FIG. 2 (e)). Here, when immersed for 10 minutes at 30 ° C. in a solution in which copper sulfate 20 g / l is added to 10 vol% sulfuric acid, the resistance value of the resistance film 11 b decreases by about 20%.

抵抗値変化処理後に、第2のレジスト22を除去し、代わりに熱硬化型の絶縁層3を貼付け、さらに、レーザー加工による絶縁層3への穴開けや導通ビア4および絶縁層3上の配線層5の形成など通常のプリント基板の多層配線基板工程を行う。以上の工程により、図2(g)に示すように、絶縁層3、導通ビア4、配線層5を含み、抵抗素子2A,2Bを内蔵した多層配線基板1Bにおいて、シート抵抗の異なる抵抗皮膜11a,11bを同じめっき抵抗層から得ることが可能となった。   After the resistance value changing process, the second resist 22 is removed, and a thermosetting insulating layer 3 is attached instead, and holes are formed in the insulating layer 3 by laser processing, conductive vias 4 and wiring on the insulating layer 3. An ordinary printed circuit board multilayer wiring board process such as the formation of the layer 5 is performed. 2G, the multi-layered wiring substrate 1B including the insulating layer 3, the conductive via 4 and the wiring layer 5 and including the resistance elements 2A and 2B has a resistance film 11a having different sheet resistances. 11b can be obtained from the same plating resistance layer.

本発明の抵抗素子内蔵基板およびその製造方法は、配線回路基板上に実装されている実装部品を基板内部に内蔵しようというものである。実装部品を基板内部に取り込むことで、実装エリアにスペースが生まれより高機能な部品を実装することが可能となる。また、従来の基板サイズも小さくすることが可能となり、電子機器の軽薄短小化を促進する原動力ともなる。   The resistance element-embedded substrate and the manufacturing method thereof according to the present invention are intended to incorporate a mounting component mounted on a printed circuit board inside the substrate. By incorporating the mounting components into the board, a space is created in the mounting area, and it becomes possible to mount more sophisticated components. In addition, it is possible to reduce the size of a conventional substrate, which is a driving force for promoting the reduction in the size and thickness of electronic devices.

(a)〜(e) 実施例1に係る抵抗素子内蔵基板の製造方法を説明する断面工程図である。(A)-(e) It is sectional process drawing explaining the manufacturing method of the resistance element built-in board | substrate which concerns on Example 1. FIG. (a)〜(g) 実施例2に係る抵抗素子内蔵基板の製造方法を説明する断面工程図である。(A)-(g) It is sectional process drawing explaining the manufacturing method of the resistance element built-in board | substrate which concerns on Example 2. FIG. (a)〜(c) 抵抗値変化処理を説明する斜視工程図である。(A)-(c) It is a perspective process figure explaining resistance value change process.

符号の説明Explanation of symbols

1A,1B…抵抗素子内蔵基板、
2…抵抗皮膜に抵抗値変化処理を施していない抵抗素子、
2A,2B…抵抗皮膜に抵抗値変化処理を施した抵抗素子、
11…抵抗値変化処理を施していない抵抗皮膜、
11a,11b…抵抗値変化処理を施した抵抗皮膜、
20,22…保護層(レジスト)。
1A, 1B ... resistance element built-in substrate,
2 ... Resistance element that has not been subjected to resistance value change treatment on the resistance film,
2A, 2B: Resistance element in which resistance value change treatment is applied to the resistance film,
11 ... Resistance film not subjected to resistance value change treatment,
11a, 11b ... resistance film subjected to resistance value change treatment,
20, 22 ... Protective layer (resist).

Claims (6)

同一のめっき抵抗層からなる抵抗皮膜を有する複数の抵抗素子を内蔵する抵抗素子内蔵基板において、
少なくとも一つの抵抗素子の有する抵抗皮膜のシート抵抗は、他の抵抗素子の有する抵抗皮膜のシート抵抗と異なることを特徴とする抵抗素子内蔵基板。
In a resistance element built-in substrate having a plurality of resistance elements having a resistance film made of the same plating resistance layer,
A resistance element-embedded substrate, wherein a sheet resistance of a resistance film of at least one resistance element is different from a sheet resistance of a resistance film of another resistance element.
同一のめっき抵抗層からなる抵抗皮膜を有する複数の抵抗素子を内蔵する抵抗素子内蔵基板の製造方法において、
少なくとも一つの抵抗素子の有する抵抗皮膜を覆う保護層を設け、他の抵抗素子の有する抵抗皮膜に抵抗値変化処理を施すことを特徴とする抵抗素子内蔵基板の製造方法。
In a method of manufacturing a resistance element built-in substrate that includes a plurality of resistance elements having a resistance film made of the same plating resistance layer,
A method of manufacturing a resistance element-embedded substrate, comprising: providing a protective layer covering a resistance film of at least one resistance element; and subjecting the resistance film of another resistance element to a resistance value change process.
前記抵抗値変化処理は、前記保護層が設けられていない抵抗皮膜の抵抗値変化処理液への浸漬または散布により行うことを特徴とする請求項2に記載の抵抗素子内蔵基板の製造方法。   3. The method of manufacturing a resistance element-embedded substrate according to claim 2, wherein the resistance value change process is performed by immersing or spraying a resistance film not provided with the protective layer in a resistance value change process liquid. 前記抵抗値変化処理液は、少なくともニッケル、銅、金、パラジウムからなる群から選ばれるいずれかの金属塩を含む溶液であることを特徴とする請求項3に記載の抵抗素子内蔵基板の製造方法。   4. The method of manufacturing a resistance element-embedded substrate according to claim 3, wherein the resistance value change processing solution is a solution containing at least one metal salt selected from the group consisting of nickel, copper, gold, and palladium. . 前記抵抗値変化処理後に、抵抗皮膜に加熱処理を施すことを特徴とする請求項2ないし4のいずれかに記載の抵抗素子内蔵基板の製造方法。   5. The method of manufacturing a resistance element-embedded substrate according to claim 2, wherein the resistance film is subjected to heat treatment after the resistance value change treatment. 6. 前記抵抗値変化処理後、前記保護層を剥離せずに当該抵抗素子を基板内に埋め込むことを特徴とする請求項2ないし5のいずれかに記載の抵抗素子内蔵基板の製造方法。   6. The method of manufacturing a resistance element built-in substrate according to claim 2, wherein the resistance element is embedded in the substrate without peeling off the protective layer after the resistance value changing process.
JP2004351729A 2004-12-03 2004-12-03 Manufacturing method of resistance element built-in substrate Expired - Fee Related JP4626282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351729A JP4626282B2 (en) 2004-12-03 2004-12-03 Manufacturing method of resistance element built-in substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351729A JP4626282B2 (en) 2004-12-03 2004-12-03 Manufacturing method of resistance element built-in substrate

Publications (2)

Publication Number Publication Date
JP2006165117A true JP2006165117A (en) 2006-06-22
JP4626282B2 JP4626282B2 (en) 2011-02-02

Family

ID=36666803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351729A Expired - Fee Related JP4626282B2 (en) 2004-12-03 2004-12-03 Manufacturing method of resistance element built-in substrate

Country Status (1)

Country Link
JP (1) JP4626282B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012906B1 (en) * 1970-10-09 1975-05-15
JPS5378050A (en) * 1976-12-21 1978-07-11 Nitto Electric Ind Co Multilayer resistance circuit board
JPH097809A (en) * 1995-06-21 1997-01-10 Rohm Co Ltd Thin film resistor and its manufacturing method
JPH10275717A (en) * 1997-03-31 1998-10-13 Taiyo Yuden Co Ltd Manufacture of chip resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012906B1 (en) * 1970-10-09 1975-05-15
JPS5378050A (en) * 1976-12-21 1978-07-11 Nitto Electric Ind Co Multilayer resistance circuit board
JPH097809A (en) * 1995-06-21 1997-01-10 Rohm Co Ltd Thin film resistor and its manufacturing method
JPH10275717A (en) * 1997-03-31 1998-10-13 Taiyo Yuden Co Ltd Manufacture of chip resistor

Also Published As

Publication number Publication date
JP4626282B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4242416B2 (en) Method for manufacturing printed circuit board with landless via hole
US6562250B1 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
CN115066109B (en) Flexible circuit board with electroplated hard gold isolated pad and manufacturing method thereof
JP4626282B2 (en) Manufacturing method of resistance element built-in substrate
JP2005222999A (en) Method for manufacturing double-sided circuit wiring board
KR100747020B1 (en) Resistence embedded PCB and manufacturing method thereof
TWI429349B (en) A manufacturing method of a printed wiring board incorporating a resistive element
JPH08107263A (en) Manufacturing method of printed-wiring board
JP2001196746A (en) Printed wiring substrate and method for manufacturing printed wiring substrate
JP4792761B2 (en) Method for forming resistance element
JP4701853B2 (en) Multi-layer wiring board with built-in resistance element and resistance value adjustment method for the resistance element
JP4687084B2 (en) Method for manufacturing printed wiring board with built-in passive element
TW201334646A (en) The printed circuit board and the method for manufacturing the same
JP4507779B2 (en) Method for manufacturing printed wiring board with built-in resistance element
JP4507780B2 (en) Manufacturing method of printed wiring board with built-in resistor
KR100736146B1 (en) Method for fabricating the flexible circuit board
JPH03225894A (en) Manufacture of printed wiring board
JP2000353726A (en) Manufacture of film carrier
JP2007027238A (en) Resistive element and multilayer wiring board incorporating the same, and method of adjusting resistance value of resistive element
JP4359990B2 (en) Film carrier manufacturing method
JPH06252529A (en) Manufacture of printed wiring board
JP4661338B2 (en) Method for forming resistor
JP2004179485A (en) Printed wiring board and method of manufacturing the same
JP2005240127A (en) Resistance element and printing circuit board
JP4359991B2 (en) Film carrier manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees