JP2006159571A - Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure - Google Patents

Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure Download PDF

Info

Publication number
JP2006159571A
JP2006159571A JP2004353071A JP2004353071A JP2006159571A JP 2006159571 A JP2006159571 A JP 2006159571A JP 2004353071 A JP2004353071 A JP 2004353071A JP 2004353071 A JP2004353071 A JP 2004353071A JP 2006159571 A JP2006159571 A JP 2006159571A
Authority
JP
Japan
Prior art keywords
honeycomb structure
cross
width
basic
side walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353071A
Other languages
Japanese (ja)
Inventor
Takeshi Kumazawa
健 熊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004353071A priority Critical patent/JP2006159571A/en
Publication of JP2006159571A publication Critical patent/JP2006159571A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fundamental honeycomb structure reduced in residual strain at the time of molding and preventing the thickness of a wash coat layer from becoming different by the region of the sidewall of a small hole, its extrusion molding die and a manufacturing method of a large-sized honeycomb structure. <P>SOLUTION: In the fundamental honeycomb structure 10 having square or hexagonal small holes 11 the same in cross-sectional shape arranged thereto side by side in an adjacent state, the insides of corner parts, where the adjacent sidewalls 12 of the small holes 11 cross each other, are smoothly connected by connection parts 13 of which the inner surfaces have an arcuate or linear cross-sectional shape and the cross-sectional width of each of the connection parts 13 is preferably 0.05-0.45 times the width of the sidewall on the short side in each of the sidewalls 12 to which the connection parts 13 are connected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関やボイラーの燃焼器から排出される排ガス中に含まれるカーボン微粒子、未燃焼の炭化水素、及び窒素酸化物等の各種排出物の処理、並びに各種生活環境から放出される化学物質、埃、及び臭いの処理を触媒反応を利用して行なう際に使用する触媒担持用のハニカム構造体及びそれを成形する成形用ダイスに関する。 The present invention relates to the treatment of various emissions such as carbon particulates, unburned hydrocarbons and nitrogen oxides contained in exhaust gas discharged from internal combustion engines and boiler combustors, and chemicals released from various living environments. The present invention relates to a honeycomb structure for supporting a catalyst used when a substance, dust, and odor are treated using a catalytic reaction, and a forming die for forming the honeycomb structure.

従来、排ガス中の各種排出物を触媒反応を利用して処理する場合、例えば、触媒で形成したハニカム構造体又は表面に触媒が担持されたハニカム構造体を触媒が活性化する温度域に保ちその内部に排ガスを導入し、ハニカム構造体を構成する小孔の側壁と排ガスとの間で十分な接触時間が確保されるようにして排ガスを流通させていた。
ここで、ハニカム構造体の加熱は、流通させる排ガスの熱を利用して行なっているので、内燃機関やボイラーの燃焼器の始動時ではハニカム構造体の温度が低く、しかも排出される排ガスの温度も低いため、触媒が活性化する温度域にハニカム構造体の温度が上昇するまで十分な処理機能を発揮することができないという欠点があった。
そこで、ハニカム構造体加熱用のヒータを設け、側壁の厚みをできるだけ薄くし、ハニカム構造体の温度が素早く触媒が活性化する温度域まで上昇できるようにすることが試みられている。しかし、ハニカム構造体の小孔を形成する側壁の厚みを薄くすると、ハニカム構造体の強度が低下するという問題が生じる。
Conventionally, when various emissions in exhaust gas are treated using a catalytic reaction, for example, a honeycomb structure formed of a catalyst or a honeycomb structure having a catalyst supported on the surface is kept in a temperature range where the catalyst is activated. Exhaust gas was introduced into the inside, and the exhaust gas was circulated so as to ensure sufficient contact time between the side walls of the small holes constituting the honeycomb structure and the exhaust gas.
Here, since the heating of the honeycomb structure is performed using the heat of the exhaust gas to be circulated, the temperature of the honeycomb structure is low at the start of the internal combustion engine and the boiler combustor, and the exhaust gas temperature is discharged. Therefore, there is a disadvantage that a sufficient treatment function cannot be exhibited until the temperature of the honeycomb structure rises in the temperature range where the catalyst is activated.
Therefore, an attempt has been made to provide a heater for heating the honeycomb structure so that the thickness of the side wall is as thin as possible so that the temperature of the honeycomb structure can quickly rise to a temperature range where the catalyst is activated. However, when the thickness of the side wall forming the small holes of the honeycomb structure is reduced, there arises a problem that the strength of the honeycomb structure is lowered.

一方、排ガスと小孔の側壁との間で十分な接触時間が確保されるようにするために、ハニカム構造体の小孔の断面積を小さくして、すなわち、単位面積当たりの小孔の個数を多くして排ガスに接触する側壁の面積を増加させることが試みられている。
しかし、ハニカム構造体の小孔の断面積を小さくすると、排ガスとの接触面積は増加するが、排ガスの流れによる差圧が上昇して排ガスが通過し難くなるという問題が生じると共に、ハニカム構造体を押し出し成形する際の押し出し圧力が上昇し成形性が悪くなるという問題が生じる。更に、押し出し成形用ダイスの加工が複雑になり、押し出し成形用ダイスの耐久性も低下するという問題がある。
On the other hand, in order to ensure sufficient contact time between the exhaust gas and the side walls of the small holes, the cross-sectional area of the small holes of the honeycomb structure is reduced, that is, the number of small holes per unit area Attempts have been made to increase the area of the side wall in contact with the exhaust gas by increasing the amount.
However, when the cross-sectional area of the small holes of the honeycomb structure is reduced, the contact area with the exhaust gas increases, but there arises a problem that the differential pressure due to the flow of the exhaust gas increases and it becomes difficult for the exhaust gas to pass through. There is a problem that the extrusion pressure at the time of extrusion molding increases and the moldability deteriorates. Furthermore, there is a problem that the processing of the extrusion die is complicated and the durability of the extrusion die is also lowered.

そこで、図11に示すように、内部の基本小孔の隔壁100の厚みtc が0.11mm以下、外壁101の厚みts が0.2mm以上であり、基本小孔の開口率が80%以上であると共に、最外周部の小孔の側壁102の厚みtr 、基本小孔の隔壁100の厚みtc 、及び外壁101の厚みts が、0.7≦tc /tr ≦0.9 0.3≦tr /ts ≦0.7の関係を満たすようにする高強度薄壁ハニカム構造体103が提案されている(例えば、特許文献1参照)。これによって、小孔の形状が適宜選択された薄壁高強度のハニカム構造体を得ることができる。なお、符号104は最外周部の小孔の側壁102と基本小孔の隔壁100との境界線を示す。
特開平11−277653号公報
Therefore, as shown in FIG. 11, following the thickness t c of the partition wall 100 within the base ostium 0.11 mm, the thickness t s of the outer wall 101 is not less 0.2mm or more, the opening ratio of the basic ostium 80% in conjunction or more, the thickness t r of the side wall 102 of the small holes in the outermost peripheral portion, the thickness t c of the partition wall 100 of the base stoma, and the thickness t s of the outer wall 101, 0.7 ≦ t c / t r ≦ 0 .9, 0.3 ≦ t r / t s ≦ 0.7 high strength thin wall honeycomb structural body 103 to satisfy the relationship has been proposed (e.g., see Patent Document 1). Thereby, a thin-walled high-strength honeycomb structure in which the shape of the small holes is appropriately selected can be obtained. Reference numeral 104 denotes a boundary line between the side wall 102 of the outermost peripheral small hole and the partition wall 100 of the basic small hole.
Japanese Patent Laid-Open No. 11-277653

ここで、ハニカム構造体の表面に触媒を担持させる方法としては、ハニカム構造体を触媒粒子が分散しているウォッシュコート溶液中に浸漬する方法が広く用いられている。しかしながら、小孔の形状が多角形の場合、図12(A)〜(C)にそれぞれ示すように、小孔の隣り合う側壁105、106、107の内側の角部108、109、110では、ウォッシュコート層(コーティング層)の厚みがその他の部位におけるウォッシュコート層の厚みに比較して非常に厚くなるコート溜り111、112、113という現象が生じる。これは、ウォッシュコート溶液の表面張力により、小孔の開口部の形状が円に近づくという原理に起因した結果である。そして、角部108、109、110には必要以上に多くの触媒が担持されることになるため、ハニカム構造体に担持させる触媒の総量が増加し触媒コストの上昇を招くという問題が生じる。
また、角部には周囲の領域に比較して多くの触媒が担持されているため、触媒反応に伴う発熱又は吸熱が大きくなり、角部の温度は周囲の温度と比較して常に高くなる。このため、内燃機関やボイラーの燃焼器が運転と停止を繰り返したり、運転中に運転条件が変動する場合では、角部における温度変動幅は周囲の領域における温度変動幅より大きくなり、角部にはその周囲の領域に比較して大きな熱膨張及び熱収縮が発生することになる。その結果、角部に担持された触媒層にひびが生じ側壁から剥離したり、角部にひび割れが発生したりする。
Here, as a method of supporting the catalyst on the surface of the honeycomb structure, a method of immersing the honeycomb structure in a washcoat solution in which catalyst particles are dispersed is widely used. However, when the shape of the small hole is a polygon, as shown in FIGS. 12A to 12C, the corners 108, 109, and 110 inside the side walls 105, 106, and 107 adjacent to the small hole, There arises a phenomenon in which the thickness of the washcoat layer (coating layer) becomes very large compared to the thickness of the washcoat layer in other portions, that is, the pools 111, 112, and 113. This is a result due to the principle that the shape of the opening of the small hole approaches a circle due to the surface tension of the washcoat solution. Since corners 108, 109, and 110 carry more catalyst than necessary, there is a problem that the total amount of catalyst carried on the honeycomb structure increases and the catalyst cost increases.
In addition, since more catalyst is supported in the corner portion than in the surrounding region, heat generation or endotherm accompanying the catalytic reaction is increased, and the temperature of the corner portion is always higher than the ambient temperature. For this reason, when the internal combustion engine or boiler combustor repeats operation and stoppage, or when the operating conditions fluctuate during operation, the temperature fluctuation width at the corner becomes larger than the temperature fluctuation width in the surrounding area, and the corner Therefore, large thermal expansion and contraction occur in the surrounding area. As a result, the catalyst layer supported at the corners cracks and peels off from the side walls, or cracks occur at the corners.

そこで、図13に示すように、小孔の形状を多角形の小孔に内接する円形にすると、側壁に均一厚みのウォッシュコート層を形成することができるが、排ガスが通過する流路の断面積が減少して排ガス流の差圧が大きくなると共に、排ガスが接触する側壁の総面積も減少するという問題がある。更に、隣り合う二つの小孔間の側壁Pの厚みは薄く、隣り合う三つの小孔間の側壁Qの厚みは不必要に厚くなって、側壁間に厚みの不均一が生じる。
このため、ハニカム構造体を押し出し成形によって形成する際、隣り合う二つの小孔間の側壁Pでは断面積が小さくなり押し出し性は低下し、隣り合う三つの小孔間の側壁Qでは断面積が大きくなり押し出し性は向上する。従って、得られたハニカム構造体の中で、隣り合う二つの小孔間の側壁Pには押し出し成形時の歪みが残留して、使用時の熱衝撃や物理的(機械的)衝撃に対して弱くなる傾向を示す。
Therefore, as shown in FIG. 13, if the shape of the small holes is a circle inscribed in the polygonal small holes, a washcoat layer having a uniform thickness can be formed on the side wall, but the flow path through which the exhaust gas passes is cut off. There is a problem in that the area is reduced and the differential pressure of the exhaust gas flow is increased, and the total area of the side walls in contact with the exhaust gas is also reduced. Furthermore, the thickness of the side wall P between two adjacent small holes is thin, and the thickness of the side wall Q between three adjacent small holes becomes unnecessarily thick, resulting in uneven thickness between the side walls.
For this reason, when the honeycomb structure is formed by extrusion molding, the cross-sectional area becomes small at the side wall P between two adjacent small holes and the extrudability is lowered, and the cross-sectional area at the side wall Q between three adjacent small holes is small. It becomes larger and pushability improves. Therefore, in the obtained honeycomb structure, the distortion at the time of extrusion molding remains on the side wall P between two adjacent small holes, so that the thermal shock and physical (mechanical) shock during use remain. Shows a tendency to weaken.

また、排ガスを効率的に処理しようとする場合、大口径のハニカム構造体を使用するのが好ましい。そのためには、大型のダイスを準備する必要があるが、大型のダイスの加工は非常に困難であり、また高価になるという問題がある。しかし、大口径のハニカム構造体の需要と、これに使用されるダイスの加工技術や押し出し成形技術とはトレードオフの関係にあり、これ以上の飛躍的改善はあまり期待できない状況に置かれている。 Moreover, when trying to treat exhaust gas efficiently, it is preferable to use a large-diameter honeycomb structure. For this purpose, it is necessary to prepare a large die, but there is a problem that processing of the large die is very difficult and expensive. However, there is a trade-off relationship between the demand for large-diameter honeycomb structures and the processing technology and extrusion technology of the dies used therefor, and there is a situation where further dramatic improvements cannot be expected. .

本発明はかかる事情に鑑みてなされたもので、成形時の残留歪みが小さくウォッシュコート層の厚みが小孔の側壁の部位によって異なることが防止された基本ハニカム構造体及びその押し出し成形用ダイス、並びに大型ハニカム構造体の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, a basic honeycomb structure in which residual distortion at the time of molding is small and the thickness of the washcoat layer is prevented from being different depending on the side wall portion of the small hole, and its extrusion molding die, It is another object of the present invention to provide a method for manufacturing a large honeycomb structure.

前記目的に沿う第1の発明に係る基本ハニカム構造体は、同一断面形状の四角形又は六角形の小孔が、隣接した状態で並べて配置される基本ハニカム構造体において、
前記小孔の隣り合う側壁が交わる角部内側は、内表面の断面形状が円弧状又は直線状となった連結部によって滑らかに連結している。
The basic honeycomb structure according to the first invention that meets the above-described object is a basic honeycomb structure in which square or hexagonal small holes having the same cross-sectional shape are arranged side by side in an adjacent state.
The inside of the corner where the adjacent side walls of the small holes meet is smoothly connected by a connecting portion whose inner surface has a circular or linear cross-sectional shape.

前記目的に沿う第2の発明に係る押し出し成形用ダイスは、ベース部と、該ベース部上に、互いに隙間を設けて並べて配置され、断面が同一形状の四角形又は六角形からなる複数のロッド部とを備え、前記ベース部には、該ベース部と前記複数のロッド部の隙間によって形成される溝に原料を供給する複数の注入口を有する押し出し成形用ダイスにおいて、
前記ロッド部の隣り合う側壁の交差部には、角を滑らかにする角取り部が形成され、しかも、前記角取り部の断面幅は、該角取り部が形成される前記側壁の幅の0.05倍以上で0.45倍以下の範囲にある。なお、角部を形成する2つの側壁の幅が異なる場合は、2つの側壁の幅の平均値を側壁の幅とする。
The extrusion molding die according to the second invention that meets the above-mentioned object is a base part and a plurality of rod parts that are arranged side by side with a gap on the base part, and are made of a square or a hexagon having the same shape. In the extrusion die having a plurality of inlets for supplying a raw material to a groove formed by the gap between the base portion and the plurality of rod portions,
A chamfered portion for smoothing a corner is formed at the intersection of adjacent side walls of the rod portion, and the cross-sectional width of the chamfered portion is 0 of the width of the side wall where the chamfered portion is formed. .05 times or more and 0.45 times or less. When the widths of the two side walls forming the corner are different, the average value of the widths of the two side walls is set as the width of the side wall.

前記目的に沿う第3の発明に係る大型ハニカム構造体の製造方法は、必要とする大型ハニカム構造体を、それぞれ周囲に外壁を有し内部に同一断面形状の四角形又は六角形の複数の小孔を備える同一又は異なる形状の基本ハニカム構造体に分割し、
前記それぞれの基本ハニカム構造体を、ベース部と、該ベース部上に、互いに隙間を設けて並べて配置され、断面が同一形状の四角形又は六角形からなる複数のロッド部とを有し、前記ベース部には、該ベース部と前記複数のロッド部の隙間によって形成される溝に原料を供給する複数の注入口を有し、更に前記ロッド部の隣り合う側壁の交差部には、角を滑らかにする角取り部が形成され、しかも、前記角取り部の断面幅は、該角取り部が形成される前記側壁の中で短い側の側壁の幅の0.05倍以上で0.45倍以下の範囲にある押し出し成形用ダイスによって製造し、
最終的には、前記基本ハニカム構造体を連結する。
A method for manufacturing a large honeycomb structure according to the third aspect of the present invention, in which a required large honeycomb structure has a plurality of rectangular or hexagonal small holes each having an outer wall around the inside and having the same cross-sectional shape inside. Divided into basic honeycomb structures of the same or different shapes,
Each of the basic honeycomb structures includes a base portion, and a plurality of rod portions each having a quadrangular shape or a hexagonal shape with the same cross-section and arranged on the base portion with a gap therebetween. The portion has a plurality of inlets for supplying the raw material to a groove formed by the gap between the base portion and the plurality of rod portions, and the corners of the adjacent side walls of the rod portion have smooth corners. And the cross-sectional width of the chamfered portion is 0.05 times or more and 0.45 times the width of the short side wall among the side walls on which the chamfered portion is formed. Produced with an extrusion die in the following range,
Finally, the basic honeycomb structure is connected.

前記目的に沿う第4の発明に係る大型ハニカム構造体の製造方法は、並べて配置された複数の押し出し成形用ダイスに同時に原料を注入して、大型ハニカム構造体を製造する方法であって、
前記各押し出し成形用ダイスは、ベース部と、該ベース部上に、互いに隙間を設けて並べて配置され、断面が同一形状の四角形又は六角形からなる複数のロッド部とを有し、前記ベース部には、該ベース部と前記複数のロッド部の隙間によって形成される溝に原料を供給する複数の注入口を有し、前記ロッド部の隣り合う側壁の交差部には、角を滑らかにする角取り部が形成され、しかも、前記角取り部の断面幅は、該角取り部が形成される前記側壁の中で短い側の側壁の幅の0.05倍以上で0.45倍以下の範囲にある。
A method for manufacturing a large honeycomb structure according to a fourth invention that meets the above-described object is a method for manufacturing a large honeycomb structure by simultaneously injecting raw materials into a plurality of extrusion forming dies arranged side by side.
Each of the extrusion dies has a base portion and a plurality of rod portions that are arranged side by side with a gap on the base portion and are formed of a square or a hexagon having the same cross section. Has a plurality of inlets for supplying a raw material to a groove formed by a gap between the base portion and the plurality of rod portions, and the corners of the adjacent side walls of the rod portion have smooth corners. A chamfered portion is formed, and the cross-sectional width of the chamfered portion is not less than 0.05 times and not more than 0.45 times the width of the short side wall among the side walls on which the chamfered portion is formed. Is in range.

第1の発明に係る基本ハニカム構造体においては、小孔の隣り合う側壁が交わる角部内側を、内表面の断面形状が円弧状又は直線状となった連結部によって滑らかに連結するので、基本ハニカム構造体を触媒粒子が分散しているウォッシュコート溶液中に浸漬して側壁にウォッシュコート層を形成した際に、隣り合う側壁が交わる角部内側で発生するコート溜りを従来よりも減少させることができる。
特に、連結部の断面幅が、連結部が連接する側壁の中で短い側の側壁の幅の0.05倍以上で0.45倍以下の範囲にある場合は、側壁と連結部の内側に形成される角度を、隣り合う側壁の内側に形成される角度より大きくすることができ、コート溜りを減少させると共に小孔内に均一な厚みのウォッシュコート層を形成し易くすることができる。
In the basic honeycomb structure according to the first aspect of the present invention, the inner side of the corner where the adjacent side walls of the small holes intersect is smoothly connected by the connecting portion whose inner surface has a circular or linear cross-sectional shape. When the honeycomb structure is immersed in a washcoat solution in which catalyst particles are dispersed to form a washcoat layer on the side walls, the amount of coat accumulation generated at the corners where adjacent side walls meet is reduced compared to the conventional case. Can do.
In particular, when the cross-sectional width of the connecting portion is in the range of 0.05 to 0.45 times the width of the short side wall among the side walls connected to the connecting portion, The formed angle can be made larger than the angle formed inside the adjacent side wall, and the coating pool can be reduced and a wash coat layer having a uniform thickness can be easily formed in the small holes.

第2の発明に係る押し出し成形用ダイスにおいては、ロッド部の隣り合う側壁の交差部に、角を滑らかにする角取り部が形成され、しかも、角取り部の断面幅が、角取り部が形成される側壁の幅の0.05倍以上で0.45倍以下の範囲にあるので、注入された原料が溝を通過する際の通過抵抗を小さくすることができ、押し出し成形用ダイス内での原料圧密度の差や押し出し速度の差を小さくすることが可能になる。その結果、内部歪みの少ないハニカム構造体を得ることができ、使用時の急熱急冷に対する耐久性を向上させることができる。 In the extrusion molding die according to the second invention, a chamfered portion for smoothing the corner is formed at the intersection of adjacent side walls of the rod portion, and the cross-sectional width of the chamfered portion is Since it is in the range of 0.05 times or more and 0.45 times or less of the width of the side wall to be formed, it is possible to reduce the passage resistance when the injected raw material passes through the groove, and in the extrusion die. It is possible to reduce the difference in raw material pressure density and the difference in extrusion speed. As a result, a honeycomb structure with less internal strain can be obtained, and durability against rapid heating and quenching during use can be improved.

第3の発明に係る大型ハニカム構造体の製造方法においては、同一又は異なる形状の基本ハニカム構造体を連結して必要とする大型ハニカム構造体を製造するので、大型ハニカム構造体を容易かつ安価に製造することができる。また、各基本ハニカム構造体では小孔内でのコート溜まりの発生を抑えて均一な厚みのウォッシュコート層を形成することができるので、大型ハニカム構造体の小孔内にウォッシュコート層を形成する際に消費されるウォッシュコート溶液量を減少させることが可能になる。
更に、均一な厚みのウォッシュコート層が形成されることから、各側壁には均一な量の触媒を担持することができ、触媒反応に伴う発熱又は吸熱を大型ハニカム構造体で均一にすることが可能になる。その結果、大型ハニカム構造体で発生する熱膨張及び熱収縮を均一にすることができ、担持された触媒層にひびが生じて側壁から剥離したり、側壁にひび割れが発生するのを防止できる。
In the method for manufacturing a large honeycomb structure according to the third invention, the required large honeycomb structure is manufactured by connecting basic honeycomb structures of the same or different shapes, so that the large honeycomb structure can be manufactured easily and inexpensively. Can be manufactured. In addition, in each basic honeycomb structure, it is possible to form a washcoat layer having a uniform thickness while suppressing the occurrence of coat accumulation in the small holes, so the washcoat layer is formed in the small holes of the large honeycomb structure. It is possible to reduce the amount of washcoat solution consumed at the time.
Furthermore, since a washcoat layer having a uniform thickness is formed, each side wall can carry a uniform amount of catalyst, and heat generation or heat absorption associated with the catalytic reaction can be made uniform in the large honeycomb structure. It becomes possible. As a result, it is possible to make the thermal expansion and contraction generated in the large honeycomb structure uniform, and it is possible to prevent the supported catalyst layer from cracking and peeling from the side wall or cracking from the side wall.

第4の発明に係る大型ハニカム構造体の製造方法においては、大型ハニカム構造体用の大型成形ダイスを作製する必要がないので、短期間で容易かつ安価に大型ハニカム構造体を製造することができる。また、大型ハニカム構造体の小孔内にコート溜まりの発生を抑えて均一な厚みのウォッシュコート層を形成することができるので、消費されるウォッシュコート溶液量を減少させることが可能になる。
更に、均一な厚みのウォッシュコート層が形成されることから、各側壁には均一な量の触媒を担持することができ、触媒反応に伴う発熱又は吸熱を大型ハニカム構造体で均一にすることが可能になる。その結果、大型ハニカム構造体で発生する熱膨張及び熱収縮を均一にすることができ、担持された触媒層にひびが生じて側壁から剥離したり、側壁にひび割れが発生するのを防止できる。
In the method for manufacturing a large honeycomb structure according to the fourth aspect of the invention, it is not necessary to prepare a large forming die for the large honeycomb structure, so that the large honeycomb structure can be manufactured easily and inexpensively in a short period of time. . In addition, since a washcoat layer having a uniform thickness can be formed in the small holes of the large honeycomb structure while suppressing generation of coat accumulation, the amount of washcoat solution consumed can be reduced.
Furthermore, since a washcoat layer having a uniform thickness is formed, each side wall can carry a uniform amount of catalyst, and heat generation or heat absorption associated with the catalytic reaction can be made uniform in the large honeycomb structure. It becomes possible. As a result, it is possible to make the thermal expansion and contraction generated in the large honeycomb structure uniform, and it is possible to prevent the supported catalyst layer from cracking and peeling from the side wall or cracking from the side wall.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の第1の実施の形態に係る基本ハニカム構造体の部分平面図、図2は本発明の第2の実施の形態に係る押し出し成形用ダイスの部分平面図、図3は同押し出し成形用ダイスの部分側面図、図4(A)は本発明の第3の実施の形態に係る大型ハニカム構造体の平面図、(B)及び(C)は同大型ハニカム構造体の製造方法で使用する基本ハニカム構造体の平面図、図5(A)は変形例に係る大型ハニカム構造体の平面図、(B)は同大型ハニカム構造体の製造方法で使用する基本ハニカム構造体の平面図、図6(A)は別の変形例に係る大型ハニカム構造体の平面図、(B)、(C)は同大型ハニカム構造体の製造方法で使用する基本ハニカム構造体の平面図、図7は本発明の第4の実施の形態に係る大型ハニカム構造体の製造方法で使用する複数の押し出し成形用ダイスを組み合わせて構成した大型成形ダイスの平面図、図8は(A)は同大型成形ダイスで製造した大型ハニカム構造体の平面図、(B)は大型ハニカム構造体を収容するケースの平面図、(C)はケース内に収容した大型ハニカム構造体の状態を示す平面図、図9は(A)は同大型成形ダイスで製造した大型ハニカム構造体の平面図、(B)は大型ハニカム構造体を収容する別のケースの平面図、(C)はケース内に収容した大型ハニカム構造体の状態を示す平面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a partial plan view of a basic honeycomb structure according to the first embodiment of the present invention, and FIG. 2 is a partial plan view of an extrusion die according to the second embodiment of the present invention. 3 is a partial side view of the extrusion molding die, FIG. 4A is a plan view of a large honeycomb structure according to a third embodiment of the present invention, and FIGS. 4B and 4C are the large honeycomb structure. FIG. 5A is a plan view of a large honeycomb structure according to a modification, and FIG. 5B is a basic honeycomb structure used in the method for manufacturing the large honeycomb structure. 6A is a plan view of a large honeycomb structure according to another modification, and FIGS. 6B and 6C are planes of a basic honeycomb structure used in the method for manufacturing the large honeycomb structure. FIG. 7 shows a large honeycomb structure according to a fourth embodiment of the present invention. FIG. 8A is a plan view of a large honeycomb structure manufactured by using the same large molding die, and FIG. 8B is a large plan view of the large molding die formed by combining a plurality of extrusion molding dies used in the manufacturing method. FIG. 9C is a plan view showing a state of the large honeycomb structure housed in the case, and FIG. 9A is a plan view of the large honeycomb structure manufactured with the same large forming die. FIG. 4B is a plan view of another case that accommodates the large honeycomb structure, and FIG. 4C is a plan view showing a state of the large honeycomb structure accommodated in the case.

図1に示すように、本発明の第1の実施の形態に係る基本ハニカム構造体10は、同一断面形状の正六角形の小孔11が隣接した状態で並べて配置され、小孔11の隣り合う側壁12が交わる角部内側は、内表面の断面形状が直線状となった連結部13によって滑らかに連結している。
ここで、連結部13の断面幅Wは、連結部13が連接する側壁12の幅Aの0.05倍以上で0.45倍以下の範囲にある。なお、正六角形の小孔11であるため、側壁12の幅Aはすべて実質的に同一長さである。連結部13が存在しない場合、図10に示すように、隣り合う側壁12の内側の角部の角度α(以下、単に二面角αという)は120°であるが、連結部13が存在する場合、連結部13と側壁12の内側の角部の角度β(以下、単に二面角βという)は150°となる。
このため、基本ハニカム構造体10を触媒粒子が分散しているウォッシュコート溶液中に浸漬して側壁12及び連結部13にウォッシュコート層を形成した際に発生するコート溜りの総量を減少させて、小孔11内にほぼ均一な厚みのウォッシュコート層を形成することができる。
As shown in FIG. 1, the basic honeycomb structure 10 according to the first embodiment of the present invention is arranged in a state where regular hexagonal small holes 11 having the same cross-sectional shape are adjacent to each other, and the small holes 11 are adjacent to each other. The inside of the corner portion where the side walls 12 intersect is smoothly connected by a connecting portion 13 whose inner surface has a linear cross-sectional shape.
Here, the cross-sectional width W of the connecting portion 13 is in the range of 0.05 to 0.45 times the width A of the side wall 12 to which the connecting portion 13 is connected. In addition, since it is the regular hexagonal small hole 11, all the width | variety A of the side wall 12 is the same length. When the connecting portion 13 does not exist, as shown in FIG. 10, the angle α (hereinafter simply referred to as dihedral angle α) of the inner corners of the adjacent side walls 12 is 120 °, but the connecting portion 13 exists. In this case, an angle β (hereinafter simply referred to as a dihedral angle β) between the corners inside the connecting portion 13 and the side wall 12 is 150 °.
For this reason, the total amount of the coating pool generated when the basic honeycomb structure 10 is immersed in the washcoat solution in which the catalyst particles are dispersed to form the washcoat layer on the side wall 12 and the connecting portion 13 is reduced. A washcoat layer having a substantially uniform thickness can be formed in the small holes 11.

連結部の断面幅Wが0.05A未満では、連結部を介して隣り合う側壁12間の距離が小さくなり過ぎて、基本ハニカム構造体10をウォッシュコート溶液中に浸漬して引き上げウォッシュコート層を形成する際に、隣り合う側壁12の影響を直接受けて発生するコート溜りが大きくなる。一方、連結部の断面幅Wが0.45Aを超えると、側壁12の両側に連接する連結部同士が接近し過ぎて、隣り合う連結部の影響が強くなりコート溜りが大きくなる。このため、連結部の断面幅Wを、0.05A以上、好ましくは0.06A以上で0.45A以下好ましくは0.1A以下とした。
なお、基本ハニカム構造体10を構成する材料は、熱膨張係数の小さな耐熱材料であることが好ましく、例えば、コーディエライト、ムライト、窒化珪素、又は炭化硅素を用いて構成することができる。
If the cross-sectional width W of the connecting portion is less than 0.05A, the distance between the adjacent side walls 12 through the connecting portion becomes too small, and the basic honeycomb structure 10 is dipped in the washcoat solution to raise the washcoat layer. During formation, the coat pool generated directly by the influence of the adjacent side walls 12 becomes large. On the other hand, when the cross-sectional width W of the connecting portion exceeds 0.45A, the connecting portions connected to both sides of the side wall 12 are too close to each other, and the influence of the adjacent connecting portions becomes stronger and the coat pool becomes larger. For this reason, the cross-sectional width W of the connecting portion is set to 0.05 A or more, preferably 0.06 A or more and 0.45 A or less, preferably 0.1 A or less.
In addition, it is preferable that the material which comprises the basic honeycomb structure 10 is a heat resistant material with a small thermal expansion coefficient, for example, can be comprised using cordierite, mullite, silicon nitride, or silicon carbide.

図2、図3に示すように、本発明の第2の実施の形態に係る押し出し成形用ダイス14は、ベース部15と、ベース部15上に、互いに隙間を設けて並べて配置され、断面が同一形状の正六角形からなる複数のロッド部16とを備え、ベース部15には、ベース部15と複数のロッド部16の隙間によって形成される溝17に原料を供給する複数の注入口18を有している。なお、各溝17の交差部の背面側(ベース部15側)にはロッド部16の基側角部を切り欠いて原料溜まり部18aが形成され、各溝17は原料溜まり部18aを介して注入口18と連通している。そして、ロッド部16の隣り合う側壁の交差部には、角を滑らかにする角取り部19が形成され、角取り部19の断面幅Vは、角取り部19が形成される側壁の幅Cの0.05倍以上で0.45倍以下の範囲にある。
これによって、原料が各溝17内を通過する際の通過抵抗を小さくすることができ、押し出し成形時における原料圧密度の差や押し出し速度の差を小さくすることができる。
As shown in FIGS. 2 and 3, the extrusion molding die 14 according to the second embodiment of the present invention is arranged side by side with a gap on the base portion 15 and the base portion 15. A plurality of rod portions 16 made of regular hexagons having the same shape, and a plurality of inlets 18 for supplying raw material to grooves 17 formed by gaps between the base portion 15 and the plurality of rod portions 16 in the base portion 15. Have. A raw material reservoir 18a is formed by notching the base corner of the rod 16 on the back side (base 15 side) of the intersection of each groove 17, and each groove 17 is formed via the raw material reservoir 18a. It communicates with the inlet 18. Then, a chamfered portion 19 for smoothing the corner is formed at the intersection of adjacent side walls of the rod portion 16, and the cross-sectional width V of the chamfered portion 19 is the width C of the side wall where the chamfered portion 19 is formed. The range is 0.05 times or more and 0.45 times or less.
Thereby, the passage resistance when the raw material passes through each groove 17 can be reduced, and the difference in the raw material pressure density and the difference in the extrusion speed at the time of extrusion molding can be reduced.

角取り部の断面幅Vが0.05C未満では、角取りの効果が小さ過ぎてロッド部16の角部の影響が残り原料が各溝内を通過する際の通過抵抗を下げることができず、押し出し成形時における原料圧密度の差や押し出し速度の差が大きくなる。一方、角取り部の断面幅Vが0.45Cを超えると、溝の幅が場所によって大きく異なるようになるため、押し出し成形時における原料圧密度の差や押し出し速度の差が大きくなる。
このため、角取り部の断面幅Vを、0.05C以上で0.45C以下とした。ここで、最適な角取り部の断面幅Vは原料の状態(粒度分布、可塑変形性)、押し出し成形用ダイスの材質、及び押し出し圧等で若干変化するが、側壁の幅Cの0.06以上で0.1以下の場合に押し出し成形性が最もよくなる。なお、ロッド部16及びベース部15は、例えば、合金工具鋼材を用いて構成することができ、面取りは放電加工により行なうことができる。
If the cross-sectional width V of the chamfered portion is less than 0.05C, the effect of chamfering is too small, and the influence of the corner portion of the rod portion 16 cannot reduce the passage resistance when the remaining raw material passes through each groove. The difference in the raw material pressure density and the difference in the extrusion speed during extrusion molding become large. On the other hand, when the cross-sectional width V of the chamfered portion exceeds 0.45C, the groove width varies greatly depending on the location, so that the difference in the raw material pressure density and the difference in the extrusion speed during extrusion molding increase.
For this reason, the cross-sectional width V of the chamfered portion is set to 0.05C or more and 0.45C or less. Here, the optimum cross-sectional width V of the chamfered portion varies slightly depending on the state of the raw material (particle size distribution, plastic deformability), the material of the extrusion die, the extrusion pressure, and the like, but the side wall width C is 0.06. When the above is 0.1 or less, the extrusion moldability is the best. In addition, the rod part 16 and the base part 15 can be comprised, for example using alloy tool steel materials, and chamfering can be performed by electrical discharge machining.

本発明の第3の実施の形態に係る大型ハニカム構造体の製造方法は、例えば、図4(A)に示すような断面が正六角形の大型ハニカム構造体20を製造する方法で、図4(B)及び(C)に示すように、製造する大型ハニカム構造体20を、周囲に外壁21を有し内部に同一断面形状の正六角形の複数の小孔11を備える第1の基本ハニカム構造体22と、周囲に外壁23を有し内部に同一断面形状の正六角形の複数の小孔11を備える第2の基本ハニカム構造体24に分割する工程を有している。
また、大型ハニカム構造体20の製造方法は、第2の実施の形態に係る押し出し成形用ダイス14を用いて、第1及び第2の基本ハニカム構造体22、24の原形となる成形体をそれぞれ製造し、各成形体を乾燥させてから焼成する工程を有している。更に、大型ハニカム構造体20の製造方法は、焼成して得られた第1及び第2の基本ハニカム構造体22、24を連結して大型ハニカム構造体20を構成する工程を有している。これによって、断面形状が正六角形の大口径のハニカム構造体を容易にかつ安価に得ることができる。
The method for manufacturing a large honeycomb structure according to the third embodiment of the present invention is, for example, a method for manufacturing a large honeycomb structure 20 having a regular hexagonal cross section as shown in FIG. As shown in B) and (C), the large honeycomb structure 20 to be manufactured has a first basic honeycomb structure including a plurality of small hexagonal holes 11 having an outer wall 21 in the periphery and the same cross-sectional shape inside. 22 and a second basic honeycomb structure 24 having an outer wall 23 around and a plurality of regular hexagonal small holes 11 having the same cross-sectional shape inside.
Further, the manufacturing method of the large honeycomb structure 20 uses the extrusion forming die 14 according to the second embodiment to form the molded bodies that are the original shapes of the first and second basic honeycomb structures 22 and 24, respectively. It has the process of manufacturing and baking after drying each molded object. Furthermore, the manufacturing method of the large honeycomb structure 20 includes a step of configuring the large honeycomb structure 20 by connecting the first and second basic honeycomb structures 22 and 24 obtained by firing. As a result, a large-diameter honeycomb structure having a regular hexagonal cross section can be obtained easily and inexpensively.

また、押し出し成形用ダイス14を用いて、第1及び第2の基本ハニカム構造体22、24の原形となる成形体をそれぞれ製造する場合、各成形体における連結部13の断面幅W及び側壁12の幅Aは、押し出し成形用ダイス14の角取り部19の断面幅V及び側壁の幅Cとそれぞれ実質的に一致する。また、各成形体は乾燥させて乾燥体とし、この乾燥体を焼成することにより基本ハニカム構造体22、24が得られる。
ここで、成形体は乾燥中に収縮するので乾燥体の寸法は成形体の寸法より減少し、乾燥体は焼成中に収縮するので基本ハニカム構造体22、24の寸法は乾燥体の寸法より減少する。従って、押し出し成形用ダイス14の角取り部19の断面幅V及び側壁の幅Cは、第1及び第2の基本ハニカム構造体22、24の連結部13の断面幅W及び側壁12の幅Aに対して、それぞれ焼成収縮率及び乾燥収縮率を考慮して決定する。更に、成形体の外壁の幅の寸法も、第1及び第2の基本ハニカム構造体22、24の外壁21、23の幅の寸法に対して、焼成収縮率及び乾燥収縮率を考慮して決定する。
Further, when the molded bodies that are the original shapes of the first and second basic honeycomb structures 22 and 24 are manufactured using the extrusion forming die 14, the cross-sectional width W and the side wall 12 of the connecting portion 13 in each molded body. Is substantially equal to the cross-sectional width V and the side wall width C of the chamfered portion 19 of the extrusion die 14. Moreover, each molded body is dried to obtain a dried body, and the dried honeycomb body is fired to obtain the basic honeycomb structures 22 and 24.
Here, since the molded body shrinks during drying, the size of the dried body is smaller than the size of the molded body, and since the dried body shrinks during firing, the dimensions of the basic honeycomb structures 22 and 24 are smaller than the dimensions of the dried body. To do. Therefore, the cross-sectional width V and the side wall width C of the chamfered portion 19 of the extrusion die 14 are the cross-sectional width W of the connecting portion 13 and the width A of the side wall 12 of the first and second basic honeycomb structures 22 and 24. In contrast, it is determined in consideration of the firing shrinkage and the drying shrinkage, respectively. Furthermore, the width dimension of the outer wall of the molded body is also determined in consideration of the firing shrinkage ratio and the drying shrinkage ratio with respect to the width dimension of the outer walls 21, 23 of the first and second basic honeycomb structures 22, 24. To do.

そして、大型ハニカム構造体20を触媒粒子が分散しているウォッシュコート溶液中に浸漬して、第1及び第2の基本ハニカム構造体20、24の各小孔11を形成する側壁12及び連結部13にウォッシュコート層を形成する。小孔11の隣り合う側壁12が交わる角部内側は連結部13によって滑らかに連結されているので、コート溜まりの発生を防止してほぼ均一な厚みのウォッシュコート層を形成することができる。その結果、必要以上に多くの触媒が担持されるのが防止され、触媒の使用量が減少することで触媒コストの低減を図ることができる。
また、小孔11内にほぼ均一な厚みのウォッシュコート層が形成されることから、触媒反応に伴う発熱又は吸熱が大型ハニカム構造体20の各小孔11内で一様に生じ、大型ハニカム構造体20内での温度分布が一様になる。このため、内燃機関やボイラーの燃焼器が運転と停止を繰り返したり、運転中に運転条件が変動する場合の温度変動幅の差が大型ハニカム構造体20内で発生せず、大型ハニカム構造体20全体が一様に熱膨張及び熱収縮して、担持された触媒層にひびが生じ側壁12から剥離したり、側壁12にひび割れが発生するのを防止できる。
Then, the side wall 12 and the connecting portion that form the small holes 11 of the first and second basic honeycomb structures 20 and 24 by immersing the large honeycomb structure 20 in the washcoat solution in which the catalyst particles are dispersed. A washcoat layer is formed on 13. Since the inside of the corner where the adjacent side walls 12 of the small hole 11 intersect is smoothly connected by the connecting portion 13, it is possible to form a washcoat layer having a substantially uniform thickness by preventing the occurrence of coating accumulation. As a result, it is possible to prevent an excessive amount of catalyst from being supported, and to reduce the catalyst cost by reducing the amount of catalyst used.
Further, since a wash coat layer having a substantially uniform thickness is formed in the small holes 11, heat generation or heat absorption associated with the catalytic reaction is uniformly generated in each small hole 11 of the large honeycomb structure 20, and the large honeycomb structure is formed. The temperature distribution in the body 20 becomes uniform. For this reason, a difference in temperature fluctuation range does not occur in the large honeycomb structure 20 when the internal combustion engine or the boiler combustor repeats operation and stop, or when the operation conditions fluctuate during operation, and the large honeycomb structure 20 It is possible to prevent the entire catalyst layer from being thermally expanded and contracted uniformly, causing cracks in the supported catalyst layer and peeling off from the side wall 12 or cracks in the side wall 12.

なお、必要とする大型ハニカム構造体の外形形状に応じて、大型ハニカム構造体を基本ハニカム構造体に分割する方法を選択することにより、大型のハニカム構造体を容易に得ることができる。例えば、図5(A)に示すような断面が矩形の大型ハニカム構造体25を製造する場合では、図5(B)に示すように、大型ハニカム構造体25を、断面が矩形で周囲に外壁26、26aを有し内部に同一断面形状の正六角形の複数の小孔11を備える第3の基本ハニカム構造体27に分割し、第2の実施の形態に係る押し出し成形用ダイス14を用いて第3の基本ハニカム構造体27の原形となる成形体を製造して焼成し、焼成して得られた第3の基本ハニカム構造体27の各外壁26、26a同士を密接させて並べることにより構成する。これによって、断面が矩形の大型ハニカム構造体25を容易にかつ安価に得ることができる。 A large honeycomb structure can be easily obtained by selecting a method of dividing the large honeycomb structure into basic honeycomb structures according to the required outer shape of the large honeycomb structure. For example, in the case of manufacturing a large honeycomb structure 25 having a rectangular cross section as shown in FIG. 5 (A), the large honeycomb structure 25 has a rectangular cross section and an outer wall around it as shown in FIG. 5 (B). 26, 26a and divided into a third basic honeycomb structure 27 having a plurality of regular hexagonal small holes 11 having the same cross-sectional shape inside, and using the extrusion die 14 according to the second embodiment. Constructed by manufacturing and firing a molded body that is the original shape of the third basic honeycomb structure 27, and arranging the outer walls 26 and 26a of the third basic honeycomb structure 27 obtained by firing in close contact with each other. To do. Thereby, the large honeycomb structure 25 having a rectangular cross section can be obtained easily and inexpensively.

更に、図6(A)に示すような断面が円形の大型ハニカム構造体28を製造する場合では、大型ハニカム構造体28を、例えば、同一中心に対して半径の異なる第1及び第2の円弧外壁28a、28bと各円弧外壁28a、28bの両端を結ぶ平面外壁29を有し内部に同一断面形状の正六角形の複数の小孔11を備える第4の基本ハニカム構造体30と、断面が円形で周囲に外壁31を有し内部に同一断面形状の正六角形の複数の小孔11を備える第5の基本ハニカム構造体32に分割する。そして、第2の実施の形態に係る押し出し成形用ダイス14を用いて各基本ハニカム構造体30、32の原形となる成形体を成形して焼成する。
次いで、得られた第4の基本ハニカム構造体30の平面外壁29同士を密接させて円環状の構造体を形成し、第2の円弧外壁28bで囲まれた孔内に第5の基本ハニカム構造体32を装入し、第5の基本ハニカム構造体32の外壁31と第2の円弧外壁28bとを密接させる。これによって、断面が円形の大型ハニカム構造体28を容易にかつ安価に得ることができる。
Further, in the case of manufacturing a large honeycomb structure 28 having a circular cross section as shown in FIG. 6A, the large honeycomb structure 28 is formed by, for example, first and second arcs having different radii with respect to the same center. A fourth basic honeycomb structure 30 having a planar outer wall 29 connecting the outer walls 28a, 28b and both ends of each arc outer wall 28a, 28b and having a plurality of equilateral hexagonal small holes 11 in the same sectional shape, and a circular section Then, it is divided into a fifth basic honeycomb structure 32 having a peripheral wall 31 and a plurality of regular hexagonal small holes 11 having the same cross-sectional shape. And the molded object used as the original form of each basic honeycomb structure 30 and 32 is shape | molded and baked using the die 14 for extrusion molding which concerns on 2nd Embodiment.
Next, the planar outer walls 29 of the obtained fourth basic honeycomb structure 30 are brought into close contact with each other to form an annular structure, and the fifth basic honeycomb structure is formed in the hole surrounded by the second arc outer wall 28b. The body 32 is inserted to bring the outer wall 31 of the fifth basic honeycomb structure 32 into close contact with the second arc outer wall 28b. Thereby, the large honeycomb structure 28 having a circular cross section can be obtained easily and inexpensively.

本発明の第4の実施の形態に係る大型ハニカム構造体の製造方法は、図7に示すように、断面が正六角形となる第2の実施の形態に係る押し出し成形用ダイス14を並べて配置して大型成形ダイス33形成し、この大型成形ダイス33を図示しない押し出し成形機に組み込んで各押し出し成形用ダイス14に同時に原料を注入して、図8(A)及び図9(A)に示すような大型ハニカム構造体34の原形となる成形体を成形する工程と、得られた成形体を乾燥して焼成する工程を有している。これによって、大型ハニカム構造体34を短期間で容易かつ安価に製造できる。 In the method for manufacturing a large honeycomb structure according to the fourth embodiment of the present invention, as shown in FIG. 7, the extrusion dies 14 according to the second embodiment having a regular hexagonal cross section are arranged side by side. As shown in FIG. 8 (A) and FIG. 9 (A), a large molding die 33 is formed, and the large molding die 33 is incorporated into an extrusion molding machine (not shown) and raw materials are simultaneously injected into each extrusion molding die 14. And a step of forming a molded body that is an original shape of the large honeycomb structure 34, and a step of drying and firing the obtained molded body. As a result, the large honeycomb structure 34 can be manufactured easily and inexpensively in a short period of time.

更に、大型ハニカム構造体34の有する小孔11では、隣り合う側壁12の内側は連結部13により滑らかに連結しているので、大型ハニカム構造体34を触媒粒子が分散しているウォッシュコート溶液中に浸漬して小孔11を形成する側壁12及び連結部13にウォッシュコート層を形成する際に、コート溜まりの発生を防止してほぼ均一な厚みのウォッシュコート層を形成することができる。
その結果、必要以上に多くの触媒が担持されるのが防止され、触媒の使用量が減少することで触媒コストの低減を図ることができる。また、小孔11内にほぼ均一な厚みのウォッシュコート層が形成されることから、大型ハニカム構造体34内の側壁12及び連結部13の表面に均一な量の触媒を担持させることができる。
Further, in the small holes 11 of the large honeycomb structure 34, the insides of the adjacent side walls 12 are smoothly connected by the connecting portions 13, so that the large honeycomb structure 34 is dispersed in the washcoat solution in which catalyst particles are dispersed. When the washcoat layer is formed on the side wall 12 and the connecting portion 13 that form the small holes 11 by being immersed in the film, it is possible to prevent the occurrence of coat accumulation and form a washcoat layer having a substantially uniform thickness.
As a result, it is possible to prevent an excessive amount of catalyst from being supported, and to reduce the catalyst cost by reducing the amount of catalyst used. In addition, since a wash coat layer having a substantially uniform thickness is formed in the small holes 11, a uniform amount of catalyst can be supported on the surfaces of the side walls 12 and the connecting portions 13 in the large honeycomb structure 34.

そして、図8(A)、(B)に示すように内側に、大型ハニカム構造体34の外周側に形成されている凹部35に嵌入する凸部36と、大型ハニカム構造体34の突出部の外壁37に当接する支持部38が形成されたケース39内に大型ハニカム構造体34を装着させて、図8(C)に示すような排ガス処理システム40を構成して排ガスを通過させた際に、大型ハニカム構造体34内の側壁12及び連結部13の表面には均一な量の触媒が担持されているので、触媒反応に伴う発熱又は吸熱が大型ハニカム構造体34内で一様に生じ、大型ハニカム構造体34内での温度分布を一様にすることができる。
このため、内燃機関やボイラーの燃焼器が運転と停止を繰り返したり、運転中に運転条件が変動する場合の温度変動幅の差が大型ハニカム構造体34内で発生せず、大型ハニカム構造体34全体が一様に熱膨張及び熱収縮して、担持された触媒層にひびが生じ側壁12から剥離したり、側壁12にひび割れが発生するのを防止できる。
Then, as shown in FIGS. 8A and 8B, on the inner side, a protrusion 36 that fits into a recess 35 formed on the outer peripheral side of the large honeycomb structure 34, and a protrusion of the large honeycomb structure 34 When the large honeycomb structure 34 is mounted in the case 39 in which the support portion 38 that contacts the outer wall 37 is formed, and the exhaust gas treatment system 40 as shown in FIG. 8C is configured to pass the exhaust gas. In addition, since a uniform amount of catalyst is supported on the surfaces of the side wall 12 and the connecting portion 13 in the large honeycomb structure 34, heat generation or heat absorption associated with the catalytic reaction occurs uniformly in the large honeycomb structure 34, The temperature distribution in the large honeycomb structure 34 can be made uniform.
For this reason, a difference in temperature fluctuation width does not occur in the large honeycomb structure 34 when the internal combustion engine or the boiler combustor repeats operation and stop, or when the operation conditions fluctuate during operation, and the large honeycomb structure 34 It is possible to prevent the entire catalyst layer from being thermally expanded and contracted uniformly, causing cracks in the supported catalyst layer and peeling off from the side wall 12 or cracks in the side wall 12.

また、図9(A)、(B)に示すように内側に大型ハニカム構造体34の突出部の外壁37に当接する支持部38のみが形成されたケース41内に大型ハニカム構造体34を装着させて、図9(C)に示すような排ガス処理システム42を構成した場合、ケース41の内側と大型ハニカム構造体34との間に貫通する空間部43を形成することができる。そして、この空間部43に、加温した空気を流して触媒反応により生じる反応熱がケース41側に流出するのを防止したり、冷却した空気を流して触媒反応により発生した熱を除去することができ、触媒反応を促進することができる。
なお、押し出し成形用ダイスの組み合わせ方法を変えることにより、あるいは押し出し成形用ダイスの断面形状を変えることにより、種々の断面形状を有する大型成形ダイスを形成することができ、それを用いることにより種々の断面形状を有する大型ハニカム構造体を成形することができる。
Further, as shown in FIGS. 9A and 9B, the large honeycomb structure 34 is mounted in the case 41 in which only the support portion 38 that is in contact with the outer wall 37 of the protruding portion of the large honeycomb structure 34 is formed. Thus, when an exhaust gas treatment system 42 as shown in FIG. 9C is configured, a space portion 43 penetrating between the inside of the case 41 and the large honeycomb structure 34 can be formed. Then, the heated air is allowed to flow through the space 43 to prevent reaction heat generated by the catalytic reaction from flowing out to the case 41 side, or the cooled air is allowed to flow to remove heat generated by the catalytic reaction. And the catalytic reaction can be promoted.
In addition, by changing the combination method of the extrusion dies, or by changing the cross-sectional shape of the extrusion dies, large dies having various cross-sectional shapes can be formed. A large honeycomb structure having a cross-sectional shape can be formed.

[実施例1]
合金工具鋼材から直径が25.4mmのベース部と、ベース部の一面側に断面が正六角形のロッドを、隙間を設けて平行かつ立体的に配置(約600本/平方インチ)して隣り合うロッド間に溝が形成されるようにした。また、溝の底部に複数の注入口を設けてベース部内に形成した原料供給路と連通状態にし、更に、ロッド部の角部を放電加工により面取りして押し出し成形用ダイスを作製した。なお、面取り幅は、正六角形の一辺の長さの1/18とした。
作製した押し出し成形用ダイスを押し出し成形機に組み込み、市販のコーディエライトから粒度調整した原料粉末に粘土と水を添加して脱気しながら混練して原料を調製して、押し出し成形用ダイスから原料を押し出して長さが100mmの基本ハニカム構造体を成形した。このときの押し出し圧は4.7MPaで、100mmの基本ハニカム構造体を成形するのに30秒を要した。成形した後24時間乾燥させた乾燥品を1200℃で焼成し、焼成品を得た。焼成品は乾燥品に対して、長手方向に0.08%、径方向に0.06%それぞれ収縮したが、ひびが生じたり小孔を形成している側壁に欠損が生じることはかった。
[Example 1]
A base part having a diameter of 25.4 mm made of alloy tool steel and a rod having a regular hexagonal cross section on one surface side of the base part are arranged in parallel and three-dimensionally (approximately 600 pieces / square inch) with a gap therebetween. A groove was formed between the rods. Further, a plurality of inlets were provided at the bottom of the groove to communicate with the raw material supply path formed in the base, and the corner of the rod was chamfered by electric discharge machining to produce an extrusion die. The chamfering width was 1/18 of the length of one side of the regular hexagon.
The produced extrusion die is incorporated into an extrusion molding machine, and the raw material powder prepared by adjusting the particle size from commercially available cordierite is added with clay and water and degassed to prepare the raw material. From the extrusion die The raw material was extruded to form a basic honeycomb structure having a length of 100 mm. The extrusion pressure at this time was 4.7 MPa, and it took 30 seconds to form a 100 mm basic honeycomb structure. The dried product which was dried for 24 hours after molding was fired at 1200 ° C. to obtain a fired product. Although the fired product contracted 0.08% in the longitudinal direction and 0.06% in the radial direction with respect to the dried product, it did not cause cracks or defects on the side walls forming small holes.

[比較例1]
合金工具鋼材から直径が25.4mmのベース部と、ベース部の一面側に断面が正六角形のロッドを隙間を設けて平行かつ立体的に配置(約600本/平方インチ)して隣り合うロッド間に溝が形成されるようにした。また、溝の底部に複数の注入口を設けてベース部内に形成した原料供給路と連通状態にして押し出し成形用ダイスを作製した。
作製した押し出し成形用ダイスを実施例1で使用した押し出し成形機に組み込み、実施例1と同様に調製した原料をこの押し出し成形用ダイスから押し出して長さが100mmの基本ハニカム構造体を成形した。得られた基本ハニカム構造体の断面状態を図10に示す。このときの押し出し圧は5.3MPaで、100mmの基本ハニカム構造体を成形するのに40秒を要した。成形した後24時間乾燥させた乾燥品を1200℃で焼成し、焼成品を得た。焼成品は乾燥品に対して、長手方向に0.08%、径方向に0.06%それぞれ収縮したが、ひびや、小孔を形成している側壁に欠損が生じた箇所の総計は150箇所であった。
[Comparative Example 1]
A base part having a diameter of 25.4 mm from an alloy tool steel, and a rod having a regular hexagonal cross section on one side of the base part, arranged in parallel and three-dimensionally (about 600 rods / square inch) and adjacent to each other Grooves were formed between them. Further, an extrusion die was produced by providing a plurality of inlets at the bottom of the groove and communicating with the raw material supply path formed in the base portion.
The produced extrusion die was incorporated into the extrusion machine used in Example 1, and the raw material prepared in the same manner as in Example 1 was extruded from the extrusion die to form a basic honeycomb structure having a length of 100 mm. FIG. 10 shows a cross-sectional state of the obtained basic honeycomb structure. The extrusion pressure at this time was 5.3 MPa, and it took 40 seconds to form a 100 mm basic honeycomb structure. The dried product which was dried for 24 hours after molding was fired at 1200 ° C. to obtain a fired product. The calcined product shrunk 0.08% in the longitudinal direction and 0.06% in the radial direction with respect to the dried product, but the total number of places where cracks and defects on the side walls forming small holes occurred was 150. It was a place.

このように、実施例1では比較例1より押し出し成形時の圧力が低く、成形時間も短くなっている。従って、ロッド部の角部を面取りすることで、原料が溝を通過する際の通過抵抗を小さくすることができることが確認できた。また、実施例1ではひびや、小孔を形成している側壁に欠損が生じた箇所が存在しないことから、原料が溝を通過する際の通過抵抗を小さくすると、押し出し成形時における原料圧密度の差や押し出し速度の差が小さくなって内部歪みの少ないハニカム構造体が得られることが確認できた。 Thus, in Example 1, the pressure at the time of extrusion molding is lower than that of Comparative Example 1, and the molding time is also shortened. Therefore, it was confirmed that by chamfering the corner portion of the rod portion, the passage resistance when the raw material passes through the groove can be reduced. Further, in Example 1, there is no crack or a portion where a defect is formed on the side wall forming the small hole. Therefore, if the passage resistance when the raw material passes through the groove is reduced, the raw material pressure density at the time of extrusion molding It was confirmed that a honeycomb structure with little internal strain was obtained by reducing the difference in extrusion and the difference in extrusion speed.

[実施例2]
実施例1で作製した基本ハニカム構造体を、700hPaに減圧して脱気した20重量%アルミナゾル溶液中に2時間浸漬した後取り出し、10時間静置し更に60〜80℃で12時間の乾燥を行なった。そして、乾燥後の基本ハニカム構造体の重量を測定し、浸漬前の基本ハニカム構造体の重量と比較してアルミナゾルのウォッシュコート層の形成による重量増加率を求めると7重量%であった。また、比較例1で作製した基本ハニカム構造体に同様にアルミナゾルのウォッシュコート層を形成させて、そのときの重量増加率を求めると8.5重量%であった。
このように、実施例1で作製した基本ハニカム構造体では、比較例1で作製した基本ハニカム構造体と比べてアルミナゾルのウォッシュコート層形成による重量増加率が小さく、コート溜まりの発生が少ないと考えられる。
[Example 2]
The basic honeycomb structure manufactured in Example 1 was immersed in a 20 wt% alumina sol solution deaerated at 700 hPa for 2 hours, then taken out, left to stand for 10 hours, and further dried at 60 to 80 ° C. for 12 hours. I did it. The weight of the basic honeycomb structure after drying was measured, and the weight increase rate due to the formation of the alumina sol washcoat layer compared with the weight of the basic honeycomb structure before immersion was 7% by weight. Further, when a washcoat layer of alumina sol was similarly formed on the basic honeycomb structure produced in Comparative Example 1, the weight increase rate at that time was 8.5% by weight.
Thus, in the basic honeycomb structure manufactured in Example 1, the weight increase rate due to the formation of the washcoat layer of alumina sol is smaller than that of the basic honeycomb structure manufactured in Comparative Example 1, and the occurrence of coating accumulation is small. It is done.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の基本ハニカム構造体及びその押し出し成形用ダイス並びに大型ハニカム構造体の製造方法を構成する場合も本発明の権利範囲に含まれる。
例えば、基本ハニカム構造体の小孔の隣り合う側壁が交わる角部内側を内表面の断面形状が直線状となった連結部によって滑らかに連結するようにしたが、内表面の断面形状が円弧状となった連結部によって滑らかに連結するようにしてもよい。また、周囲を実質的に同一幅の6枚の側壁で囲んで正六角形の小孔を形成したが、隣り合う側壁の幅が異なり線対称となる六角形の小孔を形成しても、周囲を4枚の側壁で囲んで形成される正方形又は矩形のいずれかの形状を有する小孔を形成するようにしてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. The case where the basic honeycomb structure of the present invention, its extrusion forming die, and the manufacturing method of the large honeycomb structure are configured by combining some or all of the forms and modifications are also included in the scope of the present invention.
For example, the inner side of the corner where the adjacent side walls of the small holes of the basic honeycomb structure intersect is smoothly connected by a connecting part whose inner surface has a linear cross-sectional shape, but the inner surface has a circular arc shape. You may make it connect smoothly by the connecting part which became. In addition, a regular hexagonal small hole was formed by surrounding the periphery with six side walls having substantially the same width. However, even if a hexagonal small hole having a different line width and a line symmetry is formed, You may make it form the small hole which has either the square shape or the rectangular shape formed by enclosing with 4 side walls.

更に、押し出し成形用ダイスを断面が正六角形で隣り合う側壁の交差部に表面の断面形状が直線状となった角取り部を形成したが、表面の断面形状が円弧状となった角取り部を形成してもよい。また、隣り合う辺の長さが異なり線対称となる六角形の断面を有するロッド部を使用しても、断面が正方形又は矩形のいずれかの形状を有するロッド部を使用して押し出し成形用ダイスを構成することもできる。 Furthermore, the extrusion forming die has a regular hexagonal cross section, and a chamfered portion where the cross-sectional shape of the surface is a straight line is formed at the intersection of adjacent side walls. May be formed. In addition, even if a rod part having a hexagonal cross section in which the lengths of adjacent sides are different and symmetrical is used, a die part for extrusion molding using a rod part having a square or rectangular cross section is used. Can also be configured.

本発明の第1の実施の形態に係る基本ハニカム構造体の部分平面図である。1 is a partial plan view of a basic honeycomb structure according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る押し出し成形用ダイスの部分平面図である。It is a partial top view of the die for extrusion molding concerning a 2nd embodiment of the present invention. 同押し出し成形用ダイスの部分側面図である。It is a partial side view of the extrusion die. (A)は本発明の第3の実施の形態に係る大型ハニカム構造体の平面図、(B)及び(C)は同大型ハニカム構造体の製造方法で使用する基本ハニカム構造体の平面図である。(A) is a plan view of a large honeycomb structure according to a third embodiment of the present invention, and (B) and (C) are plan views of a basic honeycomb structure used in the method for manufacturing the large honeycomb structure. is there. (A)は変形例に係る大型ハニカム構造体の平面図、(B)は同大型ハニカム構造体の製造方法で使用する基本ハニカム構造体の平面図である。(A) is a plan view of a large honeycomb structure according to a modification, and (B) is a plan view of a basic honeycomb structure used in the method for manufacturing the large honeycomb structure. (A)は別の変形例に係る大型ハニカム構造体の平面図、(B)、(C)は同大型ハニカム構造体の製造方法で使用する基本ハニカム構造体の平面図である。(A) is a plan view of a large honeycomb structure according to another modification, and (B) and (C) are plan views of a basic honeycomb structure used in the method for manufacturing the large honeycomb structure. 本発明の第4の実施の形態に係る大型ハニカム構造体の製造方法で使用する複数の押し出し成形用ダイスを組み合わせて構成した大型成形ダイスの平面図である。It is a top view of the large dies formed by combining a plurality of extrusion dies used in the method for manufacturing a large honeycomb structure according to the fourth embodiment of the present invention. (A)は同大型成形ダイスで製造した大型ハニカム構造体の平面図、(B)は大型ハニカム構造体を収容するケースの平面図、(C)はケース内に収容した大型ハニカム構造体の状態を示す平面図である。(A) is a plan view of a large honeycomb structure manufactured with the same large forming die, (B) is a plan view of a case accommodating the large honeycomb structure, and (C) is a state of the large honeycomb structure accommodated in the case FIG. (A)は同大型成形ダイスで製造した大型ハニカム構造体の平面図、(B)は大型ハニカム構造体を収容する別のケースの平面図、(C)はケース内に収容した大型ハニカム構造体の状態を示す平面図である。(A) is a plan view of a large honeycomb structure manufactured with the same large forming die, (B) is a plan view of another case that accommodates the large honeycomb structure, and (C) is a large honeycomb structure that is accommodated in the case. It is a top view which shows the state of. 比較例1の基本ハニカム構造体の部分平面図である。3 is a partial plan view of a basic honeycomb structure of Comparative Example 1. FIG. 従来例に係る薄壁高強度のハニカム構造体の部分平面図である。FIG. 6 is a partial plan view of a thin-walled high-strength honeycomb structure according to a conventional example. (A)〜(C)はそれぞれ三角形、四角形、及び六角形の小孔をそれぞれ有する従来例に係るハニカム構造体にウォッシュコート層を形成した際の状況を示す部分平面図である。(A)-(C) are the partial top views which show the condition at the time of forming a washcoat layer in the honeycomb structure which concerns on the prior art example which each has a triangular, square, and hexagonal small hole, respectively. 円形の小孔を有するハニカム構造体の部分平面図である。It is a partial top view of the honeycomb structure which has a circular small hole.

符号の説明Explanation of symbols

10:基本ハニカム構造体、11:小孔、12:側壁、13:連結部、14:押し出し成形用ダイス、15:ベース部、16:ロッド部、17:溝、18:注入口、18a:原料溜まり部、19:角取り部、20:大型ハニカム構造体、21:外壁、22:第1の基本ハニカム構造体、23:外壁、24:第2の基本ハニカム構造体、25:大型ハニカム構造体、26、26a:外壁、27:第3の基本ハニカム構造体、28:大型ハニカム構造体、28a:第1の円弧外壁、28b:第2の円弧外壁、29:平面外壁、30:第4の基本ハニカム構造体、31:外壁、32:第5の基本ハニカム構造体、33:大型成形ダイス、34:大型ハニカム構造体、35:凹部、36:凸部、37:外壁、38:支持部、39:ケース、40:排ガス処理システム、41:ケース、42:排ガス処理システム、43:空間部 10: Basic honeycomb structure, 11: Small hole, 12: Side wall, 13: Connection part, 14: Extrusion die, 15: Base part, 16: Rod part, 17: Groove, 18: Injection port, 18a: Raw material Reservoir, 19: Chamfer, 20: Large honeycomb structure, 21: Outer wall, 22: First basic honeycomb structure, 23: Outer wall, 24: Second basic honeycomb structure, 25: Large honeycomb structure , 26, 26a: outer wall, 27: third basic honeycomb structure, 28: large honeycomb structure, 28a: first arc outer wall, 28b: second arc outer wall, 29: planar outer wall, 30: fourth Basic honeycomb structure, 31: outer wall, 32: fifth basic honeycomb structure, 33: large dies, 34: large honeycomb structure, 35: concave portion, 36: convex portion, 37: outer wall, 38: support portion, 39: Case, 40: Waste gas Processing system, 41: Case, 42: exhaust gas treatment system, 43: space

Claims (5)

同一断面形状の四角形又は六角形の小孔が、隣接した状態で並べて配置される基本ハニカム構造体において、
前記小孔の隣り合う側壁が交わる角部内側は、内表面の断面形状が円弧状又は直線状となった連結部によって滑らかに連結していることを特徴とする基本ハニカム構造体。
In the basic honeycomb structure in which square or hexagonal small holes having the same cross-sectional shape are arranged side by side in an adjacent state,
A basic honeycomb structure characterized in that the inner sides of the corners where adjacent side walls of the small holes intersect are smoothly connected by a connecting part whose inner surface has a circular or linear cross-sectional shape.
請求項1記載の基本ハニカム構造体において、前記連結部の断面幅は、該連結部が連接する側壁の中で短い側の側壁の幅の0.05倍以上で0.45倍以下の範囲にあることを特徴とする基本ハニカム構造体。 The basic honeycomb structure according to claim 1, wherein a cross-sectional width of the connecting portion is in a range of 0.05 to 0.45 times the width of the short side wall among the side walls to which the connecting portion is connected. A basic honeycomb structure characterized by being. ベース部と、該ベース部上に、互いに隙間を設けて並べて配置され、断面が同一形状の四角形又は六角形からなる複数のロッド部とを備え、前記ベース部には、該ベース部と前記複数のロッド部の隙間によって形成される溝に原料を供給する複数の注入口を有する押し出し成形用ダイスにおいて、
前記ロッド部の隣り合う側壁の交差部には、角を滑らかにする角取り部が形成され、しかも、前記角取り部の断面幅は、該角取り部が形成される前記側壁の幅の0.05倍以上で0.45倍以下の範囲にあることを特徴とする押し出し成形用ダイス。
A base portion and a plurality of rod portions which are arranged side by side with a gap on the base portion and have a square or hexagonal shape with the same cross section, and the base portion includes the base portion and the plurality of rod portions. In an extrusion die having a plurality of inlets for supplying raw material to a groove formed by the gap of the rod part of
A chamfered portion for smoothing a corner is formed at the intersection of adjacent side walls of the rod portion, and the cross-sectional width of the chamfered portion is 0 of the width of the side wall where the chamfered portion is formed. A die for extrusion molding characterized by being in a range of not less than 05 times and not more than 0.45 times.
必要とする大型ハニカム構造体を、それぞれ周囲に外壁を有し内部に同一断面形状の四角形又は六角形の複数の小孔を備える同一又は異なる形状の基本ハニカム構造体に分割し、
前記それぞれの基本ハニカム構造体を、ベース部と、該ベース部上に、互いに隙間を設けて並べて配置され、断面が同一形状の四角形又は六角形からなる複数のロッド部とを有し、前記ベース部には、該ベース部と前記複数のロッド部の隙間によって形成される溝に原料を供給する複数の注入口を有し、更に前記ロッド部の隣り合う側壁の交差部には、角を滑らかにする角取り部が形成され、しかも、前記角取り部の断面幅は、該角取り部が形成される前記側壁の中で短い側の側壁の幅の0.05倍以上で0.45倍以下の範囲にある押し出し成形用ダイスによって製造し、
最終的には、前記基本ハニカム構造体を連結することを特徴とする大型ハニカム構造体の製造方法。
The required large honeycomb structure is divided into basic honeycomb structures of the same or different shapes each having an outer wall around each and having a plurality of square or hexagonal small holes with the same cross-sectional shape inside.
Each of the basic honeycomb structures includes a base portion, and a plurality of rod portions each having a quadrangular shape or a hexagonal shape with the same cross-section and arranged on the base portion with a gap therebetween. The portion has a plurality of inlets for supplying the raw material to a groove formed by the gap between the base portion and the plurality of rod portions, and the corners of the adjacent side walls of the rod portion have smooth corners. And the cross-sectional width of the chamfered portion is 0.05 times or more and 0.45 times the width of the short side wall among the side walls on which the chamfered portion is formed. Produced with an extrusion die in the following range,
Finally, a method for manufacturing a large honeycomb structure, comprising connecting the basic honeycomb structures.
並べて配置された複数の押し出し成形用ダイスに同時に原料を注入して、大型ハニカム構造体を製造する方法であって、
前記各押し出し成形用ダイスは、ベース部と、該ベース部上に、互いに隙間を設けて並べて配置され、断面が同一形状の四角形又は六角形からなる複数のロッド部とを有し、前記ベース部には、該ベース部と前記複数のロッド部の隙間によって形成される溝に原料を供給する複数の注入口を有し、前記ロッド部の隣り合う側壁の交差部には、角を滑らかにする角取り部が形成され、しかも、前記角取り部の断面幅は、該角取り部が形成される前記側壁の中で短い側の側壁の幅の0.05倍以上で0.45倍以下の範囲にあることを特徴とする大型ハニカム構造体の製造方法。
A method of manufacturing a large honeycomb structure by simultaneously injecting raw materials into a plurality of extrusion forming dies arranged side by side,
Each of the extrusion dies has a base portion and a plurality of rod portions that are arranged side by side with a gap on the base portion and are formed of a square or a hexagon having the same cross section. Has a plurality of inlets for supplying a raw material to a groove formed by a gap between the base portion and the plurality of rod portions, and the corners of the adjacent side walls of the rod portion have smooth corners. A chamfered portion is formed, and the cross-sectional width of the chamfered portion is not less than 0.05 times and not more than 0.45 times the width of the short side wall among the side walls on which the chamfered portion is formed. A method for producing a large honeycomb structure characterized by being in the range.
JP2004353071A 2004-12-06 2004-12-06 Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure Pending JP2006159571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353071A JP2006159571A (en) 2004-12-06 2004-12-06 Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353071A JP2006159571A (en) 2004-12-06 2004-12-06 Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure

Publications (1)

Publication Number Publication Date
JP2006159571A true JP2006159571A (en) 2006-06-22

Family

ID=36662100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353071A Pending JP2006159571A (en) 2004-12-06 2004-12-06 Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure

Country Status (1)

Country Link
JP (1) JP2006159571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117729A1 (en) * 2007-03-26 2008-10-02 Hitachi Metals, Ltd. Method for manufacturing ceramic honeycomb structure
JP5304249B2 (en) * 2006-10-27 2013-10-02 日立金属株式会社 Die for forming honeycomb structure and manufacturing method thereof
JP2014051020A (en) * 2012-09-07 2014-03-20 Hoden Seimitsu Kako Kenkyusho Ltd Mold and method for manufacturing mold
CN107876215A (en) * 2017-12-14 2018-04-06 江苏蓝博环保机械有限公司 A kind of polygon section bar splices honeycomb electric field structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113789A (en) * 1973-03-02 1974-10-30
JPH0639597A (en) * 1992-05-20 1994-02-15 Corning Inc Multi-part extruding die and its manufacture
JPH10264125A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Ceramic honeycomb structure
JP2000279729A (en) * 1999-03-30 2000-10-10 Ibiden Co Ltd Ceramic filter unit and production thereof, and ceramic filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113789A (en) * 1973-03-02 1974-10-30
JPH0639597A (en) * 1992-05-20 1994-02-15 Corning Inc Multi-part extruding die and its manufacture
JPH10264125A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Ceramic honeycomb structure
JP2000279729A (en) * 1999-03-30 2000-10-10 Ibiden Co Ltd Ceramic filter unit and production thereof, and ceramic filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304249B2 (en) * 2006-10-27 2013-10-02 日立金属株式会社 Die for forming honeycomb structure and manufacturing method thereof
US8914966B2 (en) 2006-10-27 2014-12-23 Hitachi Metals, Ltd. Die for molding honeycomb structure, and its production method
WO2008117729A1 (en) * 2007-03-26 2008-10-02 Hitachi Metals, Ltd. Method for manufacturing ceramic honeycomb structure
US8268401B2 (en) 2007-03-26 2012-09-18 Hitachi Metals, Ltd. Method for producing ceramic honeycomb structure
CN101646637B (en) * 2007-03-26 2013-01-23 日立金属株式会社 Method for manufacturing ceramic honeycomb structure
JP5375600B2 (en) * 2007-03-26 2013-12-25 日立金属株式会社 Method for manufacturing ceramic honeycomb structure
JP2014051020A (en) * 2012-09-07 2014-03-20 Hoden Seimitsu Kako Kenkyusho Ltd Mold and method for manufacturing mold
CN107876215A (en) * 2017-12-14 2018-04-06 江苏蓝博环保机械有限公司 A kind of polygon section bar splices honeycomb electric field structure

Similar Documents

Publication Publication Date Title
EP1857427B1 (en) Honeycomb structure and method of manufacturing the same
EP1291061B1 (en) Honeycomb structure and honeycomb filter, and method of producing them
EP1696109B1 (en) Method of manufacturing a plugged honeycomb structure
JP3060539B2 (en) Ceramic honeycomb structure and method of manufacturing the same
EP1679120B1 (en) Honeycomb structure and method of producing the same
EP2098273B1 (en) Ceramic honeycomb filter and process for producing the same
EP1484482B1 (en) Exhaust gas purifying filter
EP1486243B1 (en) Honeycomb filter
EP1384507B1 (en) Use of a honeycomb structure in an exhaust gas converter system
DK1897603T3 (en) Compound honeycomb body
US7842369B2 (en) Honeycomb structure body having hexagonal cells and manufacturing method thereof
US7504146B2 (en) Hexagonal cell honeycomb structure body
US6902599B2 (en) Filtering body for filtering particles contained in an internal combustion engine exhaust gases
EP1594687A4 (en) Ceramic honeycomb body and process for manufacture
US20090136710A1 (en) Honeycomb structure and method for manufacturing same
JP5346284B2 (en) Crack-resistant ceramic honeycomb article and method for producing the same
US20060280905A1 (en) Honeycomb structure
JP2021020467A (en) Extrusion molded component for honeycomb body
EP1867621B1 (en) Honeycomb structure
JP4571633B2 (en) Block for filtering particles contained in exhaust gas from internal combustion engine
CN104245134B (en) Comprise circulation catalyst substrates and the manufacture method of the flow channel with the angle of chamfer
EP1559878B1 (en) Honeycomb structure
JP2005125182A (en) Honeycomb structure, its manufacturing method and canning structure
JP2006159571A (en) Fundamental honeycomb structure, its extrusion molding die and manufacturing method of large-sized honeycomb structure
JP2008155594A (en) Manufacturing method of honeycomb structure and mold for molding skinless honeycomb molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308