JP2006160260A - Energy absorbing member for vehicle body - Google Patents

Energy absorbing member for vehicle body Download PDF

Info

Publication number
JP2006160260A
JP2006160260A JP2006006367A JP2006006367A JP2006160260A JP 2006160260 A JP2006160260 A JP 2006160260A JP 2006006367 A JP2006006367 A JP 2006006367A JP 2006006367 A JP2006006367 A JP 2006006367A JP 2006160260 A JP2006160260 A JP 2006160260A
Authority
JP
Japan
Prior art keywords
energy absorbing
absorbing member
hollow material
vehicle body
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006006367A
Other languages
Japanese (ja)
Inventor
Toru Hashimura
徹 橋村
Yoshihaya Imamura
美速 今村
Seiichi Hashimoto
成一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006006367A priority Critical patent/JP2006160260A/en
Publication of JP2006160260A publication Critical patent/JP2006160260A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy energy absorbing member for a vehicle body, which member has deforming portions having a difficult-to-form shape, etc. without deteriorating the energy absorbing performance. <P>SOLUTION: The energy absorbing member 1a is composed of a hollow material 3 made of aluminum alloy, and absorbs the energy of a load, after being joined to other car body members, by being collapsingly deformed in the cross sectional or axial direction of the hollow material when a large load has been applied thereon. Deforming portions 4a, 4b are provided on the surface of the hollow material 3 so as to become origins of the collapse or so as to improve the collapse strength. The deforming portions are formed by the electromagnetic forming. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車体衝突時の荷重エネルギー吸収性能が優れ、かつ取付性にも優れた車体用エネルギー吸収部材に関するものである。   The present invention relates to an energy absorbing member for a vehicle body that has excellent load energy absorption performance at the time of a vehicle body collision and has excellent mounting properties.

自動車などの車体には、乗員の安全性確保のために、車体衝突時の軸方向への大荷重付加時に、軸方向や断面方向に自ら圧壊変形して荷重エネルギーを吸収する、エネルギー吸収ボックスあるいはクラッシュボックスとも称される、エネルギー吸収部材が設けられる。   In order to ensure the safety of passengers, an energy absorption box that absorbs load energy by crushing and deforming in the axial direction or cross-sectional direction when a heavy load is applied in the axial direction at the time of a vehicle collision. An energy absorbing member, also referred to as a crash box, is provided.

この車体エネルギー吸収部材として代表的なものは、バンパー補強材 (バンパーリインフォースメントあるいはバンパーアマチャアなどとも言う) 、バンパー補強材の後面に設けられるバンパーステイ、バンパーステイと車体サイドメンバ部材との間に設けられるエネルギー吸収部材、ドア内に設けられるドアビームなどである。   Typical vehicle body energy absorbing members include bumper reinforcement (also called bumper reinforcement or bumper armature), a bumper stay provided on the rear surface of the bumper reinforcement, and between the bumper stay and the vehicle body side member member. Energy absorbing member, a door beam provided in the door, and the like.

これらのエネルギー吸収部材の構造は、基本的に、円形あるいは矩形などの断面形状が、その長手方向(軸方向)に渡って延在する中空材からなる。   The structure of these energy absorbing members basically consists of a hollow material having a circular or rectangular cross-sectional shape extending in the longitudinal direction (axial direction).

エネルギー吸収部材は、前記バンパー補強材では車体幅方向で略水平方向に延在するように配置され、前記バンパーステイやエネルギー吸収部材、ドアビームなどは、車体長さ方向に略水平方向に延在するように配置される。そして、これらエネルギー吸収部材は、車体の各使用 (取り付け) 部位に応じて、車体前方や後方の衝突、あるいは車体側方の衝突などの際の、中空材への大荷重付加時に、損壊、飛散などせずに、圧壊変形して荷重エネルギーを吸収する機能が求められる。ここで、前記バンパー補強材では中空材の横断面方向に圧壊変形し、前記バンパーステイやエネルギー吸収部材、ドアビームなどは、中空材の軸( 長手) 方向に圧壊変形して、荷重エネルギーを吸収する。   The energy absorbing member is arranged so as to extend in a substantially horizontal direction in the vehicle body width direction in the bumper reinforcing material, and the bumper stay, the energy absorbing member, the door beam, etc. extend in a substantially horizontal direction in the vehicle body length direction. Are arranged as follows. These energy absorbing members can be damaged or scattered when a heavy load is applied to the hollow material in the case of a collision in the front or rear of the vehicle, or a collision on the side of the vehicle, depending on each use (attachment) part of the vehicle. A function of crushing and absorbing load energy is required without performing such a process. Here, the bumper reinforcement material is crushed and deformed in the cross-sectional direction of the hollow material, and the bumper stay, energy absorbing member, door beam, etc. are crushed and deformed in the axial direction (longitudinal) of the hollow material to absorb load energy. .

近年、車体軽量化のために、これらエネルギー吸収部材には、従来使用されていた鋼材に代わって、5000系、6000系、7000系等の高強度アルミニウム合金の押出中空形材などが使用され始めている。   In recent years, high-strength extruded aluminum materials such as 5000 series, 6000 series, and 7000 series have begun to be used for these energy absorbing members to reduce the weight of the vehicle body, instead of steel materials that have been used in the past. Yes.

なお、これらエネルギー吸収部材のエネルギー吸収性能を更に高めるため、従来から、大荷重付加時に圧壊の起点となる、凹みなどの変形部を中空材表面に設け、中空材の軸方向や断面方向への圧壊変形を助長する技術が、バンパー補強材などで提案されている(特許文献1 参照) 。
特開2001-171446 号(1〜2 頁、図1 、2)
In order to further improve the energy absorbing performance of these energy absorbing members, conventionally, a deformed portion such as a dent, which becomes a starting point of crushing when a heavy load is applied, is provided on the surface of the hollow material, and the axial direction or the cross-sectional direction of the hollow material is A technique for promoting crushing deformation has been proposed for a bumper reinforcing material or the like (see Patent Document 1).
Japanese Patent Laid-Open No. 2001-171446 (1-2 pages, Fig. 1 and 2)

上記特許文献1 では、図10(a) 、(b) に正面図で示すように、上記変形部として凹み21、21を設け、この凹み21、21を起点として、前記両端部分のウエブ17、18を中空構造の内側 (断面方向) に屈曲しやすくする。このため、図10(a) のように、バンパー補強部材12に対し、略水平方向からの衝突荷重F が加わった場合、バンパー補強材12断面方向の圧壊変形時の最大荷重量の低減が図れる。また、図10(b) のように更に断面方向の変形が進んだとしても、ウエブ17、18と後壁部16との接続箇所や曲げ変形箇所等で割れが生じる可能性が少ない。したがって、バンパー補強部材12のエネルギー吸収量の向上が図れる利点を有する。   In Patent Document 1, as shown in front views in FIGS. 10 (a) and 10 (b), recesses 21 and 21 are provided as the deformed portions, and the webs 17 at both end portions are formed using the recesses 21 and 21 as starting points. 18 is easily bent to the inside (cross-sectional direction) of the hollow structure. For this reason, as shown in FIG. 10 (a), when a collision load F is applied to the bumper reinforcing member 12 from a substantially horizontal direction, the maximum load amount during the crushing deformation in the cross-sectional direction of the bumper reinforcing member 12 can be reduced. . Further, even if the deformation in the cross-sectional direction further proceeds as shown in FIG. 10 (b), there is little possibility that a crack will occur at a connection portion between the webs 17 and 18 and the rear wall portion 16, a bending deformation portion, or the like. Therefore, there is an advantage that the energy absorption amount of the bumper reinforcing member 12 can be improved.

なお、図10において、12はパンパー補強材、13はステイ、14は車体サイドメンバーであり、これら部材が記載順に、車体前後方向 (図の左側が前) に順に配列される。そして、バンパー補強材12の後壁部16とステイ13の前面壁、ステイ13の後面フランジ13b とサイドメンバー14の前面フランジ14a とが機械的な結合手段20などにより接合されている。   In FIG. 10, 12 is a bumper reinforcement, 13 is a stay, 14 is a vehicle body side member, and these members are arranged in the order of description in the vehicle longitudinal direction (the left side in the figure is the front). The rear wall portion 16 of the bumper reinforcement 12 and the front wall of the stay 13, the rear flange 13 b of the stay 13, and the front flange 14 a of the side member 14 are joined by a mechanical coupling means 20 or the like.

これら凸部、凹部、孔などの変形部は、通常、変形部の形状に応じたプレス加工乃至機械加工により設けられる。例えば、凹部であればエンポス加工、凸部であれば拡管加工、孔であれば穴あけ加工などにより各々設けられる。   These deformed portions such as convex portions, concave portions and holes are usually provided by pressing or machining according to the shape of the deformed portion. For example, it is provided by embossing if it is a concave portion, tube expansion processing if it is a convex portion, and drilling processing if it is a hole.

しかし、これら凸部、凹部、孔などの変形部を別途プレス加工乃至機械加工により形成する場合、単純な形状の変形部を設ける場合を除き、複雑な形状の変形部を設ける場合に、加工工程が複雑となったり、煩雑となる問題がある。   However, when these deformed portions such as convex portions, concave portions, holes, etc. are separately formed by press working or machining, the processing step is required when providing a deformed portion having a complicated shape, except when providing a deformed portion having a simple shape. Is complicated and complicated.

また、アルミニウム合金の中でも、高強度で伸びの小さな前記7000系アルミニウム合金などの中空材は、比較的プレス加工乃至機械加工しにくく、上記難成形形状の変形部を設ける場合に、割れやミクロな割れである肌荒れなどを生じやすい。更には、プレス加工乃至機械加工の条件にもよるが、残存伸びが変形部に残留する可能性もある。   Among aluminum alloys, hollow materials such as the above-mentioned 7000 series aluminum alloy having high strength and small elongation are relatively difficult to press or machine. It is easy to cause rough skin such as cracks. Furthermore, depending on the conditions of pressing or machining, the remaining elongation may remain in the deformed portion.

更に、アルミニウム合金の中でも、高強度で伸びの小さな前記7000系アルミニウム合金などの中空材は、比較的プレス加工乃至機械加工しにくく、上記難成形形状の変形部を設ける場合に、変形部やその周辺に、割れやミクロな割れである肌荒れなどを生じやすい。更には、プレス加工乃至機械加工の条件にもよるが、残存伸びが変形部やその周辺に残留する可能性もある。   Furthermore, among aluminum alloys, hollow materials such as the above-mentioned 7000 series aluminum alloy with high strength and small elongation are relatively difficult to press or machine, and when providing the above-mentioned difficult-shaped deformed portion, the deformed portion and its It tends to cause cracks and rough skin around the periphery. Furthermore, although it depends on the conditions of press working or machining, there is a possibility that the remaining elongation may remain in the deformed portion and its periphery.

変形部やその周辺に、仮に、これら割れや肌荒れ、あるいは残存伸びが存在した場合、変形部やその周辺部の圧壊強度が著しく低下する。このため、変形部は、車体衝突時のような大荷重付加時ではなく、それよりも小さい荷重の付加時に圧壊しやすくなり (圧壊の起点となって) 、エネルギー吸収性能が著しく低下する。一方、これら割れや肌荒れ、あるいは残存伸びを無くすように、プレス加工乃至機械加工することは、上記した加工工程の複雑さや煩雑さの問題につながることとなる。   If these cracks, rough skin, or residual elongation exists in the deformed portion and its periphery, the crushing strength of the deformed portion and its peripheral portion is significantly reduced. For this reason, the deformed portion is not easily collapsed when a large load is applied as in the case of a vehicle collision, but is easily collapsed when a smaller load is applied (a starting point of collapse), and the energy absorption performance is significantly reduced. On the other hand, pressing or machining so as to eliminate these cracks, rough skin, or residual elongation leads to the complexity and complexity of the processing steps described above.

したがって、本発明の目的は、エネルギー吸収性能を低下性させることなく、難成形形状などの変形部を表面に設けた、車体用アルミニウム合金エネルギー吸収部材を提供しようとするものである。   Accordingly, an object of the present invention is to provide an aluminum alloy energy absorbing member for a vehicle body in which a deformed portion such as a difficult-to-mold shape is provided on the surface without degrading energy absorbing performance.

この目的を達成するために、本発明車体用エネルギー吸収部材の要旨は、アルミニウム合金中空材からなり、他の車体部材に接合された上で、大荷重付加時に中空材の断面方向または軸方向に圧壊変形して、荷重エネルギーを吸収するエネルギー吸収部材であって、中空材表面に、前記大荷重付加時に圧壊の起点となるか、または圧壊強度を補強する変形部が設けられており、この変形部が電磁成形により形成されていることである。   In order to achieve this object, the gist of the energy absorbing member for a vehicle body of the present invention is made of an aluminum alloy hollow material, joined to another vehicle body member, and then in the cross-sectional direction or the axial direction of the hollow material when a large load is applied. An energy absorbing member that absorbs load energy by being crushed and deformed, and is provided with a deformed portion on the surface of the hollow material that is a starting point of crushing when the large load is applied or that reinforces crushing strength. The part is formed by electromagnetic forming.

本発明では、車体用エネルギー吸収部材 (中空材) 表面の一部に、前記大荷重付加時に圧壊の起点となるか、または圧壊強度を補強する、凸部、凹部、孔などの変形部を設ける。そして、この変形部を電磁成形により中空材と一体に形成する。電磁成形は、後述する通り、電磁力による成形素材の超高速の変形によって、素材 (中空材) を成形する。このため、変形速度が遅いプレス加工乃至機械加工とは異なり、凸部、凹部、孔などの変形部やその周辺に、前記した、割れや肌荒れ、あるいは残存伸びが生じることが無い。   In the present invention, a part of the surface of the vehicle body energy absorbing member (hollow material) is provided with a deformed part such as a convex part, a concave part, or a hole that becomes a starting point of crushing when the heavy load is applied or reinforces the crushing strength. . And this deformation | transformation part is integrally formed with a hollow material by electromagnetic forming. As described later, electromagnetic forming forms a material (hollow material) by ultra-high-speed deformation of the forming material by electromagnetic force. For this reason, unlike press working or machining with a slow deformation speed, the above-described cracks, rough skin, or residual elongation does not occur in the deformed portion such as the convex portion, the concave portion, and the hole and the periphery thereof.

これは、特に、高強度で伸びの小さな前記7000系アルミニウム合金中空材の場合や、複雑な形状の変形部を設ける場合についても言える。この結果、割れや肌荒れ、あるいは残存伸びに起因する、変形部やその周辺部の圧壊強度の低下や、エネルギー吸収部材のエネルギー吸収性能の低下が生じない。   This can be said especially in the case of the 7000 series aluminum alloy hollow material having high strength and small elongation, or in the case of providing a deformed portion having a complicated shape. As a result, there is no reduction in the crushing strength of the deformed part or its peripheral part or the energy absorbing performance of the energy absorbing member due to cracks, rough skin, or residual elongation.

また、電磁成形は、強い電磁力による超高速の変形であるので、複雑な形状の変形部であっても、基本的には一回の成形加工で形成できる。このため、プレス加工乃至機械加工のような、加工工程が複雑となったり、煩雑となる問題が無い。   Further, since electromagnetic forming is an ultra-high-speed deformation caused by a strong electromagnetic force, even a deformed portion having a complicated shape can be basically formed by a single forming process. For this reason, there is no problem that the machining process becomes complicated or complicated, such as pressing or machining.

以下、本発明エネルギー吸収部材の実施の形態について具体的に説明する。図1 、2 、3 、4 は、本発明エネルギー吸収部材の実施態様を各々示す斜視図である。   Hereinafter, embodiments of the energy absorbing member of the present invention will be specifically described. 1, 2, 3, and 4 are perspective views showing embodiments of the energy absorbing member of the present invention.

先ず、図1 において、エネルギー吸収部材1aは、中空部6 を有する円管状( 断面が円管状) のアルミニウム合金中空材3 からなる。凸部 (突起) 4a、4b等は、後述する電磁成形によって、中空材3 表面の円周方向に、例えば断面の円の中心 (中空材軸心) からの角度が60°間隔で6 個、90°間隔で4 個など、適宜設けられる変形部である。また、これら変形部を、大荷重付加時に圧壊の起点とするためには、あるいは逆に圧壊強度を増すために用いる場合も、中空材3 の前面からの長さが中空材3 軸方向長さの2/3 程度の位置に設けることが好ましい。   First, in FIG. 1, an energy absorbing member 1a is formed of a hollow aluminum alloy hollow material 3 having a hollow portion 6 (the cross section is circular). The convex portions (protrusions) 4a, 4b, etc. are formed in the circumferential direction of the surface of the hollow material 3 by, for example, electromagnetic forming to be described later, for example, at an angle from the center of the circle of the cross section (hollow material axis) at 60 ° intervals, There are four deformed parts as appropriate, such as four at 90 ° intervals. Also, in order to use these deformed parts as a starting point of crushing when a large load is applied, or conversely to increase the crushing strength, the length from the front surface of the hollow material 3 is the length of the hollow material 3 in the axial direction. It is preferable to provide at about 2/3 of the position.

エネルギー吸収部材1aが、例えば、バンパー補強材やドアビームとして、車体衝突時の荷重方向に対し、略直角方向に延在するように略水平配置された場合の凸部 4a 、4b等の機能は、大荷重付加時に対する圧壊強度の向上につながる。即ち、この凸部 4a 、4b等は、車体前方や後方の衝突あるいは車体側方の衝突などの際の、中空材3 の断面方向への、F2の方向からの大荷重付加時には、エネルギー吸収部材1a (中空材3)の横断面方向の圧壊強度を高める。したがって、この圧壊強度が高まった分、エネルギー吸収部材の側を薄肉化できる、エネルギー吸収部材の側の設計の自由度が高まるなどの効果を有する。   The functions of the convex portions 4a, 4b, etc. when the energy absorbing member 1a is arranged substantially horizontally so as to extend in a direction substantially perpendicular to the load direction at the time of a vehicle collision, for example, as a bumper reinforcement or a door beam, This leads to improved crushing strength when a heavy load is applied. That is, the convex portions 4a, 4b, etc. are energy absorbing members when a heavy load is applied from the direction of F2 to the cross-sectional direction of the hollow material 3 in the case of a collision in the front or rear of the vehicle body or a collision on the side of the vehicle body. Increase the crushing strength in the cross-sectional direction of 1a (hollow material 3). Therefore, since the crushing strength is increased, the energy absorbing member side can be reduced in thickness, and the design of the energy absorbing member side can be improved.

バンパー補強材の場合、エネルギー吸収部材1aは、後述する通り、中空材3 の後面側表面3dにおいて、ステイにより横断面方向に支持される。また、ドアビームの場合、エネルギー吸収部材1aは、中空材3 の軸方向の両端部3a、3bにおいて、他のドア部材により軸方向に支持される。   In the case of the bumper reinforcing material, the energy absorbing member 1a is supported in the transverse direction by the stay on the rear surface side surface 3d of the hollow material 3 as described later. In the case of a door beam, the energy absorbing member 1a is supported in the axial direction by other door members at both ends 3a, 3b in the axial direction of the hollow material 3.

なお、これらの圧壊強度向上効果は、凸部状乃至突起状の変形部だけでなく、凹部状の変形部でも同じである。但し、後述する孔などの変形部には、大荷重付加時の圧壊の起点のみであって、圧壊強度を補強する機能は無い。   In addition, these crushing strength improvement effects are the same not only in the convex-shaped or protruding deformed portion but also in the concave-shaped deformed portion. However, a deformed portion such as a hole, which will be described later, is only a starting point of crushing when a large load is applied, and has no function of reinforcing the crushing strength.

一方、エネルギー吸収部材1aが、例えば、バンパーステイやエネルギー吸収部材のように、車体衝突時の荷重方向に対し、略平行方向に延在するように略水平配置された場合の凸部 4a 、4bの機能は、圧壊変形の起点となる。即ち、この凸部 4a 、4b等は、車体衝突時のF1の方向からの、中空材3 の荷重側 (前面側) の軸方向端部3aへの大荷重付加時には、中空材3 を外方へ拡径する作用を有するため、大広がるエネルギー吸収部材1a (中空材3)の軸方向の圧壊変形の起点となる。そして、エネルギー吸収部材1aの軸方向のエネルギー吸収性能を高める。これらの圧壊変形の起点効果は、凸部状乃至突起状の変形部だけでなく、凹部状や孔状の変形部でも同じである。   On the other hand, the convex portions 4a and 4b when the energy absorbing member 1a is arranged substantially horizontally so as to extend in a substantially parallel direction with respect to the load direction at the time of a vehicle collision, for example, a bumper stay or an energy absorbing member. The function of is the starting point of crushing deformation. In other words, the convex portions 4a, 4b, etc. are arranged so that when a heavy load is applied to the axial end portion 3a on the load side (front side) of the hollow material 3 from the direction F1 at the time of a vehicle collision, the hollow material 3 is moved outward. Therefore, the energy absorbing member 1a (hollow material 3) that spreads greatly becomes the starting point for the axial crushing deformation. Then, the energy absorbing performance in the axial direction of the energy absorbing member 1a is enhanced. The starting point effect of these crushing deformations is the same not only in the convex or protruding deformed portions but also in the concave or hole deformed portions.

バンパーステイやエネルギー吸収部材の場合は、後述する通り、中空材3 の軸方向の両端部3a、3bにおいて、他の部材により軸方向に支持される。ここで、中空材3 の断面形状は、エネルギー吸収部材としての車体使用部位や使用態様によって選択されるが、後述するフランジを電磁成形にて成形可能な断面形状とする必要がある。   In the case of a bumper stay or an energy absorbing member, as will be described later, the axial end portions 3a and 3b of the hollow member 3 are supported in the axial direction by other members. Here, the cross-sectional shape of the hollow material 3 is selected depending on the use part of the vehicle body as the energy absorbing member and the use mode, but it is necessary that the flange described later has a cross-sectional shape that can be formed by electromagnetic forming.

即ち、通常の矩形断面形状など、コーナーR(角度) の小さい角部を四隅に有するような断面形状では、電磁成形による中空材3 の拡径や縮径により、凸部、凹部、孔などの変形部や、後述するフランジを形成する際に、この角部で割れが生じやすくなる。   That is, in a cross-sectional shape having corners with small corners R (angles) at the four corners, such as a normal rectangular cross-sectional shape, a convex portion, a concave portion, a hole, etc., due to the expansion or contraction of the hollow material 3 by electromagnetic forming When forming a deformed part or a flange described later, cracks are likely to occur at the corners.

言い換えると、アルミニウム合金中空材3 の断面形状の制約条件は、前記小径の角部を有さない以外にはなく、エネルギー吸収部材の使用態様によって、種々の断面形状が選択しうる。例えば、円管状以外にも、コーナーR(角度) の小さい角部を有さない、矩形、円形、楕円形、その他な不定形な円形などの中空材だけではなく、開断面である C形や、コ形などの形材も含みうる。   In other words, the constraint condition of the cross-sectional shape of the aluminum alloy hollow material 3 is not limited to not having the small-diameter corners, and various cross-sectional shapes can be selected depending on the usage mode of the energy absorbing member. For example, in addition to circular tubes, not only hollow materials such as rectangles, circles, ellipses, and other irregular circles that do not have corners with a small corner R (angle), but also open-section C shapes and , And can also include profiles such as U-shapes.

次に、図2 、3 、4 では、円管状のアルミニウム合金中空材3 の軸方向のいずれかの端部、この場合は両端部 (図1 の3a、3b) に、他の車体部材との接合用のフランジ2a、2bを形成、配置した態様を斜視図で示している。これは、バンパーステイやエネルギー吸収部材の場合など、中空材3 の軸方向の両端部3a、3bにおいて、他の部材により軸方向に支持される態様を示す。   Next, in FIGS. 2, 3, and 4, any one end in the axial direction of the hollow aluminum alloy hollow material 3 in the axial direction, in this case, both ends (3a and 3b in FIG. 1) are connected to other vehicle body members. An embodiment in which the flanges 2a and 2b for joining are formed and arranged is shown in a perspective view. This shows a mode in which both ends 3a and 3b in the axial direction of the hollow material 3 are supported in the axial direction by other members, such as in the case of a bumper stay or an energy absorbing member.

これらのフランジ2a、2bは、別個に製作したフランジ2a、2bを中空材3 の両端部に溶接や機械的な接合手段によって接合しても良いが、この方法では、フランジ自体を別個に製作する煩雑さがあり、更に、溶接にせよ機械的接合にせよ、上記のように、各々別個に接合する煩雑さがある。また、接合箇所が増す分、フランジを一体に形成する場合に比して、接合強度が低くなり、エネルギー吸収性能が低下する傾向は否めない。   These flanges 2a and 2b may be formed by separately connecting flanges 2a and 2b to both ends of the hollow material 3 by welding or mechanical joining means. In this method, the flange itself is manufactured separately. In addition, there is a problem of individually joining each of them as described above, whether welding or mechanical joining. Further, as the number of joints increases, the joint strength is lowered and the energy absorption performance tends to be reduced as compared with the case where the flanges are integrally formed.

したがって、接合強度の低下を防止し、合わせて、フランジ作成や接合の煩雑さを解消するためには、中空材3 の両端部3a、3bを電磁成形して、フランジ2a、2bを形成することが好ましい。図2 、3 、4 の態様においては、中空材3 の両端部3a、3bを、後述する電磁成形にて拡管し、中空材3 の外方に略直角の角度で立ち上がって、表面 (接合面) がフラット (平坦) に広がる、円形状のフランジ2a、2bを、中空材3 に一体に形成した態様を示している。   Therefore, in order to prevent a decrease in bonding strength and eliminate the complexity of flange creation and bonding, both ends 3a and 3b of the hollow material 3 are electromagnetically formed to form the flanges 2a and 2b. Is preferred. 2, 3 and 4, both end portions 3a and 3b of the hollow material 3 are expanded by electromagnetic forming, which will be described later, and rises to the outside of the hollow material 3 at a substantially right angle to form a surface (bonding surface). In the figure, circular flanges 2a and 2b are formed integrally with the hollow material 3 in a flat (flat) shape.

このような中空材3 に一体に形成されたフランジは、前記別途接合するタイプのフランジよりも、接合強度が格段に高く、エネルギー吸収部材1a自体のエネルギー吸収性能が高い。また、エネルギー吸収部材1aと他の車体部材とを、接合面積を大きくしながら、直接接合することができる。このため、フランジを別個に製作して、エネルギー吸収部材の端部や接合側の車体部材端部と、フランジ端部とを各々別個に接合するような従来方式に比して、両者の接合強度を大幅に高めることができる。この結果、エネルギー吸収部材1aの実際の設置時においても、軸方向への大荷重付加時に、軸方向の圧壊変形による荷重エネルギー吸収性能を向上させることができる。また、他の車体部材との接合の煩雑さをも解消できる。   Such a flange integrally formed with the hollow member 3 has remarkably higher bonding strength and higher energy absorption performance of the energy absorbing member 1a itself than the separately joined flange. Further, the energy absorbing member 1a and the other vehicle body member can be directly joined while increasing the joining area. Therefore, compared to the conventional method in which the flange is manufactured separately and the end of the energy absorbing member, the end of the vehicle body member on the joining side, and the end of the flange are joined separately, the joint strength of both Can be greatly increased. As a result, even when the energy absorbing member 1a is actually installed, it is possible to improve load energy absorbing performance due to axial crushing deformation when a large load is applied in the axial direction. Moreover, the complexity of joining with other vehicle body members can be eliminated.

また、電磁成形によれば、エネルギー吸収部材1aが接合される、他の車体部材の接合面や車体部材フランジ接合面の形状に応じて、これに適合するフランジ2a、2bの形状を自由に成形しうる。例えば、図2 、3 、4 のフランジ2a、2bは、他の車体部材のフラットな表面 (接合面) 形状や、フラットなフランジ表面 (接合面) 形状との接合を想定して、表面がフラットに広がる円形状のフランジに形成されている。   In addition, according to electromagnetic forming, the shape of the flanges 2a and 2b conforming to the shape of the joining surface of the other vehicle body member to which the energy absorbing member 1a is joined or the body member flange joining surface is freely formed. Yes. For example, the flanges 2a and 2b in FIGS. 2, 3, and 4 are flat on the assumption that they are joined to the flat surface (joint surface) shape of other body members or the flat flange surface (joint surface) shape. It is formed on a circular flange that spreads out.

この点、他の車体部材の接合面や車体部材フランジ接合面の形状が、曲面形状や、フラットだが垂直方向ではなく角度を付けて斜めに傾いたような形状であれば、アルミニウム合金中空材のフランジ接合面形状も、これに適合すべく、曲面形状や、斜めに傾いて立ち上がるような形状とする。   In this regard, if the shape of the joint surface of other body members or the joint surface of the body member flange is a curved surface shape or a flat shape that is tilted at an angle rather than a vertical direction, the aluminum alloy hollow material In order to conform to this, the flange joint surface shape is also a curved surface shape or a shape that rises obliquely.

更に、図2 、3 、4 では、エネルギー吸収部材の基本構造は図1 の1aと同じであって、中空材3 の表面の、凸部、凹部、孔などの変形部の形状を種々変えた態様を各々示している。なお、本発明における凸部、凹部、孔などの変形部の形状や中空材3 表面への設け方は下記態様に限定されるものではなく、下記態様以外にも、必要エネルギー吸収性能やエネルギー吸収部材の使用態様や部位に応じて、適宜選択される。   Further, in FIGS. 2, 3, and 4, the basic structure of the energy absorbing member is the same as 1a in FIG. 1, and the shape of the deformed portion such as the convex portion, the concave portion, and the hole on the surface of the hollow member 3 is variously changed. Each embodiment is shown. In addition, the shape of the deformed portion such as the convex portion, the concave portion, and the hole in the present invention and the way to provide the hollow material 3 on the surface are not limited to the following modes. It is suitably selected according to the usage mode and part of the member.

この内、図2(a)、(b) 、(c) および図2(a)、(b) 、(c) 、(d) は、凸部 (突起)4を設けた例を示している。図2(a)のエネルギー吸収部材1bでは、図1 と同じく、中空材3 表面の円周方向に対称に2 個の凸部4a、4bを設けている。図2(b)のエネルギー吸収部材1cでは、中空材3 表面の円周方向に対称に2 個の凸部を軸方向に2 列、合計4 個の凸部4c、4d、4e、4fを設けている。図2(c)のエネルギー吸収部材1dでは、中空材3 表面の円周方向に対称に、かつ軸方向の長さが長い2 個の凸部4g、4hを設けている。   Among these, FIGS. 2 (a), (b), (c) and FIGS. 2 (a), (b), (c), (d) show examples in which convex portions (projections) 4 are provided. . In the energy absorbing member 1b of FIG. 2 (a), as in FIG. 1, two convex portions 4a and 4b are provided symmetrically in the circumferential direction of the surface of the hollow material 3. In the energy absorbing member 1c in FIG. 2 (b), two convex portions are arranged in two rows in the axial direction symmetrically in the circumferential direction of the surface of the hollow material 3, and a total of four convex portions 4c, 4d, 4e, and 4f are provided. ing. In the energy absorbing member 1d of FIG. 2 (c), two convex portions 4g and 4h having a long axial length are provided symmetrically in the circumferential direction of the surface of the hollow material 3.

図3 のエネルギー吸収部材では、中空材3 表面の円周に沿って、凸部を設けた例を示している。図3(a)のエネルギー吸収部材1eでは、中空材3 表面の円周に沿って、らせん状の凸部4iを設けている。図3(b)のエネルギー吸収部材1fでは、中空材3 表面の円周に沿って、リング状の凸部4jを設けている。図3(c)のエネルギー吸収部材1gでは、中空材3 表面の円周に沿って、軸方向の長さが比較的長い凸部4kを間隔をあけて複数個設けている。図3(d)のエネルギー吸収部材1hでは、中空材3 表面の円周に沿って、X 字状に互いに交叉した凸部4lを間隔をあけて複数個設けている。   In the energy absorbing member of FIG. 3, an example is shown in which convex portions are provided along the circumference of the surface of the hollow material 3. In the energy absorbing member 1e of FIG. 3 (a), a spiral convex portion 4i is provided along the circumference of the surface of the hollow material 3. In the energy absorbing member 1f in FIG. 3 (b), a ring-shaped convex portion 4j is provided along the circumference of the surface of the hollow material 3. In the energy absorbing member 1g of FIG. 3 (c), a plurality of convex portions 4k having a relatively long axial length are provided at intervals along the circumference of the surface of the hollow material 3. In the energy absorbing member 1h of FIG. 3 (d), a plurality of convex portions 4l intersecting with each other in an X shape are provided at intervals along the circumference of the surface of the hollow material 3.

更に、図4 のエネルギー吸収部材では中空材3 表面に貫通孔を設けた例を示している。図4(a)のエネルギー吸収部材1iでは、中空材3 表面の円周に沿って貫通孔5a、5bを間隔をあけて複数個設けている。図4(b)のエネルギー吸収部材1jでは、中空材3 表面の円周方向に対称に2 個の貫通孔を軸方向に2 列、合計4 個の貫通孔5c、5d、5e、5fを設けている。   Further, in the energy absorbing member of FIG. 4, an example in which a through hole is provided on the surface of the hollow material 3 is shown. In the energy absorbing member 1i of FIG. 4 (a), a plurality of through holes 5a, 5b are provided at intervals along the circumference of the surface of the hollow material 3. In the energy absorbing member 1j in FIG. 4 (b), two through holes are arranged in two rows in the axial direction symmetrically in the circumferential direction of the surface of the hollow material 3, and a total of four through holes 5c, 5d, 5e, and 5f are provided. ing.

上記図4(a)、(b) の態様は、前記図2(a)、(b) の凸部に代えて貫通孔を設けた態様とも言える。この点、前記図2 、3 の凸部の各態様と同様に、凸部を設ける代わりに凹部や貫通孔を設けても良く、また、これら凸部、凹部、貫通孔を、各々組み合わせて設けても良い。   The mode of FIGS. 4 (a) and 4 (b) can be said to be a mode in which through holes are provided instead of the convex portions of FIGS. 2 (a) and 2 (b). In this regard, as in the embodiments of the convex portions in FIGS. 2 and 3, a concave portion or a through hole may be provided instead of providing the convex portion, and these convex portion, concave portion and through hole are provided in combination. May be.

次に、中空材3 の表面の上記凸部、凹部、孔など、種々の形状の変形部を実際に、中空材 (管)3の両端部にフランジを一体に形成する電磁成形方法について、以下に説明する。   Next, an electromagnetic forming method for actually forming flanges at both ends of the hollow material (tube) 3 by actually forming deformed portions of various shapes such as the above-mentioned convex portions, concave portions, holes, etc. on the surface of the hollow material 3 will be described below. Explained.

先ず、電磁成形自体は、高電圧で蓄荷電されている電気エネルギー (電荷) を、通電コイルに瞬時に投入し (放電させ) 、極めて短時間の強力な磁場を形成することにより、この磁場内におかれたワーク (被加工物、金属部材) が磁場の反発力 (フレミングの左手の法則に従ったLorentz 力) によって強い拡張力や収縮力を受けて、高速で塑性変形することを利用して、ワークを所定形状に、塑性加工乃至成形する技術である。   First, in electromagnetic forming itself, electric energy (charge) stored at a high voltage is instantaneously applied (discharged) to the energizing coil to form a strong magnetic field for a very short time. It is used that the workpiece (workpiece, metal member) placed on it is subjected to strong expansion force and contraction force by the repulsive force of the magnetic field (Lorentz force according to Fleming's left-hand rule) and plastically deforms at high speed. This is a technique for plastic working or forming a workpiece into a predetermined shape.

この電磁成形は、導電性が高く、かつ渦電流が発生しやすい金属の板、管などの金属部材を成形対象とし、板の成形、管の拡管、管の縮管、管の端部などの成形に有望とされて来た。特にアルミニウム合金は、電気の良導体であり、この電磁成形に適した材料とされる。   This electromagnetic forming is intended for forming metal members such as metal plates and pipes that are highly conductive and easily generate eddy currents, such as plate forming, tube expansion, tube contraction, and tube ends. Promising for molding. In particular, an aluminum alloy is a good electrical conductor and is a material suitable for this electromagnetic forming.

図5 は、前記図2 、3 、4 に示した、大荷重付加時の圧壊変形の起点となる凸部4 や孔5aなどの変形部を、前記図1 に示したフランジ2a、2bとともに、中空材3 の表面に電磁成形により同時に設ける態様を断面図で示している。   FIG. 5 shows the deformed portions such as the convex portions 4 and the holes 5a, which are the starting points of the crushing deformation when a heavy load is applied, as shown in FIGS. 2, 3, and 4, together with the flanges 2a and 2b shown in FIG. An embodiment in which the hollow material 3 is simultaneously provided on the surface of the hollow member 3 by electromagnetic forming is shown in a sectional view.

ここで、図5(a)、(b) は、前記図2(a)に示した凸部4a、4b、図5(c)は、前記図4(a)に示した貫通孔5aを、各々中空材両端部のフランジ2a、2bとともに、電磁成形によって、同時に設ける態様を示す。   Here, FIGS. 5 (a) and 5 (b) show the protrusions 4a and 4b shown in FIG. 2 (a), and FIG. 5 (c) shows the through-hole 5a shown in FIG. 4 (a). An embodiment is shown in which the flanges 2a and 2b at both ends of the hollow material are provided simultaneously by electromagnetic forming.

図5(a)、(b) において、28、29、30は金型であり、アルミニウム合金中空材3 表面に、凸部4a、4bを形成するための、空間状 (隙間状) 成形面31または凹部成形面30c を有する。更に、これらの金型28、29、30は、中空材3 の両端部に、中空材3 の外方に略直角の角度で立ち上がって、表面がフラットに広がる円形状のフランジ2a、2bを形成するための、垂直に立ち上がるフラットな成形面29a 、30b を有する。   In FIGS. 5 (a) and 5 (b), 28, 29, and 30 are dies, and a space-like (gap-like) molding surface 31 is used to form convex portions 4a and 4b on the surface of the aluminum alloy hollow material 3. Alternatively, it has a concave molding surface 30c. Further, these molds 28, 29 and 30 are formed with circular flanges 2a and 2b which rise at a substantially right angle to the outside of the hollow member 3 at both ends of the hollow member 3 and have a flat surface. For this purpose, it has flat molding surfaces 29a and 30b that rise vertically.

ここで、図5(a)、(b) において、金型28、29、30の片方の成形面28a 、30a は、垂直ではなく、一定の角度をもって斜めに立ち上がるフラットな成形面となっている。これは、前記したように、他の車体部材の接合面やフランジ接合面の形状が垂直ではなく、斜めに立ち上がるような場合に対応して、中空材3 に対し直角ではなく、一定の角度をもって斜めに立ち上がるような、傾斜したフランジ2aを作成するためである。   Here, in FIGS. 5 (a) and 5 (b), one of the molding surfaces 28a and 30a of the molds 28, 29, and 30 is not vertical but is a flat molding surface that rises obliquely at a certain angle. . As described above, this corresponds to the case where the shape of the joint surface of the other vehicle body member or the flange joint surface is not vertical but rises diagonally, and is not perpendicular to the hollow material 3 but at a certain angle. This is to create an inclined flange 2a that rises diagonally.

図5(a)、(b) において、電磁成形の要領は、先ず、アルミニウム合金中空材3 を金型28、29、30内にセットする。即ち、中空材3 の端部側 (図の右方) から、通電コイル25を中空材3 の管内に挿入する。そして、図示しない衝撃電流発生装置に高電圧で蓄荷電されている電気エネルギーを数十kJ( 数百μF 、数十kV) 、コンデンサー27、結線26を介して、通電コイル25に瞬時に投入し、極めて短時間の強力な磁場を、両管端部と空間状 (隙間状) 成形面31および凹部成形面30c 部分に形成する。   5A and 5B, the electromagnetic forming procedure is as follows. First, the aluminum alloy hollow material 3 is set in the molds 28, 29, and 30. That is, the energizing coil 25 is inserted into the hollow material 3 tube from the end side of the hollow material 3 (to the right in the figure). Then, electric energy stored at a high voltage in an impact current generator (not shown) is instantaneously supplied to the energizing coil 25 through several tens kJ (several hundred μF, several tens kV), a capacitor 27, and a connection 26. A very strong magnetic field for a very short time is formed on the ends of both pipes and on the space (gap) molding surface 31 and the concave molding surface 30c.

これにより、中空材3 の凸部4a、4b相当部が、金型の隙間状成形面31および凹部成形面30c 内に拡径され、凸部4a、4bを形成する。と同時に、中空材3 の周囲 (外) 方向に、中空材端部3a、3bを拡径する。そして、拡径した端部3a、3bを強い力で金型28、29、30の成形面に押圧し、フランジ2a、2bを中空材3 の端部に形成する。また、図示はしないが、変形部として凹部を形成する場合は、凹部に対応する形状の金型を、凹部を形成する中空材の表面部分に近接して設け、かしめなどに用いられるような、管径を縮小させる縮管電磁成形によって、凹部を形成する。   As a result, the convex portions 4a and 4b of the hollow material 3 are expanded in diameter into the gap-shaped molding surface 31 and the concave molding surface 30c of the mold to form the convex portions 4a and 4b. At the same time, the diameters of the hollow material end portions 3a and 3b are expanded in the circumferential (outward) direction of the hollow material 3. Then, the enlarged end portions 3a, 3b are pressed against the molding surfaces of the molds 28, 29, 30 with a strong force, and the flanges 2a, 2b are formed at the end portions of the hollow material 3. Although not shown, when forming a concave portion as a deformed portion, a mold having a shape corresponding to the concave portion is provided close to the surface portion of the hollow material forming the concave portion, and used for caulking, The recess is formed by reduced-tube electromagnetic forming that reduces the tube diameter.

次に、図5(c)でもこれらの電磁成形の要領は同様である。ただ、図5(c)の場合では、金型32の隙間状成形面33によって拡径された中空材3 の貫通孔相当部分が、隙間状成形面33の先端にあるリング状突起部32a と衝突して、リング状突起部32a の輪郭形状に合わせて打ち抜かれ、貫通孔5a、5bを形成する。また、図5(c)の場合では、中空材3 端部の両フランジ2a、2bは、図4(a)のように、垂直に立ち上がるように形成される。   Next, the procedure for electromagnetic forming is the same in FIG. 5 (c). However, in the case of FIG. 5 (c), the portion corresponding to the through hole of the hollow material 3 whose diameter has been expanded by the gap-shaped molding surface 33 of the mold 32 is the ring-shaped protrusion 32a at the tip of the gap-shaped molding surface 33. It collides and is punched in accordance with the contour shape of the ring-shaped protrusion 32a to form the through holes 5a and 5b. In the case of FIG. 5 (c), both flanges 2a, 2b at the end of the hollow material 3 are formed so as to rise vertically as shown in FIG. 4 (a).

この電磁成形において、エネルギー吸収部材のような、3mm 以上の比較的厚肉で、かつ50mmΦ以上の比較的大口径のアルミニウム合金中空材の端部を拡管成形する場合、拡径した端部外表面を金型面に押圧して、アルミニウム合金中空材3 表面の変形部や端部のフランジを形成するためには、前記投入電気エネルギー量は、できるだけ大きく、例えば8kJ 以上とすることが好ましい。   In this electromagnetic forming, when the end of an aluminum alloy hollow material having a relatively large diameter of 3 mm or more and a relatively large diameter of 50 mmΦ or more, such as an energy absorbing member, is subjected to pipe expansion molding, the outer surface of the expanded end part Is pressed onto the mold surface to form a deformed portion or flange at the end of the aluminum alloy hollow material 3 surface, the amount of electric energy input is preferably as large as possible, for example, 8 kJ or more.

因みに、このようなアルミニウム合金管端部内に、コイルを挿入する一方、金型成形面を管端部外側に近接させて設け、前記コイルに電気エネルギーを投入して、管端部を拡径変形させるとともに、変形した管端部の外表面側を前記金型成形面に押圧して、外方に広がるラッパ状のフランジを成形する技術は、佐野利男他4 名、" 電磁力を利用する塑性加工の研究" 、「機械技術研究所報告第150 号」、1990年3 月、機械技術研究所発行 (第6 章管端の成形、第62〜68頁) などにも開示されている (非特許文献1)。   Incidentally, while inserting a coil into such an aluminum alloy tube end, a mold forming surface is provided close to the outside of the tube end, and electric energy is input to the coil to expand and deform the tube end. The technology to form a trumpet-shaped flange that spreads outward by pressing the outer surface side of the deformed tube end against the mold forming surface is Toshio Sano et al., “Plasticity using electromagnetic force” Processing Research "," Mechanical Technology Research Institute Report No. 150 ", published by the Mechanical Technology Research Institute in March 1990 (Chapter 6 Pipe End Molding, pp. 62-68), etc. Patent Document 1).

しかし、本発明が対象とするようなエネルギー吸収部材は、3mm 以上の比較的厚肉で、かつ50mmΦ以上の比較的大口径のアルミニウム合金中空材である。このような、比較的厚肉で、かつ比較的大口径のアルミニウム合金管端部の成形は、かしめなどに用いられる管径を縮小させるような縮管成形に比して、著しく電磁成形が難しいと認識され、これまで実用化されていなかった。上記非特許文献1 でも、比較的厚肉で、かつ比較的大口径のアルミニウム合金中空材端部の、電磁成形による拡管乃至拡径成形が難しいと認識されている。この理由は、コイルなどのハード的な制約により、前記投入電気エネルギー量が小さくならざるを得なかったことも大きい。   However, the energy absorbing member as the object of the present invention is an aluminum alloy hollow material having a relatively thick wall of 3 mm or more and a relatively large diameter of 50 mmΦ or more. The forming of such a relatively thick and relatively large diameter aluminum alloy tube end portion is extremely difficult to form electromagnetically compared to the tube forming method for reducing the tube diameter used for caulking or the like. It was recognized and was not put into practical use until now. Also in Non-Patent Document 1, it is recognized that it is difficult to expand or form a tube by electromagnetic forming at the end of a relatively thick aluminum alloy hollow material having a relatively large diameter. The main reason for this is that the amount of input electric energy has to be reduced due to hardware restrictions such as a coil.

図6 、7 は、図5 のように中空材表面の変形部と中空材端部のフランジとを同時に設けるのではなく、電磁成形よって、フランジのみ別個に設ける態様を斜視図で示している。   6 and 7 are perspective views showing a mode in which only the flange is separately provided by electromagnetic forming, instead of simultaneously providing the deformed portion on the surface of the hollow material and the flange at the end of the hollow material as shown in FIG.

図6 、7 において、アルミニウム合金中空材3 を金型28、29、30内にセットした後の電磁成形の要領は、前記図5 の場合と同様である。即ち、先ず、アルミニウム合金中空材3 を、図6 に斜視図で示すように、例えば、水平に配置され、二つの上型23a 、23b と、二つの下型23c 、23d とに分割 (四つ割り) されて構成される金型23内 (金型で構成された挿入孔21内) にセットする。この際、拡管成形乃至拡径成形される中空材端部3aを、形成するフランジ2a、2bの大きさに相当する長さ分を、金型23の成形面24内に突出させる。   6 and 7, the procedure for electromagnetic forming after the aluminum alloy hollow material 3 is set in the molds 28, 29, and 30 is the same as in FIG. That is, first, as shown in a perspective view in FIG. 6, the aluminum alloy hollow material 3 is arranged horizontally, for example, and divided into two upper molds 23a and 23b and two lower molds 23c and 23d (four It is set in the mold 23 that is split and formed (in the insertion hole 21 that is configured by the mold). At this time, a length corresponding to the size of the flanges 2a and 2b to form the hollow material end portion 3a to be formed by pipe expansion or diameter expansion is projected into the molding surface 24 of the mold 23.

また、電磁成形中、電磁力によって中空材軸方向に荷重が係るため、アルミニウム合金中空材3 の位置がずれて (図の右方向に) 、フランジの寸法精度や形状精度に悪影響を及ぼさないよう、アルミニウム合金材3 を押さえ板 (突き当て板) 24により他端3b方向から固定している。   Also, during electromagnetic forming, a load is applied in the axial direction of the hollow material due to the electromagnetic force, so that the position of the aluminum alloy hollow material 3 is shifted (to the right in the figure) and does not adversely affect the dimensional accuracy and shape accuracy of the flange. The aluminum alloy material 3 is fixed from the direction of the other end 3b by a pressing plate (butting plate) 24.

しかる後に、図6 に示すように、中空材端部3a側 (図の左方) から、通電コイル25をアルミニウム合金中空材3 の中空内に挿入する。この通電コイル25の中空内挿入長さも、形成するフランジの大きさに相当する中空材の長さに相当する分とする。そして、図示しない衝撃電流発生装置に高電圧で蓄荷電されている電気エネルギーを数十kJ( 数百μF 、数十kV) 、通電コイル25に瞬時に投入し、極めて短時間の強力な磁場を中空材端部3a部分に形成する。これにより、図6 に矢印で示す周囲 (外) 方向に、中空材端部3a部分を拡径する。   Thereafter, as shown in FIG. 6, the energizing coil 25 is inserted into the hollow of the aluminum alloy hollow material 3 from the hollow material end 3a side (left side of the figure). The insertion length of the energizing coil 25 in the hollow is also equivalent to the length of the hollow material corresponding to the size of the flange to be formed. Then, electric energy stored at a high voltage in an impact current generator (not shown) is charged to several tens of kJ (hundreds of μF, several tens of kV) instantaneously into the energizing coil 25, and a strong magnetic field is generated for a very short time. It is formed in the hollow material end 3a. As a result, the diameter of the hollow material end portion 3a is increased in the circumferential (outward) direction indicated by the arrow in FIG.

そして、拡径した中空材端部3aを強い力でフランジの表面 (接合面) 形状に対応した形状を有する成形面24に押圧し、図7 に示すように、前記図2 などに示した、中空材3 の外方に略直角の角度で立ち上がって、表面がフラットに広がる円形状のフランジをアルミニウム合金中空材3 の端部に形成する。この態様では、円管状のアルミニウム合金中空材3 の一方のフランジ2aか2bの形成を示しており、他方のフランジ2aか2bを形成する際にも、金型23に対し、中空材3 の向きを入れ換えて、もう一方の端部の成形を同様に行い、両方 (両端部) のフランジを形成する。   Then, the expanded hollow material end 3a was pressed with a strong force against the molding surface 24 having a shape corresponding to the surface (joint surface) shape of the flange, and as shown in FIG. A circular flange is formed at the end of the aluminum alloy hollow material 3 so as to rise outward from the hollow material 3 at a substantially right angle and the surface is flat. In this embodiment, the formation of one flange 2a or 2b of the tubular aluminum alloy hollow material 3 is shown, and the direction of the hollow material 3 relative to the mold 23 is also shown when the other flange 2a or 2b is formed. And the other end is molded in the same manner to form both (both ends) flanges.

前記した、表面 (接合面) が鞍型などの曲面形状を有するフランジは、金型23の成形面24の形状を、鞍型などの適宜の曲面形状とすることで、成形できる。また、フラットだが垂直方向ではなく角度を付けて斜めに傾いたような形状も、金型23の成形面24を、中空材3 に対し、直角ではなく角度をつけて傾けることで成形できる。   The flange having a curved surface shape such as a saddle shape on the surface (joint surface) described above can be molded by changing the shape of the molding surface 24 of the mold 23 to an appropriate curved shape such as a saddle shape. Also, a flat shape that is inclined at an angle rather than in the vertical direction can be formed by inclining the molding surface 24 of the mold 23 at an angle rather than a right angle with respect to the hollow material 3.

なお、形成したフランジの後面側に、略平行な拡径部やテーパ状の拡径部を形成して、直線部と結ぶようにしても良い。フランジの後面側に、このような拡径部を形成することで、フランジの継ぎ手としての強度をより高めることができる。この拡径部の設け方は、金型の中空材挿入用貫通孔とアルミニウム合金中空材の外径とのクリアランスの調整により、簡便に制御できる。   In addition, you may make it form a substantially parallel enlarged diameter part and a taper-shaped enlarged diameter part in the rear surface side of the formed flange, and tie it with a linear part. By forming such an enlarged diameter portion on the rear surface side of the flange, the strength of the flange joint can be further increased. The method of providing the enlarged diameter portion can be easily controlled by adjusting the clearance between the hollow material insertion through hole of the mold and the outer diameter of the aluminum alloy hollow material.

次に、本発明エネルギー吸収部材の車体におけるバンパーフレーム部分に使用した場合の一使用態様を、図8 、9 を用いて説明する。図8 に一般的なバンパー構造を正面図で示す。図8 において、先ず、10はバンパーカバー、11は発泡フォーム材などで適宜構成する衝撃吸収材、12はパンパー補強材、13はステイ、14は車体サイドメンバーであり、1bは本発明エネルギー吸収部材 (図2 (a) の態様) である。これら部材が記載順に、車体前後方向 (図の左側が前) に順に配列される。   Next, one usage mode when the energy absorbing member of the present invention is used for a bumper frame portion in a vehicle body will be described with reference to FIGS. Fig. 8 shows a general bumper structure in front view. In FIG. 8, first, 10 is a bumper cover, 11 is an impact absorbing material appropriately configured with foamed foam material, 12 is a bumper reinforcing material, 13 is a stay, 14 is a vehicle body side member, and 1b is the energy absorbing member of the present invention. (Aspect of FIG. 2 (a)). These members are arranged in the order of description in the longitudinal direction of the vehicle body (the left side in the figure is the front).

そして、バンパー補強材12の後面フランジ面16a とステイ13の前面フランジ13a 、ステイ13の後面フランジ13b とエネルギー吸収部材1bの前面フランジ2a、エネルギー吸収部材1bの後面フランジ2bと、サイドメンバー14の前面フランジ14a とが、これら各接合面同士で、溶接乃至ボルト、ナット、リベットなどの機械的な結合手段20などにより接合されている。   The rear flange surface 16a of the bumper reinforcement 12 and the front flange 13a of the stay 13, the rear flange 13b of the stay 13 and the front flange 2a of the energy absorbing member 1b, the rear flange 2b of the energy absorbing member 1b, and the front surface of the side member 14 The flanges 14a are joined to each other by a mechanical coupling means 20 such as welding or bolts, nuts, rivets or the like at the respective joining surfaces.

バンパー補強材12は、例えば、各々車体前後方向に略平行に設けられた前面フランジ15と後面フランジ16、およびこれらのフランジ間をつなぐ略平行に設けられた左右のウエブ17、18とからなる一体のアルミニウム合金中空押出形材により構成されることが好ましい。なお、19は選択的に設けられる補強用の中リブであり、これによって、断面日形の略矩形形状を有している。   The bumper reinforcing member 12 includes, for example, a front flange 15 and a rear flange 16 that are provided substantially parallel to the longitudinal direction of the vehicle body, and left and right webs 17 and 18 that are provided substantially parallel to connect the flanges. It is preferable that it is comprised by the aluminum alloy hollow extrusion shape material of this. Reference numeral 19 denotes a reinforcing middle rib that is selectively provided, and has a substantially rectangular shape with a cross-sectional shape of a sun.

また、ステイ13は、エネルギー吸収部材1bと同様に、アルミニウム合金中空材からなり、フランジ13a 、13b が電磁成形により、ステイ端部に一体に形成される場合には、実質的に、本発明エネルギー吸収部材となる。勿論、本発明では、このステイ13が従来のアルミニウム合金中空材や鋼製のステイであっても良い。また、ステイ13を本発明エネルギー吸収部材の態様とし、エネルギー吸収部材1bの方を省略することも可能である。   Similarly to the energy absorbing member 1b, the stay 13 is made of an aluminum alloy hollow material. When the flanges 13a and 13b are integrally formed at the end of the stay by electromagnetic forming, the energy of the present invention is substantially reduced. It becomes an absorbing member. Of course, in the present invention, the stay 13 may be a conventional aluminum alloy hollow material or steel stay. Further, the stay 13 may be an aspect of the energy absorbing member of the present invention, and the energy absorbing member 1b may be omitted.

更にサイドメンバー14は、特に高い強度を必要とするため、通常通り、鋼材からなることが好ましい。このため、前面フランジ14a も、通常通り、サイドメンバー14端部に溶接接合で一体化された鋼製フランジとされる。   Furthermore, since the side member 14 requires particularly high strength, it is preferable that the side member 14 is made of steel as usual. For this reason, the front flange 14a is also a steel flange integrated with the end of the side member 14 by welding as usual.

図8 の本発明態様では、エネルギー吸収部材1bのフランジ2a、2bが、ステイ13の後面フランジ13b やサイドメンバー14の前面フランジ14a の形状に対応して、垂直に立ち上がるフラットな形状を有する。そして、中空材3 に一体に形成されている。このため、エネルギー吸収部材1bと他の車体部材であるステイ13やサイドメンバー14とを、各々のフランジを介して、接合面積を大きくしながら、直接接合することができる。したがって、これらフランジを別個に製作して、各々別個に接合する従来方式に比して、エネルギー吸収部材1bの接合強度を大幅に高めることができる。また、エネルギー吸収部材1bは、圧壊変形の起点となる凸部4a、4bを有している。   In the embodiment of the present invention of FIG. 8, the flanges 2a and 2b of the energy absorbing member 1b have a flat shape that rises vertically corresponding to the shapes of the rear flange 13b of the stay 13 and the front flange 14a of the side member 14. The hollow material 3 is integrally formed. For this reason, the energy absorbing member 1b and the stay 13 and the side member 14, which are other vehicle body members, can be directly joined through the respective flanges while increasing the joining area. Therefore, it is possible to significantly increase the joining strength of the energy absorbing member 1b as compared with the conventional method in which these flanges are manufactured separately and are joined separately. Further, the energy absorbing member 1b has convex portions 4a and 4b serving as starting points for crushing deformation.

これらの結果、バンパーカバー10を介して、車体前方から伝わる、車体衝突時の軸方向( 車体前後方向) の荷重エネルギーを、ステイ13の軸方向の圧壊変形と、エネルギー吸収部材1a軸方向の圧壊変形による、エネルギー吸収性能を大きく向上させることができる。また、エネルギー吸収部材1aのフランジを介して他の車体部材と直接接合することができるため、上記車体衝突時の圧壊変形によって、エネルギー吸収部材1aのみが壊れた場合でも、エネルギー吸収部材1aのみを簡便に取り外すことができ、新しいエネルギー吸収部材を取り付けることも簡便にできる。これらの効果は、ステイ13がエネルギー吸収部材である場合に、このステイ13についても言える。   As a result, the load energy transmitted from the front of the vehicle body through the bumper cover 10 in the axial direction (vehicle longitudinal direction) at the time of the vehicle collision is crushed and deformed in the axial direction of the stay 13 and in the axial direction of the energy absorbing member 1a. Due to the deformation, the energy absorption performance can be greatly improved. Further, since it can be directly joined to another vehicle body member via the flange of the energy absorption member 1a, even if only the energy absorption member 1a is broken due to the crushing deformation at the time of the vehicle body collision, only the energy absorption member 1a is attached. It can be easily removed and a new energy absorbing member can be easily attached. These effects can be applied to the stay 13 when the stay 13 is an energy absorbing member.

図9は、図8 のバンパー構造の要部のみを平面図で示したものである。但し、図9において、バンパー補強材12は、図8 のように長手方向 (車体幅方向) に直線状ではなく、車体後方側に傾斜乃至湾曲した両端部12a 、12b を有する。このため、バンパー補強材12支持用の2 本のステイ13は、各々バンパー補強材12の車体後方側に傾斜した両端部12a 、12b 後面に、間隔をあけて配置されている。   FIG. 9 is a plan view showing only the main part of the bumper structure of FIG. However, in FIG. 9, the bumper reinforcing member 12 has both ends 12a and 12b which are not linear in the longitudinal direction (vehicle width direction) as shown in FIG. For this reason, the two stays 13 for supporting the bumper reinforcing material 12 are arranged at intervals on the rear surfaces of both end portions 12a and 12b inclined to the rear side of the vehicle body of the bumper reinforcing material 12, respectively.

したがって、ステイ23の各前面フランジ13a は、バンパー補強材12の両端部12a 、12b の後面形状に応じて、各方向に傾斜したフラットな形状を有している。そして、この前面フランジ13a を介して、その管軸方向 (中空形材軸方向) を車体前後方向 (水平方向) として、バンパー補強材1 をその後面側から車体前後方向に支持している。   Therefore, each front flange 13a of the stay 23 has a flat shape inclined in each direction in accordance with the shape of the rear surface of both end portions 12a, 12b of the bumper reinforcing member 12. Then, the bumper reinforcing material 1 is supported from the rear surface side in the vehicle front-rear direction via the front flange 13a with the tube axis direction (hollow profile shaft direction) as the vehicle front-rear direction (horizontal direction).

前面フランジ13a を、このような傾斜した、通常は形成が難しい形状とする必要がある場合には、ステイ13を、本発明エネルギー吸収部材1bと同様に、アルミニウム合金中空材からなり、特に前面傾斜フランジ13a や、後面フランジ13b を電磁成形により、ステイ端部に一体に形成することが有利となる。なお、これ以外の、各部材の構造や接続構造は、図8 の場合と同じである。   When the front flange 13a needs to have such a slanted shape that is usually difficult to form, the stay 13 is made of an aluminum alloy hollow material like the energy absorbing member 1b of the present invention. It is advantageous to integrally form the flange 13a and the rear flange 13b at the stay end by electromagnetic forming. The structure of each member and the connection structure other than this are the same as those in FIG.

本発明エネルギー吸収部材 (中空材) としての要求特性を満足するアルミニウム合金としては、通常、この種構造部材用途に汎用される、AA乃至JIS 5000系、6000系、7000系等の耐力の比較的高い汎用合金であって、調質されたアルミニウム合金から選択して用いられる。ただ、この中でも、特に、Al-Zn-Mg系、あるいは Al-Zn-Mg-Cu系の7000系のアルミニウム合金押出中空形材であって、T5、T6、T7などの調質 (特に人工時効処理された) アルミニウム合金押出中空形材が好ましい。但し、これらアルミニウム合金の圧延板を中空状に成形および接合部を溶接接合した中空材なども用いて良い。   As an aluminum alloy that satisfies the required characteristics as the energy absorbing member (hollow material) of the present invention, the AA to JIS 5000 series, 6000 series, 7000 series, etc. It is a high general-purpose alloy that is selected from tempered aluminum alloys. However, among them, in particular, Al-Zn-Mg-based or Al-Zn-Mg-Cu-based 7000-based aluminum alloy extruded hollow shapes, which have tempering such as T5, T6, T7 (especially artificial aging) A treated aluminum alloy extruded hollow profile is preferred. However, it is also possible to use a hollow material obtained by forming these aluminum alloy rolled plates into a hollow shape and welding the joints.

本発明によれば、エネルギー吸収性能を低下性させることなく、難成形形状などの変形部を表面に設けた、車体用アルミニウム合金エネルギー吸収部材を提供することができる。このため、エネルギー吸収部材や車体自体の軽量化を促進でき、アルミニウム合金材の用途も一層拡大するものであり、工業的な価値が大きい。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy energy absorption member for vehicle bodies which provided the deformation | transformation parts, such as a difficult shaping | molding shape, on the surface can be provided, without degrading energy absorption performance. For this reason, the weight reduction of an energy absorption member and the vehicle body itself can be accelerated | stimulated, and the use of an aluminum alloy material further expands, and industrial value is great.

本発明エネルギー吸収部材の一実施態様を示す斜視図である。It is a perspective view which shows one embodiment of this invention energy absorption member. 本発明エネルギー吸収部材の他の実施態様を示し、図2(a)、(b) 、(c) は各々変形部が異なる態様を示す斜視図である。FIGS. 2 (a), 2 (b), and 2 (c) are perspective views showing different embodiments of the energy absorbing member according to the present invention. 本発明エネルギー吸収部材の他の実施態様を示し、図3(a)、(b) 、(c) 、(d) は各々変形部が異なる態様を示す斜視図である。3 shows another embodiment of the energy absorbing member of the present invention, and FIGS. 3 (a), (b), (c) and (d) are perspective views showing different modes of the deformed portions. 本発明エネルギー吸収部材の他の実施態様を示し、図4(a)、(b) は各々変形部が異なる態様を示す斜視図である。4 shows another embodiment of the energy absorbing member of the present invention, and FIGS. 4 (a) and 4 (b) are perspective views showing different modes of the deformed portions. 本発明エネルギー吸収部材の変形部形成の工程を示し、図5(a)、(b) 、(c) は各々異なる変形部を設ける態様を示す断面図である。FIGS. 5 (a), (b), and (c) are cross-sectional views showing a mode in which different deformed portions are provided, respectively, showing a process of forming deformed portions of the energy absorbing member of the present invention. 本発明エネルギー吸収部材のフランジ形成の前半工程を示す斜視図である。It is a perspective view which shows the first half process of flange formation of this invention energy absorption member. 本発明エネルギー吸収部材のフランジ形成の後半工程を示す斜視図である。It is a perspective view which shows the latter half process of flange formation of this invention energy absorption member. 本発明エネルギー吸収部材のバンパへの使用態様を示す正面図である。It is a front view which shows the usage condition to the bumper of this invention energy absorption member. 本発明エネルギー吸収部材のバンパへの使用態様を示す平面図である。It is a top view which shows the usage condition to the bumper of this invention energy absorption member. 従来のバンパ補強材の態様を示し、図10(a) 、(b) は圧壊変形の過程を各々示す正面図である。FIGS. 10 (a) and 10 (b) are front views showing a process of crushing deformation, respectively, showing a conventional bumper reinforcing material.

符号の説明Explanation of symbols

1:エネルギー吸収部材、2:フランジ、3:中空材、4:凸部、5:孔、
6:中空部分
1: energy absorbing member, 2: flange, 3: hollow material, 4: convex part, 5: hole,
6: Hollow part

Claims (6)

アルミニウム合金中空材からなり、他の車体部材に接合された上で、大荷重付加時に中空材の断面方向または軸方向に圧壊変形して、荷重エネルギーを吸収するエネルギー吸収部材であって、中空材表面に、前記大荷重付加時に圧壊の起点となるか、または圧壊強度を補強する変形部が設けられており、この変形部が電磁成形により形成されていることを特徴とする車体用エネルギー吸収部材。 An energy absorbing member made of an aluminum alloy hollow material, joined to another vehicle body member, and crushed and deformed in a cross-sectional direction or an axial direction of the hollow material when a heavy load is applied. The vehicle body energy absorbing member is characterized in that a deformed portion is provided on the surface, which is a starting point of crushing when the large load is applied or which reinforces the crushing strength, and the deformed portion is formed by electromagnetic forming. . 前記変形部が、凸部、凹部、孔のいずれかである請求項1に記載の車体用エネルギー吸収部材。 The vehicle body energy absorbing member according to claim 1, wherein the deformable portion is any one of a convex portion, a concave portion, and a hole. 前記中空材軸方向の端部に、前記他の部材の接合面形状と適合する接合面形状を有して外方に広がるフランジが形成され、このフランジにおいて、前記他の車体部材と着脱自在に接合される請求項1または2に記載の車体用エネルギー吸収部材。 At the end in the axial direction of the hollow material, a flange that has a joint surface shape that matches the joint surface shape of the other member and that spreads outward is formed. The energy absorbing member for a vehicle body according to claim 1 or 2 to be joined. 前記フランジが、電磁成形により、前記中空材軸方向の端部が拡径されるとともに、前記他の部材の接合面形状と適合する接合面形状を有して外方に広がるフランジに形成されたものである請求項3に記載の車体用エネルギー吸収部材。 The flange is formed into a flange that is widened outwardly by an electromagnetic forming having a joint surface shape that matches the joint surface shape of the other member while the end of the hollow material axial direction is enlarged in diameter. The vehicle body energy absorbing member according to claim 3, wherein the energy absorbing member is for a vehicle body. 前記中空材が、3000系、5000系、6000系、7000系のいずれかのアルミニウム合金からなる請求項1乃至4のいずれか1項に記載の車体用エネルギー吸収部材。 The vehicle body energy absorbing member according to any one of claims 1 to 4, wherein the hollow material is made of any one of 3000 series, 5000 series, 6000 series, and 7000 series aluminum alloys. 前記エネルギー吸収部材がバンパー内に配置されるものである請求項1乃至5のいずれか1項に記載の車体用エネルギー吸収部材。 The energy absorbing member for a vehicle body according to any one of claims 1 to 5, wherein the energy absorbing member is disposed in a bumper.
JP2006006367A 2006-01-13 2006-01-13 Energy absorbing member for vehicle body Withdrawn JP2006160260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006367A JP2006160260A (en) 2006-01-13 2006-01-13 Energy absorbing member for vehicle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006367A JP2006160260A (en) 2006-01-13 2006-01-13 Energy absorbing member for vehicle body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002357821A Division JP3863100B2 (en) 2002-12-10 2002-12-10 Energy absorbing member for vehicle body and electromagnetic forming method for forming flange on energy absorbing member for vehicle body

Publications (1)

Publication Number Publication Date
JP2006160260A true JP2006160260A (en) 2006-06-22

Family

ID=36662710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006367A Withdrawn JP2006160260A (en) 2006-01-13 2006-01-13 Energy absorbing member for vehicle body

Country Status (1)

Country Link
JP (1) JP2006160260A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870416B1 (en) 2007-10-04 2008-11-25 주식회사 성우하이텍 Crash box of automotive bumper system
JP2010105506A (en) * 2008-10-29 2010-05-13 Okayama Yosetsusho:Kk Automobile bumper
JP2012192845A (en) * 2011-03-16 2012-10-11 Kobe Steel Ltd Bumper stay of automobile
JP2013010392A (en) * 2011-06-28 2013-01-17 Kobe Steel Ltd Energy absorption member
WO2013115066A1 (en) * 2012-02-01 2013-08-08 株式会社神戸製鋼所 Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
JP2013160253A (en) * 2012-02-01 2013-08-19 Kobe Steel Ltd Energy absorbing member and manufacturing method thereof
JP2014189138A (en) * 2013-03-27 2014-10-06 Toyota Boshoku Corp Bracket
KR101475608B1 (en) * 2012-06-05 2014-12-22 가부시키가이샤 고베 세이코쇼 Automobile bumper structure
JP2016118298A (en) * 2016-01-29 2016-06-30 株式会社神戸製鋼所 Energy absorption component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870416B1 (en) 2007-10-04 2008-11-25 주식회사 성우하이텍 Crash box of automotive bumper system
JP2010105506A (en) * 2008-10-29 2010-05-13 Okayama Yosetsusho:Kk Automobile bumper
JP2012192845A (en) * 2011-03-16 2012-10-11 Kobe Steel Ltd Bumper stay of automobile
JP2013010392A (en) * 2011-06-28 2013-01-17 Kobe Steel Ltd Energy absorption member
WO2013115066A1 (en) * 2012-02-01 2013-08-08 株式会社神戸製鋼所 Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
JP2013160253A (en) * 2012-02-01 2013-08-19 Kobe Steel Ltd Energy absorbing member and manufacturing method thereof
CN104094011A (en) * 2012-02-01 2014-10-08 株式会社神户制钢所 Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
US9327664B2 (en) 2012-02-01 2016-05-03 Kobe Steel, Ltd. Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
KR101475608B1 (en) * 2012-06-05 2014-12-22 가부시키가이샤 고베 세이코쇼 Automobile bumper structure
JP2014189138A (en) * 2013-03-27 2014-10-06 Toyota Boshoku Corp Bracket
JP2016118298A (en) * 2016-01-29 2016-06-30 株式会社神戸製鋼所 Energy absorption component

Similar Documents

Publication Publication Date Title
JP2006160260A (en) Energy absorbing member for vehicle body
US9327664B2 (en) Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
JP4133302B2 (en) Energy absorption member for car body
US20060237976A1 (en) Crushable structure manufactured from mechanical expansion
WO2011049029A1 (en) Vehicle bumper beam and method for manufacturing same
JP6170895B2 (en) Collision resistant parts for automobiles
JPWO2005010398A1 (en) Shock absorbing member
CN103890440A (en) Shock absorbing member
JP5177397B2 (en) Bumper structure
JP2008261493A (en) Shock absorbing member and its manufacturing method
CN104760554A (en) Automotive insertion sheet filling type foamed aluminum energy absorption box
JP3863099B2 (en) Bumper, stay, and electromagnetic forming method for forming flange on stay
JP3863100B2 (en) Energy absorbing member for vehicle body and electromagnetic forming method for forming flange on energy absorbing member for vehicle body
JP2006335241A (en) Bumper stay and bumper device
JP4527613B2 (en) Bumper stay and bumper equipment
JP4645131B2 (en) Bumper structure for vehicle and method for forming the same
KR100775806B1 (en) Crash box in automotive bumper system
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP5235007B2 (en) Crash box
JP4439273B2 (en) Tubular member with flange
JP4039032B2 (en) Impact energy absorbing member
KR20220130682A (en) Inflated tube for automobile crash box and manufacturing method thereof
JPWO2008012876A1 (en) Shock absorbing member
JP2006347527A (en) Bumper device and bumper stay
JPH09277954A (en) Tapered impact absorbing member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20060619

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060713