JP2006159211A - Extrusion-forming die and extrusion-forming method - Google Patents

Extrusion-forming die and extrusion-forming method Download PDF

Info

Publication number
JP2006159211A
JP2006159211A JP2004350122A JP2004350122A JP2006159211A JP 2006159211 A JP2006159211 A JP 2006159211A JP 2004350122 A JP2004350122 A JP 2004350122A JP 2004350122 A JP2004350122 A JP 2004350122A JP 2006159211 A JP2006159211 A JP 2006159211A
Authority
JP
Japan
Prior art keywords
molding
stage
mold
molded
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350122A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikawa
博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004350122A priority Critical patent/JP2006159211A/en
Publication of JP2006159211A publication Critical patent/JP2006159211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extrusion-forming method and an extrusion-forming die for supplying this method with which a material to be formed is not developed to a jamming caused by bulging in the axial cross sectional plane of the material to be formed, in one process of a cold forward extrusion-forming process. <P>SOLUTION: In a die 10 for two-step drawing formations with the cold forward extrusion-forming process, a movable die 20 arranging a first-step forming part 21 for forming the first-step part 51 to be formed of the material 50 to be formed and a restricting part 22 for restricting an axial direction intermediate part 53 of the material 50 to be formed, and a fixed die 30 arranging a second-step forming part 31 for forming a second-step part 52 to be formed having larger cross sectional area reducing ratio than the first-step part 51 to be formed, and the movable die 20 is inserted into the fixed die 30 and slidable in the almost same direction as the axial direction of the material 50 to be formed. Further, a pressurizing member for pressurizing the movable die 20 in the reverse direction to the extruding direction of the material 50 to be formed with larger than the forming load for forming the first-step forming part 5 of the material 50 to be formed and smaller force than the forming the second-step part 52 to be formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷間前方押出成形加工に関し、詳しくは、円柱軸状の被成形材に径の異なる二段の軸部を冷間前方押出成形加工にて成形する際、一段目と二段目の被成形部との間の軸部が膨張して、金型と被成形材とが接触することにより押し詰まりを発生させることのない金型及び該金型による成形方法に関する。   The present invention relates to a cold forward extrusion process, and more specifically, when forming a two-stage shaft portion having a different diameter on a cylindrical shaft-shaped material by a cold forward extrusion process, the first stage and the second stage. The present invention relates to a mold that does not cause clogging due to expansion of a shaft part between the mold part and a mold and a material to be molded, and a molding method using the mold.

従来、ギアシャフト等の円柱軸状部材を鍛造する際に、その予備成形において冷間前方押出成形加工にて断面減少率の異なる二段面が形成される。この成形は二段絞り成形とも言われる。通常、二段絞り成形では、一度の鍛造工程で二段の減径成形が為される。   Conventionally, when a cylindrical shaft-shaped member such as a gear shaft is forged, a two-step surface having a different cross-sectional reduction rate is formed by cold forward extrusion in the preliminary molding. This molding is also called two-stage drawing. Usually, in two-stage drawing, two-stage diameter reduction is performed in a single forging process.

図5では、冷間前方押出成形加工にて断面減少率の異なる二段面を形成する一例として、金型12と、該金型12にて成形されるギアシャフト等の軸状部材となる円柱軸状の被成形材50を示しており、図の左側半分は成形加工前、同じく右側半分は成形加工後の被成形材50を示している。
金型1の内周12aには、一段目の成形を施す一段目成形部12bと、二段目の成形を施す二段目成形部12cとが設けられており、一段目成形部12bより二段目成形部12cの方が、成形される被成形材50の断面減少率が大きくなるように形成される。成形前の被成形材50が金型12の内周12aに挿入されて加圧(パンチ)されることで、金型12の一段目成形部12bと二段目成形部12cとによって押出成形加工が施される。
In FIG. 5, as an example of forming a two-step surface with a different cross-sectional reduction rate by cold forward extrusion molding, a mold 12 and a cylinder serving as an axial member such as a gear shaft formed by the mold 12 The shaft-shaped workpiece 50 is shown. The left half of the figure shows the workpiece 50 before molding and the right half shows the molded material 50 after molding.
The inner periphery 12a of the mold 1 is provided with a first-stage molding portion 12b that performs the first-stage molding and a second-stage molding portion 12c that performs the second-stage molding. The step forming portion 12c is formed such that the cross-section reduction rate of the material 50 to be formed is increased. The molding material 50 before molding is inserted into the inner periphery 12a of the mold 12 and pressed (punched), so that the molding process is performed by the first-stage molding part 12b and the second-stage molding part 12c of the mold 12. Is given.

図6に示す如く、押出成形加工が施されることによって、加工前の被成形材50の軸方向長さH0に対して、加工後の被成形材50の軸方向長さH1は大きくなる。加工時において、一段目成形部12bと二段目成形部12cとの断面減少率の差に起因して、被成形材50の一段目被成形部51よりも、二段目被成形部52が大きく伸びることになる。   As shown in FIG. 6, by performing extrusion molding, the axial length H1 of the processed material 50 after processing becomes larger than the axial length H0 of the processed material 50 before processing. At the time of processing, due to the difference in cross-sectional reduction ratio between the first-stage molded portion 12b and the second-stage molded portion 12c, the second-stage molded portion 52 is more than the first-stage molded portion 51 of the molding material 50. It will grow greatly.

金型12は加工完了時の形状とされているため、加工途中において被成形材50の外周と金型12の内周12aとが接触しない非拘束部Gが生じる。
一段目成形部12bと二段目成形部12cの断面減少率の違いにより成形途中で被成形材50の軸方向の伸び量が変化するために、前記非拘束部Gにおいて、被成形材50の一段目被成形部51と二段目被成形部52との間が、軸断面方向(軸方向と略直交する方向)へ膨らみ、加工途中であるにも関わらず被成形材50が金型12に対して軸方向に相対移動不能となる現象(押し詰まり)が生じることがある。
Since the mold 12 has a shape at the completion of processing, an unconstrained portion G is generated in which the outer periphery of the molding material 50 and the inner periphery 12a of the mold 12 do not contact each other during the processing.
Since the amount of elongation in the axial direction of the molding material 50 changes during molding due to the difference in cross-sectional reduction rate between the first-stage molding portion 12b and the second-stage molding portion 12c, the unconstrained portion G A portion between the first-stage molded portion 51 and the second-stage molded portion 52 swells in the axial cross-sectional direction (direction substantially orthogonal to the axial direction), and the molded material 50 is molded in the mold 12 in spite of being processed. On the other hand, there may be a phenomenon (clogging) that the relative movement in the axial direction becomes impossible.

上記不具合を解消するために、一段目成形部と二段目成形部との断面減少率と、パンチストロークとの関係が最適となるように金型が設計されることになる。
しかしながら、実機による加工実験を繰り返し行い、経験的に最適な金型の形状及び材料選択を行うことが一般的であり、このために開発コストと時間がかかるという問題があった。
In order to eliminate the above problems, the mold is designed so that the relationship between the cross-section reduction rate between the first-stage molded portion and the second-stage molded portion and the punch stroke is optimized.
However, it is common to repeatedly perform machining experiments using actual machines and empirically select the optimum mold shape and material, which has the problem of requiring development costs and time.

そこで、特許文献1では、冷間前方押出加工による二段絞り成形において、一段目被成形部と二段目被成形部との間に位置する被成形材の軸部においても、被成形材が金型と接触せず、押し詰まりを発生させないために、一段目成形部と二段目成形部の断面減少率及びそのテーパ角度をパラメータとして、金型の形状を設定することとしている。
特開2000−254752号公報
Therefore, in Patent Document 1, in the two-stage drawing by cold forward extrusion, the molding material is also formed in the shaft portion of the molding material located between the first-stage molding portion and the second-stage molding portion. In order not to come into contact with the mold and cause clogging, the shape of the mold is set using the cross-section reduction rate and the taper angle of the first-stage molded part and the second-stage molded part as parameters.
JP 2000-254752 A

しかし、上記特許文献1のように、金型の設計条件を設けると、金型の設計の自由度が制限されることになる。
また、一段目成形部と二段目成形部とを別金型に形成して、二工程の冷間前方押出加工にて二段絞り成形を行うことも可能であるが、この場合、別金型であるために一段目成形部と二段目成形部との同軸精度が低下し、製品の精度が低下してしまうことがあり、特に、スプライン等のギヤ断面を持つ製品を加工する場合は要求値を満たすことが困難となるおそれがある。
However, if a mold design condition is provided as in Patent Document 1, the degree of freedom in mold design is limited.
It is also possible to form the first-stage molded part and the second-stage molded part in separate dies and perform two-stage drawing by cold forward extrusion in two steps. Because it is a mold, the coaxial accuracy of the first-stage molded part and the second-stage molded part may decrease, and the accuracy of the product may decrease, especially when processing products with a gear cross section such as splines. It may be difficult to satisfy the required value.

そこで、本発明では、一工程の冷間前方押出成形加工にて、被成形材が軸断面方向へ膨らんで押し詰まりを生じさせることのない、押出成形方法及びこれに供する押出成形金型の構造を提案する。   Therefore, in the present invention, the extrusion molding method in which the material to be molded does not swell in the axial cross-sectional direction and cause clogging in the cold forward extrusion processing in one step, and the structure of the extrusion mold used for the same. Propose.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、冷間前方押出成形加工にて断面減少率の異なる二段面を成形するための金型であって、被成形材の一段目被成形部を成形する一段目成形部と、被成形材の軸部を拘束する拘束部とを、設けた移動型と、前記一段目被成形部よりも断面減少率の大きい二段目被成形部を成形する二段目成形部を設けた固定型とを備え、移動型を固定型に摺動可能に内挿するとともに、被成形材の一段目被成形部を成形する成形荷重よりも大きく、二段目被成形部を成形する成形荷重よりも小さい力で、移動型を被成形材の押出方向と反対方向へ加圧する加圧部材を備えるものである。   That is, in claim 1, a mold for forming a two-step surface having a different cross-sectional reduction rate by cold forward extrusion molding, and forming a first-stage molding portion of a molding material. And a second-stage molded part that molds a second-stage molded part having a cross-sectional reduction rate larger than that of the first-stage molded part. The movable mold is slidably inserted into the fixed mold, and the second-stage molded part is formed larger than the molding load for molding the first-stage molded part of the molding material. A pressing member that pressurizes the movable die in a direction opposite to the extrusion direction of the molding material with a force smaller than the molding load to be provided is provided.

請求項2においては、前記押出成形金型であって、移動型の移動方向を該移動型に挿入される被成形材の軸方向と略同一方向に規制する規制部を固定型に設けるものである。   According to a second aspect of the present invention, the extrusion mold is provided with a restricting portion for restricting the moving direction of the movable mold in substantially the same direction as the axial direction of the molding material to be inserted into the movable mold. is there.

請求項3においては、断面減少率の異なる二段面を成形する冷間前方押出成形方法であって、一の押出工程にて、被成形材の一段目被成形部を成形したのち、一段目被成形部よりも断面減少率の大きい二段目被成形部を成形するものである。   In Claim 3, it is the cold front extrusion molding method which shape | molds the two-step surface from which a cross-section reduction rate differs, Comprising: After shape | molding the first-stage to-be-shaped part of a to-be-shaped material in one extrusion process, A second stage molded part having a larger cross-sectional reduction rate than the molded part is molded.

請求項4においては、前記押出成形方法であって、金型の一段目成形部に対して被成形材を相対的に移動させて、被成形材の一段目被成形部を成形し、金型の一段目成形部と被成形材とを一体的に、金型の二段目成形部に対して相対的に移動させて、被成形材の二段目被成形部を成形するものである。   5. The extrusion molding method according to claim 4, wherein the molding material is moved relative to the first-stage molding portion of the mold to mold the first-stage molding portion of the molding material, and the mold The first-stage molding part and the material to be molded are integrally moved relative to the second-stage molding part of the mold to mold the second-stage molding part of the molding material.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、被成形材を金型で押し出すことにて、まず、可動型の一段目成形部に対して被成形材が相対的に移動して、被成形材の一段目被成形部が成形される。続いて、可動型と被成形材とが一体的に二段目成形部に対して相対的に移動して、被成形材の二段目被成形部が成形される。
このように、被成形材の一段目被成形部と二段目被成形部とが時間差をもって成形されるので、被成形材の成形荷重の最大値を低減させることができ、被成形材を押し出すための装置を小型化させることができる。
また、一段目被成形部が成形される際に二段目被成形部は拘束されないために、被成形材の軸中途部で軸断面方向に膨らんで押し詰まりを発生させることがない。
さらに、被成形材の一段目被成形部と二段目被成形部との伸び量の違いを考慮することなく、また、一段目被成形部と二段目被成形部との断面減少率の関係を考慮することなく、成形のための金型を設計することができるので、金型にて成形される製品形状の自由度が高まり、また、金型の製造に要する時間やコストを削減することができる。
In Claim 1, by extruding a molding material with a metal mold | die, first, a to-be-molded material moves relatively with respect to the movable 1st stage molding part, The 1st stage molding part of a molding material Is formed. Subsequently, the movable mold and the molding material are integrally moved relative to the second-stage molding portion, and the second-stage molding portion of the molding material is molded.
As described above, since the first-stage molded part and the second-stage molded part of the molding material are molded with a time difference, the maximum value of the molding load of the molding material can be reduced, and the molding material is extruded. The apparatus for this can be reduced in size.
In addition, since the second-stage molded part is not restrained when the first-stage molded part is molded, the second-stage molded part does not swell in the axial cross-sectional direction at the mid-axis part of the molded material and does not cause clogging.
Furthermore, without considering the difference in elongation between the first-stage molded part and the second-stage molded part of the molding material, the cross-sectional reduction rate between the first-stage molded part and the second-stage molded part Since the mold for molding can be designed without considering the relationship, the degree of freedom of the product shape molded by the mold is increased, and the time and cost required for manufacturing the mold are reduced. be able to.

請求項2においては、金型の一段目成形部と二段目成形部との同軸を確保することができ、被成形材の軸方向のズレを防止することができる。   According to the second aspect of the present invention, it is possible to ensure the coaxiality of the first-stage molded portion and the second-stage molded portion of the mold, and to prevent the axial displacement of the material to be molded.

請求項3においては、被成形材の一段目被成形部と二段目被成形部とが時間差をもって成形されるので、被成形材の成形荷重の最大値を低減させることができ、被成形材を押し出すための装置を小型化させることができる。
また、一段目被成形部が成形される際に二段目被成形部は拘束されないために、被成形材の軸中途部で軸断面方向に膨らんで押し詰まりを発生させることがない。
さらに、被成形材の一段目被成形部と二段目被成形部との伸び量の違いを考慮することなく、また、一段目被成形部と二段目被成形部との断面減少率の関係を考慮することなく、成形のための金型を設計することができるので、金型にて成形される製品形状の自由度が高まり、また、金型の製造に要する時間やコストを削減することができる。
In claim 3, since the first-stage molded part and the second-stage molded part of the molding material are molded with a time difference, the maximum value of the molding load of the molding material can be reduced, and the molding material can be reduced. The apparatus for extruding can be reduced in size.
In addition, since the second-stage molded part is not restrained when the first-stage molded part is molded, the second-stage molded part does not swell in the axial cross-sectional direction at the mid-axis part of the molded material and does not cause clogging.
Furthermore, without considering the difference in elongation between the first-stage molded part and the second-stage molded part of the molding material, the cross-sectional reduction rate between the first-stage molded part and the second-stage molded part Since the mold for molding can be designed without considering the relationship, the degree of freedom of the product shape molded by the mold is increased, and the time and cost required for manufacturing the mold are reduced. be able to.

請求項4においては、一段目被成形部が成形される際に二段目被成形部は拘束されないために、被成形材の軸中途部で軸断面方向に膨らんで押し詰まりを発生させることがない。
さらに、被成形材の一段目被成形部と二段目被成形部との伸び量の違いを考慮することなく、また、一段目被成形部と二段目被成形部との断面減少率の関係を考慮することなく、成形のための金型を設計することができるので、金型にて成形される製品形状の自由度が高まり、また、金型の製造に要する時間やコストを削減することができる。
In claim 4, since the second-stage molded part is not restrained when the first-stage molded part is molded, it may swell in the axial cross-sectional direction at the mid-axis part of the molding material and cause clogging. Absent.
Furthermore, without considering the difference in elongation between the first-stage molded part and the second-stage molded part of the molding material, the cross-sectional reduction rate between the first-stage molded part and the second-stage molded part Since the mold for molding can be designed without considering the relationship, the degree of freedom of the product shape molded by the mold is increased, and the time and cost required for manufacturing the mold are reduced. be able to.

次に、発明の実施の形態を説明する。
図1は本発明の実施例に係る金型の構造を示す断面図、図2は被成形材の一段目被成形部を成形したときの金型の様子を示す断面図、図3は被成形材の二段目被成形部を成形したときの金型の様子を示す断面図、図4は成形の流れを示す図である。
図5は従来の金型の構造を示す断面図、図6は加工前後の被成形材の形状を比較説明する図である。
Next, embodiments of the invention will be described.
FIG. 1 is a cross-sectional view showing the structure of a mold according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the state of the mold when the first-stage molding part of the molding material is molded, and FIG. Sectional drawing which shows the mode of a metal mold | die when shape | molding the 2nd stage to-be-formed part of material, FIG. 4 is a figure which shows the flow of shaping | molding.
FIG. 5 is a cross-sectional view showing the structure of a conventional mold, and FIG. 6 is a view for comparing and explaining the shape of a molding material before and after processing.

図1は、本発明の実施例に係る冷間前方押出成形加工にて断面減少率の異なる二段面を成形するための金型と、該金型10にて成形される被成形材50とを示したものである。なお、図面右端の一点鎖線は被成形材50の中心線を示している。
被成形材50は、円柱軸状であってギアシャフト等の部材となるものである。被成形材50は、その一側端部に一段目被成形部51が設けられ、軸方向中途部に二段目被成形部52が設けられ、他側端部は被成形材50を押し出して成形荷重を与える押出装置11に接続される。被成形材50の一段目被成形部51と二段目被成形部52との間を、軸方向中間部53とする。
FIG. 1 shows a mold for forming two-step surfaces having different cross-sectional reduction rates in cold forward extrusion processing according to an embodiment of the present invention, and a molding material 50 molded by the mold 10. Is shown. Note that the one-dot chain line on the right end of the drawing indicates the center line of the material 50 to be molded.
The molding material 50 has a cylindrical shaft shape and is a member such as a gear shaft. The molding material 50 is provided with a first-stage molding portion 51 at one end portion thereof, a second-stage molding portion 52 is provided at an axially intermediate portion, and the other-side end portion extrudes the molding material 50. It is connected to an extrusion device 11 that applies a forming load. A portion between the first-stage molding portion 51 and the second-stage molding portion 52 of the molding material 50 is referred to as an axial intermediate portion 53.

前記被成形材50に二段絞り成形を施すための金型10は、大概して一段目成形部21を備えた移動型20と、二段目成形部31を備えた固定型30と、移動型20及び固定型30を保持する型基部40とで構成される。一段目成形部21に対して、二段目成形部31の方が、被成形材50を加工する際の断面減少率が大きいものとする。   The mold 10 for performing the two-stage drawing on the material 50 is generally composed of a movable mold 20 having a first-stage molded portion 21, a fixed mold 30 having a second-stage molded portion 31, and a movable mold. 20 and a mold base 40 that holds the fixed mold 30. It is assumed that the second-stage molded portion 31 has a larger cross-sectional reduction rate when the material 50 is processed than the first-stage molded portion 21.

移動型20と固定型30とは、それぞれ複数の金型構成要素によって構成されており、各金型構成要素がノックピン等にて固定されて一体的に挙動する。移動型20は固定型30に内挿され、固定型30に対して移動型20が相対的に移動可能とされる。   The movable mold 20 and the fixed mold 30 are each composed of a plurality of mold components, and each mold component is fixed by a knock pin or the like and behaves integrally. The movable mold 20 is inserted into the fixed mold 30 so that the movable mold 20 can move relative to the fixed mold 30.

前記移動型20を構成する金型構成要素には、一段目成形部21を形成するダイスと、被成形材50の軸方向中間部53を拘束保持する拘束部22を形成するダイスとが具備される。なお、軸方向中間部53は、被成形材50の一段目被成形部51と二段目被成形部52との間に位置する部分とする。前記一段目成形部21及び拘束部22はいずれも移動型20の内周に形成される。   The mold components constituting the movable mold 20 include a die that forms the first-stage molding portion 21 and a die that forms a restraining portion 22 that restrains and holds the axial intermediate portion 53 of the molding material 50. The In addition, let the axial direction intermediate part 53 be a part located between the 1st stage molded part 51 and the 2nd stage molded part 52 of the to-be-molded material 50. FIG. Both the first-stage molded portion 21 and the restraining portion 22 are formed on the inner periphery of the movable mold 20.

一段目成形部21を被成形材50の一段目被成形部51が通過することにより、一段目被成形部51が成形される。
また、拘束部22は、一段目被成形部51の成形時において、軸方向中間部53の外周に接触して、被成形材50の軸断面方向(軸方向と略直交する方向)への膨らみを拘束する。これに加え、拘束部22は、一段目被成形部51の成形が終了した状態で、被成形材50の外周と移動型20の内周とが接触しない非拘束となる部分がないように形成され、二段目被成形部52の成形時において、被成形材50の軸断面方向への膨らみを拘束するとともに、被成形材50と移動型20とが一体的に移動することのできるように被成形材50を拘束する。
The first-stage molding part 51 is molded by passing the first-stage molding part 51 through the first-stage molding part 21.
Further, the restraining portion 22 comes into contact with the outer periphery of the axial intermediate portion 53 when the first-stage molded portion 51 is molded, and bulges in the axial cross-sectional direction of the molding material 50 (direction substantially orthogonal to the axial direction). Is restrained. In addition to this, the constraining portion 22 is formed so that there is no unconstrained portion in which the outer periphery of the molding material 50 and the inner periphery of the movable mold 20 are not in contact with each other in a state where the molding of the first-stage molding portion 51 is completed. In the molding of the second stage molded part 52, the molding material 50 is restrained from bulging in the axial cross-section direction, and the molding material 50 and the movable mold 20 can move integrally. The material 50 is restrained.

前記固定型30を構成する金型構成要素には、二段目成形部31を形成するダイスと、移動型20の摺動方向を被成形材50の軸方向と略同一となるように規制する規制部32を形成するダイスとが具備される。
二段目成形部31を被成形材50の二段目被成形部52が通過することにより、一段目被成形部51が成形される。また、規制部32は、固定型30の内周に設けられており、移動型20の外周が規制部32と接した状態で摺動することによって、移動型20は、固定型30に対して、被成形材50の軸方向と略同一方向に移動するように規制される。この規制部32により、一段目成形部21と二段目成形部31との同軸を確保することができる。
In the mold component constituting the fixed mold 30, the die forming the second-stage molding portion 31 and the sliding direction of the movable mold 20 are restricted so as to be substantially the same as the axial direction of the molding material 50. A die for forming the restricting portion 32 is provided.
By passing the second stage molding part 52 of the molding material 50 through the second stage molding part 31, the first stage molding part 51 is molded. Further, the restricting portion 32 is provided on the inner periphery of the fixed mold 30, and the movable die 20 slides with respect to the fixed die 30 by sliding the outer periphery of the movable mold 20 in contact with the restricting portion 32. The material 50 is regulated so as to move in substantially the same direction as the axial direction of the material 50. By this restricting portion 32, it is possible to ensure the coaxiality of the first-stage molded portion 21 and the second-stage molded portion 31.

また、前記型基部40には、移動型20を型基部40から離れた状態を保持するために、移動型20を被成形材50の押出方向と反対方向へ加圧する加圧部材41が備えられる。なお、移動型20の加圧方向への移動は、移動型20が固定型30の一部に当接することにより規制される。従って成形開始前の段階において、移動型20は固定型30に当接するとともに、型基部40から離れた状態にある。   The mold base 40 is provided with a pressure member 41 that pressurizes the movable mold 20 in a direction opposite to the extrusion direction of the molding material 50 in order to keep the movable mold 20 away from the mold base 40. . The movement of the movable mold 20 in the pressurizing direction is restricted by the movable mold 20 coming into contact with a part of the fixed mold 30. Accordingly, the movable mold 20 is in contact with the fixed mold 30 and is away from the mold base 40 before the molding is started.

本実施例においては、前記加圧部材41を、エアシリンダ41aと該エアシリンダ41aより進退可能なロッド41bとで構成している。ロッド41bの端部は移動型20に当接しており、該ロッド41bにて移動型20が被成形材50の挿入方向と反対方向に付勢され、移動型20と型基部40とが離れた状態が保持される。
但し、加圧部材41は本実施例に限定されるものではなく、液体や気体等の流体圧シリンダとロッドとで構成したり、バネやクッション材等の弾性体で構成したりすることもできる。
In the present embodiment, the pressurizing member 41 is composed of an air cylinder 41a and a rod 41b that can be advanced and retracted from the air cylinder 41a. The end of the rod 41b is in contact with the movable mold 20, and the movable mold 20 is urged by the rod 41b in the direction opposite to the insertion direction of the molding material 50, so that the movable mold 20 and the mold base 40 are separated. State is maintained.
However, the pressurizing member 41 is not limited to the present embodiment, and may be composed of a fluid pressure cylinder such as liquid or gas and a rod, or may be composed of an elastic body such as a spring or a cushion material. .

前記加圧部材41の加圧力は、被成形材50の一段目被成形部51が、移動型20の一段目成形部21にて成形されるときに、移動型20が固定型30に対して相対移動することのない力であって、且つ、被成形材50の二段目被成形部52が、固定型30の二段目成形部31にて成形されるときに、移動型20が固定型30に対して相対移動する力となるように設定される。
なお、一段目成形部21に対して、二段目成形部31の断面減少率は大きいので、被成形材50の一段目被成形部51を成形するために必要な成形荷重(パンチ力)よりも、二段目被成形部52を成形するために必要な成形荷重の方が大きい。この成形荷重の差を利用して、移動型20が被成形材50とともに固定型30に対して相対的に移動するか、移動型20及び固定型30に対して被成形材50が相対的に移動するかを、設定するのである。
The pressing force of the pressurizing member 41 is such that when the first stage molding part 51 of the molding material 50 is molded by the first stage molding part 21 of the movable mold 20, the movable mold 20 is against the fixed mold 30. The movable mold 20 is fixed when the second-stage molding part 52 of the molding material 50 is formed by the second-stage molding part 31 of the stationary mold 30 with a force that does not relatively move. The force is set so as to move relative to the mold 30.
In addition, since the cross-sectional reduction rate of the second-stage molded part 31 is larger than that of the first-stage molded part 21, the molding load (punch force) necessary for molding the first-stage molded part 51 of the molding material 50 is larger. However, the molding load necessary for molding the second-stage molded part 52 is larger. By utilizing this difference in molding load, the movable mold 20 moves relative to the fixed mold 30 together with the molding material 50, or the molding material 50 moves relative to the movable mold 20 and the fixed mold 30. Set whether to move.

上記構成の金型10を用いて、冷間前方押出成形加工にて断面減少率の異なる二段面を被成形材50に成形する加工工程について図4の流れ図を用いて説明する。   With reference to the flowchart of FIG. 4, a description will be given of a processing step of forming a two-step surface having a different cross-sectional reduction rate into the molding material 50 by cold forward extrusion molding using the mold 10 having the above-described configuration.

まず、図1に示す如く、移動型20の内周に被成形材50が挿入される。このとき、移動型20と型基部40とは離れた状態にある。被成形材50が型基部40の方向へ押し下げられ、被成形材50の一段目被成形部51が移動型20に設けられた一段目成形部21を通過し始める。このとき、加圧部材41にて、固定型30に対して移動型20は移動不能とされ、移動型20に対して被成形材50が相対的に移動する。
そして、図2に示す如く、拘束部22と被成形材50の軸方向中間部53との間隙がなくなり、移動型20に対して被成形材50が相対的に移動不能となったとき、被成形材50の一段目被成形部51の全てが一段目成形部21を通過して被成形材50の一段目被成形部51の成形が完了する(S11)。
First, as shown in FIG. 1, the molding material 50 is inserted into the inner periphery of the movable mold 20. At this time, the movable mold 20 and the mold base 40 are in a separated state. The molding material 50 is pushed down in the direction of the mold base 40, and the first-stage molding part 51 of the molding material 50 starts to pass through the first-stage molding part 21 provided in the movable mold 20. At this time, the movable mold 20 is not movable with respect to the fixed mold 30 by the pressurizing member 41, and the molding material 50 moves relative to the movable mold 20.
As shown in FIG. 2, when the gap between the restraining portion 22 and the axially intermediate portion 53 of the molding material 50 disappears and the molding material 50 becomes relatively unmovable with respect to the movable mold 20, All the first-stage molding parts 51 of the molding material 50 pass through the first-stage molding part 21, and the molding of the first-stage molding part 51 of the molding material 50 is completed (S11).

続いて、二段目被成形部52の成形に移行し、被成形材50がさらに型基部40の方向へ押し下げられる。
被成形材50の二段目被成形部52が成形される際には、加圧部材41の加圧力は二段目被成形部52の成形荷重よりも小さいために、固定型30に対して移動型20が相対的に移動する。また、移動型20の拘束部22にて被成形材50の軸方向中間部53が拘束されるために、移動型20と被成形材50とが一体的に移動する。
従って、被成形材50の二段目被成形部52が、固定型30の二段目成形部31を通過する際には、移動型20と被成形材50とが一体的に、固定型30に対して相対移動することになる。
そして、移動型20が型基部40に当接することによって固定型30に対して移動型20が相対的に移動不能となったとき、被成形材50の二段目被成形部52の全てが二段目成形部31を通過して被成形材50の二段目被成形部52の成形が完了する(S12)。
Subsequently, the process proceeds to the molding of the second stage molding part 52, and the molding material 50 is further pushed down toward the mold base 40.
When the second-stage molding part 52 of the molding material 50 is molded, the pressing force of the pressure member 41 is smaller than the molding load of the second-stage molding part 52, so The movable mold 20 moves relatively. Further, since the axially intermediate portion 53 of the molding material 50 is restrained by the restraining portion 22 of the movable mold 20, the movable die 20 and the molding material 50 move integrally.
Therefore, when the second-stage molding part 52 of the molding material 50 passes through the second-stage molding part 31 of the stationary mold 30, the movable mold 20 and the molding material 50 are integrally formed with the stationary mold 30. Will move relative to.
When the movable mold 20 comes into contact with the mold base 40 and the movable mold 20 becomes immovable relative to the fixed mold 30, all of the second-stage molded parts 52 of the molding material 50 are two. The molding of the second stage molding part 52 of the molding material 50 is completed after passing through the stage molding part 31 (S12).

上記の冷間前方押出成形加工では、一回の押し出し(一工程)にて、被成形材50の一段目被成形部51と二段目被成形部52とが成形される。この間、まず、被成形材50の一段目被成形部51が成形され、これが完了したのち、二段目被成形部52が成形される。すなわち、一段目被成形部51と二段目被成形部52とが同時に成形されるのではなく、一段目被成形部51と二段目被成形部52とが時間差をもって成形されるのである。
従って、一段目被成形部51と二段目被成形部52とを同時に成形するときと比較して被成形材50の成形荷重の最大値を低減させることができ、押出装置11を小型化させることができる。
In the cold forward extrusion process, the first-stage molding part 51 and the second-stage molding part 52 of the molding material 50 are molded by one extrusion (one process). In the meantime, first, the first-stage molding part 51 of the molding material 50 is molded, and after this is completed, the second-stage molding part 52 is molded. That is, the first stage molded part 51 and the second stage molded part 52 are not molded simultaneously, but the first stage molded part 51 and the second stage molded part 52 are molded with a time difference.
Therefore, the maximum value of the molding load of the molding material 50 can be reduced as compared with the case where the first stage molding part 51 and the second stage molding part 52 are simultaneously molded, and the extrusion device 11 can be downsized. be able to.

また、一段目被成形部51の成形時において、被成形材50の一段目被成形部51と二段目被成形部52との間に位置する軸方向中間部53は、二段目被成形部52が成形されず拘束されていないため、被成形材50が軸断面方向へ膨らんで軸方向中間部53と移動型20の拘束部22との間隙を閉塞することがなく、押し詰まりを発生させることがない。
そして、二段目被成形部52の成形時においても、軸方向中間部53は、拘束部22にて拘束されて軸断面方向へ膨らむことがなく、押し詰まりを発生させることがない。
従って、上記二段絞り成形では、被成形材50の軸断面方向への膨らむことに起因する押し詰まりの発生を防止することができるのである。
Further, when the first-stage molded part 51 is molded, the axial intermediate portion 53 located between the first-stage molded part 51 and the second-stage molded part 52 of the molding material 50 is a second-stage molded part. Since the portion 52 is not molded and restrained, the molding material 50 does not swell in the axial cross-section direction and does not close the gap between the axial intermediate portion 53 and the restraining portion 22 of the movable mold 20, thereby causing clogging. I will not let you.
Even when the second-stage molded part 52 is molded, the axial intermediate part 53 is restrained by the restraining part 22 and does not swell in the axial cross-section direction, and does not cause clogging.
Therefore, in the above-described two-stage drawing, it is possible to prevent the occurrence of clogging caused by the molding material 50 swelling in the axial cross-sectional direction.

さらに、上記冷間前方押出成形加工では、一段目被成形部51と二段目被成形部52とが時間差をもって成形されるので、被成形材50の一段目被成形部51と二段目被成形部52との伸び量の違いを考慮することなく、また、一段目被成形部51と二段目被成形部52との断面減少率の関係を考慮することなく、成形のための金型を設計することができる。これにより金型にて成形される製品形状の自由度が高まり、また、金型の製造に要する時間やコストを削減することができるのである。   Further, in the cold forward extrusion molding process, the first-stage molded part 51 and the second-stage molded part 52 are molded with a time difference, so that the first-stage molded part 51 and the second-stage molded part 51 of the molding material 50 are formed. Mold for molding without considering the difference in elongation from the molding part 52 and without considering the cross-sectional reduction ratio between the first-stage molding part 51 and the second-stage molding part 52 Can be designed. As a result, the degree of freedom of the shape of the product molded by the mold is increased, and the time and cost required for manufacturing the mold can be reduced.

なお、上記実施例においては、冷間前方押出成形加工にて被成形材に断面減少率の異なる二段面を形成しているが、被成形材に断面減少率の異なる複数断面を形成する場合にも適用させることができる。この場合、上記金型10において、移動型20と固定型30との間に、断面を成形する成形部と被成形材の軸部を拘束する拘束部とを設けた中間移動型を介装するとともに、該中間移動型を被成形材50の押出方向と反対方向へ加圧する加圧部材を設ける。そして、一の押出工程にて、被成形材50の断面減少率の最も小さい被成形部から断面減少率の最も大きな被成形部まで、断面減少率が小さい被成形部から順に時間差を設けて成形する。このようにして、二以上の複数断面を形成する場合にも本発明に係る押出成形金型の構造及び押出成形方法を適用させることができる。   In the above embodiment, a two-step surface having a different cross-section reduction rate is formed on the material to be molded by cold forward extrusion, but a plurality of cross-sections having different cross-section reduction rates are formed on the material to be molded. It can also be applied to. In this case, in the mold 10, an intermediate moving mold is provided between the movable mold 20 and the fixed mold 30. The intermediate movable mold is provided with a molding section that molds the cross section and a restraining section that restrains the shaft portion of the material to be molded. At the same time, a pressurizing member that pressurizes the intermediate moving mold in the direction opposite to the extrusion direction of the molding material 50 is provided. Then, in one extrusion step, molding is performed in order from the molding part having the smallest cross-sectional reduction rate, from the molding part having the smallest cross-sectional reduction rate of the molding material 50 to the molding part having the largest cross-sectional reduction rate. To do. In this way, the structure of the extrusion mold and the extrusion method according to the present invention can be applied even when two or more cross sections are formed.

本発明の実施例に係る金型の構造を示す断面図。Sectional drawing which shows the structure of the metal mold | die which concerns on the Example of this invention. 被成形材の一段目被成形部を成形したときの金型の様子を示す断面図。Sectional drawing which shows the mode of a metal mold | die when shape | molding the 1st-stage to-be-formed part of a to-be-molded material. 被成形材の二段目被成形部を成形したときの金型の様子を示す断面図。Sectional drawing which shows the mode of a metal mold | die when shape | molding the 2nd stage molding part of a to-be-molded material. 成形の流れを示す図。The figure which shows the flow of shaping | molding. 従来の金型の構造を示す断面図。Sectional drawing which shows the structure of the conventional metal mold | die. 加工前後の被成形材の形状を比較説明する図。The figure explaining comparatively the shape of the to-be-molded material before and behind a process.

符号の説明Explanation of symbols

10 金型
20 移動型
21 一段目成形部
22 拘束部
30 固定型
31 二段目成形部
32 規制部
40 型基部
41 加圧部材
50 被成形材
51 一段目被成形部
52 二段目被成形部
53 軸方向中間部
DESCRIPTION OF SYMBOLS 10 Mold 20 Moving mold 21 First stage molding part 22 Restriction part 30 Fixed mold 31 Second stage molding part 32 Control part 40 Mold base 41 Pressure member 50 Molding material 51 First stage molding part 52 Second stage molding part 53 Axial intermediate part

Claims (4)

冷間前方押出成形加工にて断面減少率の異なる二段面を成形するための金型であって、
被成形材の一段目被成形部を成形する一段目成形部と、被成形材の軸部を拘束する拘束部とを、設けた移動型と、
前記一段目被成形部よりも断面減少率の大きい二段目被成形部を成形する二段目成形部を設けた固定型とを備え、
移動型を固定型に摺動可能に内挿するとともに、
被成形材の一段目被成形部を成形する成形荷重よりも大きく、二段目被成形部を成形する成形荷重よりも小さい力で、移動型を被成形材の押出方向と反対方向へ加圧する加圧部材を備える
ことを特徴とする押出成形金型。
A mold for forming two-step surfaces with different cross-sectional reduction rates in cold forward extrusion molding,
A movable mold provided with a first-stage molded portion that molds a first-stage molded portion of the molding material, and a restraining portion that restrains the shaft portion of the molding material;
A fixed die provided with a second-stage molded part for molding a second-stage molded part having a larger cross-sectional reduction rate than the first-stage molded part,
While slidably inserting the movable mold into the fixed mold,
Pressing the movable die in a direction opposite to the extrusion direction of the molding material with a force larger than the molding load for molding the first-stage molding part of the molding material and smaller than the molding load for molding the second-stage molding part An extrusion mold comprising a pressure member.
前記押出成形金型であって、
移動型の移動方向を該移動型に挿入される被成形材の軸方向と略同一方向に規制する規制部を固定型に設ける、
請求項1に記載の押出成形金型。
The extrusion mold,
A fixed die is provided with a restricting portion for restricting the moving direction of the moving die in substantially the same direction as the axial direction of the molding material to be inserted into the moving die;
The extrusion mold according to claim 1.
断面減少率の異なる二段面を成形する冷間前方押出成形方法であって、
一の押出工程にて、
被成形材の一段目被成形部を成形したのち、
一段目被成形部よりも断面減少率の大きい二段目被成形部を成形する
ことを特徴とする押出成形方法。
A cold forward extrusion method for forming two-step surfaces with different cross-sectional reduction rates,
In one extrusion process,
After molding the first stage molding part of the molding material,
An extrusion molding method characterized by molding a second-stage molded part having a larger cross-sectional reduction rate than the first-stage molded part.
前記押出成形方法であって、
金型の一段目成形部に対して被成形材を相対的に移動させて、被成形材の一段目被成形部を成形し、
金型の一段目成形部と被成形材とを一体的に、金型の二段目成形部に対して相対的に移動させて、被成形材の二段目被成形部を成形する、
請求項3に記載の押出成形方法。
Said extrusion method comprising:
Move the molding material relative to the first stage molding part of the mold to mold the first stage molding part of the molding material,
The first stage molding part of the mold and the material to be molded are integrally moved relative to the second stage molding part of the mold to mold the second stage molding part of the molding material.
The extrusion method according to claim 3.
JP2004350122A 2004-12-02 2004-12-02 Extrusion-forming die and extrusion-forming method Pending JP2006159211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350122A JP2006159211A (en) 2004-12-02 2004-12-02 Extrusion-forming die and extrusion-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350122A JP2006159211A (en) 2004-12-02 2004-12-02 Extrusion-forming die and extrusion-forming method

Publications (1)

Publication Number Publication Date
JP2006159211A true JP2006159211A (en) 2006-06-22

Family

ID=36661783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350122A Pending JP2006159211A (en) 2004-12-02 2004-12-02 Extrusion-forming die and extrusion-forming method

Country Status (1)

Country Link
JP (1) JP2006159211A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527900A (en) * 2012-02-15 2012-07-04 西北工业大学 Precision forging die of gear shaft and molding method of precision forging die
CN104624903A (en) * 2014-12-15 2015-05-20 姚烔涛 Output gear shaft rotary forging mold
CN104646581A (en) * 2015-03-10 2015-05-27 富奥汽车零部件股份有限公司 Manufacturing method and mold structure of oversized-head pole bolt
CN104759571A (en) * 2015-03-20 2015-07-08 高灵军 Output gear shaft swing forging die
JP2017154168A (en) * 2016-03-04 2017-09-07 武蔵精密工業株式会社 Manufacturing method of forged drive shaft and forged drive shaft
CN108145394A (en) * 2017-12-04 2018-06-12 广东精铟海洋工程股份有限公司 A kind of manufacturing method of low temperature heavy duty high-performance climbing gear axis
CN109420733A (en) * 2017-08-28 2019-03-05 丰田自动车株式会社 The forging forming method of gear and the forge forming device of gear
CN111299481A (en) * 2019-11-19 2020-06-19 湖北坚丰科技股份有限公司 Closed forging and pressing forming process for gear shaft of new energy automobile engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527900A (en) * 2012-02-15 2012-07-04 西北工业大学 Precision forging die of gear shaft and molding method of precision forging die
CN104624903A (en) * 2014-12-15 2015-05-20 姚烔涛 Output gear shaft rotary forging mold
CN104646581A (en) * 2015-03-10 2015-05-27 富奥汽车零部件股份有限公司 Manufacturing method and mold structure of oversized-head pole bolt
CN104759571A (en) * 2015-03-20 2015-07-08 高灵军 Output gear shaft swing forging die
JP2017154168A (en) * 2016-03-04 2017-09-07 武蔵精密工業株式会社 Manufacturing method of forged drive shaft and forged drive shaft
WO2017150208A1 (en) * 2016-03-04 2017-09-08 武蔵精密工業株式会社 Method for manufacturing forged drive shaft and forged drive shaft
CN109420733A (en) * 2017-08-28 2019-03-05 丰田自动车株式会社 The forging forming method of gear and the forge forming device of gear
CN109420733B (en) * 2017-08-28 2020-09-29 丰田自动车株式会社 Forging method and forging device for gear
CN108145394A (en) * 2017-12-04 2018-06-12 广东精铟海洋工程股份有限公司 A kind of manufacturing method of low temperature heavy duty high-performance climbing gear axis
CN108145394B (en) * 2017-12-04 2019-04-09 广东精铟海洋工程股份有限公司 A kind of manufacturing method of low temperature heavy duty high-performance climbing gear axis
CN111299481A (en) * 2019-11-19 2020-06-19 湖北坚丰科技股份有限公司 Closed forging and pressing forming process for gear shaft of new energy automobile engine
CN111299481B (en) * 2019-11-19 2021-12-07 湖北坚丰科技股份有限公司 Closed forging and pressing forming process for gear shaft of new energy automobile engine

Similar Documents

Publication Publication Date Title
JP2007044704A (en) Apparatus for forming pipe material
KR20060028816A (en) Forging method, forged product and forging apparatus
JP2006159211A (en) Extrusion-forming die and extrusion-forming method
US7690236B2 (en) Method and apparatus for hole punching
JP4407825B2 (en) Extrusion molding method and extrusion molding apparatus
US7284403B2 (en) Apparatus and method for performing a hydroforming process
JP2006088197A (en) Manufacturing method for axial product with expanded head, manufacturing method for engine valve, and forging die used for manufacturing axial product with expanded head
US7296454B2 (en) Upsetting method and upsetting apparatus
JP4382627B2 (en) Forging method, forged product and forging device
TWI272143B (en) Forging method, forged article and forging apparatus
JP5641702B2 (en) Steel pipe expansion forming method and pipe expansion forming apparatus
US5007267A (en) Method and apparatus for manufacturing bellows pipe
KR101473948B1 (en) Method for manufacturing flange structure
JP4763977B2 (en) Method for manufacturing cylindrical member or bottomed cylindrical member
JP4826904B2 (en) Manufacturing method of grooved plug
JP4609259B2 (en) Roller bearing roller manufacturing method
JP5783598B2 (en) Pipe-shaped bending apparatus
JP2007130664A (en) Forming die for hydroforming work and working method
JP4885893B2 (en) Stepped shaft manufacturing method, armature shaft manufacturing method, and stepped shaft molding apparatus
JP4828989B2 (en) Upsetting method
JP7261060B2 (en) Method for manufacturing headed parts
JP2007136502A (en) Method and apparatus for upsetting
JP3418362B2 (en) Manufacturing method of outer spherical ring
WO2024111215A1 (en) Method and device for performing extrusion molding of different-thickness pipe having solid portion
US20070056345A1 (en) Upsetting method and upsetting apparatus