JP2006158722A - Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation - Google Patents

Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation Download PDF

Info

Publication number
JP2006158722A
JP2006158722A JP2004355665A JP2004355665A JP2006158722A JP 2006158722 A JP2006158722 A JP 2006158722A JP 2004355665 A JP2004355665 A JP 2004355665A JP 2004355665 A JP2004355665 A JP 2004355665A JP 2006158722 A JP2006158722 A JP 2006158722A
Authority
JP
Japan
Prior art keywords
pressure distribution
pressure
artificial
head
artificial bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355665A
Other languages
Japanese (ja)
Inventor
Naoki Suzuki
直樹 鈴木
Yoshito Otake
義人 大竹
Maki Hatsutori
麻木 服部
Mitsuhiro Hayashibe
充宏 林部
Shigeyuki Suzuki
薫之 鈴木
Nobuhiko Sugano
伸彦 菅野
Hidenori Miki
秀宣 三木
Zaikei Yamamura
在慶 山村
Sakuo Yonenobu
策雄 米延
Takahiro Ochi
隆弘 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jikei University School of Medicine
Original Assignee
Jikei University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jikei University School of Medicine filed Critical Jikei University School of Medicine
Priority to JP2004355665A priority Critical patent/JP2006158722A/en
Publication of JP2006158722A publication Critical patent/JP2006158722A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an optimum artificial hip joint is hardly selected since it is considered that soft tissue in the periphery of a hip joint such as muscles, tendons, and joint cartilages for grasping the hip bone actually gives much influence in addition to hard tissue such as a skeleton and an implant, as an element to affect the occurrence of a complication such as a postoperative dislocation or a friction on a joint surface and influence is not quantitatively grasped concerning a conventional total hip replacement. <P>SOLUTION: The artificial femoral head for measuring a pressure distribution is obtained, where a plurality of pressure sensors are arranged on the surface. During the total hip replacement, the artificial femoral head is mounted on the artificial joint so as to measure the distribution of the pressure to be actually received by the femoral head. The location of a problem is determined based on the measurement result, so that the optimum artificial joint is selected. A figure 1 is an external view of one example of the artificial femoral head for measuring the pressure distribution. The spherical artificial femoral head is indicated as 11, the pressure sensors are as 12a-12d, a neck part is as 13, and a cable is as 14. The plurality of pressure sensors are arranged by distribution on the surface of the artificial femoral head 11 so as to definitely detect the pressure in each part of the spherical surface of the femoral head 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、整形外科治療における人工関節設置の際に、最適の人工関節の設計あるいは選択を可能にする圧力分布計測用人工骨頭および計測装置と術中での人工関節設置状況評価方法に関する。   The present invention relates to an artificial bone head for pressure distribution measurement and a measuring device that enable the design or selection of an optimal artificial joint when installing an artificial joint in orthopedic treatment, and a method for evaluating an artificial joint installation state during surgery.

特に本発明は、人工股関節全置換術において、術中に骨頭上の圧力分布を計測することにより股関節周辺の軟部組織により股関節にかかる力を推定し、最適な人工股関節部品の選択および人工股関節の設置状況の評価を行うことのできるシステムを提供するものである。   In particular, in the total hip replacement, the present invention estimates the force applied to the hip joint by the soft tissue around the hip joint by measuring the pressure distribution on the bone head during the operation, and selects the optimum hip joint component and installs the hip joint A system that can evaluate the situation is provided.

従来、変形性股関節症や大腿骨頭壊死症、関節リウマチなどの疾患による股関節障害の治療においては、患者の生体への負担の少ない有力な外科的手段として、人工股関節置換術が広く行なわれてきた。図7は、従来用いられている人工股関節の1例を示したものである。   Conventionally, in the treatment of hip joint disorders caused by diseases such as osteoarthritis of the hip, femoral head necrosis, and rheumatoid arthritis, hip replacement has been widely performed as an effective surgical means with less burden on the patient's body. . FIG. 7 shows an example of a conventional artificial hip joint.

図7において、(a)は人工股関節の各部品をばらばらにした状態を示し、1は人工股関節、2は人工骨頭、3はネック部、4はインプラント部、5はアセタブラーシェル、6はライナーである。人工骨頭2は球状をなしており、人工股関節1のネック部3に取り付けられる。また人工股関節1の下端のインプラント部4は大腿骨の上部から髄腔内に挿入して固定される。アセタブラーシェル5はその内側に緩衝材としてポリエチレン製のライナー6が嵌め込まれて骨盤側に装着される。アセタブラーシェル5およびライナー6は、球状の人工骨頭2と係合する椀状のソケット(関節窩)を形成する。図7の(b)は、これらの部品が一体に組み立てられて人工股関節が完成された状態を示している。   In FIG. 7, (a) shows a state in which each component of the artificial hip joint is separated, 1 is an artificial hip joint, 2 is an artificial bone head, 3 is a neck portion, 4 is an implant portion, 5 is an acetabular shell, and 6 is a liner. It is. The artificial bone head 2 has a spherical shape and is attached to the neck portion 3 of the artificial hip joint 1. Further, the implant part 4 at the lower end of the artificial hip joint 1 is inserted into the medullary cavity from the upper part of the femur and fixed. The assembly shell 5 is attached to the pelvis side with a polyethylene liner 6 fitted as a cushioning material on the inside thereof. The acetabular shell 5 and the liner 6 form a bowl-shaped socket (glenoid) that engages the spherical artificial bone head 2. FIG. 7B shows a state in which these parts are assembled together to complete the artificial hip joint.

このような人工股関節は、軟骨や筋肉,腱などに囲まれて安定に保持されるとともに、周囲から多様な圧力を受けることになる。また患者自身の活動性により術後の経過とともに、人工股関節に摩擦による損傷やゆるみ、あるいは脱臼などが生じる可能性がある。一方、人工股関節の方式には種々のものがあり、球関節のサイズやネック部の長さと角度、あるいはインプラント部の長さと太さ、固定方法なども様々である。このため、近年、人工股関節全置換術において、術前の患者のCT画像をもとに構築した三次元的な骨格形状モデルを用いて、各患者に最適なインプラント部の形状や大きさをシュミレーションするシステムが臨床で用いられるようになってきている。   Such an artificial hip joint is surrounded and stably held by cartilage, muscles, tendons, and the like, and receives various pressures from the surroundings. In addition, the patient's own activity may cause frictional damage or loosening of the hip prosthesis, dislocation, etc., after the operation. On the other hand, there are various types of artificial hip joints, and there are various ball joint sizes, neck lengths and angles, implant lengths and thicknesses, fixing methods, and the like. Therefore, in recent years, in total hip arthroplasty, the optimal shape and size of the implant part for each patient are simulated using a three-dimensional skeletal shape model constructed based on CT images of patients before surgery. This system has been used in clinical practice.

従来の人工股関節全置換術では、術後の脱臼や関節面の摩擦などの合併症の発症に影響を与える要素は、骨格やインプラントなどの硬組織のみではなく、実際には股関節を把持する筋肉や腱、関節軟骨などの股関節周辺の軟部組織による影響が大きいと考えられる。しかし、従来はこれらの影響を定量的に把握することができず、最適な人工股関節を選択するのに困難があった。   In conventional total hip arthroplasty, the factors that affect the development of complications such as dislocation and joint surface friction after surgery are not only the hard tissues such as the skeleton and implants, but the muscles that actually hold the hip joints. It is thought that the soft tissue around the hip joint such as tendons, articular cartilage, and the like has a great influence. Conventionally, however, these effects cannot be grasped quantitatively, and it has been difficult to select an optimal artificial hip joint.

本発明は、人工股関節などの人工関節の全置換術の施行に際して、術前の情報に加え、これらの軟部組織による把持力の大きさや大腿骨頭に発生する圧力を術中に的確に把握して、最適な人工股関節の形状等の決定を可能にするものである。そのため、人工骨頭として表面に複数の圧力センサを配設した圧力分布計測用の人工骨頭を作り、人工関節全置換術の術中にこれを人工関節に装着して人工骨頭が実際に受ける圧力の分布を計測し、その計測結果に基づき問題の所在を判定して、最適な人工関節の選択を行なえるようにする。   In the present invention, in performing total replacement of an artificial joint such as an artificial hip joint, in addition to pre-operative information, the magnitude of the gripping force by these soft tissues and the pressure generated in the femoral head are accurately grasped during the operation, This makes it possible to determine the optimal shape and the like of the artificial hip joint. Therefore, an artificial bone head for pressure distribution measurement with multiple pressure sensors arranged on the surface as an artificial bone head is created, and this is attached to the artificial joint during the total joint replacement, and the pressure distribution actually received by the artificial bone head And determine the location of the problem based on the measurement result so that the optimum artificial joint can be selected.

図1は、本発明による圧力分布計測用人口骨頭の1例の外観図である。図中、11は球状の人工骨頭、12a〜12dは圧力センサ、13はネック部、14はケーブルを示す。圧力センサは、人工骨頭11の球状の表面の各部位における圧力を的確に検出できるように、複数個の圧力センサが人工骨頭11の表面に分散させて設けられる。圧力センサの数は多い程検出精度が上がるが、装置構成上、実際には8個程度で十分である。図1には、視点側から見える4個の圧力センサ12a〜12dのみを示す。ネック部13は、図7で説明した人工股関節の従来例におけるネック部3に対応するものであり、その先端に人工骨頭11が固着される。ケーブル14は、個々の圧力センサの出力導線を束ねたものであり、各圧力センサの検出信号が、このケーブルを介して図示されていない人工骨頭圧力分布計測装置へ送られる。   FIG. 1 is an external view of an example of an artificial bone head for pressure distribution measurement according to the present invention. In the figure, 11 is a spherical artificial bone head, 12a to 12d are pressure sensors, 13 is a neck portion, and 14 is a cable. The pressure sensor is provided with a plurality of pressure sensors dispersed on the surface of the artificial bone head 11 so that the pressure at each part of the spherical surface of the artificial bone head 11 can be accurately detected. The greater the number of pressure sensors, the higher the detection accuracy. However, in terms of the device configuration, about eight is actually sufficient. FIG. 1 shows only four pressure sensors 12a to 12d visible from the viewpoint side. The neck portion 13 corresponds to the neck portion 3 in the conventional example of the artificial hip joint described in FIG. 7, and the artificial bone head 11 is fixed to the tip thereof. The cable 14 is a bundle of output leads of individual pressure sensors, and the detection signal of each pressure sensor is sent to an artificial bone head pressure distribution measuring device (not shown) via this cable.

本発明によれば、人工股関節などの人工関節全置換術の施行に際して、予め圧力分布計測用人工骨頭をテスト用の人工関節に装着して人工骨頭表面にかかる圧力の分布データが収集され、得られた人工骨頭表面の圧力分布データに基づき最適の人工関節を選択して人工関節全置換が行われる。その結果、術後の人工関節の使用において、摩擦やゆるみが低減されるので、脱臼や関節の損傷の発生が防止される。   According to the present invention, when performing total replacement of an artificial joint such as an artificial hip joint, the distribution data of pressure applied to the artificial bone head surface is collected by attaching the artificial bone head for pressure distribution measurement to the artificial joint for testing in advance. Based on the obtained pressure distribution data of the artificial bone head surface, an optimal artificial joint is selected and total replacement of the artificial joint is performed. As a result, since the friction and loosening are reduced in the use of the artificial joint after surgery, the occurrence of dislocation and joint damage is prevented.

発明が実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

人工股関節の骨頭上の圧力分布を計測するため、8個の圧力センサを設置した圧力分布計測用の人工骨頭を作製したので、その実施例を以下に説明する。図2は、本発明の1実施例による人工股関節の主要な部品構成を示す説明図である。図2の(a),(b),(c)は、人工股関節の主要な部品を示す。図中の11は製作した人工骨頭、12a〜12dは圧力センサ、13はネック部、15はインプラント部であり、15を除き、図1中の同じ参照番号のものに対応している。人工骨頭11の細部構造は図3および図4に示される。   In order to measure the pressure distribution on the head of the hip prosthesis, an artificial bone head for pressure distribution measurement having eight pressure sensors was prepared, and an example thereof will be described below. FIG. 2 is an explanatory diagram showing the main component configuration of an artificial hip joint according to one embodiment of the present invention. (A), (b), and (c) of FIG. 2 show main parts of the artificial hip joint. In the figure, 11 is a manufactured artificial bone head, 12a to 12d are pressure sensors, 13 is a neck portion, 15 is an implant portion, and 15 corresponds to the same reference number in FIG. The detailed structure of the artificial bone head 11 is shown in FIGS.

図3は本発明の1実施例による人工骨頭の圧力センサ挿入孔の配置を示す細部構造図である。図示のように、人工骨頭11は球殻状をなしており、その表面を均等に覆うように8個の圧力センサ挿入孔16a〜16hが設けられている。また人工骨頭11の底部には、人工骨頭11をネック部13(図2)に装着するためのネック部挿入孔17が設けられている。圧力センサ挿入孔16a〜16hのそれぞれには、図1に示されるように圧力センサ12a〜12dなどが挿入されて接着固定される。圧力センサには、株式会社共和電業製の小型圧力センサ(PS-10KB)を使用した。各圧力センサの圧力感知部分には、摩擦が少ない球面状の形状となるようにABS樹脂で作製したカバーを貼付した。また配線は術中の圧力計測の際に妨げとならないように一箇所に集中させ、防水加工を施した。センサ各部の接着には各部の接着には体内でも無害な外科用瞬間接着剤を使用し、防水加工にはシリコンを使用した。   FIG. 3 is a detailed structural diagram showing the arrangement of pressure sensor insertion holes of the artificial bone head according to one embodiment of the present invention. As shown in the figure, the artificial bone head 11 has a spherical shell shape, and eight pressure sensor insertion holes 16a to 16h are provided so as to cover the surface evenly. A neck portion insertion hole 17 for mounting the artificial bone head 11 to the neck portion 13 (FIG. 2) is provided at the bottom of the artificial bone head 11. As shown in FIG. 1, pressure sensors 12a to 12d and the like are inserted into the pressure sensor insertion holes 16a to 16h, respectively, and are fixed by adhesion. A small pressure sensor (PS-10KB) manufactured by Kyowa Denki Co., Ltd. was used as the pressure sensor. A cover made of ABS resin was attached to the pressure sensing part of each pressure sensor so as to have a spherical shape with little friction. In addition, the wiring was concentrated in one place so as not to interfere with the intraoperative pressure measurement, and waterproofing was applied. For the bonding of each part of the sensor, a surgical instant adhesive that is harmless in the body was used for bonding each part, and silicon was used for waterproofing.

図4は、各圧力センサからの出力導線を人工骨頭11の底部に集めるための導線ガイドの配置を示す細部構造図である。各圧力センサ挿入孔16a〜16hの側壁から、それぞれ人工骨頭11の底部に向かって空洞状の導線ガイド18a〜18hが設けられる。圧力センサからの出力導線は、導線ガイド18a〜18hの中に配線され、底部で一箇所にまとめられて、図1のケーブル14により取り出される。また人工骨頭11の中心部には、ネック部13を保持するためのネック部ホルダ19が取り付けられる。このような人工骨頭全体の構造は、3DCADを用いて設計し、ABS樹脂を用いた積層造形技術により造形した。しかし、樹脂製の球体を穴あけ加工する方法で作製することも可能である。   FIG. 4 is a detailed structural diagram showing the arrangement of the conductor guides for collecting the output conductors from the pressure sensors at the bottom of the artificial bone head 11. Hollow conductive wire guides 18a to 18h are provided from the side walls of the pressure sensor insertion holes 16a to 16h toward the bottom of the artificial bone head 11, respectively. The output conductors from the pressure sensor are wired in the conductor guides 18a to 18h, collected at one place at the bottom, and taken out by the cable 14 in FIG. A neck portion holder 19 for holding the neck portion 13 is attached to the central portion of the artificial bone head 11. The entire structure of the artificial bone head was designed using 3D CAD, and was modeled using additive manufacturing technology using ABS resin. However, it is also possible to manufacture by a method of drilling a resin sphere.

また術中に圧力センサをコントロールするためのソフトウエアに関しても開発を行った。本ソフトウエアではサンプリング周波数1000Hzで各圧力センサから圧力を計測し、コンピュータグラフィックスを用いて圧力の方向と大きさをリアルタイムにかつ三次元的に表示した。また圧力分布の様子を骨頭球面上の色の違いで表示し、同時に各圧力センサで計測された値をグラフで確認することも可能とした。図5および図6によりその実施例を説明する。   We also developed software for controlling the pressure sensor during surgery. In this software, the pressure was measured from each pressure sensor at a sampling frequency of 1000 Hz, and the direction and magnitude of the pressure were displayed in real time and three-dimensionally using computer graphics. It is also possible to display the pressure distribution in different colors on the phalange sphere and simultaneously check the values measured by each pressure sensor on a graph. The embodiment will be described with reference to FIGS.

図5は、人工骨頭の圧力分布計測画面を示す。図中の画面領域21はコントロール領域であり、設定された動作環境データと操作ボタンが表示されている。たとえば、計測周期やグラフの目盛り単位、各圧力センサの規格や各圧力センサに割り付けられているチャネル(Ch.)番号と色分け表示のカラー名、配設位置の方位角などが表示されており、また測定開始ボタンや三次元画像の操作ボタンなどが設けられている。画面領域22は圧力分布計測用人工骨頭の三次元画像表示領域であり、人工骨頭表面の各圧力センサ位置には、計測された圧力値が、圧力センサ(チャネル)ごとに色分けされて棒クラフで表示されている。人工骨頭の三次元画像の視点は、画面領域21の〔プレーヤー〕ボタンを操作することにより自由に移動させることができる。画面領域23は、縦軸に圧力、横軸が時間をとった圧力分布の時間経過を示すグラフであり、画面領域22に表示されている各圧力センサ(チャネル)の圧力値の時間変化が色分け表示される。これにより、ユーザーは人工骨頭上の圧力分布を自由な視点から、インタラクティブに操作しながら観察することができる。   FIG. 5 shows a pressure distribution measurement screen of the artificial bone head. A screen area 21 in the figure is a control area, on which set operating environment data and operation buttons are displayed. For example, the measurement cycle, the scale unit of the graph, the standard of each pressure sensor, the channel (Ch.) Number assigned to each pressure sensor, the color name of the color-coded display, the azimuth of the location, etc. are displayed. In addition, a measurement start button, a three-dimensional image operation button, and the like are provided. The screen area 22 is a three-dimensional image display area of the artificial bone head for pressure distribution measurement. At each pressure sensor position on the surface of the artificial bone head, the measured pressure value is color-coded for each pressure sensor (channel) and displayed in a bar craft. It is displayed. The viewpoint of the three-dimensional image of the artificial bone head can be freely moved by operating the [Player] button in the screen area 21. The screen area 23 is a graph showing the time lapse of the pressure distribution with the vertical axis representing pressure and the horizontal axis representing time. The time change of the pressure value of each pressure sensor (channel) displayed in the screen area 22 is color-coded. Is displayed. As a result, the user can observe the pressure distribution on the artificial bone head from a free viewpoint while interactively operating it.

図6は、図5の圧力分布計測画面を表示できる人工骨頭圧力分布計測装置の1実施例の構成図である。図中、31は人工骨頭、32は信号入力部、33はマルチプレクサ、34はA/D変換器、35は人工骨頭圧力分布計測装置、36はキーボード、37はマウス、38はディスプレイ装置、39はプリンタ、40は圧力分布計測処理部、41は圧力分布画像出力処理部、42は動作環境データ、43は圧力分布データ、44は時系列圧力データ表示処理手段、45は三次元画像圧力分布表示処理手段である。   FIG. 6 is a configuration diagram of one embodiment of an artificial bone head pressure distribution measuring apparatus capable of displaying the pressure distribution measurement screen of FIG. In the figure, 31 is an artificial bone head, 32 is a signal input unit, 33 is a multiplexer, 34 is an A / D converter, 35 is an artificial bone head pressure distribution measuring device, 36 is a keyboard, 37 is a mouse, 38 is a display device, 39 is Printer, 40 is a pressure distribution measurement processing unit, 41 is a pressure distribution image output processing unit, 42 is operating environment data, 43 is pressure distribution data, 44 is time-series pressure data display processing means, and 45 is a three-dimensional image pressure distribution display process Means.

人工骨頭31の8個の圧力センサからアナログ信号形式で並列に出力される8チャネルCh.1〜Ch.8の圧力検出信号は、信号入力部32のマルチプレクサ33で周期的にサンプリングおよび直列化され、A/D変換器34でデジタル圧力信号に変換されて、人工骨頭圧力分布計測装置35に入力される。人工骨頭圧力分布計測装置35は、一般的なパソコンをベースにソフトウエアで構築された装置であり、入出力手段として、キーボード36、マウス37、ディスプレイ装置38、プリンタ39を備えている。動作環境データ42は、初期設定されたデータであり、圧力センサの位置および方位、チャネル番号、カラー名などの図5の画面領域21に表示されるデータを含む。圧力分布計測処理部40は、動作環境データ42に基づき、入力された各チャネルのデジタル圧力信号をセンサの特性に応じて補正して圧力値に変換する計測処理を行なうとともに、時系列の圧力データとして圧力分布データ43を作成する。圧力分布データ43の作成、クリアなどの操作は、図5の画面領域21から行なうことができる。   The 8-channel Ch.1 to Ch.8 pressure detection signals output in parallel in analog signal format from the eight pressure sensors of the artificial bone head 31 are periodically sampled and serialized by the multiplexer 33 of the signal input unit 32. The A / D converter 34 converts the digital pressure signal into a digital pressure signal, which is input to the artificial head pressure distribution measuring device 35. The artificial head pressure distribution measuring device 35 is a device constructed by software based on a general personal computer, and includes a keyboard 36, a mouse 37, a display device 38, and a printer 39 as input / output means. The operating environment data 42 is data that is initially set, and includes data displayed in the screen area 21 of FIG. 5 such as the position and orientation of the pressure sensor, the channel number, and the color name. Based on the operating environment data 42, the pressure distribution measurement processing unit 40 performs measurement processing for correcting the input digital pressure signal of each channel in accordance with the characteristics of the sensor and converting it into a pressure value, and time-series pressure data. The pressure distribution data 43 is created as follows. Operations such as creation and clearing of the pressure distribution data 43 can be performed from the screen area 21 of FIG.

圧力分布画像出力処理部41では、時系列圧力データ表示処理手段44が圧力分布データ43に基づいて図5の画面領域23のグラフを作成して表示し、三次元画像圧力分布表示処理手段45が図5の画面領域22の三次元画像を作成して表示する処理を行なう。   In the pressure distribution image output processing unit 41, the time-series pressure data display processing unit 44 creates and displays a graph of the screen region 23 of FIG. 5 based on the pressure distribution data 43, and the three-dimensional image pressure distribution display processing unit 45 Processing for creating and displaying a three-dimensional image of the screen area 22 of FIG. 5 is performed.

本システムは術場で実際に使用され、脱臼の危険性のある肢位を含めた17の肢位で骨頭での圧力分布計測が行なわれた。計測の手順としては、まず大腿骨側コンポーネントのインプラント部を設置した後、テスト用ネックとともに人工骨頭を装着して圧力センサを用いた計測を行い、計測後に適用するネックおよびヘッドを選択して置き換えた。術場での計測の結果、本システムは術中でも使用することが可能であり、各肢位における計測データを術中に保存し、術後に詳細な解析を行うといったことが可能であることを確認した。   This system was actually used in the surgical field, and pressure distribution measurements were performed at the bone head in 17 limb positions, including those at risk of dislocation. As the measurement procedure, first install the implant part of the femoral component, then mount the artificial bone head together with the test neck and perform measurement using the pressure sensor, and select and replace the neck and head to be applied after measurement It was. As a result of measurement at the surgical site, this system can be used even during surgery, and it is confirmed that measurement data at each limb position can be saved during surgery and detailed analysis can be performed after surgery. did.

このように本システムを用いることで、人工股関節全置換術の術中にリアルタイムに骨頭にかかる力を計測することが可能となるため、術前に選定したいくつかの人工股関節部品の中から手術時の各患者にとって最適な部品の決定を行なうことができた。また術後に股関節周辺の軟部組織が股関節を把持する力を定量的に解析するといった応用が可能である。さらに、今後手術ナビゲーションシステムと統合し、圧力計測データと同時にリアルタイムに股関節角度を計測できるようにすることにより、股関節周辺の複数の筋肉が股関節を把持するために発生する力やそれらのバランスが崩れることによって生じてしまう脱臼のメカニズムの解明が可能となる。   By using this system in this way, it is possible to measure the force on the bone head in real time during the total hip replacement, so it is possible to select from several hip prosthetic components selected before surgery. It was possible to determine the most suitable part for each patient. Further, it can be applied to quantitatively analyze the force with which the soft tissue around the hip joint grips the hip joint after surgery. Furthermore, by integrating with a surgical navigation system in the future, it will be possible to measure the hip joint angle in real time at the same time as the pressure measurement data, so that the forces generated by multiple muscles around the hip joint and the balance between them will be lost. It becomes possible to elucidate the mechanism of dislocation caused by this.

本発明による圧力分布計測用人口骨頭の外観図である。It is an external view of the artificial bone head for pressure distribution measurement by this invention. 本発明の1実施例による人工股関節の主要な部品を示す構成図である。It is a block diagram which shows the main components of the artificial hip joint by one Example of this invention. 本発明の1実施例による人工骨頭の圧力センサ挿入孔の配置を示す細部構造図である。FIG. 3 is a detailed structural diagram illustrating an arrangement of pressure sensor insertion holes of an artificial bone head according to an embodiment of the present invention. 本発明の1実施例による人工骨頭の導線ガイドの配置を示す細部構造図である。FIG. 3 is a detailed structural diagram illustrating an arrangement of a conductive wire guide for an artificial bone head according to an embodiment of the present invention. 本発明の1実施例による人工骨頭の圧力分布計測画面の説明図である。It is explanatory drawing of the pressure distribution measurement screen of the artificial bone head by one Example of this invention. 人工骨頭圧力分布計測装置の1実施例の構成図である。It is a block diagram of one Example of the artificial bone head pressure distribution measuring apparatus. 人工股関節の従来例の構成図である。It is a block diagram of the conventional example of an artificial hip joint.

符号の説明Explanation of symbols

11:人工骨頭
12a〜12d:圧力センサ
13:ネック部
14:ケーブル
11: Artificial bone heads 12a to 12d: Pressure sensor 13: Neck portion 14: Cable

Claims (8)

表面に複数の圧力センサを配設された球状頭部により構成されていることを特徴とする圧力分布計測用人工骨頭。   An artificial bone head for pressure distribution measurement, characterized by comprising a spherical head having a plurality of pressure sensors arranged on the surface. 請求項1において、前記球状頭部は、表面に複数の圧力センサを配設するための複数の孔と、内部に圧力センサの導線を通す空間あるいは通路を備えていることを特徴とする圧力分布計測用人工骨頭。   2. The pressure distribution according to claim 1, wherein the spherical head includes a plurality of holes for disposing a plurality of pressure sensors on a surface, and a space or a passage through which a lead wire of the pressure sensor passes. Artificial bone head for measurement. 請求項2において、前記球状頭部は球殻で形成されていることを特徴とする圧力分布計測用人工骨頭。   3. The artificial bone head for pressure distribution measurement according to claim 2, wherein the spherical head is formed of a spherical shell. 請求項1ないし請求項3において、前記球状頭部は、骨体中に埋め込まれるインプラント部をもつ人工関節のネック部上に取り付けるための係合手段を備えていることを特徴とする圧力分布計測用人工骨頭。   4. The pressure distribution measurement according to claim 1, wherein the spherical head includes engagement means for mounting on a neck portion of an artificial joint having an implant portion embedded in a bone body. Artificial bone head. 表面に複数の圧力センサを配設された球状頭部をもつ圧力分布計測用人工骨頭と、該圧力分布計測用人工骨頭の複数の圧力センサからの圧力検出信号を受信する信号入力部と、受信された圧力検出信号に基づいて、人工骨頭の球状頭部の表面における圧力分布を計測する圧力分布計測処理部と、計測された球状頭部表面の圧力分布を表す画像を作成して表示する圧力分布画像出力処理部とを備えていることを特徴とする人工骨頭圧力分布計測装置。   An artificial bone head for pressure distribution measurement having a spherical head having a plurality of pressure sensors disposed on the surface; a signal input unit for receiving pressure detection signals from the plurality of pressure sensors of the artificial bone head for pressure distribution measurement; Based on the detected pressure detection signal, the pressure distribution measurement processing unit that measures the pressure distribution on the surface of the spherical head of the artificial bone head and the pressure that creates and displays the image representing the measured pressure distribution on the surface of the spherical head An artificial bone head pressure distribution measuring device comprising a distribution image output processing unit. 請求項5において、前記圧力分布画像出力処理部は、前記表面に複数の圧力センサを配設された球状頭部をもつ圧力分布計測用人工骨頭の外観を、指示操作に応じ三次元的に回転させて画像表示するとともに、三次元画像表示された人工骨頭の表面の各圧力センサに対応付けて、前記計測された圧力分布を画像表示する三次元画像圧力分布表示処理手段を備えていることを特徴とする人工骨頭圧力分布計測装置。   6. The pressure distribution image output processing unit according to claim 5, wherein the appearance of the artificial bone head for pressure distribution measurement having a spherical head having a plurality of pressure sensors arranged on the surface is three-dimensionally rotated according to an instruction operation. And a three-dimensional image pressure distribution display processing means for displaying the measured pressure distribution in association with each pressure sensor on the surface of the artificial bone head displayed as a three-dimensional image. An artificial bone head pressure distribution measuring device. 人工関節設置術の施行に際し、はじめに、人工関節のインプラント部のネックに、球状頭部表面の圧力検出機能を有する圧力分布計測用人工骨頭を取り付けて人工骨頭表面の圧力分布を計測し、人工関節設置時の球状頭部表面の圧力分布データを取得することを特徴とする人工関節設置状況術中評価方法。   When performing artificial joint placement, first, an artificial bone head for pressure distribution measurement having a pressure detection function on the surface of the spherical head is attached to the neck of the implant portion of the artificial joint, and the pressure distribution on the artificial bone head surface is measured. A method for intraoperative evaluation of the prosthetic joint installation state characterized by acquiring pressure distribution data on the spherical head surface during installation. 請求項7において、前記圧力分布計測用人工骨頭を用いて人工関節設置状態での球状頭部表面の圧力分布データを取得した後、該圧力分布データに基づいて最適の人工関節の特性を判定することを特徴とする人工関節設置状況術中評価方法。
In Claim 7, after acquiring the pressure distribution data of the spherical head surface in the artificial joint installation state using the artificial bone head for pressure distribution measurement, the characteristic of the optimal artificial joint is determined based on the pressure distribution data Intraoperative evaluation method of the prosthetic joint installation state characterized by this.
JP2004355665A 2004-12-08 2004-12-08 Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation Pending JP2006158722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355665A JP2006158722A (en) 2004-12-08 2004-12-08 Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355665A JP2006158722A (en) 2004-12-08 2004-12-08 Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation

Publications (1)

Publication Number Publication Date
JP2006158722A true JP2006158722A (en) 2006-06-22

Family

ID=36661343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355665A Pending JP2006158722A (en) 2004-12-08 2004-12-08 Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation

Country Status (1)

Country Link
JP (1) JP2006158722A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240402A (en) * 2009-03-31 2010-10-28 Depuy Products Inc Device and method for determining forces of patient's joint
US9538953B2 (en) 2009-03-31 2017-01-10 Depuy Ireland Unlimited Company Device and method for determining force of a knee joint
US9545459B2 (en) 2012-03-31 2017-01-17 Depuy Ireland Unlimited Company Container for surgical instruments and system including same
US10485530B2 (en) 2012-03-29 2019-11-26 Depuy Ireland Unlimited Company Orthopedic surgical instrument for knee surgery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017113A1 (en) * 1991-04-05 1992-10-15 N.K. Biotechnical Engineering Company Knee joint load measuring instrument
US6245109B1 (en) * 1999-11-18 2001-06-12 Intellijoint Systems, Ltd. Artificial joint system and method utilizing same for monitoring wear and displacement of artificial joint members
WO2003079940A2 (en) * 2002-03-19 2003-10-02 The Board Of Trustees Of The University Of Illinois System and method for prosthetic fitting and balancing in joints
JP2005052642A (en) * 2003-07-29 2005-03-03 Biosense Webster Inc Energy transfer amplifier for intrabody device
JP2006520656A (en) * 2003-03-20 2006-09-14 メドトロニック・インコーポレーテッド Inflatable spherical spinal graft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017113A1 (en) * 1991-04-05 1992-10-15 N.K. Biotechnical Engineering Company Knee joint load measuring instrument
US6245109B1 (en) * 1999-11-18 2001-06-12 Intellijoint Systems, Ltd. Artificial joint system and method utilizing same for monitoring wear and displacement of artificial joint members
WO2003079940A2 (en) * 2002-03-19 2003-10-02 The Board Of Trustees Of The University Of Illinois System and method for prosthetic fitting and balancing in joints
JP2006520656A (en) * 2003-03-20 2006-09-14 メドトロニック・インコーポレーテッド Inflatable spherical spinal graft
JP2005052642A (en) * 2003-07-29 2005-03-03 Biosense Webster Inc Energy transfer amplifier for intrabody device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240402A (en) * 2009-03-31 2010-10-28 Depuy Products Inc Device and method for determining forces of patient's joint
US9538953B2 (en) 2009-03-31 2017-01-10 Depuy Ireland Unlimited Company Device and method for determining force of a knee joint
US10485530B2 (en) 2012-03-29 2019-11-26 Depuy Ireland Unlimited Company Orthopedic surgical instrument for knee surgery
US11589857B2 (en) 2012-03-29 2023-02-28 Depuy Ireland Unlimited Company Orthopedic surgical instrument for knee surgery
US9545459B2 (en) 2012-03-31 2017-01-17 Depuy Ireland Unlimited Company Container for surgical instruments and system including same

Similar Documents

Publication Publication Date Title
US20230135541A1 (en) Hip surgery systems and methods
US20200069438A1 (en) Prosthetic placement tool and associated methods
JP4943419B2 (en) Positioning of the acetabular cup
CN109925055B (en) Full-digital total knee joint replacement surgery robot system and simulated surgery method thereof
US7715602B2 (en) Method and apparatus for reconstructing bone surfaces during surgery
JP5710497B2 (en) Program for preoperative planning of hip replacement surgery
US7412897B2 (en) Device for measuring tibio-femoral force amplitudes and force locations in total knee arthroplasty
US10624711B2 (en) Device for measuring femur displacement and method of making orthopedic measurements during a surgical procedure to correct a damaged hip
US20050203536A1 (en) Surgical device for implanting a total hip prosthesis
US20090316967A1 (en) Help system for implanting a hip prosthesis on an individual
EP2103259B1 (en) Method and system for determination of a degree of deformity of an anatomical joint
JP2007501419A (en) Functional and anatomical delivery simulator
CA3088761A1 (en) Method and system to determine cervical implant size
CN113940664A (en) Total hip replacement measurement system capable of measuring prosthesis posture
JP2006158722A (en) Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation
Cristofolini et al. Device to measure intra-operatively the primary stability of cementless hip stems
EP1465541B1 (en) Method and apparatus for reconstructing bone surfaces during surgery
Lagopoulos A system for describing shoulder and knee joint kinematics and biomechanics

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720