JP2006162319A - Infrared detection system - Google Patents

Infrared detection system Download PDF

Info

Publication number
JP2006162319A
JP2006162319A JP2004351001A JP2004351001A JP2006162319A JP 2006162319 A JP2006162319 A JP 2006162319A JP 2004351001 A JP2004351001 A JP 2004351001A JP 2004351001 A JP2004351001 A JP 2004351001A JP 2006162319 A JP2006162319 A JP 2006162319A
Authority
JP
Japan
Prior art keywords
signal
failure
infrared detection
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004351001A
Other languages
Japanese (ja)
Other versions
JP4639783B2 (en
Inventor
Makoto Iwashima
誠 岩島
Yasuhiro Fukuyama
康弘 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004351001A priority Critical patent/JP4639783B2/en
Publication of JP2006162319A publication Critical patent/JP2006162319A/en
Application granted granted Critical
Publication of JP4639783B2 publication Critical patent/JP4639783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared detection system which prevents the effect of failure of infrared detector, from affecting the output of the infrared detector and is capable of scan selection at a high speed. <P>SOLUTION: The infrared detection system is constituted of a two-dimensional infrared detector part 1; a horizontal scanner 5 outputting by scan-selecting the output signal of the infrared detector (indicated by a resistor and a voltage source connected in series in the figure); a differential amplifier 6 comparing the output signal of the horizontal scanner 5 with a reference voltage and differentially amplifying; an N-type MOSFET switch 10 shorting between two inputs of the differential amplifier 6, when a failure signal is input; and a comparator 7 comparing the output signal of the horizontal scanner 5 with the second reference voltage and outputting the failure detection signal, when the former dropped lower than the latter, and an S-R flip-flop 9 continuing input of the failure signal to the N-type MOSFET switch 10 from, when the failure detection signal is input until one scan selection of the infrared detector ends. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は赤外線検出装置に係る。   The present invention relates to an infrared detector.

近年、被写体の温度分布をリアルタイムで撮像したいと言う要求が強く、2次元の赤外線検出装置の需要が高まっている。これに伴い、安価で高性能な赤外線検出装置開発が望まれている。   In recent years, there is a strong demand for imaging the temperature distribution of a subject in real time, and the demand for two-dimensional infrared detection devices is increasing. Accordingly, development of an inexpensive and high-performance infrared detector is desired.

入射赤外線を熱に変換し、その熱による温度上昇を温度検出素子で検出することによって赤外線を検出する赤外線検出装置が知られている。そのような装置においては、赤外線の検出感度を高めるために、温度検出素子が細い梁で支持されている場合があり、その梁が機械的衝撃によって破損し、その結果、温度検出回路がオープン(断線状態)となる故障が起こる可能性がある。下記特許文献1には複数の温度検出素子より構成される温度検出装置が記載され、各温度検出素子のオープン故障を検出する構成が記載されている。   Infrared detectors that detect infrared rays by converting incident infrared rays into heat and detecting temperature rise due to the heat with a temperature detection element are known. In such a device, in order to increase the infrared detection sensitivity, the temperature detection element may be supported by a thin beam, and the beam is damaged by a mechanical shock, and as a result, the temperature detection circuit is opened ( There is a possibility that a failure will occur. Patent Document 1 listed below describes a temperature detection device including a plurality of temperature detection elements, and describes a configuration for detecting an open failure of each temperature detection element.

特開2004−117260号公報Japanese Patent Laid-Open No. 2004-117260

しかしながら、上記特許文献1には、オープン故障の検出方法についての記載はあるが、その故障発生による影響は考慮されていない。そのような故障発生による影響の問題としては、例えば、次のようなものがある。   However, although the above Patent Document 1 describes a detection method of an open failure, the influence due to the occurrence of the failure is not considered. Examples of the problem of the influence due to the occurrence of such a failure include the following.

入射赤外線を電気信号に変換して出力する複数の赤外線検出素子の複数個を配列し、各赤外線検出素子を順次走査選択し、その素子の出力信号を、差動増幅器によって、基準電圧と比較して差動増幅し、入射赤外線の強度に応じた電気信号として取り出す赤外線検出装置において、オープン故障が起こり、その故障を起こした赤外線検出素子が走査選択された時には、オープン故障を起こしていない素子の出力信号とは大きく異なる電圧が差動増幅器に入力される。その結果、サーモパイル(複数の熱電対を、熱起電力が直列合成されるように接続したもの)型のように高出力インピーダンスを持つ赤外線検出素子を用いた場合、梁折れ素子の次の素子に走査選択が切り換わった時に、差動増幅器に印加される素子側の入力電圧が素子の出力信号に等しくなるまでに長い時間を要してしまい、従って、走査選択速度を低速にしなければならないと言う問題がある。   A plurality of infrared detection elements that convert incident infrared rays into electrical signals and output them are arranged, each infrared detection element is sequentially scanned and selected, and the output signal of the element is compared with a reference voltage by a differential amplifier. In the infrared detection device that differentially amplifies and extracts as an electrical signal corresponding to the intensity of the incident infrared ray, when an open failure occurs and the infrared detection element that caused the failure is selected for scanning, the element of the element that has not caused the open failure A voltage significantly different from the output signal is input to the differential amplifier. As a result, when an infrared detector with a high output impedance is used, such as a thermopile (a plurality of thermocouples connected so that the thermoelectromotive forces are combined in series), the element next to the beam bending element is used. When the scan selection is switched, it takes a long time until the input voltage on the element side applied to the differential amplifier becomes equal to the output signal of the element. Therefore, the scan selection speed must be lowered. There is a problem to say.

本発明は、上記の問題に鑑みてなされたものであり、発明が解決しようとする課題は、赤外線検出素子の故障による影響が他の赤外線検出素子の出力に及ばず、高速での走査選択が可能となる赤外線検出装置を提供することである。   The present invention has been made in view of the above problems, and the problem to be solved by the present invention is that the influence of failure of the infrared detection element does not affect the output of other infrared detection elements, and scanning selection at high speed is possible. It is to provide an infrared detecting device that can be used.

入射赤外線を電気信号に変換する複数の赤外線検出素子を配列し、各前記赤外線検出素子の出力信号を走査選択し基準電圧と比較して差動増幅する赤外線検出装置であって、故障信号が入力された時に前記差動増幅手段の2つの入力の間を短絡する半導体スイッチを具備する赤外線検出装置を構成する。   An infrared detection device that arranges a plurality of infrared detection elements that convert incident infrared rays into electrical signals, scans and selects the output signals of the infrared detection elements, and differentially amplifies them by comparing with a reference voltage. When this is done, an infrared detecting device comprising a semiconductor switch that short-circuits between the two inputs of the differential amplification means is constructed.

本発明の実施により、赤外線検出素子の故障による影響が他の赤外線検出素子の出力に及ばず、高速での走査選択が可能となる赤外線検出装置を提供することができる。   By implementing the present invention, it is possible to provide an infrared detection device that allows scanning selection at a high speed without affecting the output of other infrared detection elements due to the failure of the infrared detection element.

(第1の実施の形態)
以下、本発明の第1の実施の形態について説明する。図1は、本発明の第1の実施の形態である赤外線検出装置を説明する回路構成図である。図において、1は、基板(図示せず)上に構成される2次元赤外線検出素子部、2は、2次元赤外線検出素子部1の画素数分のアドレスをカウントするカウンタ、3は垂直走査信号を出力する垂直方向デコーダ、4は水平走査信号を出力する水平方向デコーダ、5は水平方向スキャナ、6は差動増幅器、である。尚、2次元赤外線検出素子部1、水平方向スキャナ5の詳細回路については、図1中に記載しているが、差動増幅器6の詳細回路については、一般的に知られている差動増幅回路を図5に別に示す。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a circuit configuration diagram illustrating an infrared detection device according to a first embodiment of the present invention. In the figure, 1 is a two-dimensional infrared detecting element unit configured on a substrate (not shown), 2 is a counter that counts the addresses of the pixels of the two-dimensional infrared detecting element unit 1, and 3 is a vertical scanning signal. 4 is a horizontal decoder that outputs a horizontal scanning signal, 5 is a horizontal scanner, and 6 is a differential amplifier. The detailed circuits of the two-dimensional infrared detection element unit 1 and the horizontal scanner 5 are shown in FIG. 1, but the detailed circuit of the differential amplifier 6 is generally known differential amplification. The circuit is shown separately in FIG.

2次元赤外線検出素子部1は、画素ij(i,jは整数で、1≦i≦m、1≦j≦n)が基板上に、縦にm個、横にn個、2次元配列して構成され、各画素ijは赤外線検出素子(図中、直列接続された抵抗と電圧源によって表されている)とN型MOSFETスイッチMijとの組合わせで構成されている。このように基板上に2次元配列された赤外線検出素子として、サーモパイル(複数の熱電対を、熱起電力が直列合成されるように接続したもの)を仮定すると、等価回路としては、図1に示したように、抵抗と電圧源の直列回路として表すことができる。この赤外線検出素子においては、入射赤外線が吸収され、それによってサーモパイル中の熱電対の温接点の温度が上昇し、その温度上昇に応じた熱起電力が発生し、それが出力電圧として出力される。すなわち、この赤外線検出素子は入射赤外線を電気信号に変換して出力する。   The two-dimensional infrared detection element unit 1 has a two-dimensional array of pixels ij (where i and j are integers, 1 ≦ i ≦ m, 1 ≦ j ≦ n), m vertically and n horizontally. Each pixel ij is composed of a combination of an infrared detection element (represented by a resistor and a voltage source connected in series in the figure) and an N-type MOSFET switch Mij. Assuming a thermopile (a plurality of thermocouples connected so that thermoelectromotive forces are combined in series) as an infrared detecting element arranged two-dimensionally on the substrate in this manner, an equivalent circuit is shown in FIG. As shown, it can be represented as a series circuit of a resistor and a voltage source. In this infrared detecting element, incident infrared rays are absorbed, thereby increasing the temperature of the hot junction of the thermocouple in the thermopile, generating a thermoelectromotive force according to the temperature increase, and outputting it as an output voltage. . That is, this infrared detecting element converts incident infrared light into an electrical signal and outputs it.

水平方向スキャナ5は、上記赤外線検出素子各々の出力信号を順次走査選択して出力する走査選択手段であり、赤外線検出素子列ごとに接続されたN型MOSFETスイッチM1〜Mnによって構成されている。   The horizontal scanner 5 is scanning selection means for sequentially scanning and outputting the output signals of the infrared detection elements, and is composed of N-type MOSFET switches M1 to Mn connected to each infrared detection element array.

差動増幅器6は、走査選択手段である水平方向スキャナ5の出力信号を第1の基準電圧と比較して差動増幅する差動増幅手段である。   The differential amplifier 6 is a differential amplifying unit that differentially amplifies the output signal of the horizontal scanner 5 that is a scanning selection unit by comparing it with a first reference voltage.

以上に説明した構成は、従来例においても見られるものであるが、本実施の形態が従来例と異なる点は、以下に説明するように、赤外線検出素子の故障情報に基づく信号(故障信号と呼ぶ)によって差動増幅器6の2つの入力の間を短絡する半導体スイッチ(図1におけるN型MOSFETスイッチ10)を備えていることである。   Although the configuration described above is also found in the conventional example, this embodiment is different from the conventional example in that a signal based on failure information of the infrared detection element (failure signal and 1), a semiconductor switch (N-type MOSFET switch 10 in FIG. 1) that short-circuits between two inputs of the differential amplifier 6 is provided.

図1において、7はコンパレータ、8は電圧源、9はS−Rフリップフロップ、10はN型MOSFETスイッチであり、N型MOSFETスイッチ10が、制御端子に故障信号が印加された時に差動増幅手段である差動増幅器6の2つの入力の間を短絡する半導体スイッチとしての役割を果たす。   In FIG. 1, 7 is a comparator, 8 is a voltage source, 9 is an S-R flip-flop, 10 is an N-type MOSFET switch, and the N-type MOSFET switch 10 is differentially amplified when a fault signal is applied to the control terminal. It serves as a semiconductor switch that short-circuits the two inputs of the differential amplifier 6 as means.

また、コンパレータ7は、走査選択手段である水平方向スキャナ5の出力信号を第2の基準電圧と比較し、水平方向スキャナ5の出力信号が前記第2の基準電圧より下降した時に故障検知信号を出力する第1の電圧比較手段としての役割を果たし、電圧源8はコンパレータ7に前記第2の基準電圧を印加する役割を果たし、S−Rフリップフロップ9は、前記故障検知信号を入力とし、前記故障検知信号が入力されてから走査選択手段である水平方向スキャナ5による走査選択が次の赤外線検出素子の出力信号の走査選択に切り換わるまでの間、前記故障信号を半導体スイッチであるN型MOSFETスイッチ10に入力し続ける第1の故障信号出力手段としての役割を果たす。   The comparator 7 compares the output signal of the horizontal scanner 5 serving as a scanning selection unit with a second reference voltage, and outputs a failure detection signal when the output signal of the horizontal scanner 5 falls below the second reference voltage. The voltage source 8 serves to apply the second reference voltage to the comparator 7, and the SR flip-flop 9 receives the failure detection signal as an input. From the time when the failure detection signal is input to the time when the scanning selection by the horizontal scanner 5 as the scanning selection means is switched to the scanning selection of the output signal of the next infrared detection element, the failure signal is an N type semiconductor switch. It serves as a first failure signal output means that continues to be input to the MOSFET switch 10.

図2に、図1中の垂直方向デコーダ3、水平方向デコーダ4の各出力波形のタイムチャート、及び、2次元赤外線検出素子部1と差動増幅器6に印加される第1の基準電圧Vref、水平方向スキャナ5の出力電圧Vp、差動増幅器6の出力電圧Voutの各電圧波形、及び、コンパレータ7、S−Rフリップフロップ9、外部からの基準クロックCLKの各出力波形(夫々、CO、SW、CLKで示す)のタイムチャートを示す。   2 shows time charts of output waveforms of the vertical direction decoder 3 and the horizontal direction decoder 4 in FIG. 1, and a first reference voltage Vref applied to the two-dimensional infrared detection element unit 1 and the differential amplifier 6. Each voltage waveform of the output voltage Vp of the horizontal scanner 5 and the output voltage Vout of the differential amplifier 6, and each output waveform of the comparator 7, the SR flip-flop 9, and the reference clock CLK from the outside (CO, SW, respectively) , And CLK).

尚、サーモパイル型の赤外線検出素子は、入射赤外線を吸収し熱に変換する受熱部がマイクロマシーニング加工により基板部に対して中空に置かれると共に、梁を介して基板に支えられ、該梁内に熱電対(抵抗)が配線されて、受熱部と基板部の温度差により電圧を発生して、入射赤外線を電気信号に変換する構成が一般的である。図1に示したように、各赤外線検出素子の一端は第1の基準電圧Vrefに保たれている導線に接続しているので、その他端からは、電圧Vrefに入射赤外線の強さに応じて発生した電圧が重畳された電圧が出力信号として出力される。   The thermopile type infrared detecting element has a heat receiving portion that absorbs incident infrared rays and converts it into heat by a micromachining process, and is supported by the substrate via a beam. In general, a thermocouple (resistor) is wired to generate a voltage due to a temperature difference between the heat receiving portion and the substrate portion, and convert incident infrared light into an electrical signal. As shown in FIG. 1, since one end of each infrared detection element is connected to a conducting wire maintained at the first reference voltage Vref, the other end is connected to the voltage Vref according to the intensity of incident infrared rays. A voltage on which the generated voltage is superimposed is output as an output signal.

次に、図1及び図2に従い、本発明の第1の実施の形態の赤外線検出装置の動作について説明する。   Next, the operation of the infrared detection apparatus according to the first embodiment of the present invention will be described with reference to FIGS.

まず、カウンタ2では、入力する基準クロックCLKに基づき、2次元赤外線検出素子1の画素数分のアドレスがカウントされ、垂直方向デコーダ3、水平方向デコーダ4に出力される。垂直方向デコーダ3、水平方向デコーダ4では、カウンタ2からのアドレスカウントをデコードして、各行ごとの垂直方向選択信号Y1〜Ym、或いは各列ごとの水平方向選択信号X1〜Xnとし、垂直方向選択信号Y1〜Ymを2次元赤外線検出素子部1内の垂直方向スキャナ(N型MOSFETスイッチM11〜Mmnのゲート端子)に、水平方向選択信号X1〜Xnを水平方向スキャナ5(N型MOSFETスイッチM1〜Mnのゲート端子)に夫々印加する。尚、図2に示すタイムチャートのように、垂直方向選択信号Y1〜Ym或いは水平方向選択信号X1〜XnがH(ハイ)レベルになると、接続されているN型MOSFETスイッチがオン(導通)する。この結果、まず垂直方向選択信号Y1がHレベルになると、N型MOSFETスイッチM11〜M1nがオンし、画素11〜1nの出力信号がV1〜Vnとして水平方向スキャナ5に送られ、同時に水平方向選択信号X1がHレベルになって、N型MOSFETスイッチM1がオンし、水平方向スキャナ5の出力電圧Vpとして画素11の出力信号が走査選択される。その後、順次水平方向選択信号X2〜XnがHレベルとなり、水平方向スキャナ5の出力電圧Vpとして画素11の出力信号に続いて、画素12〜1nの出力信号が走査選択される。   First, the counter 2 counts the addresses corresponding to the number of pixels of the two-dimensional infrared detection element 1 based on the input reference clock CLK, and outputs the counted addresses to the vertical direction decoder 3 and the horizontal direction decoder 4. In the vertical direction decoder 3 and the horizontal direction decoder 4, the address count from the counter 2 is decoded to be used as the vertical direction selection signals Y1 to Ym for each row or the horizontal direction selection signals X1 to Xn for each column. The signals Y1 to Ym are sent to the vertical scanner (gate terminals of the N-type MOSFET switches M11 to Mmn) in the two-dimensional infrared detection element unit 1, and the horizontal direction selection signals X1 to Xn are sent to the horizontal scanner 5 (N-type MOSFET switches M1 to M1). To the gate terminal of Mn. As shown in the time chart of FIG. 2, when the vertical direction selection signals Y1 to Ym or the horizontal direction selection signals X1 to Xn become H (high) level, the connected N-type MOSFET switches are turned on (conductive). . As a result, first, when the vertical direction selection signal Y1 becomes H level, the N-type MOSFET switches M11 to M1n are turned on, and the output signals of the pixels 11 to 1n are sent to the horizontal scanner 5 as V1 to Vn and simultaneously selected in the horizontal direction. The signal X1 becomes H level, the N-type MOSFET switch M1 is turned on, and the output signal of the pixel 11 is selected for scanning as the output voltage Vp of the horizontal scanner 5. Thereafter, the horizontal direction selection signals X2 to Xn sequentially become H level, and the output signal of the pixels 12 to 1n is selected for scanning following the output signal of the pixel 11 as the output voltage Vp of the horizontal scanner 5.

次に、垂直方向選択信号Y2がHレベルとなり、又、水平方向選択信号X1〜Xnが順次Hレベルとなり、水平方向スキャナ出力電圧Vpとして画素21〜2nの出力信号が走査選択される。従って、これら動作の繰り返しにより、水平方向スキャナ出力電圧Vpとして画素11〜1n、21〜2n、‥、m1〜mnの順に走査選択され、再び画素11からの走査選択が繰り返される。   Next, the vertical direction selection signal Y2 becomes H level, and the horizontal direction selection signals X1 to Xn sequentially become H level, and the output signals of the pixels 21 to 2n are scan-selected as the horizontal direction scanner output voltage Vp. Therefore, by repeating these operations, the horizontal scanner output voltage Vp is scanned and selected in the order of the pixels 11 to 1n, 21 to 2n,..., M1 to mn, and the scanning selection from the pixel 11 is repeated again.

差動増幅器6では、上記水平方向スキャナ5の出力電圧Vp(第1の基準電圧Vrefに入射赤外線の強さに応じて発生した電圧が重畳されたもの)とVrefとの差分電圧が増幅され、従って、出力電圧Voutとして、各赤外線検出素子にて入射赤外線の強さに応じて発生した電圧分のみが増幅されて出力される。   In the differential amplifier 6, the differential voltage between the output voltage Vp of the horizontal scanner 5 (the voltage generated according to the intensity of the incident infrared ray is superimposed on the first reference voltage Vref) and Vref is amplified, Accordingly, as the output voltage Vout, only the voltage generated according to the intensity of the incident infrared rays in each infrared detection element is amplified and output.

コンパレータ7は、電圧源8から出力される、第1の基準電圧VrefとGnd電圧(接地電圧)との間の所定の第2の基準電圧であるVthと、水平方向スキャナ5の出力電圧Vpとを比較し、電圧Vpが電圧Vthより降下した時に、故障検知信号としてH(ハイ)レベルの出力電圧を出力し、それをS−Rフリップフロップ9に入力する。   The comparator 7 outputs a predetermined second reference voltage Vth output from the voltage source 8 between the first reference voltage Vref and the Gnd voltage (ground voltage), and the output voltage Vp of the horizontal scanner 5. When the voltage Vp drops below the voltage Vth, an H (high) level output voltage is output as a failure detection signal, which is input to the SR flip-flop 9.

S−Rフリップフロップ9は、コンパレータ7の出力すなわち故障検知信号をS(セット)入力、基準クロックCLKをR(リセット)入力とし、コンパレータ7の出力(故障検知信号)がHレベルになった時に、Q出力より故障信号としてHレベルを出力し、コンパレータ7の出力がL(ロー)レベルになった後も、基準クロックCLKがLレベルからHレベルに立ち上がるまで、すなわち、走査選択手段である水平方向スキャナ5による走査選択が次の赤外線検出素子の出力信号の走査選択に切り換わるまで、Q出力(故障信号)をHレベルを保持する。   The S-R flip-flop 9 uses the output of the comparator 7, that is, the failure detection signal as the S (set) input, the reference clock CLK as the R (reset) input, and the output of the comparator 7 (failure detection signal) becomes H level. Even after the H level is output as a failure signal from the Q output and the output of the comparator 7 becomes the L (low) level, the reference clock CLK rises from the L level to the H level, that is, the horizontal that is the scanning selection means. The Q output (failure signal) is held at the H level until the scanning selection by the direction scanner 5 is switched to the scanning selection of the output signal of the next infrared detection element.

N型MOSFETスイッチ10は、ゲート端子がHレベルになった時にオンとなってドレイン−ソース間を短絡(ショート)し、従って、S−Rフリップフロップ9のQ出力がHレベルの時すなわち故障信号が入力されている時に、継続的に差動増幅器6の2入力間を短絡(ショート)する様に動作する。   The N-type MOSFET switch 10 is turned on when the gate terminal becomes H level to short-circuit between the drain and the source. Therefore, when the Q output of the SR flip-flop 9 is at H level, that is, a failure signal. Is operated to continuously short-circuit between the two inputs of the differential amplifier 6.

ここで、ある赤外線検出素子内(ここでは画素21)の梁が折れ、熱電対を構成する抵抗が断線となった場合を考える。この場合、水平方向スキャナ5の出力電圧Vpは、梁折れ画素(画素21)より前の画素の出力信号を走査選択している時は、Vpの波形は各画素の入射赤外線の強さに応じた起電圧が基準電圧Vrefに重畳される波形となるが、梁折れ画素(画素21)の出力信号の走査選択時は、回路オープン(開放)となる為、水平方向スキャナ5からは電圧が出力されず、差動増幅器6の入力電圧はGnd電圧(0V)に降下する。差動増幅器6の入力電圧がGnd電圧(0V)に降下すると、コンパレータ7では、この入力電圧が電圧源8の出力電圧Vthより降下したことが検知されて、出力がHレベルとなり、それが故障検知信号としてS−Rフリップフロップ9へ入力され、S−Rフリップフロップ9のQ出力もHレベルとなり、それが故障信号としてN型MOSFETスイッチ10に入力され、N型MOSFETスイッチ10がオンし、差動増幅器6の2入力間が短絡(ショート)され、水平方向スキャナ5の出力電圧Vpが加わる方の入力端子にも第1の基準電圧Vrefが印加されることになり、当該入力端子はGnd電圧(0V)から基準電圧Vrefに上昇する。従って、差動増幅器6の出力電圧Voutとしては、赤外線検出素子の起電圧がない場合と同等の出力値となる(図2中、「梁折れ」で表示)。   Here, a case is considered in which a beam in a certain infrared detection element (here, pixel 21) is broken and a resistor constituting the thermocouple is disconnected. In this case, the output voltage Vp of the horizontal scanner 5 corresponds to the intensity of the incident infrared ray of each pixel when the output signal of the pixel before the broken pixel (pixel 21) is selected for scanning. The generated voltage is superimposed on the reference voltage Vref, but when the scanning of the output signal of the beam broken pixel (pixel 21) is selected, the circuit is opened (opened), so the voltage is output from the horizontal scanner 5. Instead, the input voltage of the differential amplifier 6 drops to the Gnd voltage (0 V). When the input voltage of the differential amplifier 6 drops to the Gnd voltage (0V), the comparator 7 detects that the input voltage has dropped below the output voltage Vth of the voltage source 8, and the output becomes H level, which causes a failure. The detection signal is input to the SR flip-flop 9, the Q output of the SR flip-flop 9 is also at the H level, and is input to the N-type MOSFET switch 10 as a failure signal, and the N-type MOSFET switch 10 is turned on. The two inputs of the differential amplifier 6 are short-circuited, and the first reference voltage Vref is applied to the input terminal to which the output voltage Vp of the horizontal scanner 5 is applied. The voltage (0V) increases to the reference voltage Vref. Therefore, the output voltage Vout of the differential amplifier 6 is an output value equivalent to the case where there is no electromotive voltage of the infrared detection element (indicated by “beam breakage” in FIG. 2).

水平方向スキャナ5の出力電圧Vpが加わる方の入力端子がGnd電圧(0V)から基準電圧Vrefに上昇すると、コンパレータ7の出力はLレベルとなるが、S−Rフリップフロップ9のQ出力はHレベルが保持され、基準クロックCLKがLレベルからHレベルに立ち上がる時、即ち、水平方向スキャナ5による走査選択が梁折れ画素(画素21)の次の画素22の出力信号の走査選択に切り換わる時にS−Rフリップフロップ9のQ出力がLレベルとなって、N型MOSFETスイッチ10がオフし、梁折れ画素(画素21)より前の画素を走査選択している状態と同一の状態に戻る。   When the input terminal to which the output voltage Vp of the horizontal scanner 5 is applied rises from the Gnd voltage (0 V) to the reference voltage Vref, the output of the comparator 7 becomes L level, but the Q output of the SR flip-flop 9 is H When the level is held and the reference clock CLK rises from the L level to the H level, that is, when the scanning selection by the horizontal scanner 5 is switched to the scanning selection of the output signal of the pixel 22 next to the broken pixel (pixel 21). The Q output of the S-R flip-flop 9 becomes L level, the N-type MOSFET switch 10 is turned off, and the state returns to the same state as the state in which the pixel preceding the broken pixel (pixel 21) is selected for scanning.

この結果、梁折れ画素(画素21)の次の画素22の走査選択に切り換わった時にも、Vrefに等しくなっていたVpは、画素22の起電圧が基準電圧Vrefに重畳された電圧に直ぐに到達し、梁折れ画素(画素21)での電圧飛び(VpがVrefと大きく異なること)による影響を受けることなく、高速で、赤外線検出素子にて発生した電圧分のみを差動増幅器6で増幅して取り出すことができる。   As a result, Vp, which is equal to Vref even when switching to scanning selection of the pixel 22 next to the broken pixel (pixel 21), is immediately equal to the voltage in which the electromotive voltage of the pixel 22 is superimposed on the reference voltage Vref. The differential amplifier 6 amplifies only the voltage generated by the infrared detection element at high speed without being affected by the voltage jump at the broken pixel (pixel 21) (Vp is greatly different from Vref). Can be taken out.

尚、図示はしないが、差動増幅器6の入力回路構成等により、梁折れ画素の走査選択での回路オープン(開放)時に、水平方向スキャナ5の出力電圧Vpが入力する差動増幅器6の入力電圧が電源電圧に上昇する場合には、電圧源8の出力電圧Vthを基準電圧Vrefと前記電源電圧との間の電圧値に設定し、コンパレータ7で、水平方向スキャナ5の出力電圧Vpが電圧源8の出力電圧Vthより上昇した時に、H(ハイ)レベルの出力電圧を出力する様に設定すれば、同一の効果を得ることができる。この場合に、電圧源8の出力電圧Vth、コンパレータ7、S−Rフリップフロップ9は、夫々、請求項3に記載の第3の基準電圧、第2の電圧比較手段、第2の故障信号出力手段に該当する。   Although not shown in the figure, the input of the differential amplifier 6 to which the output voltage Vp of the horizontal scanner 5 is input when the circuit is opened (opened) in scanning selection of the broken pixel pixel due to the input circuit configuration of the differential amplifier 6 or the like. When the voltage rises to the power supply voltage, the output voltage Vth of the voltage source 8 is set to a voltage value between the reference voltage Vref and the power supply voltage, and the comparator 7 outputs the voltage Vp of the horizontal scanner 5 as the voltage. The same effect can be obtained if the output voltage Vth of the source 8 is set to output an H (high) level output voltage when it rises above the output voltage Vth. In this case, the output voltage Vth of the voltage source 8, the comparator 7, and the S-R flip-flop 9 are respectively the third reference voltage, the second voltage comparison means, and the second failure signal output. Corresponds to the means.

(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。図3は、本発明の第2の実施の形態を示す赤外線検出装置を説明する回路構成図である。図3において、図1に示す回路構成図と同一の構成要素については、同一の符号を記して詳細な説明は省略する。本実施の形態においては、図1に示すコンパレータ7、電圧源8、S−Rフリップフロップ9を必要としない。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 3 is a circuit configuration diagram for explaining an infrared detecting device according to the second embodiment of the present invention. 3, the same components as those in the circuit configuration diagram shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. In the present embodiment, the comparator 7, the voltage source 8, and the S-R flip-flop 9 shown in FIG.

図4に、図3中の垂直方向デコーダ3、水平方向デコーダ4の各出力波形タイムチャート、及び、2次元赤外線検出素子部1と差動増幅器6に印加される基準電圧Vref、水平方向スキャナ5の出力電圧Vp、差動増幅器6の出力電圧Voutの各電圧波形、及び、N型MOSFETスイッチ10の入力波形(SWで示す)タイムチャートを示す。   4 shows time charts of respective output waveforms of the vertical direction decoder 3 and the horizontal direction decoder 4 in FIG. 3, the reference voltage Vref applied to the two-dimensional infrared detection element unit 1 and the differential amplifier 6, and the horizontal direction scanner 5. The respective output voltage waveforms of the output voltage Vp, the output voltage Vout of the differential amplifier 6, and the input waveform (indicated by SW) of the N-type MOSFET switch 10 are shown.

次に、図3及び図4に従い、本発明の第2の実施の形態の赤外線検出装置の動作について説明する。尚、2次元赤外線検出素子部1の走査選択動作については、第1の実施の形態と同一である為、説明は省略する。   Next, the operation of the infrared detection apparatus according to the second embodiment of the present invention will be described with reference to FIGS. Since the scanning selection operation of the two-dimensional infrared detection element unit 1 is the same as that in the first embodiment, the description thereof is omitted.

差動増幅器6では、水平方向スキャナ5の出力電圧Vp(第1の基準電圧Vrefに入射赤外線の強さに応じて発生した電圧が重畳されたもの)と電圧Vrefの差分電圧が増幅され、従って、出力電圧Voutとしては、各赤外線検出素子にて入射赤外線の強さに応じて発生した電圧分のみが増幅されて取り出されることとなる。   In the differential amplifier 6, the differential voltage between the output voltage Vp of the horizontal scanner 5 (the voltage generated according to the intensity of incident infrared rays is superimposed on the first reference voltage Vref) and the voltage Vref is amplified, and accordingly. As the output voltage Vout, only the voltage generated according to the intensity of the incident infrared rays in each infrared detecting element is amplified and extracted.

N型MOSFETスイッチ10では、ゲート端子がHレベルになった時に、オンとなってドレイン−ソース間を短絡(ショート)し、差動増幅器6の2入力間を短絡(ショート)する様に動作する。   The N-type MOSFET switch 10 is turned on when the gate terminal becomes H level, and operates to short-circuit between the drain and source and short-circuit between the two inputs of the differential amplifier 6. .

N型MOSFETスイッチ10のゲート端子には、図示しないメモリー付マイクロコンピュータからの故障信号が入力されるようになっており、メモリー付マイクロコンピュータは、2次元赤外線検出素子部1の梁折れ画素を予め検査し、その検査によって得た赤外線検出素子の故障情報を記憶していて、赤外線検出素子出力信号の走査選択により梁折れ画素からの出力信号が走査選択される時に、Hレベルの故障信号をN型MOSFETスイッチ10のゲート端子に入力する様に動作する。このように、このメモリー付マイクロコンピュータは、請求項4に記載の故障情報記憶手段及び第3の故障信号出力手段の両方の役割を果たす。   A failure signal from a microcomputer with memory (not shown) is inputted to the gate terminal of the N-type MOSFET switch 10, and the microcomputer with memory stores the broken pixel of the two-dimensional infrared detection element unit 1 in advance. The failure information of the infrared detection element obtained by the inspection is stored, and when the output signal from the beam broken pixel is selected by the scan selection of the infrared detection element output signal, the failure signal of the H level is set to N It operates to input to the gate terminal of the type MOSFET switch 10. Thus, the microcomputer with memory serves as both the failure information storage means and the third failure signal output means according to claim 4.

ここで、ある赤外線検出素子内(ここでは画素21)の梁が折れていて、熱電対を構成する抵抗が断線している場合を考える。この場合、水平方向スキャナ5の出力電圧Vpは、梁折れ画素(画素21)より前の画素を走査選択している時は、各画素の入射赤外線の強さに応じた起電圧が基準電圧Vrefに重畳される波形となるが、梁折れ画素(画素21)の走査選択時は、回路オープン(開放)となる為、水平方向スキャナ5の出力電圧Vpは出力されない。しかしながら、この時、2次元赤外線検出素子部1の梁折れ画素を予め記憶しているメモリー付マイクロコンピュータからHレベルの信号が出力され、N型MOSFETスイッチ10のゲート端子に印加されるので、N型MOSFETスイッチ10がオンし、差動増幅器6の2入力間が短絡(ショート)され、水平方向スキャナ5の出力電圧Vpが加わる方の入力端子にも基準電圧Vrefが印加されることになる。従って、差動増幅器6の出力電圧Voutとしては、赤外線検出素子の起電圧がない場合と同等の出力値となる(図4中、「梁折れ」で表示)。   Here, a case is considered in which a beam in a certain infrared detection element (here, pixel 21) is broken and a resistor constituting the thermocouple is disconnected. In this case, the output voltage Vp of the horizontal scanner 5 is an electromotive voltage corresponding to the intensity of incident infrared rays of each pixel when the pixel preceding the broken pixel (pixel 21) is selected for scanning. However, when scanning of the broken pixel (pixel 21) is selected, the circuit is open (opened), so the output voltage Vp of the horizontal scanner 5 is not output. At this time, however, an H level signal is output from the microcomputer with memory that preliminarily stores the broken pixel of the two-dimensional infrared detection element unit 1 and is applied to the gate terminal of the N-type MOSFET switch 10. The type MOSFET switch 10 is turned on, the two inputs of the differential amplifier 6 are short-circuited, and the reference voltage Vref is also applied to the input terminal to which the output voltage Vp of the horizontal scanner 5 is applied. Therefore, the output voltage Vout of the differential amplifier 6 becomes an output value equivalent to the case where there is no electromotive voltage of the infrared detection element (indicated by “beam breakage” in FIG. 4).

次に、梁折れ画素(画素21)の次の画素22の走査選択に切り換わると、メモリー付マイクロコンピュータからの信号がLレベルとなって、N型MOSFETスイッチ10がオフし、梁折れ画素(画素21)より前の画素を走査選択している状態と同一の状態に戻る。この結果、梁折れ画素(画素21)の次の画素22の走査選択に切り換わった時にも、Vrefに等しくなっていたVpは、画素22の起電圧が基準電圧Vrefに重畳された電圧に直ぐに到達し、梁折れ画素(画素21)による影響を受けることなく、差動増幅器6により、高速で、赤外線検出素子にて発生した電圧分のみを増幅して取り出すことができる。   Next, when switching to the scanning selection of the next pixel 22 of the beam broken pixel (pixel 21), the signal from the microcomputer with memory becomes L level, the N-type MOSFET switch 10 is turned off, and the beam broken pixel ( The state returns to the same state as the state in which the pixel before the pixel 21) is selected for scanning. As a result, Vp, which is equal to Vref even when switching to scanning selection of the pixel 22 next to the broken pixel (pixel 21), is immediately equal to the voltage in which the electromotive voltage of the pixel 22 is superimposed on the reference voltage Vref. Without being affected by the broken pixel (pixel 21), the differential amplifier 6 can amplify and extract only the voltage generated in the infrared detection element at high speed.

以上の説明により明らかなように、本発明の実施の形態によれば、差動増幅器6の2入力の間を短絡するN型MOSFETスイッチ10を、赤外線検出素子部1の故障(梁折れ)画素の走査選択時にオンさせる構成としたので、赤外線検出素子(画素)の故障(梁折れ)による影響を他の赤外線検出素子の出力に及ぼさない様にし、高速にて走査選択を行うことができる。   As is apparent from the above description, according to the embodiment of the present invention, the N-type MOSFET switch 10 that short-circuits between the two inputs of the differential amplifier 6 is replaced with a failed (beam broken) pixel of the infrared detection element unit 1. Therefore, the scanning selection can be performed at a high speed so that the influence of the failure (beam breakage) of the infrared detection element (pixel) does not affect the output of the other infrared detection elements.

又、水平方向スキャナ5の出力電圧Vpと、電圧源8にて基準電圧VrefとGnd電圧或いは電源電圧との間の電圧値Vthに設定した電圧とを比較して、水平方向スキャナ5の出力電圧Vpが電圧源8の設定電圧より、夫々、下降或いは上昇したことをコンパレータ7にて検知し、S−Rフリップフロップ9は、この故障検知信号(Hレベル)を入力されてから水平方向スキャナ5による走査選択が次の赤外線検出素子の出力信号に切り換わるまで、故障信号(Hレベル)を継続して出力し、その故障信号を差動増幅器6の2入力の間を短絡するN型MOSFETスイッチ10のゲート端子に印加する構成としたので、実使用中に梁折れが発生した場合でも、赤外線検出素子(画素)の故障(梁折れ)による影響を他の赤外線検出素子の出力に及ぼさない様にし、高速にて走査選択を行うことができる。   Further, the output voltage Vp of the horizontal scanner 5 is compared with the voltage set to the voltage value Vth between the reference voltage Vref and the Gnd voltage or the power supply voltage by the voltage source 8, and the output voltage of the horizontal scanner 5 is compared. The comparator 7 detects that Vp has decreased or increased from the set voltage of the voltage source 8, and the S-R flip-flop 9 receives the failure detection signal (H level) and then the horizontal scanner 5 An N-type MOSFET switch that continuously outputs a fault signal (H level) until the scan selection by the switch to the output signal of the next infrared detection element is short-circuited between the two inputs of the differential amplifier 6 Since it is configured to be applied to the 10 gate terminals, even if beam breakage occurs during actual use, the influence of failure (beam breakage) of the infrared detection element (pixel) is applied to the output of other infrared detection elements. Pot the manner not of, it is possible to perform the scanning selection at high speed.

更に、図示しないメモリー付マイクロコンピュータにて、2次元赤外線検出素子部1の故障(梁折れ)画素を予め記憶していて、梁折れ画素が走査選択される時にHレベルの故障信号を出力し、差動増幅器6の2入力の間を短絡するN型MOSFETスイッチ10のゲート端子に印加する構成としたので、赤外線検出素子(画素)の故障(梁折れ)による影響を他の赤外線検出素子の出力に及ぼさない様にし、高速にて走査選択を行うことができる。   Further, a failure (beam broken) pixel of the two-dimensional infrared detection element unit 1 is stored in advance by a microcomputer with memory (not shown), and an H level failure signal is output when the beam broken pixel is selected for scanning. Since it is configured to be applied to the gate terminal of the N-type MOSFET switch 10 that short-circuits the two inputs of the differential amplifier 6, the influence of the failure (beam breakage) of the infrared detection element (pixel) is influenced by the output of other infrared detection elements. Scanning selection can be performed at high speed.

尚、前述の本発明の実施の形態では、赤外線検出素子としてサーモパイルを仮定したが、赤外線検出素子はサーモパイルに限定されるものではなく、赤外線検出素子として、熱電対、赤外線光電池等を用いてもよい。   In the above-described embodiment of the present invention, the thermopile is assumed as the infrared detection element. However, the infrared detection element is not limited to the thermopile, and a thermocouple, an infrared photovoltaic cell, or the like may be used as the infrared detection element. Good.

又、赤外線検出素子として、2次元に配列するものについて説明を行ってきたが、1次元に配列する赤外線検出素子の場合には、赤外線検出素子部1が画素11〜1nの1行で構成されることとなり、垂直方向デコーダ3、及び赤外線検出素子部1内の垂直方向スキャナの役目をするN型MOSFETスイッチが省略される以外は、前述した本発明の実施の形態と同一構成となる為、動作及び得られる効果も同一となる。   In addition, an infrared detection element arranged in two dimensions has been described. In the case of an infrared detection element arranged in one dimension, the infrared detection element unit 1 is composed of one row of pixels 11 to 1n. Since the configuration is the same as that of the embodiment of the present invention described above except that the vertical decoder 3 and the N-type MOSFET switch serving as the vertical scanner in the infrared detection element unit 1 are omitted, The operation and the obtained effect are also the same.

本発明の第1の実施の形態である赤外線検出装置を説明する回路構成図である。It is a circuit block diagram explaining the infrared rays detection apparatus which is the 1st Embodiment of this invention. 本発明の第1の実施の形態である赤外線検出装置の動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the infrared rays detection apparatus which is the 1st Embodiment of this invention. 本発明の第2の実施の形態である赤外線検出装置を説明する回路構成図である。It is a circuit block diagram explaining the infrared rays detection apparatus which is the 2nd Embodiment of this invention. 本発明の第2の実施の形態である赤外線検出装置の動作を説明するタイムチャートである。It is a time chart explaining operation | movement of the infrared rays detection apparatus which is the 2nd Embodiment of this invention. 赤外線検出装置の構成要素である差動増幅器の詳細回路図である。It is a detailed circuit diagram of the differential amplifier which is a component of an infrared detection apparatus.

符号の説明Explanation of symbols

1:2次元赤外線検出素子部、2:カウンタ、3:垂直方向デコーダ、4:水平方向デコーダ、5:水平方向スキャナ、6:差動増幅器、7:コンパレータ、8:電圧源、9:S−Rフリップフロップ、10:N型MOSFETスイッチ。   1: two-dimensional infrared detection element unit, 2: counter, 3: vertical decoder, 4: horizontal decoder, 5: horizontal scanner, 6: differential amplifier, 7: comparator, 8: voltage source, 9: S- R flip-flop, 10: N-type MOSFET switch.

Claims (4)

基板上に配列され、入射赤外線を電気信号に変換する複数の赤外線検出素子と、前記赤外線検出素子各々の出力信号を走査選択し出力する走査選択手段と、前記走査選択手段の出力信号を第1の基準電圧と比較して差動増幅する差動増幅手段とを備えた赤外線検出装置において、
故障信号を入力とし、前記故障信号が入力された時に前記差動増幅手段の2つの入力の間を短絡する半導体スイッチが具備されていることを特徴とする赤外線検出装置。
A plurality of infrared detection elements arranged on a substrate and converting incident infrared rays into electrical signals; scanning selection means for scanning and outputting an output signal of each of the infrared detection elements; and a first output signal of the scan selection means. In an infrared detecting device provided with differential amplification means for differential amplification compared with the reference voltage of
An infrared detection device comprising: a semiconductor switch that receives a failure signal as an input and short-circuits between two inputs of the differential amplifying means when the failure signal is input.
請求項1に記載の赤外線検出装置において、
前記走査選択手段の出力信号を第2の基準電圧と比較し前記走査選択手段の出力信号が前記第2の基準電圧より下降した時に故障検知信号を出力する第1の電圧比較手段と、前記故障検知信号を入力とし、前記故障検知信号が入力されてから前記走査選択手段による走査選択が次の赤外線検出素子の出力信号の走査選択に切り換わるまでの間、前記故障信号を前記半導体スイッチに入力し続ける第1の故障信号出力手段とが更に具備されていることを特徴とする赤外線検出装置。
The infrared detection device according to claim 1,
A first voltage comparing means for comparing the output signal of the scan selection means with a second reference voltage and outputting a failure detection signal when the output signal of the scan selection means falls below the second reference voltage; The detection signal is input, and the failure signal is input to the semiconductor switch from when the failure detection signal is input until the scan selection by the scan selection means switches to the scan selection of the output signal of the next infrared detection element. An infrared detection apparatus, further comprising first failure signal output means that continues to operate.
請求項1に記載の赤外線検出装置において、
前記走査選択手段の出力信号を第3の基準電圧と比較し前記走査選択手段の出力信号が前記第3の基準電圧より上昇した時に故障検知信号を出力する第2の電圧比較手段と、前記故障検知信号を入力とし、前記故障検知信号が入力されてから前記走査選択手段による走査選択が次の赤外線検出素子の出力信号の走査選択に切り換わるまでの間、前記故障信号を前記半導体スイッチに入力し続ける第2の故障信号出力手段とが更に具備されていることを特徴とする赤外線検出装置。
The infrared detection device according to claim 1,
A second voltage comparison means for comparing the output signal of the scan selection means with a third reference voltage and outputting a failure detection signal when the output signal of the scan selection means rises above the third reference voltage; The detection signal is input, and the failure signal is input to the semiconductor switch from when the failure detection signal is input until the scan selection by the scan selection means switches to the scan selection of the output signal of the next infrared detection element. An infrared detection apparatus, further comprising second failure signal output means that continues to operate.
請求項1に記載の赤外線検出装置において、
前記赤外線検出素子の故障情報を記憶する故障情報記憶手段と、前記故障情報記憶手段に記憶されている故障情報に基づき、故障している赤外線検出素子の出力信号が前記走査選択手段により走査選択された時に、前記故障信号を前記半導体スイッチに入力する第3の故障信号出力手段とが更に具備されていることを特徴とする赤外線検出装置。
The infrared detection device according to claim 1,
Based on the failure information stored in the failure information storage means, failure information storage means for storing failure information of the infrared detection element, an output signal of the failed infrared detection element is scanned and selected by the scan selection means. And a third failure signal output means for inputting the failure signal to the semiconductor switch.
JP2004351001A 2004-12-03 2004-12-03 Infrared detector Active JP4639783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351001A JP4639783B2 (en) 2004-12-03 2004-12-03 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351001A JP4639783B2 (en) 2004-12-03 2004-12-03 Infrared detector

Publications (2)

Publication Number Publication Date
JP2006162319A true JP2006162319A (en) 2006-06-22
JP4639783B2 JP4639783B2 (en) 2011-02-23

Family

ID=36664514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351001A Active JP4639783B2 (en) 2004-12-03 2004-12-03 Infrared detector

Country Status (1)

Country Link
JP (1) JP4639783B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211808A (en) * 1987-02-27 1988-09-02 Toshiba Corp Conversion circuit
JPH09218090A (en) * 1996-02-08 1997-08-19 Nissan Motor Co Ltd Thermal infrared detection device and thermal infrared detection element unit
JPH1175388A (en) * 1997-07-15 1999-03-16 St Microelectron Srl Rotor position detection method of brushless motor
JP2000258469A (en) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp Electric power system protection and control device
JP2003014792A (en) * 2001-04-27 2003-01-15 Denso Corp Voltage detector for flying capacitor type combined battery
JP2003318712A (en) * 2002-04-24 2003-11-07 Nec Corp Semiconductor apparatus
JP2004117260A (en) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd Temperature detector of semiconductor module
JP2004170375A (en) * 2002-11-22 2004-06-17 Horiba Ltd Thermopile array sensor
JP2007033177A (en) * 2005-07-26 2007-02-08 Nec Electronics Corp Semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211808A (en) * 1987-02-27 1988-09-02 Toshiba Corp Conversion circuit
JPH09218090A (en) * 1996-02-08 1997-08-19 Nissan Motor Co Ltd Thermal infrared detection device and thermal infrared detection element unit
JPH1175388A (en) * 1997-07-15 1999-03-16 St Microelectron Srl Rotor position detection method of brushless motor
JP2000258469A (en) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp Electric power system protection and control device
JP2003014792A (en) * 2001-04-27 2003-01-15 Denso Corp Voltage detector for flying capacitor type combined battery
JP2003318712A (en) * 2002-04-24 2003-11-07 Nec Corp Semiconductor apparatus
JP2004117260A (en) * 2002-09-27 2004-04-15 Nissan Motor Co Ltd Temperature detector of semiconductor module
JP2004170375A (en) * 2002-11-22 2004-06-17 Horiba Ltd Thermopile array sensor
JP2007033177A (en) * 2005-07-26 2007-02-08 Nec Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JP4639783B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US20180175094A1 (en) CMOS Image Sensor with Shared Sensing Node
CN1631033B (en) Time integrating pixel sensors and method
EP1003330B1 (en) Imaging system
US7446805B2 (en) CMOS active pixel with hard and soft reset
KR20070064894A (en) Image sensor, and test system and test method for the same
TW201433145A (en) System and method for sensor failure detection
CN103986927B (en) For the system and method for Transducer fault detection
US20130235240A1 (en) Imaging device, imaging system, and driving method of imaging device
KR20110074481A (en) Infrared detection circuit, sensor device, and electronic instrument
JP2020068516A (en) Read circuit of infrared detector and inspection method therefor
JP5017895B2 (en) Infrared detector
JP4639783B2 (en) Infrared detector
EP1136798B1 (en) Photodetector device
JP5589053B2 (en) Array having a plurality of pixels and pixel information transfer method
KR100737915B1 (en) Image sensor, and test system and test method for the same
JP4466359B2 (en) Infrared detector
JP4501644B2 (en) Infrared detector
JP4347820B2 (en) Imaging device
JP4581672B2 (en) Infrared detector
JP6693355B2 (en) Signal output circuit, image sensor, and imaging device
JP2005198239A (en) Image sensor with improved sensitivity and method for driving the same
JP5593867B2 (en) Solid-state imaging device
JP7319809B2 (en) Radiation imaging apparatus, its control method, and radiation imaging system
US20230007196A1 (en) Imaging device and endoscope system
JP2007281794A (en) Infrared ray detection apparatus, and output signal complement method of infrared ray detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3